1
|
Van Nederveen V, Johnson YS, Ortega E, Soc A, Smith MA, Melton-Celsa AR. Role of aggregative adherence fimbriae from enteroaggregative Escherichia coli isolates in biofilm and colonization. Microb Pathog 2025; 203:107444. [PMID: 40032001 DOI: 10.1016/j.micpath.2025.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/10/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Enteroaggregative Escherichia coli (EAEC) are a diverse group of bacteria that cause diarrhea worldwide. EAEC significantly affect travelers to endemic regions, including military personnel, and children in developing countries where EAEC infection is associated with childhood failure-to-thrive. EAEC creates thick biofilms on the intestinal mucosa, a process that is thought to contribute to the development of both diarrhea and childhood failure-to-thrive. Typical EAEC strains encode and produce just one aggregative adherence fimbriae (AAF) out of the five different AAF types. The AAF are required for aggregative adherence to epithelial cells in vitro, but the degree of importance of each of the AAF types in both biofilm formation and pathogenesis is unknown. In this study, we investigated the role of the fimbriae in EAEC biofilms by deleting the major fimbrial subunit gene for the AAF from each of the five AAF categories and observing the impact on biofilm staining from recent EAEC clinical isolates. We found that biofilm was significantly reduced in all strains when the AAF gene was deleted, and that the defect could be overcome by complementation. In this work we also describe a modified murine EAEC model appropriate for colonization studies. In an antibiotic-treated mouse colonization model, some AAF mutant strains were attenuated for colonization, including AAF/II, AAF/IV, and AAF/V isolates. We did not observe complementation of the attenuated colonization phenotype in the mouse model. However, since we found a colonization defect for several EAEC mutant strains of different AAF types, a link between the fimbriae and colonization in the mice is supported. Taken together, our results show that the AAF are required for biofilm formation, and that some AAF contribute to colonization in a mouse model.
Collapse
Affiliation(s)
- Viktoria Van Nederveen
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Yuliya Seldina Johnson
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Ennzo Ortega
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Anthony Soc
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | | | - Angela R Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
2
|
Hagin LW, Mandomando I, Ruiz-Perez F, Wright NT, Gonyar LA. Structural basis of aggregative adherence fimbriae II interactions with sialic acid, mucin, and human intestinal cells. Infect Immun 2025; 93:e0048324. [PMID: 40029240 PMCID: PMC11977319 DOI: 10.1128/iai.00483-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a common cause of diarrhea worldwide and is associated with growth faltering in developing countries. EAEC are defined by a characteristic adherence pattern mediated by the aggregative adherence fimbriae (AAFs). Despite the critical role of AAF in the definition of the EAEC pathotype, it is not known what host molecules mediate adherence and EAEC pathogenesis during infection of the human gastrointestinal tract. Multiple receptor candidates have been proposed based on in vitro experimentation. We propose that AAFs interact with multiple receptors during colonization of the human gastrointestinal mucosa, and we hypothesize that structural features of the AafA protein (the major subunit of AAF variant II produced by EAEC strain 042) promote these diverse interactions. In this study, we utilize a panel of AafA variants encoding single amino acid substitutions to understand the role of individual residues in biofilm formation as well as adherence to mucin, fibronectin, and human intestinal cells. We identify both charged and uncharged residues that participate in these interactions, and these residues cluster in two regions of the protein that may define a binding pocket at the junction of polymerized subunits. Although both bovine submaxillary mucin and human fibronectin are sialylated molecules, adherence to mucin is diminished by the removal of sialic acid residues while adherence to fibronectin is not, suggesting that the mechanisms of adherence to these molecules are distinct. Overall, our data provide insight into the structural features that determine AAF/II binding to mucin, sialic acid, and human intestinal cells.
Collapse
Affiliation(s)
- Luke W. Hagin
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Maputo, Mozambique
- ISGLOBAL-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - Nathan T. Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Laura A. Gonyar
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Whelan R, Cyganek M, Oxley CL, Dickins B, Thomas JC, McVicker G. Genetic and phenotypic analysis of the virulence plasmid of a non-Shigatoxigenic enteroaggregative Escherichia coli O104:H4 outbreak strain. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001550. [PMID: 40146611 PMCID: PMC11950199 DOI: 10.1099/mic.0.001550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Enteroaggregative Escherichia coli O104:H4 is best known for causing a worldwide outbreak in 2011 due to the acquisition of a Shiga-like toxin alongside traditional enteroaggregative virulence traits; however, whilst the 2011 outbreak strain has been well studied, the virulence plasmid of O104:H4 has been subjected to far less experimental analysis. In this paper, we analyse the genetic and phenotypic contribution of the pAA virulence plasmid to a non-Shigatoxigenic O104:H4 strain (1070/13) that was nonetheless implicated in a substantial UK outbreak in 2013. We find that pAA1070 is 99.95% identical across 88% of the plasmid sequence to pTY2 from the 2011 outbreak strain and has a copy number of ~2-3 plasmid molecules per chromosome. We demonstrate that pAA1070 carries a functional CcdAB plasmid addiction system that only marginally impacts its stability under the conditions tested. None of the other toxin-antitoxin systems encoded by the plasmid appear to be functional, though we note a surprisingly high stability of the plasmid in vitro regardless. We demonstrate the expected contribution of pAA1070 to intestinal cell adhesion but find that it does not contribute to biofilm formation. When assessing the impact of pAA1070 on motility, we discovered a region of the O104:H4 chromosome that can be excised, abolishing motility via truncation of the fliR gene. Ultimately, this work demonstrates the importance of mobile genetic elements to enteroaggregative E. coli as a pathovar in its own right and highlights the complexity but necessity of experimentally characterizing genuine outbreak strains rather than laboratory strains in order to understand virulence phenotypes.
Collapse
Affiliation(s)
- Rachel Whelan
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Martyna Cyganek
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Charlotte L. Oxley
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Benjamin Dickins
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Jonathan C. Thomas
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Gareth McVicker
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| |
Collapse
|
4
|
Luiz BM, Cergole-Novella MC, Dantas STA, de Lira DRP, de Souza GFR, Fernandes IDA, Orsi H, Solveira G, Rall VLM, Dos Santos LF, Hernandes RT. Enteroaggregative Escherichia coli (EAEC) isolates obtained from non-diarrheic children carry virulence factor-encoding genes from Extraintestinal Pathogenic E. Coli (ExPEC). Braz J Microbiol 2024; 55:3551-3561. [PMID: 39083223 PMCID: PMC11711792 DOI: 10.1007/s42770-024-01471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/19/2024] [Indexed: 01/11/2025] Open
Abstract
Enteroaggregative E. coli (EAEC) is one of the most frequent pathogens isolated from diarrheal patients as well as from healthy individuals in Brazil and has recently also been implicated as an extraintestinal pathogenic E. coli (ExPEC) associated with bloodstream and urinary tract infections. In this study, 37 EAEC isolates, obtained from fecal samples of non-diarrheic children, were molecularly and phenotypically characterized to access the pathogenic features of these isolates. The EAEC isolates were assigned into the phylogroups A (54.1%), D (29.7%), B1 (13.5%) and B2 (2.7%); and harbored genes responsible for encoding the major pilin subunit of the aggregative adherence fimbriae (AAFs) or aggregate-forming pili (AFP) adhesins as follows: aggA (24.3%), agg3A (5.4%), agg4A (27.0%), agg5A (32.4%) and afpA (10.8%). The most frequent O:H serotypes were O15:H2 (8.1%), O38:H25 (5.4%) and O86:H2 (5.4%). Twenty-one isolates (56.8%) produce the aggregative adherence (AA) pattern on HeLa cells, and biofilm formation was more efficient among EAEC isolates harboring the aggA and agg5A genes. PFGE analysis showed that 31 (83.8%) of the isolates were classified into 10 distinct clusters, which reinforces the high diversity found among the isolates studied. Of note, 40.5% (15/37) of the EAEC isolates have a genetic profile compatible with E. coli isolates with intrinsic potential to cause extraintestinal infections in healthy individuals, and therefore, classified as EAEC/ExPEC hybrids. In conclusion, we showed the presence of EAEC/ExPEC hybrids in the intestinal microbiota of non-diarrheic children, possibly representing the source of some endogenous extraintestinal infections.
Collapse
Affiliation(s)
- Bruna M Luiz
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | | | - Stéfani T A Dantas
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Daiany R P de Lira
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | | | | | - Henrique Orsi
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Guilherme Solveira
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Vera L M Rall
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Luís F Dos Santos
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, SP, Brasil
| | - Rodrigo T Hernandes
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil.
| |
Collapse
|
5
|
Nouri R, Hasani A, Shirazi KM, Sefiadn FY, Mazraeh FN, Sattarpour S, Rezaee MA. Colonization of the gut mucosa of colorectal cancer patients by pathogenic mucosa-associated Escherichia coli strains. Diagn Microbiol Infect Dis 2024; 109:116229. [PMID: 38507962 DOI: 10.1016/j.diagmicrobio.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Some strains of Escherichia coli are known to be involved in the pathogenesis of colorectal cancer (CRC). The aim of current study was to compare the general characteristics of the E. coli from CRC patients and healthy participants. A total of 96 biopsy samples from 48 CRC patients and 48 healthy participants, were studied. The clonality of the E. coli isolates was analyzed by Enterobacterial repetitive intergenic consensus-based PCR (ERIC-PCR) method. The strains were tested by PCR to determine the prevalence of different virulence factors. According to the results of ERIC-PCR analysis, (from the 860 E. coli isolates) 60 strains from CRC patients and 41 strains from healthy controls were identified. Interestingly, the majority of the strains of both groups were in the same cluster. Enteropathogenic E. coli (EPEC) was detected significantly more often in CRC patients (21.6 %) than in healthy participants (2.4 %) (p < 0.05). The Enteroaggregative E. coli (EAEC) was found in 18.33 % of the strains of CRC patients. However, other pathotypes were not found in the E. coli strains of both groups. Furthermore, all the studied genes encoding for virulence factors seemed to be more prevalent in the strains belonging to CRC patients. Among the virulence genes, the statistical difference regarding the frequency of fuyA, chuA, vat, papC, hlyA and cnf1 genes was found significant (p < 0.05). In conclusion, E. coli strains that carry extraintestinal pathogenic E. coli (ExPEC) and diarrheagenic E. coli (DEC) multiple virulence factors colonize the gut mucosa of CRC patients.
Collapse
Affiliation(s)
- Roghayeh Nouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kourosh Masnadi Shirazi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Yeganeh Sefiadn
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Naeimi Mazraeh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sattarpour
- Department of Basic Sciences, Faculty of Allied Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Izquierdo-Vega JA, Castillo-Juarez RJ, Sánchez-Gutiérrez M, Ares MA, De La Cruz MA. A Mini-Review of Enteroaggregative Escherichia coli with a Specific Target on the Virulence Factors Controlled by the AggR Master Regulator. Pol J Microbiol 2023; 72:347-354. [PMID: 37875068 PMCID: PMC10725161 DOI: 10.33073/pjm-2023-037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/08/2023] [Indexed: 10/26/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) strains have been linked to several outbreaks of severe diarrhea around the world, and this bacterium is now commonly resistant to antibiotics. As part of the pathophysiology of EAEC, the characteristic pattern of adherence looks like stacked bricks on the intestinal epithelium. This phenotype depends on an aggregative adhesion plasmid (pAA), which codes for a regulatory protein named AggR. The AggR protein is a master regulator that transcriptionally actives the main virulence genes in this E. coli pathotype, such as those that encode the aggregative adhesion fimbriae, dispersin and its secretion apparatus, Aar regulatory protein, and type VI secretion system. Several reports have shown that AggR positively affects most EAEC virulence genes, functioning as a classic transcriptional activator in the promoter region of these genes, interacting with the RNA polymerase. This minireview article integrates the information about virulence determinants of EAEC controlled by the AggR regulator.
Collapse
Affiliation(s)
| | | | | | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México City, México
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, México
| | | |
Collapse
|
7
|
Jønsson R, Björling A, Midtgaard SR, Jensen GV, Skar-Gislinge N, Arleth L, Matthews S, Krogfelt KA, Jenssen H. Aggregative adherence fimbriae form compact structures as seen by SAXS. Sci Rep 2023; 13:16516. [PMID: 37783694 PMCID: PMC10545799 DOI: 10.1038/s41598-023-42079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Bacterial colonization is mediated by fimbriae, which are thin hair-like appendages dispersed from the bacterial surface. The aggregative adherence fimbriae from enteroaggregative E. coli are secreted through the outer membrane and consist of polymerized minor and major pilin subunits. Currently, the understanding of the structural morphology and the role of the minor pilin subunit in the polymerized fimbriae are limited. In this study we use small-angle X-ray scattering to reveal the structural morphology of purified fimbriae in solution. We show that the aggregative fimbriae are compact arrangements of subunit proteins Agg5A + Agg3B which are assembled pairwise on a flexible string rather than extended in relatively straight filaments. Absence of the minor subunit leads to less compact fimbriae, but did not affect the length. The study provides novel insights into the structural morphology and assembly of the aggregative adherence fimbriae. Our study suggests that the minor subunit is not located at the tip of the fimbriae as previously speculated but has a higher importance for the assembled fimbriae by affecting the global structure.
