1
|
Rimayanti R, Khairullah AR, Utama S, Ahmad RZ, Mulyati S, Damayanti R, Lestari TD, Mustofa I, Hernawati T, Wasito W, Moses IB, Wardhani BWK, Kurniasih DAA, Kusumarini S, Wibowo S, Yanestria SM, Kusala MKJ, Lisnanti EF, Fauziah I. Review of neosporosis: Disease insights and control approaches. Open Vet J 2025; 15:1078-1090. [PMID: 40276172 PMCID: PMC12017711 DOI: 10.5455/ovj.2025.v15.i3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/13/2025] [Indexed: 04/26/2025] Open
Abstract
The protozoan parasite Neospora caninum is a cause of infectious disease neosporosis. Neospora caninum is a major parasite affecting dogs and livestock worldwide. Neosporosis is a major cause of abortion in cattle, particularly in cattle raised in intensive agriculture. For diagnosis, the indirect enzyme-linked immunosorbent assay and immunofluorescence antibody test are employed. Neospora caninum goes through three different stages in its life cycle: sporozoites, tachyzoite, and bradyzoite. The primary method of N. caninum transmission in cattle is believed to be transplacental. Dogs are the definitive hosts of N. caninum, and the organisms in dogs and cattle are indistinguishable from one another. A high prevalence of N. caninum infection in animals was linked to the presence of dogs that tested positive for the parasite. Although exact statistics on the financial losses resulting from neosporosis in the global livestock sector are unavailable, losses are estimated to be millions of dollars. A number of medications have been investigated against N. caninum. In infected cell cultures, piritrexim, monensin, pyrimethamine, and trimethoprim stop N. caninum from growing intracellularly. Taking action to stop vertical transmission is the most practical way to control neosporosis in cattle herds, considering the current state of knowledge.
Collapse
Affiliation(s)
- Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratna Damayanti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tita Damayanti Lestari
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tatik Hernawati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Wasito Wasito
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Bantari Wisynu Kusuma Wardhani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Dea Anita Ariani Kurniasih
- Research Center for Public Health and Nutrition, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Shelly Kusumarini
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | | | - Ertika Fitri Lisnanti
- Program of Animal Husbandry, Faculty of Agriculture, Universitas Islam Kadiri, Kediri, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| |
Collapse
|
2
|
Hecker YP, Burucúa MM, Fiorani F, Maldonado Rivera JE, Cirone KM, Dorsch MA, Cheuquepán FA, Campero LM, Cantón GJ, Marín MS, Ortega-Mora LM, Moore DP. Reactivation and Foetal Infection in Pregnant Heifers Infected with Neospora caninum Live Tachyzoites at Prepubertal Age. Vaccines (Basel) 2022; 10:vaccines10081175. [PMID: 35893824 PMCID: PMC9330614 DOI: 10.3390/vaccines10081175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Neospora caninum is recognised for causing cattle abortion, provoking severe economic losses in the livestock industry worldwide. The aim of the present study was to evaluate the reactivation and foetal infection in pregnant heifers inoculated with live N. caninum tachyzoites before puberty. A total of 15 30-month-old pregnant heifers were allocated into four groups: animals inoculated with live tachyzoites of NC-Argentina LP1 isolate before puberty and challenged with live tachyzoites of NC-1 strain at 210 days of gestation (DG) (Group A); animals mock inoculated before puberty and challenged with NC-1 strain at 210 DG (Group B), animals inoculated before puberty but not subsequently challenged (Group C); and noninfected and nonchallenged animals (Group D). The results of this study showed that 100% of animals infected before puberty (Groups A and C) suffered reactivation of the infection at the seventh month of gestation. In addition, in three and two calves from Groups A and C, respectively, congenital infection was confirmed. Interestingly, we provide evidence that the use of live N. caninum tachyzoites in young animals as a strategy to induce protection is neither safe nor effective.
Collapse
Affiliation(s)
- Yanina P. Hecker
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Instituto Nacional de Tecnología Agropecuaria (INTA)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce 7620, Argentina; (M.M.B.); (F.F.); (K.M.C.); (F.A.C.); (L.M.C.); (G.J.C.); (M.S.M.); (D.P.M.)
- Correspondence: ; Tel.: +54-02266-439100 (ext. 365)
| | - Mercedes M. Burucúa
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Instituto Nacional de Tecnología Agropecuaria (INTA)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce 7620, Argentina; (M.M.B.); (F.F.); (K.M.C.); (F.A.C.); (L.M.C.); (G.J.C.); (M.S.M.); (D.P.M.)
| | - Franco Fiorani
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Instituto Nacional de Tecnología Agropecuaria (INTA)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce 7620, Argentina; (M.M.B.); (F.F.); (K.M.C.); (F.A.C.); (L.M.C.); (G.J.C.); (M.S.M.); (D.P.M.)
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce 7620, Argentina; (J.E.M.R.); (M.A.D.)
| | - Jaime E. Maldonado Rivera
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce 7620, Argentina; (J.E.M.R.); (M.A.D.)
- Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca 010205, Ecuador
| | - Karina M. Cirone
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Instituto Nacional de Tecnología Agropecuaria (INTA)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce 7620, Argentina; (M.M.B.); (F.F.); (K.M.C.); (F.A.C.); (L.M.C.); (G.J.C.); (M.S.M.); (D.P.M.)
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce 7620, Argentina; (J.E.M.R.); (M.A.D.)
| | - Matías A. Dorsch
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce 7620, Argentina; (J.E.M.R.); (M.A.D.)
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental La Estanzuela, Colonia 70000, Uruguay
| | - Felipe A. Cheuquepán
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Instituto Nacional de Tecnología Agropecuaria (INTA)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce 7620, Argentina; (M.M.B.); (F.F.); (K.M.C.); (F.A.C.); (L.M.C.); (G.J.C.); (M.S.M.); (D.P.M.)
| | - Lucía M. Campero
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Instituto Nacional de Tecnología Agropecuaria (INTA)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce 7620, Argentina; (M.M.B.); (F.F.); (K.M.C.); (F.A.C.); (L.M.C.); (G.J.C.); (M.S.M.); (D.P.M.)
| | - Germán J. Cantón
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Instituto Nacional de Tecnología Agropecuaria (INTA)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce 7620, Argentina; (M.M.B.); (F.F.); (K.M.C.); (F.A.C.); (L.M.C.); (G.J.C.); (M.S.M.); (D.P.M.)
| | - Maia S. Marín
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Instituto Nacional de Tecnología Agropecuaria (INTA)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce 7620, Argentina; (M.M.B.); (F.F.); (K.M.C.); (F.A.C.); (L.M.C.); (G.J.C.); (M.S.M.); (D.P.M.)
| | - Luis M. Ortega-Mora
- SALUVET, Departamento de Sanidad Animal, Facultad de Ciencias Veterinarias, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Dadín P. Moore
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Instituto Nacional de Tecnología Agropecuaria (INTA)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce 7620, Argentina; (M.M.B.); (F.F.); (K.M.C.); (F.A.C.); (L.M.C.); (G.J.C.); (M.S.M.); (D.P.M.)
