1
|
Jiang F, Yang Y, Mao Z, Cai W, Li G. ArcA positively regulates the expression of virulence genes and contributes to virulence of porcine Shiga toxin-producing enterotoxigenic Escherichia coli. Microbiol Spectr 2023; 11:e0152523. [PMID: 37916813 PMCID: PMC10714933 DOI: 10.1128/spectrum.01525-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) cause severe diarrhea in humans and animals, leading to death and huge economic loss worldwide. Thus, elucidation of ETEC's pathogenic mechanisms will provide powerful data for the discovery of drugs serving as prevention or therapeutics against ETEC-caused diarrheal diseases. Here, we report that ArcA plays an essential role in the pathogenicity and virulence regulation in ETEC by positively regulating the expression of several key virulence factors including F18 fimbriae, heat-labile and heat-stable toxins, Shiga toxin 2e, and hemolysin, under microaerobic conditions and in vivo. Moreover, we found that positive regulation of several virulence genes by ArcA requires a global repressor H-NS (histone-like nucleoid structuring), implying that ArcA may exert positive effects by antagonizing H-NS. Collectively, our data established a key role for ArcA in the pathogenicity of porcine ETEC and ETEC strains isolated from human infections. Moreover, our work reveals another layer of regulation in relation to oxygen control of virulence factors in ETEC.
Collapse
Affiliation(s)
- Fengwei Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Yan Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhao Mao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wentong Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ganwu Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
2
|
Hollifield IE, Motyka NI, Fernando KA, Bitoun JP. Heat-Labile Enterotoxin Decreases Macrophage Phagocytosis of Enterotoxigenic Escherichia coli. Microorganisms 2023; 11:2121. [PMID: 37630681 PMCID: PMC10459231 DOI: 10.3390/microorganisms11082121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Enterotoxigenic E. coli (ETEC) are endemic in low-resource settings and cause robust secretory diarrheal disease in children less than five years of age. ETEC cause secretory diarrhea by producing the heat-stable (ST) and/or heat-labile (LT) enterotoxins. Recent studies have shown that ETEC can be carried asymptomatically in children and adults, but how ETEC subvert mucosal immunity to establish intestinal residency remains unclear. Macrophages are innate immune cells that can be exploited by enteric pathogens to evade mucosal immunity, so we interrogated the ability of ETEC and other E. coli pathovars to survive within macrophages. Using gentamicin protection assays, we show that ETEC H10407 is phagocytosed more readily than other ETEC and non-ETEC isolates. Furthermore, we demonstrate that ETEC H10407, at high bacterial burdens, causes nitrite accumulation in macrophages, which is indicative of a proinflammatory macrophage nitric oxide killing response. However, at low bacterial burdens, ETEC H10407 remains viable within macrophages for an extended period without nitrite accumulation. We demonstrate that LT, but not ST, intoxication decreases the number of ETEC phagocytosed by macrophages. Furthermore, we now show that macrophages exposed simultaneously to LPS and LT produce IL-33, which is a cytokine implicated in promoting macrophage alternative activation, iron recycling, and intestinal repair. Lastly, iron restriction using deferoxamine induces IL-33 receptor (IL-33R) expression and allows ETEC to escape macrophages. Altogether, these data demonstrate that LT provides ETEC with the ability to decrease the perceived ETEC burden and suppresses the initiation of inflammation. Furthermore, these data suggest that host IL-33/IL-33R signaling may augment pathways that promote iron restriction to facilitate ETEC escape from macrophages. These data could help explain novel mechanisms of immune subversion that may contribute to asymptomatic ETEC carriage.
Collapse
Affiliation(s)
| | | | | | - Jacob P. Bitoun
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, #8638, New Orleans, LA 70112, USA; (I.E.H.); (N.I.M.); (K.A.F.)
| |
Collapse
|
3
|
Henrique C, Falcão MAP, De Araújo Pimenta L, Maleski ALA, Lima C, Mitsunari T, Sampaio SC, Lopes-Ferreira M, Piazza RMF. Heat-Labile Toxin from Enterotoxigenic Escherichia coli Causes Systemic Impairment in Zebrafish Model. Toxins (Basel) 2021; 13:419. [PMID: 34204819 PMCID: PMC8231604 DOI: 10.3390/toxins13060419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/20/2022] Open
Abstract
Heat-labile toxin I (LT-I), produced by strains of enterotoxigenic Escherichia coli (ETEC), causes profuse watery diarrhea in humans. Different in vitro and in vivo models have already elucidated the mechanism of action of this toxin; however, their use does not always allow for more specific studies on how the LT-I toxin acts in systemic tracts and intestinal cell lines. In the present work, zebrafish (Danio rerio) and human intestinal cells (Caco-2) were used as models to study the toxin LT-I. Caco-2 cells were used, in the 62nd passage, at different cell concentrations. LT-I was conjugated to FITC to visualize its transport in cells, as well as microinjected into the caudal vein of zebrafish larvae, in order to investigate its effects on survival, systemic traffic, and morphological formation. The internalization of LT-I was visualized in 3 × 104 Caco-2 cells, being associated with the cell membrane and nucleus. The systemic traffic of LT-I in zebrafish larvae showed its presence in the cardiac cavity, yolk, and regions of the intestine, as demonstrated by cardiac edema (100%), the absence of a swimming bladder (100%), and yolk edema (80%), in addition to growth limitation in the larvae, compared to the control group. There was a reduction in heart rate during the assessment of larval survival kinetics, demonstrating the cardiotoxic effect of LT-I. Thus, in this study, we provide essential new depictions of the features of LT-I.