Collapse
Affiliation(s)
- Rie Jønsson
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark.
| | | | | | | | | | - Lise Arleth
- Niels Bohr Institute, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Steve Matthews
- Department of Life Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London, UK
| | | | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark.
| |
Collapse
|
8
|
Llorente MT, Escudero R, Ramiro R, Remacha MA, Martínez-Ruiz R, Galán-Sánchez F, de Frutos M, Elía M, Onrubia I, Sánchez S. Enteroaggregative Escherichia coli as etiological agent of endemic diarrhea in Spain: A prospective multicenter prevalence study with molecular characterization of isolates. Front Microbiol 2023; 14:1120285. [PMID: 37065134 PMCID: PMC10100739 DOI: 10.3389/fmicb.2023.1120285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/01/2023] [Indexed: 03/22/2023] Open
Abstract
BackgroundEnteroaggregative Escherichia coli (EAEC) is increasingly associated with domestically acquired diarrheal episodes in high-income countries, particularly among children. However, its specific role in endemic diarrhea in this setting remains under-recognized and information on molecular characteristics of such EAEC strains is limited. We aimed to investigate the occurrence of EAEC in patients with non-travel related diarrhea in Spain and molecularly characterize EAEC strains associated with illness acquired in this high-income setting.MethodsIn a prospective multicenter study, stool samples from diarrheal patients with no history of recent travel abroad (n = 1,769) were collected and processed for detection of EAEC and other diarrheagenic E. coli (DEC) pathotypes by PCR. An additional case–control study was conducted among children ≤5 years old. Whole-genome sequences (WGS) of the resulting EAEC isolates were obtained.ResultsDetection of DEC in the study population. DEC was detected in 23.2% of patients aged from 0 to 102 years, with EAEC being one of the most prevalent pathotypes (7.8%) and found in significantly more patients ≤5 years old (9.8% vs. 3.4%, p < 0.001). Although not statistically significant, EAEC was more frequent in cases than in controls. WGS-derived characterization of EAEC isolates. Sequence type (ST) 34, ST200, ST40, and ST10 were the predominant STs. O126:H27, O111:H21, and O92:H33 were the predominant serogenotypes. Evidence of a known variant of aggregative adherence fimbriae (AAF) was found in 89.2% of isolates, with AAF/V being the most frequent. Ten percent of isolates were additionally classified as presumptive extraintestinal pathogenic E. coli (ExPEC), uropathogenic E. coli (UPEC), or both, and belonged to clonal lineages that could be specifically associated with extraintestinal infections.ConclusionEAEC was the only bacterial enteric pathogen detected in a significant proportion of cases of endemic diarrhea in Spain, especially in children ≤5 years old. In particular, O126:H27-ST200, O111:H21-ST40, and O92:H33-ST34 were the most important subtypes, with all of them infecting both patients and asymptomatic individuals. Apart from this role as an enteric pathogen, a subset of these domestically acquired EAEC strains revealed an additional urinary/systemic pathogenic potential.
Collapse
Affiliation(s)
- María Teresa Llorente
- Reference and Research Laboratory on Food and Waterborne Bacterial Infections, National Center for Microbiology, Institute of Health Carlos III, Madrid, Spain
- Reference and Research Laboratory on Special Pathogens, National Center for Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Raquel Escudero
- Reference and Research Laboratory on Special Pathogens, National Center for Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Raquel Ramiro
- Reference and Research Laboratory on Food and Waterborne Bacterial Infections, National Center for Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - María Antonia Remacha
- Servicio de Microbiología Clínica, Complejo Asistencial Universitario de León, León, Spain
| | - Rocío Martínez-Ruiz
- Servicio de Microbiología y Parasitología, Hospital Puerta de Hierro Majadahonda, Majadahonda, Spain
| | | | - Mónica de Frutos
- Servicio de Microbiología, Hospital Universitario del Río Hortega, Valladolid, Spain
| | - Matilde Elía
- Servicio de Microbiología Clínica, Hospital Universitario de Navarra, Pamplona, Spain
| | - Isabel Onrubia
- Pediatría, Centro de Salud Valle de la Oliva, Majadahonda, Spain
| | - Sergio Sánchez
- Reference and Research Laboratory on Food and Waterborne Bacterial Infections, National Center for Microbiology, Institute of Health Carlos III, Madrid, Spain
- *Correspondence: Sergio Sánchez,
| |
Collapse
|
9
|
Genetic and Antimicrobial Resistance Profiles of Mammary Pathogenic E. coli (MPEC) Isolates from Bovine Clinical Mastitis. Pathogens 2022; 11:pathogens11121435. [PMID: 36558768 PMCID: PMC9781227 DOI: 10.3390/pathogens11121435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Mammary pathogenic E. coli (MPEC) is one of the main pathogens of environmental origin responsible for causing clinical mastitis worldwide. Even though E. coli are strongly associated with transient or persistent mastitis and the economic impacts of this disease, the virulence factors involved in the pathogenesis of MPEC remain unknown. Our aim was to characterize 110 MPEC isolates obtained from the milk of cows with clinical mastitis, regarding the virulence factor-encoding genes present, adherence patterns on HeLa cells, and antimicrobial resistance profile. The MPEC isolates were classified mainly in phylogroups A (50.9%) and B1 (38.2%). None of the isolates harbored genes used for diarrheagenic E. coli classification, but 26 (23.6%) and 4 (3.6%) isolates produced the aggregative or diffuse adherence pattern, respectively. Among the 22 genes investigated, encoding virulence factors associated with extraintestinal pathogenic E. coli pathogenesis, fimH (93.6%) was the most frequent, followed by traT (77.3%) and ompT (68.2%). Pulsed-field gel electrophoresis analysis revealed six pulse-types with isolates obtained over time, thus indicating persistent intramammary infections. The genes encoding beta-lactamases detected were as follows: blaTEM (35/31.8%); blaCTX-M-2/blaCTX-M-8 (2/1.8%); blaCTX-M-15 and blaCMY-2 (1/0.9%); five isolates were classified as extended spectrum beta-lactamase (ESBL) producers. As far as we know, papA, shf, ireA, sat and blaCTX-M-8 were detected for the first time in MPEC. In summary, the genetic profile of the MPEC studied was highly heterogeneous, making it impossible to establish a common genetic profile useful for molecular MPEC classification. Moreover, the detection of ESBL-producing isolates is a serious public health concern.
Collapse
|
10
|
Freire CA, Rodrigues BO, Elias WP, Abe CM. Adhesin related genes as potential markers for the enteroaggregative Escherichia coli category. Front Cell Infect Microbiol 2022; 12:997208. [DOI: 10.3389/fcimb.2022.997208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important cause of diarrhea in children and adults worldwide. This pathotype is phenotypically characterized by the aggregative-adherence (AA) pattern in HEp-2 cells and genetically associated to the presence of the aatA gene. EAEC pathogenesis relies in different virulence factors. At least, three types of adhesins have been specifically associated with EAEC strains: the five variants of the aggregative adherence fimbriae (AAF), the aggregative forming pilus (AFP) and more recently, a fibrilar adhesin named CS22. Our study aimed to evaluate the presence of AAF, AFP and CS22-related genes among 110 EAEC strains collected from feces of children with diarrhea. The presence of aggR (EAEC virulence regulator) and genes related to AAFs (aggA, aafA, agg3A, agg4A, agg5A and agg3/4C), AFP (afpA1 and afpR) and CS22 (cseA) was detected by PCR, and the adherence patterns were evaluated on HeLa cells. aggR-positive strains comprised 83.6% of the collection; among them, 80.4% carried at least one AAF-related gene and presented the AA pattern. aggA was the most frequent AAF-related gene (28.4% of aggR+ strains). cseA was detected among aggR+ (16.3%) and aggR- strains (22.2%); non-adherent strains or strains presenting AA pattern were observed in both groups. afpR and afpA1 were exclusively detected among aggR- strains (77.8%), most of which (71.4%) also presented AA pattern. Our results indicate that AAF- and AFP-related genes may contribute to identify EAEC strains, while the presence of cseA and its importance as an EAEC virulence factor and genotypic marker needs to be further evaluated.
Collapse
|
11
|
Schüroff PA, Salvador FA, Abe CM, Wami HT, Carvalho E, Hernandes RT, Dobrindt U, Gomes TAT, Elias WP. The aggregate-forming pili (AFP) mediates the aggregative adherence of a hybrid-pathogenic Escherichia coli (UPEC/EAEC) isolated from a urinary tract infection. Virulence 2021; 12:3073-3093. [PMID: 34923895 PMCID: PMC8923075 DOI: 10.1080/21505594.2021.2007645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) comprises an important diarrheagenic pathotype, while uropathogenic E. coli (UPEC) is the most important agent of urinary tract infection (UTI). Recently, EAEC virulence factors have been detected in E. coli strains causing UTI, showing the importance of these hybrid-pathogenic strains. Previously, we detected an E. coli strain isolated from UTI (UPEC-46) presenting characteristics of EAEC, e.g., the aggregative adherence (AA) pattern and EAEC-associated genes (aatA, aap, and pet). In this current study, we analyzed the whole genomic sequence of UPEC-46 and characterized some phenotypic traits. The AA phenotype was observed in cell lineages of urinary and intestinal origin. The production of curli, cellulose, bacteriocins, and Pet toxin was detected. Additionally, UPEC-46 was not capable of forming biofilm using different culture media and human urine. The genome sequence analysis showed that this strain belongs to serotype O166:H12, ST10, and phylogroup A, harbors the tet, aadA, and dfrA/sul resistance genes, and is phylogenetically more related to EAEC strains isolated from human feces. UPEC-46 harbors three plasmids. Plasmid p46-1 (~135 kb) carries some EAEC marker genes and those encoding the aggregate-forming pili (AFP) and its regulator (afpR). A mutation in afpA (encoding the AFP major pilin) led to the loss of pilin production and assembly, and notably, a strongly reduced adhesion to epithelial cells. In summary, the genetic background and phenotypic traits analyzed suggest that UPEC-46 is a hybrid strain (UPEC/EAEC) and highlights the importance of AFP adhesin in the adherence to colorectal and bladder cell lines.
Collapse
Affiliation(s)
- Paulo A Schüroff
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil.,Institute of Hygiene, University of Münster, Münster, Germany
| | - Fábia A Salvador
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cecilia M Abe
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Haleluya T Wami
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Rodrigo T Hernandes
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
12
|
Site specific incidence rate of virulence related genes of enteroaggregative Escherichia coli and association with enteric inflammation and growth in children. Sci Rep 2021; 11:23178. [PMID: 34848801 PMCID: PMC8632913 DOI: 10.1038/s41598-021-02626-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/15/2021] [Indexed: 01/19/2023] Open
Abstract
There is a lack of information highlighting the possible association between strain carrying genes of enteroaggregative Escherichia coli (EAEC) and environmental enteric dysfunction (EED) and on linear growth during childhood. Strain carrying genes of EAEC from stool samples collected from 1705 children enrolled in the MAL-ED birth cohort were detected by TaqMan Array Cards. We measured site-specific incidence rate by using Poisson regression models, identified the risk factors and estimated the associations of strain carrying genes of EAEC with the composite EED score and linear growth at 24 months of age. Overall highest incidence rate (43.3%) was found among children having infection with the aggR gene, which was the greatest in Tanzania (56.7%). Low maternal education, lack of improved floor, and ownership of domestic cattle were found to be risk factors for EAEC infection. In the multivariate models, after adjusting the potential covariates, strain carrying genes of EAEC showed strong positive associations with the EED scores and with poor linear growth at 24 months of age. Our analyses may lay the cornerstone for a prospective epidemiologic investigation for a potential vaccine development aimed at reducing the burden of EAEC infections and combat childhood malnutrition.
Collapse
|
13
|
Prieto A, Bernabeu M, Sánchez-Herrero JF, Pérez-Bosque A, Miró L, Bäuerl C, Collado C, Hüttener M, Juárez A. Modulation of AggR levels reveals features of virulence regulation in enteroaggregative E. coli. Commun Biol 2021; 4:1295. [PMID: 34785760 PMCID: PMC8595720 DOI: 10.1038/s42003-021-02820-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) strains are one of the diarrheagenic pathotypes. EAEC strains harbor a virulence plasmid (pAA2) that encodes, among other virulence determinants, the aggR gene. The expression of the AggR protein leads to the expression of several virulence determinants in both plasmids and chromosomes. In this work, we describe a novel mechanism that influences AggR expression. Because of the absence of a Rho-independent terminator in the 3'UTR, aggR transcripts extend far beyond the aggR ORF. These transcripts are prone to PNPase-mediated degradation. Structural alterations in the 3'UTR result in increased aggR transcript stability, leading to increased AggR levels. We therefore investigated the effect of increased AggR levels on EAEC virulence. Upon finding the previously described AggR-dependent virulence factors, we detected novel AggR-regulated genes that may play relevant roles in EAEC virulence. Mutants exhibiting high AggR levels because of structural alterations in the aggR 3'UTR show increased mobility and increased pAA2 conjugation frequency. Furthermore, among the genes exhibiting increased fold change values, we could identify those of metabolic pathways that promote increased degradation of arginine, fatty acids and gamma-aminobutyric acid (GABA), respectively. In this paper, we discuss how the AggR-dependent increase in specific metabolic pathways activity may contribute to EAEC virulence.