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce 7620, Argentina; (J.E.M.R.); (M.A.D.)
| |
Collapse
|
3
|
Novoa MB, Sarli M, Reidel IG, Veaute C, Valentini B, Primo ME. Neospora caninum truncated recombinant proteins formulated with liposomes and CpG-ODNs triggered a humoral immune response in cattle after immunisation and challenge. Vet Immunol Immunopathol 2021; 238:110285. [PMID: 34146834 DOI: 10.1016/j.vetimm.2021.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/06/2021] [Accepted: 06/11/2021] [Indexed: 11/29/2022]
Abstract
Abortions caused by Neospora caninum are a serious problem in cattle production and require effective immunoprophylaxis. The objective of this work was to assess the humoral immune response to four recombinant (r) N. caninum antigens in cattle after immunisation and challenge. MIC1 and MIC3 proteins from the micronemes, SRS2 from the surface of tachyzoites, and GRA7 from the dense granules were expressed as truncated recombinant proteins in Escherichia coli. Cationic liposomes (Lip) and CpG oligodeoxynucleotides (CpG-ODNs) were used as adjuvant. Steers were assigned to three groups of six steers each and were inoculated twice subcutaneously, 21 days apart. The rP + Lip + CpG-ODN group received the truncated recombinant proteins rMIC1, rMIC3, rSRS2 and rGRA7 formulated with the adjuvant; the Lip + CpG-ODN group received the adjuvant alone; and the PBS group received sterile phosphate-buffered saline. All steers were subcutaneously challenged with the NC-1 strain of N. caninum 35 days after the second dose of immunisation. Steers from the rP + Lip + CpG-ODN group developed specific IgG, IgG1 and IgG2 against the four recombinant proteins after immunisation. After challenge, IgG against rMIC1 and rMIC3 was detected in rP + Lip + CpG-ODN group and against rSRS2 and rGRA7 in all groups. IgG1 and IgG2 against the four recombinant proteins remained high after challenge in the rP + Lip + CpG-ODN group. Indirect ELISA detected anti-N. caninum antibodies after challenge in all groups, with the highest level of antibodies being detected in the rP + Lip + CpG-ODN group. The recombinant vaccine formulated with rMIC1, rMIC3, rSRS2 and rGRA7 using Lip + CpG-ODN as adjuvant was immunogenic in cattle and the humoral immune response after challenge was enhanced in vaccinated cattle.
Collapse
Affiliation(s)
- María Belén Novoa
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Route 34, km 227, 2300, Rafaela, Argentina.
| | - Macarena Sarli
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Route 34, km 227, 2300, Rafaela, Argentina
| | - Ivana Gabriela Reidel
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, S3000ZAA, Santa Fe, Argentina
| | - Carolina Veaute
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, S3000ZAA, Santa Fe, Argentina
| | - Beatriz Valentini
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Route 34, km 227, 2300, Rafaela, Argentina
| | - María Evangelina Primo
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Route 34, km 227, 2300, Rafaela, Argentina
| |
Collapse
|
4
|
García-Sánchez M, Jiménez-Pelayo L, Vázquez P, Horcajo P, Regidor-Cerrillo J, Jiménez-Meléndez A, Osoro K, Ortega-Mora LM, Collantes-Fernández E. Maternal and Foetal Cellular Immune Responses in Dams Infected With High- and Low- Virulence Isolates of Neospora caninum at Mid-Gestation. Front Cell Infect Microbiol 2021; 11:684670. [PMID: 34239816 PMCID: PMC8259741 DOI: 10.3389/fcimb.2021.684670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Bovine neosporosis is currently considered one of the main causes of abortion in cattle worldwide and the outcome of the infection is, in part, determined by Neospora caninum isolate virulence. However, the dam and foetal immune responses associated with this factor are largely unknown. We used a model of bovine infection at day 110 of gestation to study the early infection dynamics (10- and 20-days post-infection, dpi) after experimental challenge with high- and low-virulence isolates of N. caninum (Nc-Spain7 and Nc-Spain1H, respectively). In the present work, dam peripheral cellular immune responses were monitored twice a week from -1 to 20 dpi. At different time points, IFN-γ and IL-4 production was investigated in stimulated dam blood and the percentage of monocytes, NK cells, B cells and T cells (CD4+, CD8+ and γδ) in peripheral blood mononuclear cells (PBMC) were determined by flow cytometry. In addition, maternal iliofemoral lymph nodes and foetal spleen and thymus were collected at 10 and 20 dpi for the study of the same cell subpopulations. Peripheral immune response dynamics were similar after the infection with both isolates, with a significant increase in the percentage of CD4+ T cells at 6 and 9 dpi in PBMC, coincident with the higher levels of IFN-γ and IL-4 release. However, the levels of IFN-γ were significantly higher and an increase in CD8+ T cells at 9, 13 and 20 dpi was observed in the dams infected with Nc-Spain7. Nc-Spain1H infection induced higher IL4 levels in stimulated blood and a higher CD4+/CD8+ ratio in PBMC. The analysis of the maternal iliofemoral lymph node showed a significant enhancement in the percentage of NK, CD4+ and CD8+ T cells for the animals infected with the highly virulent isolate and euthanized at 20 dpi. Regarding the foetal responses, the most remarkable result was an increase in the percentage of monocytes at 20 dpi in the spleen of foetuses from both infected groups, which suggests that foetuses were able to respond to N. caninum infection at mid gestation. This work provides insights into how isolate virulence affects the maternal and foetal immune responses generated against N. caninum, which may influence the course of infection.
Collapse
Affiliation(s)
- Marta García-Sánchez
- Saluvet, Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | - Laura Jiménez-Pelayo
- Saluvet, Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | - Patricia Vázquez
- Saluvet, Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | - Pilar Horcajo
- Saluvet, Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | | | | | - Koldo Osoro
- Regional Service for Research and Agri-Food Development (SERIDA), Villaviciosa, Spain
| | | | | |
Collapse
|
5
|
Elnaggar MM, Knowles DP, Davis WC, Fry LM. Flow Cytometric Analysis of the Cytotoxic T-Cell Recall Response to Theileria parva in Cattle Following Vaccination by the Infection and Treatment Method. Vet Sci 2021; 8:vetsci8060114. [PMID: 34207122 PMCID: PMC8259504 DOI: 10.3390/vetsci8060114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/08/2023] Open
Abstract
The apicomplexan hemoparasite, Theileria parva, causes East Coast fever (ECF), a frequently fatal disease of African cattle. Vaccine development has been impeded by incomplete understanding of protective immunity following natural exposure or the infection and treatment method (ITM) of immunization. This is attributable to a paucity of methods to characterize the memory T-cell repertoire following infection. To overcome this impediment, assays developed to study the immune response to other intracellular pathogens were adapted for use in studies with T. parva to enable definition of the phenotype and function of effector T cells in T. parva-immune cattle, facilitating vaccine development. As reported herein, stimulation of peripheral blood mononuclear cells (PBMC) from ITM-immunized steers with irradiated, autologous, T. parva-infected cell lines elicited a proliferative recall response comprised of CD45R0+/CCR7− CD4+ and CD8+ T cells. Subsequent co-incubation of stimulated cultures with infected cells demonstrated the presence of cytotoxic T cells (CTLs) with the ability to kill infected cells. Comparison of CTL activity in cultures depleted of CD4+ or CD8+ T cells demonstrated CTL activity was primarily attributed to CD8+ T cells. Importantly, stimulation of PBMC from vaccinated steers always elicited proliferation of CD4+ and CD8+ T cells. This was the first important observation obtained from the use of the assay described herein.
Collapse
Affiliation(s)
- Mahmoud M. Elnaggar
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (M.M.E.); (D.P.K.); (W.C.D.)
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Donald P. Knowles
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (M.M.E.); (D.P.K.); (W.C.D.)
| | - William C. Davis
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (M.M.E.); (D.P.K.); (W.C.D.)
| | - Lindsay M. Fry
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (M.M.E.); (D.P.K.); (W.C.D.)