Collapse
Affiliation(s)
- Camila Henrique
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (C.H.); (T.M.)
| | - Maria Alice Pimentel Falcão
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (M.A.P.F.); (A.L.A.M.); (C.L.)
| | - Luciana De Araújo Pimenta
- Laboratório de Fisiopatologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.D.A.P.); (S.C.S.)
| | - Adolfo Luís Almeida Maleski
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (M.A.P.F.); (A.L.A.M.); (C.L.)
| | - Carla Lima
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (M.A.P.F.); (A.L.A.M.); (C.L.)
| | - Thais Mitsunari
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (C.H.); (T.M.)
| | - Sandra Coccuzzo Sampaio
- Laboratório de Fisiopatologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.D.A.P.); (S.C.S.)
| | - Mônica Lopes-Ferreira
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (M.A.P.F.); (A.L.A.M.); (C.L.)
| | | |
Collapse
|
4
|
Establishment and Validation of Pathogenic CS17 + and CS19 + Enterotoxigenic Escherichia coli Challenge Models in the New World Primate Aotus nancymaae. Infect Immun 2021; 89:IAI.00479-20. [PMID: 33288648 DOI: 10.1128/iai.00479-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a common cause of diarrheal illness in the military, travelers, and children living in low- to middle-income countries. Increased antibiotic resistance, the absence of a licensed vaccine, and the lack of broadly practical therapeutics perpetuate the significant health and financial burden resulting from ETEC infection. A critical step in the evaluation of vaccines and therapeutics is preclinical screening in a relevant animal disease model that closely replicates human disease. We previously developed a diarrheal model of class 5a colonization factor (CF) CFA/I-expressing ETEC in the New World owl monkey species Aotus nancymaae using ETEC strain H10407. In order to broaden the use of the model, we report here on the development of A. nancymaae models of ETEC expressing the class 5b CFs CS17 and CS19 with strains LSN03-016011/A and WS0115A, respectively. For both models, we observed diarrheal attack rates of ≥80% after oral inoculation with 5 × 1011 CFU of bacteria. These models will aid in assessing the efficacy of future ETEC vaccine candidates and therapeutics.
Collapse
|
5
|
Immunogenicity and protective efficacy of enterotoxigenic Escherichia coli (ETEC) total RNA against ETEC challenge in a mouse model. Sci Rep 2020; 10:20530. [PMID: 33239756 PMCID: PMC7689534 DOI: 10.1038/s41598-020-77551-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 11/09/2020] [Indexed: 11/15/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC), an essential cause of post-weaning diarrhea (PWD) in piglets, leads to significant economic losses to the pig industry. The present study aims to identify the role of ETEC total RNA in eliciting immune responses to protect animals against ETEC infection. The results showed that the total RNA isolated from pig-derived ETEC K88ac strain effectively stimulated the IL-1β secretion of porcine intestinal epithelial cells (IPEC-J2). The mouse model immunized with ETEC total RNA via intramuscular injection (IM) or oral route (OR) was used to evaluate the protective efficiency of the ETEC total RNA. The results suggested that 70 μg ETEC total RNA administered by either route significantly promoted the production of the serum IL-1β and K88ac specific immunoglobulins (IgG, IgM, and IgA). Besides, the ETEC RNA administration augmented strong mucosal immunity by elevating K88ac specific IgA level in the intestinal fluid. Intramuscularly administered RNA induced a Th1/Th2 shift toward a Th2 response, while the orally administered RNA did not. The ETEC total RNA efficiently protected the animals against the ETEC challenge either by itself or as an adjuvant. The histology characterization of the small intestines also suggested the ETEC RNA administration protected the small intestinal structure against the ETEC infection. Particularly of note was that the immunity level and protective efficacy caused by ETEC RNA were dose-dependent. These findings will help understand the role of bacterial RNA in eliciting immune responses, and benefit the development of RNA-based vaccines or adjuvants.
Collapse
|
6
|
Pore D, Hoque KM, Chakrabarti MK. Animal models in advancement of research in enteric diseases. Anim Biotechnol 2020. [DOI: 10.1016/b978-0-12-811710-1.00032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Establishment, Validation, and Application of a New World Primate Model of Enterotoxigenic Escherichia coli Disease for Vaccine Development. Infect Immun 2019; 87:IAI.00634-18. [PMID: 30510102 DOI: 10.1128/iai.00634-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/19/2018] [Indexed: 12/27/2022] Open
Abstract
The establishment of an animal model that closely approximates enterotoxigenic Escherichia coli (ETEC) disease in humans is critical for the development and evaluation of vaccines against this enteropathogen. Here, we evaluated the susceptibility of Aotus nancymaae, a New World monkey species, to ETEC infection. Animals were challenged orogastrically with 109 to 1011 CFU of the human pathogenic CFA/I+ ETEC strain H10407 and examined for evidence of diarrhea and fecal shedding of bacteria. A clear dose-range effect was obtained, with diarrheal attack rates of 40% to 80%, validated in a follow-on study demonstrating an attack rate of 80% with 1011 CFU of H10407 ETEC. To determine whether this model is an effective approach for assessing ETEC vaccine candidates, we used it to evaluate the ability of the donor strand-complemented CFA/I adhesin CfaE (dscCfaE) to protect against H10407 challenge. In a series of experiments, animals were intranasally vaccinated with dscCfaE alone, dscCfaE with either cholera toxin B-subunit (CTB) or heat-labile toxin (LTB), or phosphate-buffered saline (PBS) alone and then challenged with 1011 CFU of H10407. Control animals vaccinated with PBS had attack rates of 70 to 90% on challenge. Vaccination with dscCfaE, or dscCfaE admixed with CTB or LTB, resulted in a reduction of attack rates, with vaccine efficacies of 66.7% (P = 0.02), 77.7% (P = 0.006), and 42.9% (P = 0.370) to 83.3% (P = 0.041), respectively. In conclusion, we have shown the H10407 ETEC challenge of A. nancymaae to be an effective, reproducible model of ETEC disease, and importantly, we have demonstrated that in this model, vaccination with the prototype vaccine candidate dscCfaE is protective against CF-homologous disease.