Collapse
Affiliation(s)
- Alejandro Prieto
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - Manuel Bernabeu
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | | | - Anna Pérez-Bosque
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, Barcelona, Spain
| | - Lluïsa Miró
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, Barcelona, Spain
| | - Christine Bäuerl
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Mário Hüttener
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain.
| | - Antonio Juárez
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain.
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
14
|
Nouri R, Hasani A, Masnadi Shirazi K, Alivand MR, Sepehri B, Sotoudeh S, Hemmati F, Fattahzadeh A, Abdinia B, Ahangarzadeh Rezaee M. Mucosa-Associated Escherichia coli in Colorectal Cancer Patients and Control Subjects: Variations in the Prevalence and Attributing Features. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2021; 2021:2131787. [PMID: 34795808 PMCID: PMC8594973 DOI: 10.1155/2021/2131787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/30/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022]
Abstract
Accumulating evidence indicates that specific strains of mucosa-associated Escherichia coli (E. coli) can influence the development of colorectal carcinoma. This study aimed to investigate the prevalence and characterization of mucosa-associated E. coli obtained from the colorectal cancer (CRC) patients and control group. At two referral university-affiliated hospitals in northwest Iran, 100 patients, 50 with CRC and 50 without, were studied over the course of a year. Fresh biopsy specimens were used to identify mucosa-associated E. coli isolates after dithiothreitol mucolysis. To classify the E. coli strains, ten colonies per sample were typed using enterobacterial repetitive intergenic consensus-based PCR (ERIC-PCR). The strains were classified into phylogroups using the quadruplex PCR method. The PCR method was used to examine for the presence of cyclomodulin, bfp, stx1, stx2, and eae-encoding genes. The strains were tested for biofilm formation using the microtiter plate assay. CRC patients had more mucosa-associated E. coli than the control group (p < 0.05). Enteropathogenic Escherichia coli (EPEC) was also found in 23% of CRC strains and 7.1% of control strains (p < 0.05). Phylogroup A was predominant in control group specimens, while E. coli isolates from CRC patients belonged most frequently to phylogroups D and B2. Furthermore, the frequency of cyclomodulin-encoding genes in the CRC patients was significantly higher than the control group. Around 36.9% of E. coli strains from CRC samples were able to form biofilms, compared to 16.6% E. coli strains from the control group (p < 0.05). Noticeably, cyclomodulin-positive strains were more likely to form biofilm in comparison to cyclomodulin-negative strains (p < 0.05). In conclusion, mucosa-associated E. coli especially cyclomodulin-positive isolates from B2 and D phylogroups possessing biofilm-producing capacity colonize the gut mucosa of CRC patients.
Collapse
Affiliation(s)
- Roghayeh Nouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kourosh Masnadi Shirazi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bita Sepehri
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sotoudeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hemmati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Fattahzadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Abdinia
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Children Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Maffei E, Shaidullina A, Burkolter M, Heyer Y, Estermann F, Druelle V, Sauer P, Willi L, Michaelis S, Hilbi H, Thaler DS, Harms A. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol 2021; 19:e3001424. [PMID: 34784345 PMCID: PMC8594841 DOI: 10.1371/journal.pbio.3001424] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Bacteriophages, the viruses infecting bacteria, hold great potential for the treatment of multidrug-resistant bacterial infections and other applications due to their unparalleled diversity and recent breakthroughs in their genetic engineering. However, fundamental knowledge of the molecular mechanisms underlying phage-host interactions is mostly confined to a few traditional model systems and did not keep pace with the recent massive expansion of the field. The true potential of molecular biology encoded by these viruses has therefore remained largely untapped, and phages for therapy or other applications are often still selected empirically. We therefore sought to promote a systematic exploration of phage-host interactions by composing a well-assorted library of 68 newly isolated phages infecting the model organism Escherichia coli that we share with the community as the BASEL (BActeriophage SElection for your Laboratory) collection. This collection is largely representative of natural E. coli phage diversity and was intensively characterized phenotypically and genomically alongside 10 well-studied traditional model phages. We experimentally determined essential host receptors of all phages, quantified their sensitivity to 11 defense systems across different layers of bacterial immunity, and matched these results to the phages' host range across a panel of pathogenic enterobacterial strains. Clear patterns in the distribution of phage phenotypes and genomic features highlighted systematic differences in the potency of different immunity systems and suggested the molecular basis of receptor specificity in several phage groups. Our results also indicate strong trade-offs between fitness traits like broad host recognition and resistance to bacterial immunity that might drive the divergent adaptation of different phage groups to specific ecological niches. We envision that the BASEL collection will inspire future work exploring the biology of bacteriophages and their hosts by facilitating the discovery of underlying molecular mechanisms as the basis for an effective translation into biotechnology or therapeutic applications.
Collapse
Affiliation(s)
- Enea Maffei
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | - Luc Willi
- Biozentrum, University of Basel, Basel, Switzerland
| | - Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - David S. Thaler
- Biozentrum, University of Basel, Basel, Switzerland
- Program for the Human Environment, Rockefeller University, New York City, New York, United States of America
| | | |
Collapse
|
16
|
Nouri R, Hasani A, Shirazi KM, Aliand MR, Sepehri B, Sotoodeh S, Hemmati F, Rezaee MA. Escherichia coli and colorectal cancer: Unfolding the enigmatic relationship. Curr Pharm Biotechnol 2021; 23:1257-1268. [PMID: 34514986 DOI: 10.2174/1389201022666210910094827] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/21/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers in the world. Specific strains of intestinal Escherichia coli (E. coli) may influence the initiation and development of CRC by exploiting virulence factors and inflammatory pathways. Mucosa-associated E. coli strains are more prevalent in CRC biopsies in comparison to healthy controls. Moreover, these strains can survive and replicate within macrophages and induce a pro-inflammatory response. Chronic exposure to inflammatory mediators can lead to increased cell proliferation and cancer. Production of colobactin toxin by the majority of mucosa-associated E. coli isolated from CRC patients is another notable finding. Colibactin-producing E. coli strains, in particular, induce double-strand DNA breaks, stop the cell cycle, involve in chromosomal rearrangements of mammalian cells and are implicated in carcinogenic effects in animal models. Moreover, some enteropathogenic E. coli (EPEC) strains are able to survive and replicate in colon cells as chronic intracellular pathogens and may promote susceptibility to CRC by downregulation of DNA Mismatch Repair (MMR) proteins. In this review, we discuss current evidence and focus on the mechanisms by which E. coli can influence the development of CRC.
Collapse
Affiliation(s)
- Rogayeh Nouri
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Kourosh Masnadi Shirazi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mohammad Reza Aliand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Bita Sepehri
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Simin Sotoodeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Fatemeh Hemmati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz. Iran
| | | |
Collapse
|
17
|
de Lira DRP, Cavalcanti AMF, Pinheiro SRS, Orsi H, Dos Santos LF, Hernandes RT. Identification of a hybrid atypical enteropathogenic and enteroaggregative Escherichia coli (aEPEC/EAEC) clone of serotype O3:H2 associated with a diarrheal outbreak in Brazil. Braz J Microbiol 2021; 52:2075-2079. [PMID: 34448133 DOI: 10.1007/s42770-021-00580-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/11/2021] [Indexed: 11/28/2022] Open
Abstract
Enteropathogenic (EPEC) and enteroaggregative (EAEC) Escherichia coli are two of the major pathotypes of diarrheagenic E. coli causing disease worldwide. Here, we report a diarrheal outbreak caused by E. coli of serotype O3:H2, harboring virulence markers from EPEC (eae) and/or EAEC (aggR). This is likely the first E. coli diarrheal outbreak caused by a hybrid atypical-EPEC/EAEC clone reported in Brazil.
Collapse
Affiliation(s)
- Daiany R P de Lira
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), SP, Botucatu, Brazil
| | | | | | - Henrique Orsi
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), SP, Botucatu, Brazil
| | - Luís F Dos Santos
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | - Rodrigo T Hernandes
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), SP, Botucatu, Brazil.
| |
Collapse
|
18
|
Soria-Bustos J, Saitz W, Medrano A, Lara-Ochoa C, Bennis Z, Monteiro-Neto V, Dos Santos CI, Rodrigues J, Hernandes RT, Yáñez JA, Torres J, Navarro-García F, Martínez-Laguna Y, Fontes Piazza RM, Munhoz DD, Cedillo ML, Ares MA, De la Cruz MA, Nataro JP, Girón JA. Role of the YehD fimbriae in the virulence-associated properties of enteroaggregative Escherichia coli. Environ Microbiol 2021; 24:1035-1051. [PMID: 34431194 DOI: 10.1111/1462-2920.15737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022]
Abstract
The interaction of enteroaggregative Escherichia coli (EAEC) strains with the colonic gut mucosa is characterized by the ability of the bacteria to form robust biofilms, to bind mucin, and induce a local inflammatory response. These events are mediated by a repertoire of five different aggregative adherence fimbriae variants (AAF/I-V) typically encoded on virulence plasmids. In this study, we report the production in EAEC strains of a new YehD fimbriae (YDF), which is encoded by the chromosomal gene cluster yehABCD, also present in most E. coli strains. Immuno-labelling of EAEC strain 042 with anti-AAF/II and anti-YDF antibodies demonstrated the presence of both AAF/II and YDF on the bacterial surface. We investigated the role of YDF in cell adherence, biofilm formation, colonization of spinach leaves, and induction of pro-inflammatory cytokines release. To this aim, we constructed yehD deletion mutants in different EAEC backgrounds (strains 17-2, 042, 55989, C1010, 278-1, J7) each harbouring one of the five AAFs. The effect of the YDF mutation was strain dependent and AAF independent as the lack of YDF had a different impact on the phenotypes manifested by the different EAECs tested. Expression of the yehABCD operon in a E. coli K12 ORN172 showed that YDF is important for biofilm formation but not for adherence to HeLa cells. Lastly, screening of pro-inflammatory cytokines in supernatants of Caco-2 cells infected with EAEC strains 042 and J7 and their isogenic ΔyehD mutants showed that these mutants were significantly defective in release of IL-8 and TNF-α. This study contributes to the understanding of the complex and diverse mechanisms of adherence of EAEC strains and identifies a new potential target for preventive measures of gastrointestinal illness caused by EAEC and other E. coli pathogroups.
Collapse
Affiliation(s)
- Jorge Soria-Bustos
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA.,Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, Mexico
| | - Waleska Saitz
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Abraham Medrano
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Cristina Lara-Ochoa
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Zineb Bennis
- University of Florida, Emerging Pathogens Institute, Gainesville, FL, USA
| | | | | | - Josias Rodrigues
- Departamento de Microbiologia e Imunologia, Instituto de Biociencias da UNESP, Botucatu, SP, Brazil
| | - Rodrigo T Hernandes
- Departamento de Microbiologia e Imunologia, Instituto de Biociencias da UNESP, Botucatu, SP, Brazil
| | - Jorge A Yáñez
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, Mexico
| | - Fernando Navarro-García
- Departamento de Biología Celular, Centro de Investigaciones Avanzadas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ygnacio Martínez-Laguna
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | - María L Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, Mexico
| | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jorge A Girón
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA.,Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
19
|
Machado Ribeiro TR, Salgaço MK, Adorno MAT, da Silva MA, Piazza RMF, Sivieri K, Moreira CG. Human microbiota modulation via QseC sensor kinase mediated in the Escherichia coli O104:H4 outbreak strain infection in microbiome model. BMC Microbiol 2021; 21:163. [PMID: 34078285 PMCID: PMC8170955 DOI: 10.1186/s12866-021-02220-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/06/2021] [Indexed: 01/01/2023] Open
Abstract
Background The intestinal microbiota plays a crucial role in human health, adjusting its composition and the microbial metabolites protects the gut against invading microorganisms. Enteroaggregative E. coli (EAEC) is an important diarrheagenic pathogen, which may cause acute or persistent diarrhea (≥14 days). The outbreak strain has the potent Shiga toxin, forms a dense biofilm and communicate via QseBC two-component system regulating the expression of many important virulence factors. Results Herein, we investigated the QseC histidine sensor kinase role in the microbiota shift during O104:H4 C227–11 infection in the colonic model SHIME® (Simulator of the Human Intestinal Microbial Ecosystem) and in vivo mice model. The microbiota imbalance caused by C227–11 infection affected ỿ-Proteobacteria and Lactobacillus spp. predominance, with direct alteration in intestinal metabolites driven by microbiota change, such as Short-chain fatty acids (SCFA). However, in the absence of QseC sensor kinase, the microbiota recovery was delayed on day 3 p.i., with change in the intestinal production of SCFA, like an increase in acetate production. The higher predominance of Lactobacillus spp. in the microbiota and significant augmented qseC gene expression levels were also observed during C227–11 mice infection upon intestinal depletion. Novel insights during pathogenic bacteria infection with the intestinal microbiota were observed. The QseC kinase sensor seems to have a role in the microbiota shift during the infectious process by Shiga toxin-producing EAEC C227–11. Conclusions The QseC role in C227–11 infection helps to unravel the intestine microbiota modulation and its metabolites during SHIME® and in vivo models, besides they contribute to elucidate bacterial intestinal pathogenesis and the microbiota relationships. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02220-3.