- Animal Disease Research Unit, USDA-ARS, Pullman, WA 99164, USA
- Correspondence:
| |
Collapse
|
6
|
Fereig RM, Nishikawa Y. From Signaling Pathways to Distinct Immune Responses: Key Factors for Establishing or Combating Neospora caninum Infection in Different Susceptible Hosts. Pathogens 2020; 9:E384. [PMID: 32429367 PMCID: PMC7281608 DOI: 10.3390/pathogens9050384] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
: Neospora caninum is an intracellular protozoan parasite affecting numerous animal species. It induces significant economic losses because of abortion and neonatal abnormalities in cattle. In case of infection, the parasite secretes numerous arsenals to establish a successful infection in the host cell. In the same context but for a different purpose, the host resorts to different strategies to eliminate the invading parasite. During this battle, numerous key factors from both parasite and host sides are produced and interact for the maintaining and vanishing of the infection, respectively. Although several reviews have highlighted the role of different compartments of the immune system against N. caninum infection, each one of them has mostly targeted specific points related to the immune component and animal host. Thus, in the current review, we will focus on effector molecules derived from the host cell or the parasite using a comprehensive survey method from previous reports. According to our knowledge, this is the first review that highlights and discusses immune response at the host cell-parasite molecular interface against N. caninum infection in different susceptible hosts.
Collapse
Affiliation(s)
- Ragab M. Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan;
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan;
| |
Collapse
|
7
|
Hecker YP, Regidor-Cerrillo J, Fiorani F, Horcajo P, Soria I, Gual I, Torioni S, Campero LM, Echaide IE, Álvarez-García G, Ortega-Mora LM, Zamorano PI, Venturini MC, Odeón AC, Cantón GJ, Moore DP. Immune response to Neospora caninum live tachyzoites in prepubertal female calves. Parasitol Res 2019; 118:2945-2955. [PMID: 31485864 DOI: 10.1007/s00436-019-06447-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to characterize the specific immune response in prepubertal female calves inoculated with Neospora caninum. Forty-eight N. caninum-seronegative 6-month-old Angus female calves were randomly allocated into two groups: group A calves were inoculated subcutaneously (sc) with 1 × 106 tachyzoites of the low virulence NC-Argentina LP1 isolate in sterile phosphate-buffered saline (PBS); group B calves were mock inoculated sc with sterile PBS. Calves from group A developed a specific immune response characterized by the production of IgG antibodies and the expression of IFN-γ and TNF-α cytokines. Animals did not present any febrile reaction or reactions at the site of inoculation. Although chronic N. caninum infection was developed in 50% of calves of group A after inoculation, according to the presence of antibodies against rNc-SAG4, antigen characteristic of bradyzoites, N. caninum antibodies dropped below the cut-off of ELISA from day 210 post-inoculation onwards. Future trials using the same group of inoculated animals will allow the characterization of the evolution of the immune response during pregnancy and to determine whether the immunization with the local isolate is able to prevent congenital transmission and to protect against heterologous challenges.
Collapse
Affiliation(s)
- Yanina P Hecker
- National Research Council (CONICET), Buenos Aires, Argentina. .,National Institute of Agrarian Technology (INTA), Buenos Aires, Argentina.
| | - Javier Regidor-Cerrillo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Franco Fiorani
- National Research Council (CONICET), Buenos Aires, Argentina.,National Institute of Agrarian Technology (INTA), Buenos Aires, Argentina.,Faculty of Agrarian Sciences, National University of Mar del Plata, Mar del Plata, Argentina
| | - Pilar Horcajo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Ivana Soria
- National Institute of Agrarian Technology (INTA), Buenos Aires, Argentina
| | - Ignacio Gual
- National Research Council (CONICET), Buenos Aires, Argentina.,Faculty of Agrarian Sciences, National University of Mar del Plata, Mar del Plata, Argentina
| | - Susana Torioni
- National Institute of Agrarian Technology (INTA), Buenos Aires, Argentina
| | - Lucía M Campero
- National Research Council (CONICET), Buenos Aires, Argentina.,Immunoparasitology Laboratory, Faculty of Veterinary Medicine, National University of La Plata, La Plata, Argentina
| | - Ignacio E Echaide
- National Institute of Agrarian Technology (INTA), Buenos Aires, Argentina
| | - Gema Álvarez-García
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Luis M Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Patricia I Zamorano
- National Research Council (CONICET), Buenos Aires, Argentina.,National Institute of Agrarian Technology (INTA), Buenos Aires, Argentina
| | - María C Venturini
- Immunoparasitology Laboratory, Faculty of Veterinary Medicine, National University of La Plata, La Plata, Argentina
| | - Anselmo C Odeón
- National Institute of Agrarian Technology (INTA), Buenos Aires, Argentina
| | - Germán J Cantón
- National Institute of Agrarian Technology (INTA), Buenos Aires, Argentina
| | - Dadín P Moore
- National Research Council (CONICET), Buenos Aires, Argentina.,National Institute of Agrarian Technology (INTA), Buenos Aires, Argentina.,Faculty of Agrarian Sciences, National University of Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
8
|
Aguado-Martínez A, Basto AP, Leitão A, Hemphill A. Neospora caninum in non-pregnant and pregnant mouse models: cross-talk between infection and immunity. Int J Parasitol 2017; 47:723-735. [DOI: 10.1016/j.ijpara.2017.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022]
|
9
|
Horcajo P, Regidor-Cerrillo J, Aguado-Martínez A, Hemphill A, Ortega-Mora LM. Vaccines for bovine neosporosis: current status and key aspects for development. Parasite Immunol 2016; 38:709-723. [DOI: 10.1111/pim.12342] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/06/2016] [Indexed: 12/01/2022]
Affiliation(s)
- P. Horcajo
- SALUVET; Animal Health Department; Faculty of Veterinary Sciences; Complutense University of Madrid; Madrid Spain
| | - J. Regidor-Cerrillo
- SALUVET; Animal Health Department; Faculty of Veterinary Sciences; Complutense University of Madrid; Madrid Spain
| | - A. Aguado-Martínez
- Institute of Parasitology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - A. Hemphill
- Institute of Parasitology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - L. M. Ortega-Mora
- SALUVET; Animal Health Department; Faculty of Veterinary Sciences; Complutense University of Madrid; Madrid Spain
| |
Collapse
|
10
|
Hecker YP, Cantón G, Regidor-Cerrillo J, Chianini F, Morrell E, Lischinsky L, Ortega-Mora LM, Innes EA, Odeón A, Campero CM, Moore DP. Cell mediated immune responses in the placenta following challenge of vaccinated pregnant heifers with Neospora caninum. Vet Parasitol 2015; 214:247-54. [PMID: 26553499 DOI: 10.1016/j.vetpar.2015.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/02/2015] [Accepted: 10/15/2015] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to investigate and correlate the cell-mediated immune response and pathological changes at the maternal-fetal interface of Neospora-challenged pregnant cattle previously immunized with live and inactivated experimental vaccines. Pregnant heifers naïve to Neospora caninum were divided in 5 groups of 4 animals, each one immunized before mating: Group A heifers were intravenously (iv) immunized with 6.25 × 10(7) live tachyzoites of the NC-6 strain; group B heifers were immunized twice subcutaneously (sc) 3 weeks apart with native antigen extract of the NC-6 strain formulated with ISCOMs; group C heifers were sc immunized twice 3 weeks apart with three recombinant proteins (rNcSAG1, rNcHSP20, rNcGRA7) of the NC-1 strain formulated with ISCOMs; group D heifers were sc injected with sterile phosphate-buffered saline (PBS) and group E heifers received sc ISCOM-matrix (ISCOMs without antigen). All groups were iv-challenged with 4.7 × 10(7) NC-1 tachyzoites at 70 days of gestation. Heifers were culled at day 104 of gestation and placentomes were examined to evaluate lesions and local cellular immune responses using histopathology, immunohistochemistry and real time-PCR. Immunohistochemistry was performed using bovine leucocyte specific antibodies. Cytokine expression and levels (IFN-γ, IL-4, IL-10, IL-12 and TNF-α) were measured using real-time reverse transcription-PCR and ELISA, respectively. Minimal inflammation was observed in group A placentomes; while placentomes from group B, C, D and E had moderate to severe infiltration with CD3(+), CD4(+), γδ-T cells, CD8(+) cells and macrophages being more numerous in groups B and E placentomes, when compared with groups C and D (P<0.001). Cytokine levels were significantly increased in the caruncles of animals of groups B and C in comparison with the other animal groups (P < 0.001). The results from this study showed that the strongest cellular immune responses were observed in the placentomes of animals that were immunized with inactivated vaccines (groups B and C) and in the placentomes of animals that were sc-sham-inoculated (groups D and E). On the other hand, animals that were immunized with live tachyzoites showed a milder immune cell infiltration to the placenta possibly due to the existence of a protective systemic maternal immune response that helped to minimize N. caninum infection at the maternal-fetal interface.