Collapse
|
8
|
Shojaei Jeshvaghani F, Amani J, Kazemi R, Karimi Rahjerdi A, Jafari M, Abbasi S, Salmanian AH. Oral immunization with a plant-derived chimeric protein in mice: Toward the development of a multipotent edible vaccine against E. coli O157: H7 and ETEC. Immunobiology 2018; 224:262-269. [PMID: 30579628 DOI: 10.1016/j.imbio.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
Abstract
The most bacterial cause of infectious diseases associated with diarrhea are enterotoxigenic and enterohemorrhagic Escherichia coli (ETEC and EHEC, respectively). These strains use colonization factors for the attachment to the human intestinal mucosa, followed by enterotoxins production that could induce more host damage. The Heat-labile enterotoxin (LT) and colonization factors (CFs) are momentous factors for the pathogenesis of ETEC. Also, Intimin and Shiga like toxin (STX) are the main pathogenic factors expressed by EHEC. Because of mucosal surfaces are the major entry site for these pathogens, oral immunization with providing the protective secretary IgA antibody (sIgA) responses in the mucosa, could prevent the bacterial adherence to the intestine. In this study oral immunogenicity of a synthetic recombinant protein containing StxB, Intimin, CfaB and LtB (SICL) was investigated. For specific expression in canola seeds, the optimized gene was cloned in to plant expression vector containing the Fatty Acid Elongase (FAE) promoter. The evaluation of the expression level in canola seeds was approximately 0.4% of total soluble protein (TSP). Following to oral immunization of mice, serum IgG and fecal IgA antibody responses induced. Caco-2 cell binding assay with ETEC shows that the sera from immunized mice could neutralize the attachment properties of toxigenic E. coli. The reduction of bacterial shedding after the challenge of immunized mice with E. coli O157:H7 was significant. The sera from immunized mice in the rabbit ileal loop experiment exhibited a significant decrease in the fluid accumulation compared to the control. The results indicate efficacy of the recombinant chimeric protein SICL in transgenic canola seed as an effective immunogen, which elicits both systemic and mucosal immune responses as well as protection against EHEC and ETEC adherence and toxicity.
Collapse
Affiliation(s)
- Fatemeh Shojaei Jeshvaghani
- Department of Agricultural Biotechnology. National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rouhollah Kazemi
- Department of Agricultural Biotechnology. National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ahmad Karimi Rahjerdi
- Department of Agricultural Biotechnology. National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahyat Jafari
- Department of Agricultural Biotechnology. National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Shahsanam Abbasi
- Department of Stem Cells and Regenerative Medicine. National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Hatef Salmanian
- Department of Agricultural Biotechnology. National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
9
|
Noel G, Doucet M, Nataro JP, Kaper JB, Zachos NC, Pasetti MF. Enterotoxigenic Escherichia coli is phagocytosed by macrophages underlying villus-like intestinal epithelial cells: modeling ex vivo innate immune defenses of the human gut. Gut Microbes 2017; 9:0. [PMID: 29087765 PMCID: PMC6219640 DOI: 10.1080/19490976.2017.1398871] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
There is a paucity of information on diarrheagenic enterotoxigenic Escherichia coli (ETEC)'s interaction with innate immune cells, in part due to the lack of reliable models that recapitulate infection in human gut. In a recent publication, we described the development of an ex vivo enteroid-macrophage co-culture model using human primary cells. We reported that macrophages residing underneath the epithelial monolayer acquired "resident macrophage" phenotype characterized by lower production of inflammatory cytokines and strong phagocytic activity. These macrophages extended projections across the epithelium, which captured ETEC applied to the apical side of the epithelium and reduced luminal bacterial load. Additional evidence presented in this addendum confirms these findings and further demonstrates that macrophage adaptation occurs regardless of the stage of differentiation of epithelial cells, and that ETEC uptake arises rapidly after infection. The enteroid-macrophage co-culture represents a novel and relevant tool to study host-cell interactions and pathogenesis of enteric infections in humans.