Collapse
Affiliation(s)
- Tamara Renata Machado Ribeiro
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Mateus Kawata Salgaço
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Maria Angela Tallarico Adorno
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo (USP), São Carlos, SP, Brazil
| | | | | | - Katia Sivieri
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Cristiano Gallina Moreira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
20
|
García A, Fox JG. A One Health Perspective for Defining and Deciphering Escherichia coli Pathogenic Potential in Multiple Hosts. Comp Med 2021; 71:3-45. [PMID: 33419487 PMCID: PMC7898170 DOI: 10.30802/aalas-cm-20-000054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 09/19/2020] [Indexed: 11/05/2022]
Abstract
E. coli is one of the most common species of bacteria colonizing humans and animals. The singularity of E. coli 's genus and species underestimates its multifaceted nature, which is represented by different strains, each with different combinations of distinct virulence factors. In fact, several E. coli pathotypes, or hybrid strains, may be associated with both subclinical infection and a range of clinical conditions, including enteric, urinary, and systemic infections. E. coli may also express DNA-damaging toxins that could impact cancer development. This review summarizes the different E. coli pathotypes in the context of their history, hosts, clinical signs, epidemiology, and control. The pathotypic characterization of E. coli in the context of disease in different animals, including humans, provides comparative and One Health perspectives that will guide future clinical and research investigations of E. coli infections.
Collapse
Key Words
- aa, aggregative adherence
- a/e, attaching and effacing
- aepec, atypical epec
- afa, afimbrial adhesin
- aida-i, adhesin involved in diffuse adherence
- aiec, adherent invasive e. coli
- apec, avian pathogenic e. coli
- atcc, american type culture collection
- bfp, bundle-forming pilus
- cd, crohn disease
- cdt, cytolethal distending toxin gene
- clb, colibactin
- cnf, cytotoxic necrotizing factor
- cs, coli surface (antigens)
- daec, diffusely adhering e. coli
- db, dutch belted
- eae, e. coli attaching and effacing gene
- eaec, enteroaggregative e. coli
- eaf, epec adherence factor (plasmid)
- eahec, entero-aggregative-hemorrhagic e. coli
- east-1, enteroaggregative e. coli heat-stable enterotoxin
- e. coli, escherichia coli
- ed, edema disease
- ehec, enterohemorrhagic e. coli
- eiec, enteroinvasive e. coli
- epec, enteropathogenic e. coli
- esbl, extended-spectrum β-lactamase
- esp, e. coli secreted protein
- etec, enterotoxigenic e. coli
- expec, extraintestinal pathogenic e. coli
- fyua, yersiniabactin receptor gene
- gi, gastrointestinal
- hly, hemolysin
- hus, hemolytic uremic syndrome
- ibd, inflammatory bowel disease
- la, localized adherence
- lee, locus of enterocyte effacement
- lpf, long polar fimbriae
- lt, heat-labile (enterotoxin)
- mlst, multilocus sequence typing
- ndm, new delhi metallo-β-lactamase
- nzw, new zealand white
- pap, pyelonephritis-associated pilus
- pks, polyketide synthase
- sfa, s fimbrial adhesin
- slt, shiga-like toxin
- st, heat-stable (enterotoxin)
- stec, stx-producing e. coli
- stx, shiga toxin
- tepec, typical epec
- upec, uropathogenic e. coli
- uti, urinary tract infection
Collapse
Affiliation(s)
- Alexis García
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
21
|
Schiller P, Knödler M, Berger P, Greune L, Fruth A, Mellmann A, Dersch P, Berger M, Dobrindt U. The Superior Adherence Phenotype of E. coli O104:H4 is Directly Mediated by the Aggregative Adherence Fimbriae Type I. Virulence 2021; 12:346-359. [PMID: 33356871 PMCID: PMC7834096 DOI: 10.1080/21505594.2020.1868841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Whereas the O104:H4 enterohemorrhagic Escherichia coli (EHEC) outbreak strain from 2011 expresses aggregative adherence fimbriae of subtype I (AAF/I), its close relative, the O104:H4 enteroaggregative Escherichia coli (EAEC) strain 55989, encodes AAF of subtype III. Tight adherence mediated by AAF/I in combination with Shiga toxin 2 production has been suggested to result in the outbreak strain’s exceptional pathogenicity. Furthermore, the O104:H4 outbreak strain adheres significantly better to cultured epithelial cells than archetypal EAEC strains expressing different AAF subtypes. To test whether AAF/I expression is associated with the different virulence phenotypes of the outbreak strain, we heterologously expressed AAF subtypes I, III, IV, and V in an AAF-negative EAEC 55989 mutant and compared AAF-mediated phenotypes, incl. autoaggregation, biofilm formation, as well as bacterial adherence to HEp-2 cells. We observed that the expression of all four AAF subtypes promoted bacterial autoaggregation, though with different kinetics. Disturbance of AAF interaction on the bacterial surface via addition of α-AAF antibodies impeded autoaggregation. Biofilm formation was enhanced upon heterologous expression of AAF variants and inversely correlated with the autoaggregation phenotype. Co-cultivation of bacteria expressing different AAF subtypes resulted in mixed bacterial aggregates. Interestingly, bacteria expressing AAF/I formed the largest bacterial clusters on HEp-2 cells, indicating a stronger host cell adherence similar to the EHEC O104:H4 outbreak strain. Our findings show that, compared to the closely related O104:H4 EAEC strain 55989, not only the acquisition of the Shiga toxin phage, but also the acquisition of the AAF/I subtype might have contributed to the increased EHEC O104:H4 pathogenicity.
Collapse
Affiliation(s)
| | - Michael Knödler
- Institute of Hygiene, University of Münster , Münster, Germany
| | - Petya Berger
- Institute of Hygiene, University of Münster , Münster, Germany
| | - Lilo Greune
- Institute for Infectiology, University of Münster , Münster, Germany
| | - Angelika Fruth
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute , Wernigerode, Germany
| | | | - Petra Dersch
- Institute for Infectiology, University of Münster , Münster, Germany
| | - Michael Berger
- Institute of Hygiene, University of Münster , Münster, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster , Münster, Germany
| |
Collapse
|
22
|
Molecular Epidemiology of Enteroaggregative Escherichia coli (EAEC) Isolates of Hospitalized Children from Bolivia Reveal High Heterogeneity and Multidrug-Resistance. Int J Mol Sci 2020; 21:ijms21249543. [PMID: 33334000 PMCID: PMC7765457 DOI: 10.3390/ijms21249543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging pathogen frequently associated with acute diarrhea in children and travelers to endemic regions. EAEC was found the most prevalent bacterial diarrheal pathogen from hospitalized Bolivian children less than five years of age with acute diarrhea from 2007 to 2010. Here, we further characterized the epidemiology of EAEC infection, virulence genes, and antimicrobial susceptibility of EAEC isolated from 414 diarrheal and 74 non-diarrheal cases. EAEC isolates were collected and subjected to a PCR-based virulence gene screening of seven virulence genes and a phenotypic resistance test to nine different antimicrobials. Our results showed that atypical EAEC (a-EAEC, AggR-negative) was significantly associated with diarrhea (OR, 1.62, 95% CI, 1.25 to 2.09, p < 0.001) in contrast to typical EAEC (t-EAEC, AggR-positive). EAEC infection was most prevalent among children between 7–12 months of age. The number of cases exhibited a biannual cycle with a major peak during the transition from warm to cold (April–June). Both typical and a-EAEC infections were graded as equally severe; however, t-EAEC harbored more virulence genes. aap, irp2 and pic were the most prevalent genes. Surprisingly, we detected 60% and 52.6% of multidrug resistance (MDR) EAEC among diarrheal and non-diarrheal cases. Resistance to ampicillin, sulfonamides, and tetracyclines was most common, being the corresponding antibiotics, the ones that are frequently used in Bolivia. Our work is the first study that provides comprehensive information on the high heterogenicity of virulence genes in t-EAEC and a- EAEC and the large prevalence of MDR EAEC in Bolivia.
Collapse
|
23
|
Boisen N, Østerlund MT, Joensen KG, Santiago AE, Mandomando I, Cravioto A, Chattaway MA, Gonyar LA, Overballe-Petersen S, Stine OC, Rasko DA, Scheutz F, Nataro JP. Redefining enteroaggregative Escherichia coli (EAEC): Genomic characterization of epidemiological EAEC strains. PLoS Negl Trop Dis 2020; 14:e0008613. [PMID: 32898134 PMCID: PMC7500659 DOI: 10.1371/journal.pntd.0008613] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 09/18/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022] Open
Abstract
Although enteroaggregative E. coli (EAEC) has been implicated as a common cause of diarrhea in multiple settings, neither its essential genomic nature nor its role as an enteric pathogen are fully understood. The current definition of this pathotype requires demonstration of cellular adherence; a working molecular definition encompasses E. coli which do not harbor the heat-stable or heat-labile toxins of enterotoxigenic E. coli (ETEC) and harbor the genes aaiC, aggR, and/or aatA. In an effort to improve the definition of this pathotype, we report the most definitive characterization of the pan-genome of EAEC to date, applying comparative genomics and functional characterization on a collection of 97 EAEC strains isolated in the course of a multicenter case-control diarrhea study (Global Enteric Multi-Center Study, GEMS). Genomic analysis revealed that the EAEC strains mapped to all phylogenomic groups of E. coli. Circa 70% of strains harbored one of the five described AAF variants; there were no additional AAF variants identified, and strains that lacked an identifiable AAF generally did not have an otherwise complete AggR regulon. An exception was strains that harbored an ETEC colonization factor (CF) CS22, like AAF a member of the chaperone-usher family of adhesins, but not phylogenetically related to the AAF family. Of all genes scored, sepA yielded the strongest association with diarrhea (P = 0.002) followed by the increased serum survival gene, iss (p = 0.026), and the outer membrane protease gene ompT (p = 0.046). Notably, the EAEC genomes harbored several genes characteristically associated with other E. coli pathotypes. Our data suggest that a molecular definition of EAEC could comprise E. coli strains harboring AggR and a complete AAF(I-V) or CS22 gene cluster. Further, it is possible that strains meeting this definition could be both enteric bacteria and urinary/systemic pathogens.
Collapse
Affiliation(s)
- Nadia Boisen
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | - Mark T. Østerlund
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | - Katrine G. Joensen
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | - Araceli E. Santiago
- University of Virginia School of Medicine, Department of Pediatrics, Charlottesville, Virginia, United States of America
| | - Inacio Mandomando
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Alejandro Cravioto
- Universidad Nacional Autónoma de México, Faculty of Medicine, Mexico City, Mexico
| | - Marie A. Chattaway
- Public Health England, Gastrointestinal Bacteria Reference Unit (GBRU), Colindale, United Kingdom
| | - Laura A. Gonyar
- University of Virginia School of Medicine, Department of Pediatrics, Charlottesville, Virginia, United States of America
| | | | - O. Colin Stine
- University of Maryland School of Medicine, Department of Epidemiology and Public Health, Baltimore, Maryland, United States of America
| | - David A. Rasko
- University of Maryland School of Medicine, Institute for Genome Sciences, Department of Microbiology and Immunology, Baltimore, Maryland, United States of America
| | - Flemming Scheutz
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | - James P. Nataro
- University of Virginia School of Medicine, Department of Pediatrics, Charlottesville, Virginia, United States of America
| |
Collapse
|
24
|
Aggregative Adherence Fimbriae II of Enteroaggregative Escherichia coli Are Required for Adherence and Barrier Disruption during Infection of Human Colonoids. Infect Immun 2020; 88:IAI.00176-20. [PMID: 32631917 DOI: 10.1128/iai.00176-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/30/2020] [Indexed: 01/07/2023] Open
Abstract
Symptomatic and asymptomatic infection with the diarrheal pathogen enteroaggregative Escherichia coli (EAEC) is associated with growth faltering in children in developing settings. The mechanism of this association is unknown, emphasizing a need for better understanding of the interactions between EAEC and the human gastrointestinal mucosa. In this study, we investigated the role of the aggregative adherence fimbriae II (AAF/II) in EAEC adherence and pathogenesis using human colonoids and duodenal enteroids. We found that a null mutant in aafA, the major subunit of AAF/II, adhered significantly less than wild-type (WT) EAEC strain 042, and adherence was restored in a complemented strain. Immunofluorescence confocal microscopy of differentiated colonoids, which produce an intact mucus layer comprised of the secreted mucin MUC2, revealed bacteria at the epithelial surface and within the MUC2 layer. The WT strain adhered to the epithelial surface, whereas the aafA deletion strain remained within the MUC2 layer, suggesting that the presence or absence of AAF/II determines both the abundance and location of EAEC adherence. In order to determine the consequences of EAEC adherence on epithelial barrier integrity, colonoid monolayers were exposed to EAEC constructs expressing or lacking aafA Colonoids infected with WT EAEC had significantly decreased epithelial resistance, an effect that required AAF/II, suggesting that binding of EAEC to the epithelium is necessary to impair barrier function. In summary, we show that production of AAF/II is critical for adherence and barrier disruption in human colonoids, suggesting a role for this virulence factor in EAEC colonization of the gastrointestinal mucosa.