Collapse
Affiliation(s)
- Y P Hecker
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), CC 276, 7620 Balcarce, Argentina.
| | - G Cantón
- Instituto Nacional de Tecnología Agropecuaria (INTA), CC 276, 7620 Balcarce, Argentina
| | - J Regidor-Cerrillo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - F Chianini
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, UK
| | - E Morrell
- Instituto Nacional de Tecnología Agropecuaria (INTA), CC 276, 7620 Balcarce, Argentina
| | - L Lischinsky
- Instituto Nacional de Tecnología Agropecuaria (INTA), CC 276, 7620 Balcarce, Argentina
| | - L M Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - E A Innes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, UK
| | - A Odeón
- Instituto Nacional de Tecnología Agropecuaria (INTA), CC 276, 7620 Balcarce, Argentina
| | - C M Campero
- Instituto Nacional de Tecnología Agropecuaria (INTA), CC 276, 7620 Balcarce, Argentina
| | - D P Moore
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), CC 276, 7620 Balcarce, Argentina
| |
Collapse
|
11
|
Correia A, Ferreirinha P, Botelho S, Belinha A, Leitão C, Caramalho Í, Teixeira L, González-Fernandéz Á, Appelberg R, Vilanova M. Predominant role of interferon-γ in the host protective effect of CD8(+) T cells against Neospora caninum infection. Sci Rep 2015; 5:14913. [PMID: 26449650 PMCID: PMC4598874 DOI: 10.1038/srep14913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/14/2015] [Indexed: 01/25/2023] Open
Abstract
It is well established that CD8+ T cells play an important role in
protective immunity against protozoan infections. However, their role in the course
of Neospora caninum infection has not been fully elucidated. Here we report
that CD8-deficient mice infected with N. caninum presented higher parasitic
loads in the brain and lungs and lower spleen and brain immunity-related GTPases
than their wild-type counterparts. Moreover, adoptive transfer of splenic
CD8+ T cells sorted from N. caninum-primed
immunosufficient C57BL/10 ScSn mice prolonged the survival of infected
IL-12-unresponsive C57BL/10 ScCr recipients. In both C57BL/6 and C57BL/10 ScSn mice
CD8+ T cells are activated and produce interferon-γ
(IFN-γ) upon challenged with N. caninum. The host protective role
of IFN-γ produced by CD8+ T cells was confirmed in N.
caninum-infected RAG2-deficient mice reconstituted with CD8+
T cells obtained from either IFN-γ-deficient or wild-type donors. Mice
receiving IFN-γ-expressing CD8+ T cells presented lower
parasitic burdens than counterparts having IFN-γ-deficient
CD8+ T cells. Moreover, we observed that N.
caninum-infected perforin-deficient mice presented parasitic burdens similar to
those of infected wild-type controls. Altogether these results demonstrate that
production of IFN-γ is a predominant protective mechanism conferred by
CD8+ T cells in the course of neosporosis.
Collapse
Affiliation(s)
- Alexandra Correia
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Pedro Ferreirinha
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sofia Botelho
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Belinha
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Catarina Leitão
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Íris Caramalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Luzia Teixeira
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.,UMIB-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Porto
| | - África González-Fernandéz
- Inmunología, Centro de Investigaciones Biomédicas (CINBIO), Instituto de Investigación Biomédica, Universidade de Vigo, Campus Lagoas Marcosende, E-36200 Vigo, Spain
| | - Rui Appelberg
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Manuel Vilanova
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
12
|
A 78 kDa host cell invasion protein of Neospora caninum as a potential vaccine candidate. Exp Parasitol 2015; 148:56-65. [DOI: 10.1016/j.exppara.2014.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022]
|
13
|
A Neospora caninum vaccine using recombinant proteins fails to prevent foetal infection in pregnant cattle after experimental intravenous challenge. Vet Immunol Immunopathol 2014; 162:142-53. [PMID: 25467890 DOI: 10.1016/j.vetimm.2014.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/16/2014] [Accepted: 11/01/2014] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to evaluate the immunogenicity and protective efficacy of rNcSAG1, rNcHSP20 and rNcGRA7 recombinant proteins formulated with immune stimulating complexes (ISCOMs) in pregnant heifers against vertical transmission of Neospora caninum. Twelve pregnant heifers were divided into 3 groups of 4 heifers each, receiving different formulations before mating. Immunogens were administered twice subcutaneously: group A animals were inoculated with three recombinant proteins (rNcSAG1, rNcHSP20, rNcGRA7) formulated with ISCOMs; group B animals received ISCOM-MATRIX (without antigen) and group C received sterile phosphate-buffered saline (PBS) only. The recombinant proteins were expressed in Escherichia coli and purified nickel resin. All groups were intravenously challenged with the NC-1 strain of N. caninum at Day 70 of gestation and dams slaughtered at week 17 of the experiment. Heifers from group A developed specific antibodies against rNcSAG1, rNcHSP20 and rNcGRA7 prior to the challenge. Following immunization, an statistically significant increase of antibodies against rNcSAG1 and rNcHSP20 in all animals of group A was detected compared to animals in groups B and C at weeks 5, 13 and 16 (P<0.001). Levels of antibodies against rNcGRA7 were statistical higher in group A animals when compared with groups B and C at weeks 5 and 16 (P>0.001). There were no differences in IFN-γ production among the experimental groups at any time point (P>0.05). Transplacental transmission was determined in all foetuses of groups A, B and C by Western blot, immunohistochemistry and nested PCR. This work showed that rNcSAG1, rNcHSP20 and rNcGRA7 proteins while immunogenic in cattle failed to prevent the foetal infection in pregnant cattle challenged at Day 70 of gestation.
Collapse
|
14
|
Experimental ruminant models for bovine neosporosis: what is known and what is needed. Parasitology 2014; 141:1471-88. [PMID: 24926962 DOI: 10.1017/s0031182014000638] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
At present, bovine neosporosis is an important worldwide concern because of its wide geographic distribution and economic impact. Abortion is the main clinical sign of bovine neosporosis in both dairy and beef cattle. Ruminant challenge models are critical to evaluate potential vaccine candidates to help tackle bovine neosporosis and to study pathogenesis and host responses to infection. Several research groups have developed ruminant models of Neospora caninum infection independently of others, resulting in a high degree of variability due to the use of different species of animals, breeds, strains/isolates of N. caninum, doses, routes and times of inoculation. Standardization is greatly needed to advance research in a more collaborative, timely and efficient manner. In the absence of widely accepted international guidelines, this manuscript serves to summarize and discuss the different models and parameters currently in use. Parameters essential for the development of non-pregnant and pregnant ruminant models are outlined and the main knowledge gaps are identified. This information could act as the basis to develop a consensus for international standard guidelines for ruminant models of neosporosis that would be helpful for researchers in this field worldwide.
Collapse
|
15
|
Macrophage depletion prior to Neospora caninum infection results in severe neosporosis in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1185-8. [PMID: 24872515 DOI: 10.1128/cvi.00082-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We observed that murine macrophages showed greater activation and increased interleukin 6 (IL-6), IL-12p40, and interferon gamma (IFN-γ) production during Neospora caninum infection. Many macrophages migrated to the site of infection. Furthermore, macrophage-depleted mice exhibited increased sensitivity to N. caninum infection. This study indicates that macrophages are required for achieving protective immunity against N. caninum.