Collapse
Affiliation(s)
- Gaelle Noel
- Center for Vaccine Development, Department of Microbiology and Immunology. University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michele Doucet
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James P. Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - James B. Kaper
- Department of Microbiology and Immunology. University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholas C. Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcela F. Pasetti
- Center for Vaccine Development, Department of Microbiology and Immunology. University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Maternal vaccination with a fimbrial tip adhesin and passive protection of neonatal mice against lethal human enterotoxigenic Escherichia coli challenge. Infect Immun 2015; 83:4555-64. [PMID: 26371126 DOI: 10.1128/iai.00858-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/04/2015] [Indexed: 01/27/2023] Open
Abstract
Globally, enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood and travelers' diarrhea, for which an effective vaccine is needed. Prevalent intestinal colonization factors (CFs) such as CFA/I fimbriae and heat-labile enterotoxin (LT) are important virulence factors and protective antigens. We tested the hypothesis that donor strand-complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, is a protective antigen, using a lethal neonatal mouse ETEC challenge model and passive dam vaccination. For CFA/I-ETEC strain H10407, which has been extensively studied in volunteers, an inoculum of 2 × 10(7) bacteria resulted in 50% lethal doses (LD50) in neonatal DBA/2 mice. Vaccination of female DBA/2 mice with CFA/I fimbriae or dscCfaE, each given with a genetically attenuated LT adjuvant (LTK63) by intranasal or orogastric delivery, induced high antigen-specific serum IgG and fecal IgA titers and detectable milk IgA responses. Neonates born to and suckled by dams antenatally vaccinated with each of these four regimens showed 78 to 93% survival after a 20× LD50 challenge with H10407, compared to 100% mortality in pups from dams vaccinated with sham vaccine or LTK63 only. Crossover experiments showed that high pup survival rates after ETEC challenge were associated with suckling but not birthing from vaccinated dams, suggesting that vaccine-specific milk antibodies are protective. In corroboration, preincubation of the ETEC inoculum with antiadhesin and antifimbrial bovine colostral antibodies conferred a dose-dependent increase in pup survival after challenge. These findings indicate that the dscCfaE fimbrial tip adhesin serves as a protective passive vaccine antigen in this small animal model and merits further evaluation.
Collapse
|
11
|
Haycocks JRJ, Sharma P, Stringer AM, Wade JT, Grainger DC. The molecular basis for control of ETEC enterotoxin expression in response to environment and host. PLoS Pathog 2015; 11:e1004605. [PMID: 25569153 PMCID: PMC4287617 DOI: 10.1371/journal.ppat.1004605] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/05/2014] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause severe diarrhoea in humans and neonatal farm animals. Annually, 380,000 human deaths, and multi-million dollar losses in the farming industry, can be attributed to ETEC infections. Illness results from the action of enterotoxins, which disrupt signalling pathways that manage water and electrolyte homeostasis in the mammalian gut. The resulting fluid loss is treated by oral rehydration. Hence, aqueous solutions of glucose and salt are ingested by the patient. Given the central role of enterotoxins in disease, we have characterised the regulatory trigger that controls toxin production. We show that, at the molecular level, the trigger is comprised of two gene regulatory proteins, CRP and H-NS. Strikingly, this renders toxin expression sensitive to both conditions encountered on host cell attachment and the components of oral rehydration therapy. For example, enterotoxin expression is induced by salt in an H-NS dependent manner. Furthermore, depending on the toxin gene, expression is activated or repressed by glucose. The precise sensitivity of the regulatory trigger to glucose differs because of variations in the regulatory setup for each toxin encoding gene.
Collapse
Affiliation(s)
- James R. J. Haycocks
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Prateek Sharma
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Anne M. Stringer
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, New York, United States of America
| | - David C. Grainger
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Alerasol M, Mousavi Gargari SL, Nazarian S, Bagheri S. Immunogenicity of a fusion protein comprising coli surface antigen 3 and labile B subunit of enterotoxigenic Escherichia coli. IRANIAN BIOMEDICAL JOURNAL 2014; 18:212-218. [PMID: 25326019 PMCID: PMC4225060 DOI: 10.6091/ibj.1344.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Enterotoxigenic Escherichia coli (ETEC) strains are the major causes of diarrheal disease in humans and animals. Colonization factors and enterotoxins are the major virulence factors in ETEC pathogenesis. For the broad-spectrum protection against ETEC, one could focus on colonization factors and non-toxic heat labile as a vaccine candidate. Methods: A fusion protein is composed of a major fimbrial subunit of coli surface antigen 3, and the heat-labile B subunit (LTB) was constructed as a chimeric immunogen. For optimum level expression of protein, the gene was synthesized with codon bias of E. coli. Also, recombinant protein was expressed in E. coli BL21DE3. ELISA and Western tests were carried out for determination of antigen and specificity of antibody raised against recombinant protein in animals. The anti-toxicity and anti-adherence properties of the immune sera against ETEC were also evaluated. Results: Immunological analyses showed the production of high titer of specific antibody in immunized mice. The built-in LTB retains native toxin properties which were approved by GM1 binding assay. Pre-treatment of the ETEC cells with anti-sera significantly decreased their adhesion to Caco-2 cells. Conclusion: The results indicated the efficacy of the recombinant chimeric protein as an effective immunogen inducing strong humoral response. The designated chimer would be an interesting prototype for a vaccine and worthy of further investigation.
Collapse
|
13
|
Bagheri S, Mousavi Gargari SL, Rasooli I, Nazarian S, Alerasol M. A CssA, CssB and LTB chimeric protein induces protection against Enterotoxigenic Escherichia coli. Braz J Infect Dis 2014; 18:308-14. [PMID: 24389278 PMCID: PMC9427529 DOI: 10.1016/j.bjid.2013.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 06/29/2013] [Accepted: 07/16/2013] [Indexed: 12/26/2022] Open
Abstract
Objectives Enterotoxigenic Escherichia coli (ETEC), a major cause of diarrhea in children under 5, is an important agent for traveler's diarrhea. Heat-labile enterotoxin (LT) and colonization factors (CFs) are two main virulence mechanisms in ETEC. CS6 is one of the most prevalent CFs consisting of two structural subunits viz., CssA, CssB, necessary for attachment to the intestinal cells. Methods In the present research, a chimeric trivalent protein composed of CssB, CssA and LTB was constructed. The chimeric gene was synthesized with codon bias of E. coli for enhanced expression of the protein. Recombinant proteins were expressed and purified. Mice were immunized with the recombinant protein. The antibody titer and specificity of the immune sera were analyzed by ELISA and Western blotting. Efficiency of the immune sera against ETEC was evaluated. Results Antibody induction was followed by immunization of mice with the chimeric protein. Pretreatment of the ETEC cells with immunized animal antisera remarkably decreased their adhesion to Caco-2 cells. Discussion The results indicate efficacy of the recombinant chimeric protein as an effective immunogen, which induces strong humoral response as well as protection against ETEC adherence and toxicity.