Collapse
|
25
|
Ellis SJ, Crossman LC, McGrath CJ, Chattaway MA, Hölken JM, Brett B, Bundy L, Kay GL, Wain J, Schüller S. Identification and characterisation of enteroaggregative Escherichia coli subtypes associated with human disease. Sci Rep 2020; 10:7475. [PMID: 32366874 PMCID: PMC7198487 DOI: 10.1038/s41598-020-64424-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 04/07/2020] [Indexed: 12/03/2022] Open
Abstract
Enteroaggregative E. coli (EAEC) are a major cause of diarrhoea worldwide. Due to their heterogeneity and carriage in healthy individuals, identification of diagnostic virulence markers for pathogenic strains has been difficult. In this study, we have determined phenotypic and genotypic differences between EAEC strains of sequence types (STs) epidemiologically associated with asymptomatic carriage (ST31) and diarrhoeal disease (ST40). ST40 strains demonstrated significantly enhanced intestinal adherence, biofilm formation, and pro-inflammatory interleukin-8 secretion compared with ST31 isolates. This was independent of whether strains were derived from diarrhoea patients or healthy controls. Whole genome sequencing revealed differences in putative virulence genes encoding aggregative adherence fimbriae, E. coli common pilus, flagellin and EAEC heat-stable enterotoxin 1. Our results indicate that ST40 strains have a higher intrinsic potential of human pathogenesis due to a specific combination of virulence-related factors which promote host cell colonization and inflammation. These findings may contribute to the development of genotypic and/or phenotypic markers for EAEC strains of high virulence.
Collapse
Affiliation(s)
- Samuel J Ellis
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Lisa C Crossman
- School of Biological Sciences, University of East Anglia, Norwich, UK.,SequenceAnalysis.co.uk, Norwich Research Park, Norwich, UK
| | - Conor J McGrath
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Marie A Chattaway
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, UK
| | - Johanna M Hölken
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Bernard Brett
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Leah Bundy
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Gemma L Kay
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich, UK. .,Quadram Institute Bioscience, Norwich, UK.
| |
Collapse
|
26
|
Dias RCB, Tanabe RHS, Vieira MA, Cergole-Novella MC, Dos Santos LF, Gomes TAT, Elias WP, Hernandes RT. Analysis of the Virulence Profile and Phenotypic Features of Typical and Atypical Enteroaggregative Escherichia coli (EAEC) Isolated From Diarrheal Patients in Brazil. Front Cell Infect Microbiol 2020; 10:144. [PMID: 32391284 PMCID: PMC7188757 DOI: 10.3389/fcimb.2020.00144] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/19/2020] [Indexed: 12/24/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important agent of acute and persistent diarrhea in children and adults worldwide. Here we report a characterization of 220 EAEC isolates, 88.2% (194/220) of which were typical and 11.8% (26/220) were atypical, obtained from diarrheal patients during seven years (2010-2016) of epidemiological surveillance in Brazil. The majority of the isolates were assigned to phylogroups A (44.1%, 97/220) or B1 (21.4%, 47/220). The aggregative adherence (AA) pattern was detected in 92.7% (204/220) of the isolates, with six of them exhibiting AA concomitantly with a chain-like adherence pattern; and agg5A and agg4A were the most common adhesin-encoding genes, which were equally detected in 14.5% (32/220) of the isolates. Each of 12 virulence factor-encoding genes (agg4A, agg5A, pic, aap, aaiA, aaiC, aaiG, orf3, aar, air, capU, and shf) were statistically associated with typical EAEC (P < 0.05). The genes encoding the newly described aggregate-forming pili (AFP) searched (afpB, afpD, afpP, and afpA2), and/or its regulator (afpR), were exclusively detected in atypical EAEC (57.7%, 15/26), and showed a significant association with this subgroup of EAEC (P < 0.001). In conclusion, we presented an extensive characterization of the EAEC circulating in the Brazilian settings and identified the afp genes as putative markers for increasing the efficiency of atypical EAEC diagnosis.
Collapse
Affiliation(s)
- Regiane C B Dias
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Paulo, Brazil
| | - Rodrigo H S Tanabe
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Paulo, Brazil
| | - Melissa A Vieira
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Paulo, Brazil
| | | | | | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo- Escola Paulista de Medicina (UNIFESP-EPM), São Paulo, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Rodrigo T Hernandes
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Paulo, Brazil
| |
Collapse
|
27
|
Guerrieri CG, Monfardini MV, Silva EA, Bueno de Freitas L, Schuenck RP, Spano LC. Wide genetic heterogeneity and low antimicrobial resistance of enteroaggregative Escherichia coli isolates from several rural communities. J Med Microbiol 2020; 69:96-103. [DOI: 10.1099/jmm.0.001120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Caroline Gastaldi Guerrieri
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Mariane Vedovatti Monfardini
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Eliza Andrade Silva
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Luciana Bueno de Freitas
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Ricardo Pinto Schuenck
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Liliana Cruz Spano
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
28
|
Tanih NF, Bolick DT, Samie A, Nyathi E, Dillingham R, Pinkerton RC, Guerrant RL, Bessong PO. Prevalence of Virulence Genes in Enteroaggregative Escherichia coli Isolates from Young Children from Rural South Africa. Am J Trop Med Hyg 2019; 101:1027-1033. [PMID: 31516105 DOI: 10.4269/ajtmh.19-0192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this study, we report on the prevalence of 19 virulence genes in enteroaggregative Escherichia coli (EAEC) isolates from northern South Africa. Stool samples obtained prospectively from 97 children from 1 to 12 months of age were analyzed, and EAEC isolates were confirmed based on the presence of aaiC or aatA genes. We investigated 177 enteroaggregative Escherichia coli isolates for the prevalence of virulence genes using multiplex polymerase chain reaction. The chromosomal gene aaiC was detected at higher frequency (48.0%) compared with aatA (26.0%). The gene encoding the open reading frame Orf61 was the most prevalent putative virulence trait detected among the isolates (150/177; 84.7%). None of the genes was statistically associated with diarrhea (P > 0.05). Detection rates were higher during 7-12 month of life with an association observed for the pic gene and the age group 7-12 months (P = 0.04). Winter was the season with the highest detection rates. Our data reveal a high prevalence of Orf61, Orf3, and astA in South African EAEC isolates. Specific genes may provide additional markers for the study of disease associations with age and season of sample collection.
Collapse
Affiliation(s)
- Nicoline F Tanih
- Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | - David T Bolick
- Center for Global Health, University of Virginia, Charlottesville, Virginia
| | - Amidou Samie
- Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | - Emanuel Nyathi
- Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | - Rebecca Dillingham
- Center for Global Health, University of Virginia, Charlottesville, Virginia
| | - Relana C Pinkerton
- Center for Global Health, University of Virginia, Charlottesville, Virginia
| | - Richard L Guerrant
- Center for Global Health, University of Virginia, Charlottesville, Virginia
| | - Pascal O Bessong
- Department of Microbiology, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
29
|
Guerrieri CG, Pereira MF, Galdino ACM, Dos Santos ALS, Elias WP, Schuenck RP, Spano LC. Typical and Atypical Enteroaggregative Escherichia coli Are Both Virulent in the Galleria mellonella Model. Front Microbiol 2019; 10:1791. [PMID: 31456762 PMCID: PMC6700222 DOI: 10.3389/fmicb.2019.01791] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging pathotype responsible for acute and persistent diarrhea. It can be classified as typical and atypical strains, respectively, based on the presence or absence of the AggR regulon, suggesting a higher virulence for typical EAEC. This study aims to evaluate in the Galleria mellonella model if there are differences in the virulence profiles among clinical strains of typical and atypical EAEC, prototype strains EAEC C1096, 042 and its aggR mutant. The clinical EAEC strains (n = 20) were analyzed for the presence of 22 putative virulence factors of EAEC or extraintestinal E. coli by PCR, as well as phenotypic characteristics of virulence (enzymes, siderophore, and biofilm). The survival of the larvae was analyzed after inoculation of 104-107 CFU/larva; the monitoring of bacterial growth in vivo and hemocyte quantification was determined after inoculation of the prototype strains (105 CFU/larva) at different periods after infection. The strains of typical and atypical EAEC presented the same virulence profile for the larva, regardless of the amount or type of genes and phenotypic aspects of virulence analyzed. In addition, the EAEC 042 aggR mutant strain showed a significant reduction in the mortality of the inoculated larvae compared to the wild-type strain. In conclusion, the results obtained herein demonstrate that the virulence of EAEC seems to be related to the AggR regulon, but not exclusively, and atypical EAEC strains may be as virulent as typical ones in vivo in the G. mellonella model.
Collapse
Affiliation(s)
- Caroline Gastaldi Guerrieri
- Laboratory of Virology and Infectious Gastroenteritis, Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Monalessa Fábia Pereira
- Laboratory of Virology and Infectious Gastroenteritis, Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Anna Clara Milesi Galdino
- Laboratory of Advanced Studies of Emerging and Resistant Microorganisms, Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Laboratory of Advanced Studies of Emerging and Resistant Microorganisms, Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ricardo Pinto Schuenck
- Laboratory of Virology and Infectious Gastroenteritis, Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Liliana Cruz Spano
- Laboratory of Virology and Infectious Gastroenteritis, Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| |
Collapse
|
30
|
Boisen N, Melton-Celsa AR, Hansen AM, Zangari T, Smith MA, Russo LM, Scheutz F, O'Brien AD, Nataro JP. The Role of the AggR Regulon in the Virulence of the Shiga Toxin-Producing Enteroaggregative Escherichia coli Epidemic O104:H4 Strain in Mice. Front Microbiol 2019; 10:1824. [PMID: 31456767 PMCID: PMC6700298 DOI: 10.3389/fmicb.2019.01824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/24/2019] [Indexed: 12/04/2022] Open
Abstract
An O104:H4 Shiga toxin (Stx)-producing enteroaggregative Escherichia coli (EAEC) strain caused a large outbreak of bloody diarrhea and the hemolytic uremic syndrome in 2011. We previously developed an ampicillin (Amp)-treated C57BL/6 mouse model to measure morbidity (weight loss) and mortality of mice orally infected with the prototype Stx-EAEC strain C227-11. Here, we hypothesized that mice fed C227-11 cured of the pAA plasmid or deleted for individual genes on that plasmid would display reduced virulence compared to animals given the wild-type (wt) strain. C227-11 cured of the pAA plasmid or deleted for the known pAA-encoded virulence genes aggR, aggA, sepA, or aar were fed to Amp-treated C57BL/6 mice at doses of 1010–1011CFU. Infected animals were then either monitored for morbidity and lethality for 28 days or euthanized to determine intestinal pathology and colonization levels at selected times. The pAA-cured, aggR, and aggA mutants of strain C227-11 all showed reduced colonization at various intestinal sites. However, the aggR mutant was the only mutant attenuated for virulence as it showed both reduced morbidity and mortality. The aar mutant showed increased expression of the aggregative adherence fimbriae (AAF) and caused greater systemic effects in infected mice when compared to the C227-11 wt strain. However, unexpectedly, both the aggA and aar mutants displayed increased weight loss compared to wt. The sepA mutant did not exhibit altered morbidity or mortality in the Amp-treated mouse model compared to wt. Our data suggest that the increased morbidity due to the aar mutant could possibly be via an effect on expression of an as yet unknown virulence-associated factor under AggR control.
Collapse
Affiliation(s)
- Nadia Boisen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.,Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Angela R Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tonia Zangari
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mark A Smith
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lisa M Russo
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Flemming Scheutz
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Alison D O'Brien
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
31
|
QseC Signaling in the Outbreak O104:H4 Escherichia coli Strain Combines Multiple Factors during Infection. J Bacteriol 2019; 201:JB.00203-19. [PMID: 31235511 DOI: 10.1128/jb.00203-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/08/2019] [Indexed: 12/22/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) from the O104:H4 specific serotype caused a large outbreak of bloody diarrhea with some complicated cases of hemolytic-uremic syndrome (HUS) in Europe in 2011. The outbreak strain consisted in an EAEC capable to produce the Shiga toxin (Stx) subtype 2a, a characteristic from enterohemorrhagic E. coli QseBC two-component system detects AI-3/Epi/NE and mediates the chemical signaling between pathogen and mammalian host. This system coordinates a cascade of virulence genes expression in important human enteropathogens. The blocking of QseC of EAEC C227-11 (Stx+) strain by N-phenyl-4-{[(phenylamino) thioxomethyl]amino}-benzenesulfonamide (also known as LED209) in vivo demonstrated a lower efficiency of colonization. The periplasmic protein VisP, which is related to survival mechanisms in a colitis model of infection, bacterial membrane maintenance, and stress resistance, here presented high levels of expression during the initial infection within the host. Under acid stress conditions, visP expression levels were differentiated in an Stx-dependent way. Together, these results emphasize the important role of VisP and the histidine kinase sensor QseC in the C227-11 (Stx+) outbreak strain for the establishment of the infectious niche process in the C57BL/6 mouse model and of LED209 as a promising antivirulence drug strategy against these enteric pathogens.IMPORTANCE EAEC is a remarkable etiologic agent of acute and persistent diarrhea worldwide. The isolates harbor specific subsets of virulence genes and their pathogenesis needs to be better understood. Chemical signaling via histidine kinase sensor QseC has been shown as a potential target to elucidate the orchestration of the regulatory cascade of virulence factors.