Collapse
|
16
|
Monney T, Hemphill A. Vaccines against neosporosis: what can we learn from the past studies? Exp Parasitol 2014; 140:52-70. [PMID: 24602874 DOI: 10.1016/j.exppara.2014.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/09/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Neospora caninum is an intracellular apicomplexan parasite, which is a leading cause of abortion in cattle; thus neosporosis represents an important veterinary health problem and is of high economic significance. The parasite can infect cattle via trans-placental transmission from an infected cow to its fetus (vertical transmission), or through the oral route via ingestion of food or water contaminated with oocysts that were previously shed with the feces of a canid definitive host (horizontal transmission). Although vaccination was considered a rational strategy to prevent bovine neosporosis, the only commercialized vaccine (Neoguard®) produced ambiguous results with relatively low efficacy, and was recently removed from the market. Therefore, there is a need to develop an efficient vaccine capable of preventing both, the horizontal transmission through infected food or water to a naïve animal as well as the vertical transmission from infected but clinically asymptomatic dams to the fetus. Different vaccine strategies have been investigated, including the use of live attenuated vaccines, killed parasite lysates, total antigens or antigen fractions from killed parasites, and subunit vaccines. The vast majority of experimental studies were performed in mice, and to a certain extent in gerbils, but there is also a large number of investigations that were conducted in cattle and sheep. However, it is difficult to directly compare these studies due to the high variability of the parameters employed. In this review, we will summarize the recent advances made in vaccine development against N. caninum in cattle and in mice and highlight the most important factors, which are likely to influence the degree of protection mediated by vaccination.
Collapse
Affiliation(s)
- Thierry Monney
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| |
Collapse
|
17
|
Hecker Y, Moore D, Quattrocchi V, Regidor-Cerrillo J, Verna A, Leunda M, Morrell E, Ortega-Mora L, Zamorano P, Venturini M, Campero C. Immune response and protection provided by live tachyzoites and native antigens from the NC-6 Argentina strain of Neospora caninum in pregnant heifers. Vet Parasitol 2013; 197:436-46. [DOI: 10.1016/j.vetpar.2013.07.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/02/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
|
18
|
Bartley PM, Katzer F, Rocchi MS, Maley SW, Benavides J, Nath M, Pang Y, Cantón G, Thomson J, Chianini F, Innes EA. Development of maternal and foetal immune responses in cattle following experimental challenge with Neospora caninum at day 210 of gestation. Vet Res 2013; 44:91. [PMID: 24090114 PMCID: PMC3851480 DOI: 10.1186/1297-9716-44-91] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 09/24/2013] [Indexed: 11/17/2022] Open
Abstract
This study examined the immunological responses of pregnant cattle and their foetuses following an experimental challenge with live Neospora caninum tachyzoites at day 210 of gestation. Animals were bled prior to and weekly throughout the experiment and sacrificed at 14, 28, 42 and 56 days post inoculation (dpi). At post mortem examination, samples of lymph nodes and spleen were collected from both dam and foetus for immunological analysis. Subcutaneous (sc) inoculation over the left prefemoral (LPF) lymph node of pregnant cattle at day 210 of gestation, led to the vertical transmission of parasites by 14 dpi, however no foetal deaths were observed in the infected animals. Foetuses from infected dams mounted Neospora-specific humoral and cell-mediated immune (CMI) responses by 14 dpi. These responses involved anti-Neospora IgG, antigen-specific lymphocyte proliferation, and the production of the cytokines IFN–γ, interleukin (IL)-4 and IL-10. There was also evidence of innate immunity during the response against Neospora from infected dams, with statistically significant (p < 0.05) increases in mean expression of toll like receptors (TLR)-2 on 56 dpi in maternal spleen, LPF, right prefemoral (RPF), left uterine (LUL) and right uterine (RUL) lymph nodes and TLR-9 in retropharyngeal (RLN), LPF and RPF lymph nodes from 28 dpi. Statistically significant (p < 0.05) increases in mean TLR-9 were detected in spleen samples from foetuses of infected dams, compared to the foetuses from control animals. Our results show that vertical transmission of the parasite occurred in all infected dams, with their foetuses showing effective Neospora-specific cell mediated, humoral and innate immune responses.
Collapse
Affiliation(s)
- Paul M Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, Scotland, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dose-dependent immunogenicity of a soluble Neospora caninum tachyzoite-extract vaccine formulated with a soy lecithin/β-glucan adjuvant in cattle. Vet Parasitol 2013; 197:13-21. [DOI: 10.1016/j.vetpar.2013.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/10/2013] [Accepted: 04/20/2013] [Indexed: 11/20/2022]
|
20
|
Cantón GJ, Katzer F, Benavides-Silván J, Maley SW, Palarea-Albaladejo J, Pang Y, Smith S, Bartley PM, Rocchi M, Innes EA, Chianini F. Phenotypic characterisation of the cellular immune infiltrate in placentas of cattle following experimental inoculation with Neospora caninum in late gestation. Vet Res 2013; 44:60. [PMID: 23876124 PMCID: PMC3726360 DOI: 10.1186/1297-9716-44-60] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 07/08/2013] [Indexed: 11/17/2022] Open
Abstract
Despite Neospora caninum being a major cause of bovine abortion worldwide, its pathogenesis is not completely understood. Neospora infection stimulates host cell-mediated immune responses, which may be responsible for the placental damage leading to abortion. The aim of the current study was to characterize the placental immune response following an experimental inoculation of pregnant cattle with N. caninum tachyzoites at day 210 of gestation. Cows were culled at 14, 28, 42 and 56 days post inoculation (dpi). Placentomes were examined by immunohistochemistry using antibodies against macrophages, T-cell subsets (CD4, CD8 and γδ), NK cells and B cells. Macrophages were detected mainly at 14 days post inoculation. Inflammation was generally mild and mainly characterized by CD3+, CD4+ and γδ T-cells; whereas CD8+ and NK cells were less numerous. The immune cell repertoire observed in this study was similar to those seen in pregnant cattle challenged with N. caninum at early gestation. However, cellular infiltrates were less severe than those seen during first trimester Neospora infections. This may explain the milder clinical outcome observed when animals are infected late in gestation.
Collapse
|
21
|
A review of the infection, genetics, and evolution of Neospora caninum: from the past to the present. INFECTION GENETICS AND EVOLUTION 2012; 13:133-50. [PMID: 22985682 DOI: 10.1016/j.meegid.2012.08.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/05/2012] [Accepted: 08/07/2012] [Indexed: 12/30/2022]
Abstract
This paper is a review of current knowledge on Neospora caninum in the context of other apicomplexan parasites and with an emphasis on: life cycle, disease, epidemiology, immunity, control and treatment, evolution, genomes, and biological databases and web resources. N. caninum is an obligate, intracellular, coccidian, protozoan parasite of the phylum Apicomplexa. Infection can cause the clinical disease neosporosis, which most notably is associated with abortion in cattle. These abortions are a major root cause of economic loss to both the dairy and beef industries worldwide. N. caninum has been detected in every country in which a study has been specifically conducted to detect this parasite in cattle. The major mode of transmission in cattle is transplacental (or vertical) transmission and several elements of the N. caninum life cycle are yet to be studied in detail. The outcome of an infection is inextricably linked to the precise timing of the infection coupled with the status of the immune system of the dam and foetus. There is no community consensus as to whether it is the dam's pro-inflammatory cytotoxic response to tachyzoites that kills the foetus or the tachyzoites themselves. From economic analysis the most cost-effective approach to control neosporosis is a vaccine. The perfect vaccine would protect against both infection and the clinical disease, and this implies a vaccine is needed that can induce a non-foetopathic cell mediated immunity response. Researchers are beginning to capitalise on the vast potential of -omics data (e.g. genomes, transcriptomes, and proteomes) to further our understanding of pathogens but especially to identify vaccine and drug targets. The recent publication of a genome for N. caninum offers vast opportunities in these areas.