Collapse
|
14
|
Bernal-Reynaga R, Thompson-Bonilla R, Lopez-Saucedo C, Pech-Armenta M, Estrada-Parra S, Estrada-Garcia T. C57-CD40 ligand deficient mice: a potential model for enterotoxigenic Escherichia coli (H10407) colonization. Vet Immunol Immunopathol 2013; 152:50-6. [PMID: 23098671 DOI: 10.1016/j.vetimm.2012.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal disease in humans, calves and pigs. In humans, these infections mainly occur in developing countries leading to a high diarrheal morbidity and infant mortality and to travellers' diarrhea. ETEC strains constitute a phenotypically and genetically diverse pathotype with as common characteristics the production of heat-labile (LT) and/or heat-stable enterotoxins (ST) as well as of one or more fimbrial colonization factors. Despite the global importance of these pathogens, a broadly ETEC protective vaccine is not yet available, partially due to the lack of a suitable animal model for human ETEC. Such model would allow to test more ETEC molecules as potential vaccine candidates. The C57-CD40 ligand deficient (C57-cd40l(-/-)) mouse has been successfully used to develop infection models of intestinal pathogens, but little is known about its humoral immune response. Therefore, the aims of this study were to characterize the humoral immune response of C57 and C57-cd40l(-/-) mice and to determine the persistence of ETEC H10407 and two of its variants after oral inoculation. The serum IgM, IgG and IgA and faecal IgG and IgA concentrations, of twelve mice per mouse strain (C57 and C57-cd40l(-/-)), were determined by ELISA. All serum immunoglobulins and the faecal IgG concentration were significantly lower in C57-cd40l(-/-) than in C57 mice. In contrast the faecal IgA concentration was significantly higher in the C57-cd40l(-/-) mice. This high intestinal IgA concentration might be a compensatory T cell-independent production of IgA production. Both mouse strains were orally inoculated with 5×10(8) ETEC H10407 (LT(+), ST-colonization factor antigen I (CFA/I)(+)) and ETEC in animal faeces was established by culture followed by st and lt loci identification by PCR until day 14 post infection. Most C57 mice eliminated the strain within 3 days whereas infection remained in C57-cd40l(-/-) mice until day 14. Subsequently both mouse strains were inoculated with ETEC H10407 variants and followed up until day 113. Likewise C57 mice eliminated both ETEC variants within 4 days. All C57-cd40l(-/-) mice had eliminated the LT(-) variant at day 31, whereas the ST-CFA/I(-) variant remained in mice stools until day 113. These observations suggest that C57-cd40l(-/-) mice are permissive for ETEC H10407 colonization.
Collapse
Affiliation(s)
- Rodolfo Bernal-Reynaga
- Department of Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, Zacatenco, Mexico DF, CP 07360, Mexico
| | | | | | | | | | | |
Collapse
|
15
|
Byrd W, Boedeker EC. Attenuated Escherichia coli strains expressing the colonization factor antigen I (CFA/I) and a detoxified heat-labile enterotoxin (LThK63) enhance clearance of ETEC from the lungs of mice and protect mice from intestinal ETEC colonization and LT-induced fluid accumulation. Vet Immunol Immunopathol 2013; 152:57-67. [DOI: 10.1016/j.vetimm.2012.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Pathophysiology of Escherichia coli ventilator-associated pneumonia: implication of highly virulent extraintestinal pathogenic strains. Intensive Care Med 2012; 38:2007-16. [DOI: 10.1007/s00134-012-2699-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 08/02/2012] [Indexed: 01/06/2023]
|
17
|
Suo Z, Yang X, Deliorman M, Cao L, Avci R. Capture efficiency of Escherichia coli in fimbriae-mediated immunoimmobilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1351-1359. [PMID: 22149536 PMCID: PMC3260392 DOI: 10.1021/la203348j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Capturing pathogens on a sensor surface is one of the most important steps in the design of a biosensor. The efficiency of a biosensor at capturing pathogens has direct bearing on its sensitivity. In this work we investigated the capturing of Escherichia coli on substrates modified with antibodies targeting different types of fimbriae: K88ab (F4), K88ac (F4), K99 (F5), 987P (F6), F41, and CFA/I. The results suggest that all these fimbriae can be used for the efficient immobilization of living E. coli cells. The immobilization efficiency was affected by the purity and clone type of the antibody and the fimbriae expression level of the bacteria. For a specific fimbriae type, a higher immobilization efficiency was often observed with the monoclonal antibodies. Immunoimmobilization was utilized in an antibody microarray immersed in a mixed culture of pathogens to demonstrate the rapid and simultaneous label-free detection of multiple pathogens within less than 1 h using a single test. The capture rate of living pathogens exceeds a single bacterium per 100 × 100 μm(2) area per 0.5 h of incubation for a bulk concentration of 10(5) cfu/mL.