Collapse
|
32
|
Alvestegui A, Olivares-Morales M, Muñoz E, Smith R, Nataro JP, Ruiz-Perez F, Farfan MJ. TLR4 Participates in the Inflammatory Response Induced by the AAF/II Fimbriae From Enteroaggregative Escherichia coli on Intestinal Epithelial Cells. Front Cell Infect Microbiol 2019; 9:143. [PMID: 31131263 PMCID: PMC6509964 DOI: 10.3389/fcimb.2019.00143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) infections are one of the most frequent causes of persistent diarrhea in children, immunocompromised patients and travelers worldwide. The most prominent colonization factors of EAEC are aggregative adherence fimbriae (AAF). EAEC prototypical strain 042 harbors the AAF/II fimbriae variant, which mediates adhesion to intestinal epithelial cells and participates in the induction of an inflammatory response against this pathogen. However, the mechanism and the cell receptors implicated in eliciting this response have not been fully characterized. Since previous reports have shown that TLR4 recognize fimbriae from different pathogens, we evaluated the role of this receptor in the response elicited against EAEC by intestinal cells. Using a mutual antagonist against TLR2 and TLR4 (OxPAPC), we observed that blocking of these receptors significantly reduces the secretion of the inflammatory marker IL-8 in response to EAEC and AAF/II fimbrial extract in HT-29 cells. Using a TLR4-specific antagonist (TAK-242), we observed that the secretion of this cytokine was significantly reduced in HT-29 cells infected with EAEC or incubated with AAF/II fimbrial extract. We evaluated the participation of AAF/II fimbriae in the TLR4-mediated secretion of 38 cytokines, chemokines, and growth factors involved in inflammation. A reduction in the secretion of IL-8, GRO, and IL-4 was observed. Our results suggest that TLR4 participates in the secretion of several inflammation biomarkers in response to AAF/II fimbriae.
Collapse
Affiliation(s)
- Alejandra Alvestegui
- Departamento de Pediatría, Facultad de Medicina, Centro de Estudios Moleculares, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Mauricio Olivares-Morales
- Departamento de Pediatría, Facultad de Medicina, Centro de Estudios Moleculares, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Ernesto Muñoz
- Departamento de Pediatría, Facultad de Medicina, Centro de Estudios Moleculares, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Rachel Smith
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Mauricio J Farfan
- Departamento de Pediatría, Facultad de Medicina, Centro de Estudios Moleculares, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| |
Collapse
|
33
|
Yasir M, Icke C, Abdelwahab R, Haycocks JR, Godfrey RE, Sazinas P, Pallen MJ, Henderson IR, Busby SJW, Browning DF. Organization and architecture of AggR-dependent promoters from enteroaggregative Escherichia coli. Mol Microbiol 2018; 111:534-551. [PMID: 30485564 PMCID: PMC6392122 DOI: 10.1111/mmi.14172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 11/27/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC), is a diarrhoeagenic human pathogen commonly isolated from patients in both developing and industrialized countries. Pathogenic EAEC strains possess many virulence determinants, which are thought to be involved in causing disease, though, the exact mechanism by which EAEC causes diarrhoea is unclear. Typical EAEC strains possess the transcriptional regulator, AggR, which controls the expression of many virulence determinants, including the attachment adherence fimbriae (AAF) that are necessary for adherence to human gut epithelial cells. Here, using RNA‐sequencing, we have investigated the AggR regulon from EAEC strain 042 and show that AggR regulates the transcription of genes on both the bacterial chromosome and the large virulence plasmid, pAA2. Due to the importance of fimbriae, we focused on the two AAF/II fimbrial gene clusters in EAEC 042 (afaB‐aafCB and aafDA) and identified the promoter elements and AggR‐binding sites required for fimbrial expression. In addition, we examined the organization of the fimbrial operon promoters from other important EAEC strains to understand the rules of AggR‐dependent activation. Finally, we generated a series of semi‐synthetic promoters to define the minimal sequence required for AggR‐mediated activation and show that the correct positioning of a single AggR‐binding site is sufficient to confer AggR‐dependence.
Collapse
Affiliation(s)
- Muhammad Yasir
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Christopher Icke
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Radwa Abdelwahab
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.,Faculty of Medicine, Assiut University, Assiut, Egypt
| | - James R Haycocks
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rita E Godfrey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Pavelas Sazinas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Ian R Henderson
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
34
|
Li D, Shen M, Xu Y, Liu C, Wang W, Wu J, Luo X, Jia X, Ma Y. Virulence gene profiles and molecular genetic characteristics of diarrheagenic Escherichia coli from a hospital in western China. Gut Pathog 2018; 10:35. [PMID: 30127859 PMCID: PMC6097206 DOI: 10.1186/s13099-018-0262-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 02/05/2023] Open
Abstract
Background Diarrheagenic Escherichia coli (DEC) is one of the most important etiological agents of diarrheal diseases. In this study we investigated the prevalence, virulence gene profiles, antimicrobial resistance, and molecular genetic characteristics of DEC at a hospital in western China. Methods A total of 110 Escherichia coli clinical isolates were collected from the First Affiliated Hospital of Chengdu Medical College from 2015 to 2016. Microbiological methods, PCR, antimicrobial susceptibility test, pulsed-field gel electrophoresis and multilocus sequence typing were used in this study. Results Molecular analysis of six DEC pathotype marker genes showed that 13 of the 110 E. coli isolates (11.82%) were DEC including nine (8.18%) diffusely adherent Escherichia coli (DAEC) and four (3.64%) enteroaggregative Escherichia coli (EAEC). The adherence genes fimC and fimH were present in all DAEC and EAEC isolates. All nine DAEC isolates harbored the virulence genes fyuA and irp2 and four (44.44%) also carried the hlyA and sat genes. The virulence genes fyuA, irp2, cnf1, hlyA, and sat were found in 100%, 100%, 75%, 50%, and 50% of EAEC isolates, respectively. In addition, all DEC isolates were multidrug resistant and had high frequencies of antimicrobial resistance. Molecular genetic characterization showed that the 13 DEC isolates were divided into 11 pulsed-field gel electrophoresis patterns and 10 sequence types. Conclusions To the best of our knowledge, this study provides the first report of DEC, including DAEC and EAEC, in western China. Our analyses identified the virulence genes present in E. coli from a hospital indicating their role in the isolated DEC strains’ pathogenesis. At the same time, the analyses revealed, the antimicrobial resistance pattern of the DEC isolates. Thus, DAEC and EAEC among the DEC strains should be considered a significant risk to humans in western China due to their evolved pathogenicity and antimicrobial resistance pattern.
Collapse
Affiliation(s)
- Dan Li
- 1Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China.,2School of Medical Laboratory Science, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Min Shen
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Ying Xu
- 4Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Chao Liu
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Wen Wang
- 5West China School of Public Health, Sichuan University, Chengdu, 610041 Sichuan China
| | - Jinyan Wu
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Xianmei Luo
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Xu Jia
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Yongxin Ma
- 1Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| |
Collapse
|
35
|
Pro-inflammatory capacity of Escherichia coli O104:H4 outbreak strain during colonization of intestinal epithelial cells from human and cattle. Int J Med Microbiol 2018; 308:899-911. [PMID: 29937390 DOI: 10.1016/j.ijmm.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022] Open
Abstract
In 2011, Germany was struck by the largest outbreak of hemolytic uremic syndrome. The highly virulent E. coli O104:H4 outbreak strain LB226692 possesses a blended virulence profile combining genetic patterns of human adapted enteroaggregative E. coli (EAEC), rarely detected in animal hosts before, and enterohemorrhagic E. coli (EHEC), a subpopulation of Shiga toxin (Stx)-producing E. coli (STEC) basically adapted to the ruminant host. This study aimed at appraising the relative level of adaptation of the EAEC/EHEC hybrid strain LB226692 to humans and cattle. Adherence and invasion of the hybrid strain to intestinal (jejunal and colonic) epithelial cells (IEC) of human and bovine origin was compared to that of E. coli strains representative of different pathovars and commensal E. coli by means of light and electron microscopy and culture. Strain-specific host gene transcription profiles of selected cytokines and chemokines as well as host-induced transcription of bacterial virulence genes were assessed. The release of Stx upon host cell contact was quantified. The outbreak strain's immunomodulation was assessed by cultivating primary bovine macrophages with conditioned supernatants from IEC infection studies with E. coli, serving as model for the innate immunity of the bovine gut. The outbreak strain adhered to IEC of both, human and bovine origin. Electron microscopy of infected cells revealed the strain's particular affinity to human small IEC, in contrast to few interactions with bovine small IEC. The outbreak strain possessed a high-level of adhesive power, similar to human-associated E. coli strains and in contrast to bovine-associated STEC strains. The outbreak strain displayed a non-invasive phenotype, in contrast to some bovine-associated E. coli strains, which were invasive. The outbreak strain provoked some pro-inflammatory activity in human cells, but to a lower extent as compared to other pathotypes. In contrasts to bovine-associated E. coli strains, the outbreak strain induced marked pro-inflammatory activity when interacting with bovine host cells directly (IEC) and indirectly (macrophages). Among stx2-positive strains, the human-pathogenic strains (LB226692 and EHEC strain 86-24) released higher amounts of Stx compared to bovine-associated STEC. The findings imply that the outbreak strain is rather adapted to humans than to cattle. However, the outbreak strain's potential to colonize IEC of both host species and the rather mixed reaction patterns observed for all strains under study indicate, that even STEC strains with an unusual genotype as the EHEC O104:H4 outbreak strain, i.e. with an EAEC genetic background, may be able to conquer other reservoir hosts.
Collapse
|
36
|
Munhoz DD, Nara JM, Freitas NC, Moraes CTP, Nunes KO, Yamamoto BB, Vasconcellos FM, Martínez-Laguna Y, Girón JA, Martins FH, Abe CM, Elias WP, Piazza RMF. Distribution of Major Pilin Subunit Genes Among Atypical Enteropathogenic Escherichia coli and Influence of Growth Media on Expression of the ecp Operon. Front Microbiol 2018; 9:942. [PMID: 29867850 PMCID: PMC5962669 DOI: 10.3389/fmicb.2018.00942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) strains are unable to produce the bundle-forming pilus (BFP), which is responsible for the localized adherence pattern, a characteristic of the pathogenicity of typical EPEC strains. The lack of BFP in aEPEC strains suggests that other fimbrial or non-fimbrial adhesins are involved in their adhesion to the host cells. The aim of this study was to investigate the distribution of major subunit fimbrial genes known to be important adherence factors produced by several E. coli pathotypes in a collection of 72 aEPEC strains. Our results demonstrate that a high percentage (94–100%) of aEPEC strains harbored ecpA, fimA, hcpA, and lpfA fimbrial genes. Other fimbrial genes including pilS, pilV, sfpA, daaC, papA, and sfa were detected at lower frequencies (1–8%). Genes encoding fimbrial subunits, which are characteristic of enteroaggregative E. coli or enterotoxigenic E. coli were not found. No correlation was found between fimbrial gene profiles and adherence phenotypes. Since all aEPEC strains contained ecpA, the major pilin gene of the E. coli common pilus (ECP), a subset of ecpA+ strains was analyzed for transcription of ecpRABCDE and production of ECP upon growth in three different culture conditions at 37°C. Transcription of ecpRABCDE occurred in all conditions; however, ECP production was medium dependent. In all, the data suggest that aEPEC strains are highly heterogeneous in terms of their fimbrial gene profiles. Despite lacking BFP production, other mechanisms of cell adherence exist in aEPEC strains to ensure host colonization, e.g., mediated by other prevalent pili such as ECP. Moreover, the production of ECP by aEPEC strains might be influenced by yet unknown post-transcriptional factors.
Collapse
Affiliation(s)
| | - Júlia M Nara
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | | | | - Kamila O Nunes
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Bruno B Yamamoto
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | | | | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Cecilia M Abe
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
37
|
Borgersen Q, Bolick DT, Kolling GL, Aijuka M, Ruiz-Perez F, Guerrant RL, Nataro JP, Santiago AE. Abundant production of exopolysaccharide by EAEC strains enhances the formation of bacterial biofilms in contaminated sprouts. Gut Microbes 2018; 9:264-278. [PMID: 29543544 PMCID: PMC6219584 DOI: 10.1080/19490976.2018.1429877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 02/03/2023] Open
Abstract
Enteroaggregative E. coli (EAEC) is associated with food-borne outbreaks of diarrhea and growth faltering among children in developing countries. A Shiga toxin-producing EAEC strain of serotype O104:H4 strain caused one of the largest outbreaks of a food-borne infection in Europe in 2011. The outbreak was traced to contaminated fenugreek sprouts, yet the mechanisms whereby such persistent contamination of sprouts could have occurred are not clear. We found that under ambient conditions of temperature and in minimal media, pathogenic Shiga toxin-producing EAEC O104:H4 227-11 and non-Shiga toxin-producing 042 strains both produce high levels of exopolysaccharide structures (EPS) that are released to the external milieu. The exopolysaccharide was identified as colanic acid (CA). Unexpectedly, Shiga-toxin producing EAEC strain 227-11 produced 3-6-fold higher levels of CA than the 042 strain, suggesting differential regulation of the CA in the two strains. The presence of CA was accompanied by the formation of large biofilm structures on the surface of sprouts. The wcaF-wza chromosomal locus was required for the synthesis of CA in EAEC 042. Deletion in the glycosyltransferase wcaE gene abolished the production of CA in 042, and resulted in diminished adherence to sprouts when co-cultured at ambient temperature. In conclusion, this work suggests that copious production of CA may contribute to persistence of EAEC in the environment and suggests a potential explanation for the large Shiga toxin-producing EAEC outbreak in 2011.