Collapse
|
22
|
Bartley PM, Wright SE, Maley SW, Macaldowie CN, Nath M, Hamilton CM, Katzer F, Buxton D, Innes EA. Maternal and foetal immune responses of cattle following an experimental challenge with Neospora caninum at day 70 of gestation. Vet Res 2012; 43:38. [PMID: 22536795 PMCID: PMC3416710 DOI: 10.1186/1297-9716-43-38] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/26/2012] [Indexed: 02/06/2023] Open
Abstract
The immune responses of pregnant cattle and their foetuses were examined following inoculation on day 70 of gestation either intravenously (iv) (group 1) or subcutaneously (sc) (group 2) with live NC1 strain tachyzoites or with Vero cells (control) (group 3). Peripheral blood mononuclear cell (PBMC) responses to Neospora antigen and foetal viability were assessed throughout the experiment. Two animals from each group were sacrificed at 14, 28, 42 and 56 days post inoculation (pi). At post mortem, maternal lymph nodes, spleen and PBMC and when possible foetal spleen, thymus and PBMC samples were collected for analysis. Inoculation with NC1 (iv and sc) lead to foetal deaths in all group 1 dams (6/6) and in 3/6 group 2 dams from day 28pi; statistically significant (p ≤ 0.05) increases in cell-mediated immune (CMI) responses including antigen-specific cell proliferation and IFN-γ production as well as increased levels of IL-4, IL-10 and IL-12 were observed in challenged dams compared to the group 3 animals. Lymph node samples from the group 2 animals carrying live foetuses showed greater levels of cellular proliferation as well as significantly (p ≤ 0.05) higher levels of IFN-γ compared to the dams in group 2 carrying dead foetuses. Foetal spleen, thymus and PBMC samples demonstrated cellular proliferation as well as IFN-γ, IL-4, IL-10 and IL-12 production following mitogenic stimulation with Con A from day 14pi (day 84 gestation) onwards. This study shows that the generation of robust peripheral and local maternal CMI responses (lymphoproliferation, IFN-γ) may inhibit the vertical transmission of the parasite.
Collapse
Affiliation(s)
- Paul M Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, Scotland, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Monney T, Debache K, Hemphill A. Vaccines against a Major Cause of Abortion in Cattle, Neospora caninum Infection. Animals (Basel) 2011; 1:306-25. [PMID: 26486502 PMCID: PMC4513463 DOI: 10.3390/ani1030306] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 01/09/2023] Open
Abstract
Simple Summary We review the efforts to develop a vaccine against neosporosis, caused by the apicomplexan parasite Neospora caninum. Vertical transmission is the main mode of infection, and can lead to stillbirth, abortion, or birth of weak calves. We provide information on the biology of Neospora caninum and on the disease caused by this parasite, and summarize the current understanding on how the host deals with infection. We review studies on live- and subunit-vaccines, and demonstrate advantages and setbacks in the use of small laboratory animal models in investigations on a disease with high relevance in cattle. Abstract Neosporosis, caused by the apicomplexan parasite Neospora caninum, represents one of the economically most important causes of abortion in cattle. During pregnancy, the parasite infects the placental tissue and the fetus, which can lead to stillbirth, abortion, or birth of weak calves. Alternatively, calves are born without clinical symptoms, but they can carry over the parasite to the next generation. In addition, N. caninum causes neuromuscular disease in dogs. The economic importance of neosporosis has prompted researchers to invest in the development of measures to prevent infection of cattle by vaccination. A good vaccine must stimulate protective cellular immune responses as well as antibody responses at mucosal sites and, systemically, must activate T-helper cells to produce relevant cytokines, and must elicit specific antibodies that aid in limiting parasite proliferation, e.g., by interference with host cell invasion, activation of complement, and/or opsonization of parasites to have them killed by macrophages. Different types of vaccines have been investigated, either in bovines or in the mouse model. These include live vaccines such as naturally less virulent isolates of N. caninum, attenuated strains generated by irradiation or chemical means, or genetically modified transgenic strains. Live vaccines were shown to be very effective; however, there are serious disadvantages in terms of safety, costs of production, and stability of the final product. Subunit vaccines have been intensively studied, as they would have clear advantages such as reduced costs in production, processing and storage, increased stability and shelf life. The parasite antigens involved in adhesion and invasion of host cells, such as surface constituents, microneme-, rhoptry- and dense granule-components represent interesting targets. Subunit vaccines have been applied as bacterially expressed recombinant antigens or as DNA vaccines. Besides monovalent vaccines also polyvalent combinations of different antigens have been used, providing increased protection. Vaccines have been combined with immunostimulating carriers and, more recently, chimeric vaccines, incorporating immuno-relevant domains of several antigens into a single protein, have been developed.
Collapse
Affiliation(s)
- Thierry Monney
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| | - Karim Debache
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| |
Collapse
|
24
|
Rocchi MS, Bartley PM, Inglis NF, Collantes-Fernandez E, Entrican G, Katzer F, Innes EA. Selection of Neospora caninum antigens stimulating bovine CD4+ve T cell responses through immuno-potency screening and proteomic approaches. Vet Res 2011; 42:91. [PMID: 21813001 PMCID: PMC3167765 DOI: 10.1186/1297-9716-42-91] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 08/03/2011] [Indexed: 11/23/2022] Open
Abstract
Neospora caninum is recognised worldwide as a major cause of bovine infectious abortion. There is a real need to develop effective strategies to control infection during pregnancy which may lead to either abortion or congenital transmission. Due to the intracellular nature of the parasite, cell-mediated immune (CMI) responses involving CD4+ve, CD8+ve, γ/δ TCR+ve T cells and NK cells, as well as production of IFN-γ, are thought to be important for protective immunity. In this study we applied a combination of proteomic and immunological approaches to identify antigens of N. caninum that are recognized by CD4+ve T cell lines derived from infected cattle. Initially, N. caninum tachyzoite Water Soluble Antigens (NcWSA) were fractionated by size-exclusion HPLC and then screened for immune-potency using CD4+ve T cell lines. LC-ESI-MS/MS (liquid chromatography electrospray ionisation tandem mass spectrometry) was employed to catalogue and identify the proteins comprising three immunologically selected fractions and led to the identification of six N. caninum target proteins as well as sixteen functional orthologues of Toxoplasma gondii. This approach allows the screening of biologically reactive antigenic fractions by the immune cells responsible for protection (such as bovine CD4+ve cells) and the subsequent identification of the stimulating components using tandem mass spectrometry.