Collapse
Affiliation(s)
- Zhiyong Suo
- Department of Physics, Montana State University, Bozeman, Montana 59717
| | - Xinghong Yang
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana 59717
| | | | - Ling Cao
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana 59717
| | - Recep Avci
- Department of Physics, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
18
|
Associations between mucosal innate and adaptive immune responses and resolution of diarrheal pathogen infections. Infect Immun 2009; 78:1221-8. [PMID: 20038536 DOI: 10.1128/iai.00767-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The identification of immune response mechanisms that contribute to the control of diarrheal disease in developing countries remains an important priority. We addressed the role of fecal chemokines and cytokines in the resolution of diarrheal Escherichia coli and Giardia lamblia infections. Stools collected from 127 Mexican children 5 to 15 months of age enrolled in a randomized, double-blind, placebo-controlled, vitamin A supplementation trial were screened for enteropathogenic Escherichia coli (EPEC), enterotoxigenic E. coli (ETEC), and Giardia lamblia. Fecal concentrations of tumor necrosis factor alpha (TNF-alpha), monocyte chemoattractant protein-1 (MCP-1), interleukin-4 (IL-4), IL-5, IL-6, IL-8, IL-10, and interferon-gamma (IFN-gamma) were determined. Hazard models incorporating cytokine variables were fit to durations of asymptomatic and symptomatic pathogen infections, controlling for treatment group. Increased levels of TNF-alpha and IL-6 were associated with decreased durations of EPEC infection and increased ETEC durations. Increased IL-4 and IFN-gamma levels were associated with decreased and increased durations, respectively, of both EPEC and ETEC infections. Increased IL-10 levels were associated with increased and decreased durations of asymptomatic and symptomatic EPEC infections, respectively, and increased durations of both asymptomatic and symptomatic ETEC infections. Increased levels of MCP-1, IFN-gamma, IL-4, and IL-5 were associated with increased G. lamblia infection duration, while increased IL-8 levels were associated with decreased durations. Differences in proinflammatory and Treg cytokine levels are associated with differences in the resolution of inflammatory and noninflammatory pathogen infections.
Collapse
|
19
|
Osorio M, Bray MD, Walker RI. Vaccine potential for inactivated shigellae. Vaccine 2007; 25:1581-92. [PMID: 17178431 DOI: 10.1016/j.vaccine.2006.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 11/01/2006] [Accepted: 11/06/2006] [Indexed: 11/18/2022]
Abstract
We used human monocyte-derived dendritic cells (DC) and Balb/c mice as models to establish the immunogenic and protective potential of formalin-inactivated Shigella spp. Incubation of DC with inactivated or live bacteria induced DC maturation and cytokine release. Mice immunized orally or intranasally with killed S. flexneri, S. sonnei, or S. dysenteriae developed IgG and fecal IgA titers to the homologous LPS. Following respiratory challenge with the live homologous organisms, 80-100% survival was seen in all vaccinated groups compared to negligible survival in mice given PBS. Oral or intranasal immunization with an inactivated S. flexneri 2a strain (CVD1203) expressing the CFA/I and CS3 antigens of enterotoxigenic Escherichia coli induced IgG responses to both heterologous antigens. These in vivo and in vitro data indicate that inactivated shigellae retain the ability to interact effectively with key antigen presenting cells and induce protective immune responses in mice.
Collapse
Affiliation(s)
- Manuel Osorio
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20852-1448, United States
| | | | | |
Collapse
|
20
|
Walker RI, Steele D, Aguado T. Analysis of strategies to successfully vaccinate infants in developing countries against enterotoxigenic E. coli (ETEC) disease. Vaccine 2006; 25:2545-66. [PMID: 17224212 DOI: 10.1016/j.vaccine.2006.12.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 12/12/2006] [Indexed: 12/30/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common bacterial cause of diarrhoea in the world, annually affecting up to 400,000,000 children under 5 years of age living in developing countries (DCs). Although ETEC possesses numerous antigens, the relatively conserved colonization factor (CF) antigens and the heat labile enterotoxin (LT) have been associated with protection and most vaccine candidates have exploited these antigens. A safe and effective vaccine against ETEC is a feasible goal as supported by the acquisition of protective immunity. The success of an ETEC vaccine targeting infants and children in DCs will depend on a combination of maximally antigenic vaccine preparations and regimens for their delivery which will produce optimal immune responses to these antigens. Vaccine candidates having a high priority for accelerated development and clinical testing for eventual use in infants would include inactivated ETEC or Shigella hybrids expressing ETEC antigens as well as attenuated ETEC strains which express the major CF antigens and LT toxin B-subunit, as well as attenuated Shigella, Vibrio cholerae and Salmonella typhi hybrids engineered to deliver antigens of ETEC. Candidates for an ETEC vaccine would have to meet the minimal requirement of providing at least 50% protection against severe disease in DCs during the first 2 years of life. The critical roadblock to achieving this goal has not been the science as much as the lack of a sufficiently funded and focused effort to bring it to realization. However, a Product Development Partnership to overcome this hurdle could accelerate the time lines towards when control of ETEC disease in DCs is substantially closer.
Collapse
Affiliation(s)
- Richard I Walker
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20851-1448, USA.
| | | | | |
Collapse
|
21
|
Wang ZB, Jiang PL, Zeng NH, Li SQ, Wang LC, Li Y, Xiong SQ, Zhang ZS. Establishment of mice models following intranasal challenge with enterotoxigenic Escherichia coli strains and evaluation of protective effect following intranasal immunization with vaccine candidates. Shijie Huaren Xiaohua Zazhi 2006; 14:2753-2758. [DOI: 10.11569/wcjd.v14.i28.2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish the mice models following intranasal challenge with enterotoxigenic Escherichia coli (ETEC) strains E44813, E44815, E11881A, and evaluate the immune effect of vaccine candidates FE1, FE3, FE6 following intranasal immunization.