Collapse
Affiliation(s)
- Quintin Borgersen
- Department of Pediatrics, University of Virginia School of Medicine and University of Virginia Children's Hospital, Charlottesville, Virginia
| | - David T. Bolick
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA , USA
| | - Glynis L. Kolling
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA , USA
| | - Matthew Aijuka
- Department of Pediatrics, University of Virginia School of Medicine and University of Virginia Children's Hospital, Charlottesville, Virginia
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine and University of Virginia Children's Hospital, Charlottesville, Virginia
| | - Richard L. Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA , USA
| | - James P. Nataro
- Department of Pediatrics, University of Virginia School of Medicine and University of Virginia Children's Hospital, Charlottesville, Virginia
| | - Araceli E. Santiago
- Department of Pediatrics, University of Virginia School of Medicine and University of Virginia Children's Hospital, Charlottesville, Virginia
| |
Collapse
|
38
|
Werneburg GT, Thanassi DG. Pili Assembled by the Chaperone/Usher Pathway in Escherichia coli and Salmonella. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0007-2017. [PMID: 29536829 PMCID: PMC5940347 DOI: 10.1128/ecosalplus.esp-0007-2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria assemble a variety of surface structures, including the hair-like organelles known as pili or fimbriae. Pili typically function in adhesion and mediate interactions with various surfaces, with other bacteria, and with other types of cells such as host cells. The chaperone/usher (CU) pathway assembles a widespread class of adhesive and virulence-associated pili. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and integral outer membrane protein termed the usher, which forms a multifunctional assembly and secretion platform. This review addresses the molecular and biochemical aspects of the CU pathway in detail, focusing on the type 1 and P pili expressed by uropathogenic Escherichia coli as model systems. We provide an overview of representative CU pili expressed by E. coli and Salmonella, and conclude with a discussion of potential approaches to develop antivirulence therapeutics that interfere with pilus assembly or function.
Collapse
Affiliation(s)
- Glenn T. Werneburg
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| | - David G. Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
39
|
Solanki V, Tiwari M, Tiwari V. Host-bacteria interaction and adhesin study for development of therapeutics. Int J Biol Macromol 2018; 112:54-64. [PMID: 29414732 DOI: 10.1016/j.ijbiomac.2018.01.151] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 12/15/2022]
Abstract
Host-pathogen interaction is one of the most important areas of study to understand the adhesion of the pathogen to the host organisms. To adhere on the host cell surface, bacteria assemble the diverse adhesive structures on its surface, which play a foremost role in targeting to the host cell. We have highlighted different bacterial adhesins which are either protein mediated or glycan mediated. The present article listed examples of different bacterial adhesin proteins involved in the interactions with their host, types and subtypes of the fimbriae and non-fimbriae bacterial adhesins. Different bacterial surface adhesin subunits interact with host via different host surface biomolecules. We have also discussed the interactome of some of the pathogens with their host. Therefore, the present study will help researchers to have a detailed understanding of different interacting bacterial adhesins and henceforth, develop new therapies, adhesin specific antibodies and vaccines, which can effectively control pathogenicity of the pathogens.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India.
| |
Collapse
|
40
|
Novel Segment- and Host-Specific Patterns of Enteroaggregative Escherichia coli Adherence to Human Intestinal Enteroids. mBio 2018; 9:mBio.02419-17. [PMID: 29463660 PMCID: PMC5821088 DOI: 10.1128/mbio.02419-17] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important diarrheal pathogen and a cause of both acute and chronic diarrhea. It is a common cause of pediatric bacterial diarrhea in developing countries. Despite its discovery in 1987, the intestinal tropism of the pathogen remains unknown. Cell lines used to study EAEC adherence include the HEp-2, T-84, and Caco-2 lines, but they exhibit abnormal metabolism and large variations in gene expression. Animal models either do not faithfully manifest human clinical symptoms or are cumbersome and expensive. Using human intestinal enteroids derived from all four segments of the human intestine, we find that EAEC demonstrates aggregative adherence to duodenal and ileal enteroids, with donor-driven differences driving a sheet-like and layered pattern. This contrasts with the colon, where segment-specific tropisms yielded a mesh-like adherence pattern dominated by interconnecting filaments. Very little to no aggregative adherence to jejunal enteroids was observed, regardless of the strain or donor, in contrast to a strong duodenal association across all donors and strains. These unique patterns of intestinal segment- or donor-specific adherence, but not the overall numbers of associated bacteria, were dependent on the major subunit protein of aggregative adherence fimbriae II (AafA), implying that the morphology of adherent clusters and the overall intestinal cell association of EAEC occur by different mechanisms. Our results suggest that we must give serious consideration to inter- and intrapatient variations in what is arguably the first step in pathogenesis, that of adherence, when considering the clinical manifestation of these infections. EAEC is a leading cause of pediatric bacterial diarrhea and a common cause of diarrhea among travelers and immunocompromised individuals. Heterogeneity in EAEC strains and lack of a good model system are major roadblocks to the understanding of its pathogenesis. Utilizing human intestinal enteroids to study the adherence of EAEC, we demonstrate that unique patterns of adherence are largely driven by unidentified factors present in different intestinal segments and from different donors. These patterns are also dependent on aggregative adherence fimbriae II encoded by EAEC. These results imply that we must also consider the contribution of the host to understand the pathogenesis of EAEC-induced inflammation and diarrhea.
Collapse
|
41
|
Kampmeier S, Berger M, Mellmann A, Karch H, Berger P. The 2011 German Enterohemorrhagic Escherichia Coli O104:H4 Outbreak-The Danger Is Still Out There. Curr Top Microbiol Immunol 2018; 416:117-148. [PMID: 30062592 DOI: 10.1007/82_2018_107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are Shiga toxin (Stx) producing bacteria causing a disease characterized by bloody (or non-bloody) diarrhea, which might progress to hemolytic uremic syndrome (HUS). EHEC O104:H4 caused the largest ever recorded EHEC outbreak in Germany in 2011, which in addition showed the so far highest incidence rate of EHEC-related HUS worldwide. The aggressive outbreak strain carries an unusual combination of virulence traits characteristic to both EHEC-a chromosomally integrated Stx-encoding bacteriophage, and enteroaggregative Escherichia coli-pAA plasmid-encoded aggregative adherence fimbriae mediating its tight adhesion to epithelia cells. There are currently still open questions regarding the 2011 EHEC outbreak, e.g., with respect to the exact molecular mechanisms resulting in the hypervirulence of the strain, the natural reservoir of EHEC O104:H4, and suitable therapeutic strategies. Nevertheless, our knowledge on these issues has substantially expanded since 2011. Here, we present an overview of the epidemiological, clinical, microbiological, and molecular biological data available on the 2011 German EHEC O104:H4 outbreak.
Collapse
Affiliation(s)
| | - Michael Berger
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | - Helge Karch
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Petya Berger
- Institute of Hygiene, University of Münster, Münster, Germany.
| |
Collapse
|
42
|
Riveros M, García W, García C, Durand D, Mercado E, Ruiz J, Ochoa TJ. Molecular and Phenotypic Characterization of Diarrheagenic Escherichia coli Strains Isolated from Bacteremic Children. Am J Trop Med Hyg 2017; 97:1329-1336. [PMID: 29016293 DOI: 10.4269/ajtmh.17-0066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Escherichia coli is an important cause of Gram-negative bacteremia. The aim of this study was to characterize at the molecular and phenotypic levels E. coli strains belonging to different diarrheagenic pathotypes [diarrheagenic E. coli (DEC)] isolated from bacteremia in children younger than 5 years of age. Seventy bacteremia E. coli strains were collected in a prospective study in 12 hospitals in Lima, Peru. The presence of virulence genes associated with DEC [enterotoxigenic (lt and st), enteropathogenic (eaeA), shiga toxin-producing (stx1and stx2), enteroinvasive (ipaH), enteroaggregative (aggR), and diffusely adherent (daaD)] was determined by multiplex real-time polymerase chain reaction (PCR). Those positive E. coli strains were further analyzed for 18 additional virulence factors encoding genes and others phenotypic features. Virulence genes associated with DEC were identified in seven bacteremic children (10%), including: one aggR-positive [enteroaggregative E. coli (EAEC)], one eaeA-positive [enteropathogenic E. coli (EPEC)], one st-positive [enterotoxigenic E. coli (ETEC)], one daaD-positive [diffusely adherent E. coli (DAEC)], and three strain positive for aggR and daaD (EAEC/DAEC) at the same time. All strains, except EPEC, had the Ag43 adhesin, and all, except ETEC had the siderophore gene fyuA. The phylogenetic profile of these strains was variable, two (B2), two (D), two (A), and one (B1) strain. These isolates were susceptible to all tested antibacterial agents except to ampicillin and gentamicin. The three EAEC/DAEC strains showed biofilm formation and aggregative adhesion and had the same repetitive extragenic palindromic-PCR patterns. These findings suggest that some DEC strains, especially agg-R and daa-D positive, might cause bacteremia in children.
Collapse
Affiliation(s)
- Maribel Riveros
- Universidad Nacional Federico Villarreal, Lima, Peru.,Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Wilfredo García
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Coralith García
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - David Durand
- Universidad Nacional Federico Villarreal, Lima, Peru.,Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Erik Mercado
- Universidad Nacional Federico Villarreal, Lima, Peru.,Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joaquim Ruiz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Theresa J Ochoa
- University of Texas Health Science Center at Houston, School of Public Health, Houston, Texas.,Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
43
|
Enteroaggregative Escherichia coli Adherence Fimbriae Drive Inflammatory Cell Recruitment via Interactions with Epithelial MUC1. mBio 2017; 8:mBio.00717-17. [PMID: 28588132 PMCID: PMC5461410 DOI: 10.1128/mbio.00717-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) causes diarrhea and intestinal inflammation worldwide. EAEC strains are characterized by the presence of aggregative adherence fimbriae (AAF), which play a key role in pathogenesis by mediating attachment to the intestinal mucosa and by triggering host inflammatory responses. Here, we identify the epithelial transmembrane mucin MUC1 as an intestinal host cell receptor for EAEC, demonstrating that AAF-mediated interactions between EAEC and MUC1 facilitate enhanced bacterial adhesion. We further demonstrate that EAEC infection also causes elevated expression of MUC1 in inflamed human intestinal tissues. Moreover, we find that MUC1 facilitates AAF-dependent migration of neutrophils across the epithelium in response to EAEC infection. Thus, we show for the first time a proinflammatory role for MUC1 in the host response to an intestinal pathogen. EAEC is a clinically important intestinal pathogen that triggers intestinal inflammation and diarrheal illness via mechanisms that are not yet fully understood. Our findings provide new insight into how EAEC triggers host inflammation and underscores the pivotal role of AAFs—the principal adhesins of EAEC—in driving EAEC-associated disease. Most importantly, our findings add a new dimension to the signaling properties of the transmembrane mucin MUC1. Mostly studied for its role in various forms of cancer, MUC1 is widely regarded as playing an anti-inflammatory role in response to infection with bacterial pathogens in various tissues. However, the role of MUC1 during intestinal infections has not been previously explored, and our results describe the first report of MUC1 as a proinflammatory factor following intestinal infection.
Collapse
|
44
|
Boll EJ, Marti R, Hasman H, Overballe-Petersen S, Stegger M, Ng K, Knøchel S, Krogfelt KA, Hummerjohann J, Struve C. Turn Up the Heat-Food and Clinical Escherichia coli Isolates Feature Two Transferrable Loci of Heat Resistance. Front Microbiol 2017; 8:579. [PMID: 28439262 PMCID: PMC5383660 DOI: 10.3389/fmicb.2017.00579] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/21/2017] [Indexed: 11/24/2022] Open
Abstract
Heat treatment is a widely used process to reduce bacterial loads in the food industry or to decontaminate surfaces, e.g., in hospital settings. However, there are situations where lower temperatures must be employed, for instance in case of food production such as raw milk cheese or for decontamination of medical devices such as thermo-labile flexible endoscopes. A recently identified locus of heat resistance (LHR) has been shown to be present in and confer heat resistance to a variety of Enterobacteriaceae, including Escherichia coli isolates from food production settings and clinical ESBL-producing E. coli isolates. Here, we describe the presence of two distinct LHR variants within a particularly heat resistant E. coli raw milk cheese isolate. We demonstrate for the first time in this species the presence of one of these LHRs on a plasmid, designated pFAM21805, also encoding type 3 fimbriae and three bacteriocins and corresponding self-immunity proteins. The plasmid was highly transferable to other E. coli strains, including Shiga-toxin-producing strains, and conferred LHR-dependent heat resistance as well as type 3 fimbriae-dependent biofilm formation capabilities. Selection for and acquisition of this “survival” plasmid by pathogenic organisms, e.g., in food production environments, may pose great concern and emphasizes the need to screen for the presence of LHR genes in isolates.