Collapse
Affiliation(s)
- Mara S Rocchi
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK.
| | | | | | | | | | | | | |
Collapse
|
25
|
Dion S, Germon S, Guiton R, Ducournau C, Dimier-Poisson I. Functional activation of T cells by dendritic cells and macrophages exposed to the intracellular parasite Neospora caninum. Int J Parasitol 2011; 41:685-95. [PMID: 21329692 DOI: 10.1016/j.ijpara.2011.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/05/2011] [Accepted: 01/18/2011] [Indexed: 11/18/2022]
Abstract
Neospora caninum is an intracellular protozoan pathogen that causes abortion in cattle. We studied how the interaction between murine conventional dendritic cells or macrophages and N. caninum influences the generation of cell-mediated immunity against the parasite. We first explored the invasion and survival ability of N. caninum in dendritic cells and macrophages. We observed that protozoa rapidly invaded and proliferated into these two cell populations. We then investigated how Neospora-exposed macrophages or dendritic cells distinguish between viable and non-viable (heat-killed tachyzoites and antigenic extract) parasites. Viable tachyzoites and antigenic extract, but not killed parasites, altered the phenotype of immature dendritic cells. Dendritic cells infected with viable parasites down-regulated the expression of MHC-II, CD40, CD80 and CD86 whereas dendritic cells exposed to N. caninum antigenic extract up-regulated the expression of MHC-II and CD40 and down-regulated CD80 and CD86 expression. Moreover, only viable tachyzoites and antigenic extract induced IL-12 synthesis by dendritic cells. MHC-II expression was up-regulated and CD86 expression was down-regulated at the surface of macrophages, regardless of the parasitic form was encountered. However, IL-12 secretion by macrophages was only observed under conditions using viable and heat-killed parasite. We then analysed how macrophages and dendritic cells were involved in inducing T-cell responses. T lymphocyte IFN-γ-secretion in correlation with IL-12 production occurred after interactions between T cells and dendritic cells exposed to viable tachyzoites or antigenic extract. By contrast, for macrophages IFN-γ production was IL-12-independent and only occurred after interactions between T cells and macrophages exposed to antigenic extract. Thus, N. caninum-induced activation of murine dendritic cells, but not that of macrophages, was associated with T cell IFN-γ production after IL-12 secretion.
Collapse
Affiliation(s)
- Sarah Dion
- Université François-Rabelais de Tours, INRA, UMR 0483 Université-INRA d'Immunologie Parasitaire, Vaccinologie et Biothérapie Anti-Infectieuse, IFR des Agents Transmissibles et Infectiologie, UFR de Pharmacie, Tours, France
| | | | | | | | | |
Collapse
|
26
|
Rojo-Montejo S, Collantes-Fernández E, Regidor-Cerrillo J, Rodríguez-Bertos A, Prenafeta A, Gomez-Bautista M, Ortega-Mora LM. Influence of adjuvant and antigen dose on protection induced by an inactivated whole vaccine against Neospora caninum infection in mice. Vet Parasitol 2011; 175:220-9. [DOI: 10.1016/j.vetpar.2010.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 11/28/2022]
|
27
|
Rosbottom A, Gibney H, Kaiser P, Hartley C, Smith RF, Robinson R, Kipar A, Williams DJL. Up regulation of the maternal immune response in the placenta of cattle naturally infected with Neospora caninum. PLoS One 2011; 6:e15799. [PMID: 21283810 PMCID: PMC3023762 DOI: 10.1371/journal.pone.0015799] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/24/2010] [Indexed: 12/21/2022] Open
Abstract
Neospora caninum is an intracellular protozoan parasite which is a major cause of abortion in cattle worldwide. It forms persistent infections which recrudesce during pregnancy leading to foetal infection and in a proportion of cases, abortion. The mechanisms underlying abortion are not understood. In this study, recrudescence of a persistent infection in eight naturally infected cows occurred between 20 and 33 weeks of gestation. Animals were killed at the time of recrudescence and parasites were detected in the placentae and foetuses. An active maternal immune response consisting of an infiltration of CD4+ and CD8+ T cells and a 46–49 fold increase in interferon-γ and interleukin-4 mRNA was detected. Other cytokines, notably interleukin-12 p40, interleukin-10 and tumour necrosis factor-α were also significantly increased and Major Histocompatibility Class II antigen was expressed on maternal and foetal epithelial and stromal fibroblastoid cells. Significantly, despite the presence of an active maternal immune response in the placenta, all the foetuses were alive at the time of maternal euthanasia. There was evidence of parasites within foetal tissues; their distribution was restricted to the central nervous system and skeletal muscle and their presence was associated with tissue necrosis and a non-suppurative inflammatory response involving lymphocytes and macrophages, irrespective of the gestational age of the foetus. Whilst an active maternal immune response to a pathogen in the placenta is generally considered to be damaging to the foetal trophoblast, our findings suggest that the presence of a parasite-induced maternal immune response in the placenta is not detrimental to foetal survival but may contribute to the control of placental parasitosis.
Collapse
Affiliation(s)
- Anne Rosbottom
- Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Helen Gibney
- Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Peter Kaiser
- Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Catherine Hartley
- Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Robert F. Smith
- Department of Veterinary Clinical Science, Veterinary Teaching Hospital, Leahurst, Neston, United Kingdom
| | - Rebecca Robinson
- Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Anja Kipar
- Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Diana J. L. Williams
- Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Sühwold A, Hermosilla C, Seeger T, Zahner H, Taubert A. T cell reactions of Eimeria bovis primary and challenge-infected calves. Parasitol Res 2010; 106:595-605. [PMID: 20066437 DOI: 10.1007/s00436-009-1705-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 12/11/2009] [Indexed: 12/23/2022]
Abstract
Eimeria bovis infections commonly have clinical impact only on young animals, as homologous reinfections generally are under immunological control. So far, the nature of the immune responses delivering protection to calves has not been investigated. In this study we therefore analysed local and peripheral proliferative T cell activities of primary and challenge-infected calves and investigated the occurrence of T cell phenotypes in the peripheral blood and in mucosal gut segments isolated either by bioptic means or by necropsies.We show that lymphocytes of E. bovis-infected calves exhibit effective, transient antigen-specific proliferative responses in the course of prepatency of primary infection but fail to react after homologous reinfection suggesting early abrogation of parasite development. Whilst in primary infection an expansion of peripheral CD4+ T cells was observed, reinfection had no effect on the proportions of CD4+, CD8+ subsets or gammadeltaTCR+ T cells. In contrast, both E. bovis primary and challenge infections had an impact on local tissue T cell distribution. Primary infection was characterised by a CD4+ T cell infiltration early in prepatency in ileum and later in colon mucosa, whereas CD8+ T cells were only found accumulating in the latter gut segment. Challenge infection led to infiltration of both CD4+ and CD8+ T cells in small intestine and large intestine segments indicating protective functions of both cell types. In contrast, infiltration of ileum and colon mucosa with gammadeltaTCR+ T cells was restricted to primary infection.
Collapse
Affiliation(s)
- Anke Sühwold
- Institute of Parasitology, Justus Liebig University Giessen, Rudolf-Buchheim-Str. 2, 35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
29
|
Pinheiro A, Costa S, Freire S, Ribeiro C, Tardy M, El-Bachá R, Costa M. Neospora caninum: Early immune response of rat mixed glial cultures after tachyzoites infection. Exp Parasitol 2010; 124:442-7. [DOI: 10.1016/j.exppara.2009.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 10/21/2009] [Accepted: 12/24/2009] [Indexed: 11/24/2022]
|
30
|
Endogenous and exogenous transplacental transmission of Neospora caninum - how the route of transmission impacts on epidemiology and control of disease. Parasitology 2009; 136:1895-900. [PMID: 19691862 DOI: 10.1017/s0031182009990588] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vertical transmission of the protozoan parasite, Neospora caninum is highly efficient and can take two forms - endogenous transplacental transmission resulting from activation of the quiescent bradyzoite stage during pregnancy or exogenous transplacental transmission resulting from ingestion of oocysts during pregnancy. Calves born carrying infection derived from either endogenous or exogenous transplacental transmission are capable of infecting their offspring when they start to breed. This review considers firstly the frequency with which exogenous and endogenous transmission occur, secondly the role of the immune response in controlling N. caninum infection and thirdly how the parasite persists in an immune-competent host and is re-activated during pregnancy.