METHODS: The histopathological response in the lungs and the clearance of ETEC from the lungs was measured following intranasal challenge of BALB/c mice with LD50-dose ETEC strains E44813, E44815 and E11881A. The protective effect of vaccine candidates FE1, FE3 and FE6 were evaluated using the established models.
RESULTS: A large quantity of lymphocytes, macrophages, neutrophils, and plasma cells were found in the lungs of mice. Multifocal bronchopneumonia was the main pathological feature under microscope following intranasal challenge with ETEC strains E44813, E44815, and E11881A. The bacteria were cleared from the lungs of the mice at a slow rate over 1-wk period and till the 7th day, bacteria at 105 levels were still detected. After high titers of antibodies were detected in mice intranasally immunized with vaccine candidates FE1, FE3, and FE6, the mice were challenged by LD50-dose E44813, E44815, and E11881A intranasally. No deaths occurred, and low numbers of lymphocytes were the main pathological feature. The bacteria were rapidly cleared from the lungs of the mice over 1-wk period, and no bacteria were detected at the 7th day. The numbers of the bacteria were significantly different between the experimental group and control group (0 CFU/g vs 6.2×105, 5.4×105, 2.3×105 CFU/g, P < 0.05).
CONCLUSION: Intranasal challenge of Balb/c mice with ETEC strains may provide a useful method to evaluate the vaccine. This study also demonstrates that the vaccine candidate FE1, FE3 and FE6 have good protective effect.
Collapse
|
22
|
Chen Q, Savarino SJ, Venkatesan MM. Subtractive hybridization and optical mapping of the enterotoxigenic Escherichia coli H10407 chromosome: isolation of unique sequences and demonstration of significant similarity to the chromosome of E. coli K-12. MICROBIOLOGY-SGM 2006; 152:1041-1054. [PMID: 16549668 DOI: 10.1099/mic.0.28648-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a primary cause of diarrhoea in infants in developing countries and in travellers to endemic regions. While several virulence genes have been identified on ETEC plasmids, little is known about the ETEC chromosome, although it is expected to share significant homology in backbone sequences with E. coli K-12. In the absence of genomic sequence information, the subtractive hybridization method and the more recently described optical mapping technique were carried out to determine the degree of genomic variation between virulent ETEC strain H10407 and the non-pathogenic E. coli K-12 strain MG1655. In one round of PCR-based suppression subtractive hybridization, 153 fragments representing sequences unique to strain H10407 were identified. blast searches indicated that few unique sequences showed homology to known pathogenicity island genes identified in related E. coli pathogens. A total of 65 fragments contained sequences that were either linked to hypothetical proteins or showed no homology to any known sequence in the database. The remaining sequences were either phage or prophage related or displayed homology to classifiable genes that function in various aspects of bacterial metabolism. The 153 unique sequences showed variable distribution across different ETEC strains including ETEC strain B7A, which is attenuated in virulence and lacked several H10407-specific sequences. Restriction-enzyme-based optical maps of strain H10407 were compared to in silico restriction maps of strain MG1655 and related E. coli pathogens. The 5.1 Mb ETEC chromosome was approximately 500 kb greater in length than the chromosome of E. coli K-12, collinear with it and indicated several discrete regions where insertions and/or deletions had occurred relative to the chromosome of strain MG1655. No major inversions, transpositions or gross rearrangements were observed on the ETEC chromosome. Based on comparisons with known genomic sequences and related optical-map-based restriction site similarity, the sequence of the H10407 chromosome is expected to demonstrate approximately 96 % identity with that of E. coli K-12.
Collapse
Affiliation(s)
- Qing Chen
- Department of Enteric Infections, Division of Communicable Diseases and Immunology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Stephen J Savarino
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Malabi M Venkatesan
- Department of Enteric Infections, Division of Communicable Diseases and Immunology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
23
|
Byrd W, Cassels FJ. Long-term systemic and mucosal antibody responses measured in BALB/c mice following intranasal challenge with viable enterotoxigenic Escherichia coli. ACTA ACUST UNITED AC 2006; 46:262-8. [PMID: 16487308 DOI: 10.1111/j.1574-695x.2005.00039.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The immunogenicity induced in BALB/c mice following intranasal challenge with a viable nonlethal dose (1.2 x 10(8) CFU) of enterotoxigenic Escherichia coli (ETEC) strain E23477A (O139:H28:CS1:CS3:LT+:ST+) was studied over a 140-day period. Serum IgG and IgM antibodies against coli surface antigen 3 (CS3), O139 lipopolysaccharide and heat-labile enterotoxin were measured by day 14 and remained at elevated levels out to day 140. The serum IgG response to the somatic antigens (CS3 and O139 lipopolysaccharide) was significantly greater (P < 0.05) than the IgG response to heat-labile enterotoxin, and the serum IgG response to CS3 was significantly greater (P < 0.05) than the IgG response to O139 lipopolysaccharide. The predominant serum IgG subclasses to CS3 were IgG1 and IgG2a, and they were significantly greater (P < 0.05) than IgG2b and IgG3. The predominant serum IgG subclass response to O139 lipopolysaccharide was initially IgG3 until day 56, after which IgG1 was predominant. The serum subclass response to CS3 indicated a mixed T helper 1/2 (Th1/Th2) profile, whereas the response to O139 lipopolysaccharide was primarily that of a Th2-type, at least over time. Fecal IgG and IgA responses to CS3 and O139 lipopolysaccharide were detected by day 14 and were measured out to day 140, with the CS3 fecal antibody responses being significantly greater (P < 0.05) than the O139 lipopolysaccharide and heat-labile enterotoxin fecal antibody responses. The aim of this study is the development of the intranasal mouse model that can aid in better understanding the immunopathology of ETEC infection and in screening of vaccine candidates prior to volunteer trials.