Collapse
Affiliation(s)
- Erik J Boll
- Department of Microbiology and Infection Control, Statens Serum InstitutCopenhagen, Denmark
| | - Roger Marti
- Agroscope, Division of Food Microbial Systems, Microbiological Safety of Foods of Animal Origin GroupBern, Switzerland
| | - Henrik Hasman
- Department of Microbiology and Infection Control, Statens Serum InstitutCopenhagen, Denmark
| | | | - Marc Stegger
- Department of Microbiology and Infection Control, Statens Serum InstitutCopenhagen, Denmark
| | - Kim Ng
- Department of Microbiology and Infection Control, Statens Serum InstitutCopenhagen, Denmark
| | - Susanne Knøchel
- Department of Food Science, University of CopenhagenCopenhagen, Denmark
| | - Karen A Krogfelt
- Department of Microbiology and Infection Control, Statens Serum InstitutCopenhagen, Denmark
| | - Joerg Hummerjohann
- Agroscope, Division of Food Microbial Systems, Microbiological Safety of Foods of Animal Origin GroupBern, Switzerland
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum InstitutCopenhagen, Denmark
| |
Collapse
|
45
|
Braga RLL, Pereira ACM, Santos PAD, Freitas-Almeida AC, Rosa ACDP. EX VIVO MODEL OF RABBIT INTESTINAL EPITHELIUM APPLIED TO THE STUDY OF COLONIZATION BY ENTEROAGGREGATIVE ESCHERICHIA COLI. ARQUIVOS DE GASTROENTEROLOGIA 2017; 54:130-134. [PMID: 28327823 DOI: 10.1590/s0004-2803.201700000-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/11/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND The diarrheal syndrome is considered a serious public health problem all over the world and is considered a major cause of morbidity and mortality in developing countries. The high incidence of enteroaggregative Escherichia coli in diarrheal syndromes classified as an emerging pathogen of gastrointestinal infections. After decades of study, your pathogenesis remains uncertain and has been investigated mainly using in vitro models of adhesion in cellular lines. OBJECTIVE The present study investigated the interaction of enteroaggregative Escherichia coli strains isolated from childhood diarrhea with rabbit ileal and colonic mucosa ex vivo, using the in vitro organ culture model. METHODS The in vitro adhesion assays using cultured tissue were performed with the strains co-incubated with intestinal fragments of ileum and colon over a period of 6 hours. Each strain was tested with three intestinal fragments for each region. The fragments were analysed by scanning electron microscopy. RESULTS Through scanning electron microscopy we observed that all strains adhered to rabbit ileal and colonic mucosa, with the typical aggregative adherence pattern of "stacked bricks" on the epithelium. However, the highest degree of adherence was observed on colonic mucosa. Threadlike structures were found in greater numbers in the ileum compared to the colon. CONCLUSION These data showed that enteroaggregative Escherichia coli may have a high tropism for the human colon, which was ratified by the higher degree of adherence on the rabbit colonic mucosa. Finally, data indicated that in vitro organ culture of intestinal mucosa from rabbit may be used to elucidate the enteroaggregative Escherichia coli pathogenesis.
Collapse
Affiliation(s)
- Ricardo Luís Lopes Braga
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro
| | - Ana Claudia Machado Pereira
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro
| | - Paula Azevedo Dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro
| | - Angela Corrêa Freitas-Almeida
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro
| | - Ana Cláudia de Paula Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro
| |
Collapse
|
46
|
Jønsson R, Liu B, Struve C, Yang Y, Jørgensen R, Xu Y, Jenssen H, Krogfelt KA, Matthews S. Structural and functional studies of Escherichia coli aggregative adherence fimbriae (AAF/V) reveal a deficiency in extracellular matrix binding. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2017; 1865:304-311. [PMID: 27939608 PMCID: PMC5289312 DOI: 10.1016/j.bbapap.2016.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/14/2016] [Accepted: 11/30/2016] [Indexed: 01/18/2023]
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging cause of acute and persistent diarrhea worldwide. The pathogenesis of different EAEC stains is complicated, however, the early essential step begins with attachment of EAEC to intestinal mucosa via aggregative adherence fimbriae (AAFs). Currently, five different variants have been identified, which all share a degree of similarity in the gene organization of their operons and sequences. Here, we report the solution structure of Agg5A from the AAF/V variant. While preserving the major structural features shared by all AAF members, only Agg5A possesses an inserted helix at the beginning of the donor strand, which together with altered surface electrostatics, renders the protein unable to interact with fibronectin. Hence, here we characterize the first AAF variant with a binding mode that varies from previously described AAFs.
Collapse
Affiliation(s)
- Rie Jønsson
- Institute for Science and Environment, Roskilde University, Roskilde, Denmark; Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Bing Liu
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Yi Yang
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - René Jørgensen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Yingqi Xu
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Håvard Jenssen
- Institute for Science and Environment, Roskilde University, Roskilde, Denmark
| | - Karen A Krogfelt
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark.
| | - Steve Matthews
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom.
| |
Collapse
|
47
|
Jønsson R, Struve C, Boll EJ, Boisen N, Joensen KG, Sørensen CA, Jensen BH, Scheutz F, Jenssen H, Krogfelt KA. A Novel pAA Virulence Plasmid Encoding Toxins and Two Distinct Variants of the Fimbriae of Enteroaggregative Escherichia coli. Front Microbiol 2017; 8:263. [PMID: 28275371 PMCID: PMC5320562 DOI: 10.3389/fmicb.2017.00263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/07/2017] [Indexed: 11/29/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an increasingly recognized pathogen associated with acute and persistent diarrhea worldwide. While EAEC strains are considered highly heterogeneous, aggregative adherence fimbriae (AAFs) are thought to play a pivotal role in pathogenicity by facilitating adherence to the intestinal mucosa. In this study, we optimized an existing multiplex PCR to target all known AAF variants, which are distinguished by differences in their pilin subunits. We applied the assay on a collection of 162 clinical Danish EAEC strains and interestingly found six, by SNP analysis phylogenetically distinct, strains harboring the major pilin subunits from both AAF/III and AAF/V. Whole-genome and plasmid sequencing revealed that in these six strains the agg3A and agg5A genes were located on a novel pAA plasmid variant. Moreover, the plasmid also encoded several other virulence genes including some not previously found on pAA plasmids. Thus, this plasmid endows the host strains with a remarkably high number of EAEC associated virulence genes hereby likely promoting strain pathogenicity.
Collapse
Affiliation(s)
- Rie Jønsson
- Department of Science and Environment, Roskilde UniversityRoskilde, Denmark; Department of Microbiology and Infection Control, Statens Serum InstitutCopenhagen, Denmark
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Erik J Boll
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Nadia Boisen
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Katrine G Joensen
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Camilla A Sørensen
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Betina H Jensen
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Flemming Scheutz
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University Roskilde, Denmark
| | - Karen A Krogfelt
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| |
Collapse
|
48
|
Lara FBM, Nery DR, de Oliveira PM, Araujo ML, Carvalho FRQ, Messias-Silva LCF, Ferreira LB, Faria-Junior C, Pereira AL. Virulence Markers and Phylogenetic Analysis of Escherichia coli Strains with Hybrid EAEC/UPEC Genotypes Recovered from Sporadic Cases of Extraintestinal Infections. Front Microbiol 2017; 8:146. [PMID: 28217123 PMCID: PMC5290387 DOI: 10.3389/fmicb.2017.00146] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/19/2017] [Indexed: 11/13/2022] Open
Abstract
Virulence genes from different E. coli pathotypes are blended in hybrid strains. E. coli strains with hybrid enteroaggregative/uropathogenic (EAEC/UPEC) genotypes have sporadically emerged causing outbreaks of extraintestinal infections, however their association with routine infections is yet underappreciated. We assessed 258 isolates of E. coli recovered from 86 consecutive cases of extraintestinal infections seeking EAEC and hybrid genotype (EAEC/UPEC) strains. Extensive virulence genotyping was carried out to detect 21 virulence genes, including molecular predictors of EAEC and UPEC strains. Phylogenetic groups and sequence types (STs) were identified, as well as it was performed phylogenetic analyses in order to evaluate whether hybrid EAEC/UPEC strains belonged to intestinal or extraintestinal lineages of E. coli. Adhesion assays were performed to evaluate the biofilm formation by hybrid strains in human urine and cell culture medium (DMEM). Molecular predictors of UPEC were detected in more than 70% of the strains (chuA in 85% and fyuA in 78%). Otherwise, molecular predictors of EAEC (aatA and aggR) were detected in only 3.4% (9/258) of the strains and always along with the UPEC predictor fyuA. Additionally, the pyelonephritis-associated pilus (pap) gene was also detected in all of the hybrid EAEC/UPEC strains. EAEC/UPEC strains were recovered from two cases of community-onset urinary tract infections (UTI) and from a case of bacteremia. Analyses revealed that hybrid EAEC/UPEC strains were phylogenetically positioned in two different clades. Two representative strains, each recovered from UTI and bacteremia, were positioned into a characteristic UPEC clade marked by strains belonging to phylogenetic group D and ST3 (Warwick ST 69). Another hybrid EAEC/UPEC strain was classified as phylogroup A-ST478 and positioned in a commensal clade. Hybrid EAEC/UPEC strains formed biofilms at modest, but perceptible levels either in DMEM or in urine samples. We showed that different lineages of E. coli, at least phylogenetic group A and D, can acquire and gather EAEC and UPEC virulence genes promoting the emergence of hybrid EAEC/UPEC strains.
Collapse
Affiliation(s)
- Flaviane B M Lara
- Graduate Program in Microbial Biology, Biology Institute, University of Brasília Brasília, Brazil
| | - Danielly R Nery
- Campus of Ceilândia, University of Brasília Brasília, Brazil
| | | | - Mayana L Araujo
- Campus of Ceilândia, University of Brasília Brasília, Brazil
| | | | | | | | - Celio Faria-Junior
- Central Laboratory for Public Health, Secretary of State for Health Brasília, Brazil
| | - Alex L Pereira
- Graduate Program in Microbial Biology, Biology Institute, University of BrasíliaBrasília, Brazil; Campus of Ceilândia, University of BrasíliaBrasília, Brazil
| |
Collapse
|
49
|
Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Rodrigues JF, Piazza RMF, Ferreira LCS, Martinez MB. Diarrheagenic Escherichia coli. Braz J Microbiol 2016; 47 Suppl 1:3-30. [PMID: 27866935 PMCID: PMC5156508 DOI: 10.1016/j.bjm.2016.10.015] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.
Collapse
Affiliation(s)
- Tânia A T Gomes
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil.
| | - Waldir P Elias
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Isabel C A Scaletsky
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Beatriz E C Guth
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Juliana F Rodrigues
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Roxane M F Piazza
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Luís C S Ferreira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Marina B Martinez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, São Paulo, SP, Brazil
| |
Collapse
|
50
|
Gupta D, Sharma M, Sarkar S, Thapa BR, Chakraborti A. Virulence determinants in enteroaggregative Escherichia coli from North India and their interaction in in vitro organ culture system. FEMS Microbiol Lett 2016; 363:fnw189. [PMID: 27493010 DOI: 10.1093/femsle/fnw189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2016] [Indexed: 11/13/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important diarrhoeal pathogen causing diseases in multiple epidemiological and clinical settings. In developing countries like India, diarrhoeal diseases are one of the major killers among paediatric population and oddly, few studies are available from Indian paediatric population on the variability of EAEC virulence genes. In this study, we examined the distribution of plasmid and chromosomal-encoded virulence determinants in EAEC isolates, and analysed cytokines response generated against EAEC with specific aggregative adherence fimbriae (AAF) type in duodenal biopsies using in vitro organ culture (IVOC) mimicking in vivo conditions. Different virulence marker combinations among strains were reflected as a function of specific adhesins signifying EAEC heterogeneity. fis gene emerged as an important genetic marker apart from aggA and aap Further, EAEC infection in IVOC showed upregulation of IL-8, IL-1β, IL-6, TNF-α and TLR-5 expression. EAEC with AAFII induced significant TLR-5 and IL-8 response, conceivably owing to more pathogenicity markers. This study sheds light on the pattern of EAEC pathotypes prevalent in North Indian paediatric population and highlights the presence of unique virulence combinations in pathogenic strains. Thus, evident diversity in EAEC virulence and multifaceted bacteria-host crosstalk can provide useful insights for the strategic management of diarrhoeal diseases in India, where diarrhoeal outbreaks are more frequent.
Collapse
Affiliation(s)
- Deepika Gupta
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Monica Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Subendu Sarkar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - B R Thapa
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Anuradha Chakraborti
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|