Collapse
Affiliation(s)
- Wyatt Byrd
- Department of Enteric Infections, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | |
Collapse
|
24
|
Allen KP, Randolph MM, Fleckenstein JM. Importance of heat-labile enterotoxin in colonization of the adult mouse small intestine by human enterotoxigenic Escherichia coli strains. Infect Immun 2006; 74:869-75. [PMID: 16428729 PMCID: PMC1360293 DOI: 10.1128/iai.74.2.869-875.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 08/01/2005] [Accepted: 10/21/2005] [Indexed: 01/28/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infections are a significant cause of diarrheal disease and infant mortality in developing countries. Studies of ETEC pathogenesis relevant to vaccine development have been greatly hampered by the lack of a suitable small-animal model of infection with human ETEC strains. Here, we demonstrate that adult immunocompetent outbred mice can be effectively colonized with the prototypical human ETEC H10407 strain (colonization factor antigen I; heat-labile and heat-stable enterotoxin positive) and that production of heat-labile holotoxin provides a significant advantage in colonization of the small intestine in this model.
Collapse
Affiliation(s)
- Kenneth P Allen
- Department of Comparative Medicine, University of Tenessee Health Science Center, Memphis, TN 38104, USA
| | | | | |
Collapse
|
25
|
Lasaro MO, Luiz WB, Sbrogio-Almeida ME, Ferreira LCS. Prime-boost vaccine regimen confers protective immunity to human-derived enterotoxigenic Escherichia coli. Vaccine 2005; 23:2430-8. [PMID: 15752829 DOI: 10.1016/j.vaccine.2004.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 11/01/2004] [Indexed: 11/26/2022]
Abstract
Development of effective vaccines against diarrhea caused by enterotoxigenic Escherichia coli (ETEC) strains is still a priority for those living at or traveling to endemic regions. In this work, we evaluated the protective role of an anti-ETEC vaccine regimen based on parenteral priming with a DNA vaccine, pRECFA, followed by oral boosting with a recombinant attenuated Salmonella Typhimurium vaccine strain, HG3, both encoding the same antigen, the structural subunit (CfaB) of the ETEC CFA/I fimbriae. The DNA-priming Salmonella-boosting protocol enhanced both murine anti-CfaB serum IgG and fecal IgA antibody responses and increased the ability of serum antibodies to inhibit the adhesive properties of the CFA/I fimbriae expressed by live bacteria, as compared to mice immunized with only one vaccine type. Addition of a mucosal adjuvant (LTR192G) to the Salmonella vaccine strain further enhanced the synergic effects of the vaccine regimen on the induced CfaB-specific antibody responses. DBA/2 dams submitted to the prime-boost regimen transferred complete passive protection to suckling neonates challenged with a virulent ETEC strain. Detection of milk anti-CfaB IgA antibodies and protection conferred by vaccinated dams to neonates born from non-vaccinated dams indicated that secretion of antigen-specific IgA is the immune response induced by the protective vaccine regimen. These results demonstrate that priming with a DNA vaccine and boosting with a Salmonella strain enhances both quantitatively and qualitatively the antibody responses to the CfaB antigen and represents an alternative for either active or passive immunization approach to ETEC-associated diarrhea.
Collapse
Affiliation(s)
- M O Lasaro
- Microbiology Department, Biomedical Science Institute, University of São Paulo, Av Prof. Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | | | | | | |
Collapse
|
26
|
Patel SK, Dotson J, Allen KP, Fleckenstein JM. Identification and molecular characterization of EatA, an autotransporter protein of enterotoxigenic Escherichia coli. Infect Immun 2004; 72:1786-94. [PMID: 14977988 PMCID: PMC356008 DOI: 10.1128/iai.72.3.1786-1794.2004] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains remain a formidable cause of diarrheal disease. To identify novel surface proteins of ETEC, we performed TnphoA mutagenesis of prototype ETEC strain H10407 and discovered a secreted protein not previously recognized in ETEC. DNA sequencing of the interrupted locus in mutant TnphoA.977 revealed a candidate 4,095-bp open reading frame without significant homology to commensal E. coli K-12 genomic DNA. Translation of this sequence revealed that it encoded a predicted peptide of 147.7 kDa that bears significant homology to members of the autotransporter family of bacterial virulence factors, particularly the serine protease autotransporters of the Enterobacteriaceae proteins. The gene identified in H10407, eatA (ETEC autotransporter A), encodes a potential serine protease motif (GDSGSP) in the secreted amino-terminal domain, and the predicted peptide shows more than 80% homology with SepA, a virulence protein secreted by Shigella flexneri. DNA hybridization and PCR demonstrated that eatA resides on the 92-kDa pCS1 virulence plasmid of H10407 and that it is present in multiple clinical ETEC strains. Immunoblots with antisera directed against a recombinant EatA passenger protein fragment identified a 110-kDa protein in supernatants purified from H10407 but not from the TnphoA.977 mutant or H10407-P, which lacks pCS1. EatA possesses serine protease activity that is abolished by mutations within a serine protease catalytic triad formed by residues H(134), D(162), and S(267). Finally, interruption of the eatA gene retarded fluid accumulation in the rabbit ileal loop model, suggesting that this autotransporter contributes to the virulence of ETEC.
Collapse
Affiliation(s)
- Seema K Patel
- Department of Medicine, University of Tennessee Health Science Center, Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | | | | | | |
Collapse
|