Collapse
|
31
|
Taubert A, Hermosilla C, Sühwold A, Zahner H. Antigen-induced cytokine production in lymphocytes of Eimeria bovis primary and challenge infected calves. Vet Immunol Immunopathol 2008; 126:309-20. [PMID: 18947883 DOI: 10.1016/j.vetimm.2008.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 08/25/2008] [Accepted: 09/12/2008] [Indexed: 01/05/2023]
Abstract
Cellular immune responses against Eimeria bovis are highly specific and a key factor for the development of protection against challenge infections. In this study we investigate the cellular immune responses of E. bovis primary and challenge infected calves stimulated in vitro by E. bovis merozoite I-antigen. Primary infection was accompanied by an increase of IFN-gamma and IL-2 gene transcription in whole blood samples, peaking during prepatency (8-12 days p.i.) and declining thereafter, whereas IL-4 gene transcription was induced predominantly in patency. IL-10 mRNA was not influenced by E. bovis infection. Both CD4+ and CD8+ T cells were identified as source of IFN-gamma gene transcripts, whilst IL-2 and IL-4 gene transcription was enhanced mainly in CD4+ T cells. Increased levels of IFN-gamma transcripts and protein were also found in lymphocytes isolated from ileocaecal lymph node biopsy 8 days p.i., and in cell culture supernatants obtained from antigen-stimulated peripheral blood mononuclear cells (PBMC) at days 8 and 12 p.i., respectively. Challenge infections of calves influenced neither IFN-gamma nor IL-2 gene transcription in peripheral blood or in lymph node-derived lymphocytes. In contrast, IL-4 gene transcription was increased in lymphocytes isolated from draining lymph nodes. Besides antigen-specific reactions we also found an infection-triggered induction of the non-specific activation state of PBMC in the course of primary infection as measured by the intracellular IFN-gamma and IL-4 content of phorbol-12-myristate-13-acetate/ionomycin-stimulated PBMC. This may represent a new mechanism of immune cells of E. bovis-infected calves contributing to ongoing immune reactions.
Collapse
Affiliation(s)
- Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Rudolf-Buchheim-Str. 2, D-35392 Giessen, Germany.
| | | | | | | |
Collapse
|
32
|
Abstract
The protozoan parasite Neospora caninum is an important cause of reproductive disease in cattle worldwide. The dog is a definitive host for the parasite and the oocyst stage, shed in the faeces, is a source of infection for cattle through consumption of contaminated feed or water. In addition, transplacental transmission of N. caninum is a very efficient means of the parasite infecting a new host and this can occur in successive pregnancies and over several generations. Neospora parasites may cause disease during pregnancy resulting in death of the foetus or birth of live congenitally infected calves that may show some neurological clinical signs at birth. The stage of pregnancy at which infection/parasitaemia occurs is an important factor in determining disease severity. Neospora infection in the first trimester of pregnancy may have more severe consequences for the foetus compared with infection occurring in the final trimester. The host-parasite relationship during pregnancy is a fascinating interaction and research in this area will improve understanding of disease pathogenesis and the various consequences of the host immune response, being host-protective, parasite protective and contributing to disease pathology. Pregnancy poses an interesting problem for the immune system of the dam as she is essentially carrying a semi-allogeneic tissue graft (the foetus) without immunological rejection taking place. To facilitate the pregnancy the cytokine environment in the placenta favours the regulatory Th-2-type cytokines, whose role is to counteract the pro-inflammatory Th1-type immune responses. Protective immunity to N. caninum, similar to many other intracellular parasites, involves Th1-type immune responses, which may pose problems for the dam trying to control a Neospora infection during pregnancy. This paper will discuss the host-parasite relationship at different stages of gestation in pregnant cattle and review the implications of this research for our understanding of disease pathogenesis, parasite transmission and host protection.
Collapse
|
33
|
Upregulation of cytokines is detected in the placentas of cattle infected with Neospora caninum and is more marked early in gestation when fetal death is observed. Infect Immun 2008; 76:2352-61. [PMID: 18362132 DOI: 10.1128/iai.01780-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasite Neospora caninum causes fetal death after experimental infection of pregnant cattle in early gestation, but the fetus survives a similar infection in late gestation. An increase in Th1-type cytokines in the placenta in response to the presence of the parasite has been implicated as a contributory factor to fetal death due to immune-mediated pathological alterations. We measured, using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay, the levels of cytokines in the placentas of cattle experimentally infected with N. caninum in early and late gestation. After infection in early gestation, fetal death occurred, and the levels of mRNA of both Th1 and Th2 cytokines, including interleukin-2 (IL-2), gamma interferon (IFN-gamma), IL-12p40, tumor necrosis factor alpha (TNF-alpha), IL-18, IL-10, and IL-4, were significantly (P < 0.01) increased by up to 1,000-fold. There was extensive placental necrosis and a corresponding infiltration of CD4(+) T cells and macrophages. IFN-gamma protein expression was also highly increased, and a modest increase in transforming growth factor beta was detected. A much smaller increase in the same cytokines and IFN-gamma protein expression, with minimal placental necrosis and inflammatory infiltration, occurred after N. caninum infection in late gestation when the fetuses survived. Comparison of cytokine mRNA levels in separated maternal and fetal placental tissue that showed maternal tissue was the major source of all cytokine mRNA except for IL-10 and TNF-alpha, which were similar in both maternal and fetal tissues. These results suggest that the magnitude of the cytokine response correlates with but is not necessarily the cause of fetal death and demonstrate that a polarized Th1 response was not evident in the placentas of N. caninum-infected cattle.
Collapse
|
34
|
Bovine immune response to inoculation with Neospora caninum surface antigen SRS2 lipopeptides mimics immune response to infection with live parasites. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:659-67. [PMID: 18305105 DOI: 10.1128/cvi.00436-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Infection of cattle with Neospora caninum protozoa, the causative agent of bovine protozoal abortion, results in robust cellular and humoral immune responses, particularly CD4(+) T-lymphocyte activation and gamma interferon (IFN-gamma) secretion. In the present study, N. caninum SRS2 (NcSRS2) T-lymphocyte-epitope-bearing subunits were incorporated into DNA and peptide preparations to assess CD4(+) cell proliferation and IFN-gamma T-lymphocyte-secretion immune responses in cattle with predetermined major histocompatibility complex (MHC) genotypes. In order to optimize dendritic-cell processing, NcSRS2 DNA vaccine was delivered with granulocyte macrophage-colony-stimulating factor and Flt3 ligand adjuvant. The synthesized NcSRS2 peptides were coupled with a palmitic acid molecule (lipopeptide) and delivered with Freund's adjuvant. Cattle vaccinated with NcSRS2 DNA vaccine alone did not induce T-lymphocyte activation or IFN-gamma secretion, whereas subsequent booster inoculation with NcSRS2-lipopeptides induced robust NcSRS2-specific immune responses. Compared to the response in control animals, NcSRS2-lipopeptide-immunized cattle had significantly increased NcSRS2-specific T-lymphocyte proliferation, numbers of IFN-gamma-secreting peripheral blood mononuclear cells, and immunoglobulin G1 (IgG1) and IgG2a antibody levels. The findings show that N. caninum NcSRS2 subunits bearing T-lymphocyte epitopes induced cell-mediated immune responses similar to the protective immune responses previously described against live parasite infection, namely T-lymphocyte activation and IFN-gamma secretion. The findings support the investigation of NcSRS2 immunogens for protection against N. caninum-induced fetal infection and abortion in cattle.
Collapse
|
35
|
Quantitative analysis of parasite DNA in the blood of immunized and naïve mice after infection with Neospora caninum. Parasitology 2007; 135:175-82. [PMID: 17922929 DOI: 10.1017/s0031182007003733] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Real-time PCR was used to study the duration and level of parasitaemia in mice immunized with immune-stimulating complexes (iscoms) containing recombinant NcSRS2, one of the immunodominant surface antigens of Neospora caninum. After challenge infection, blood was collected daily for 9 days. During this period the amounts of parasite DNA detected in immunized mice were significantly lower (P<0.001), and the duration of parasitaemia appeared to be shorter, than in non-immunized controls. Furthermore, the degree of parasitaemia seemed to correlate well with the amount of N. caninum DNA in the brain 3 weeks post-inoculation and with disease severity measured as changes in body weight. These results indicate that the protective immunity induced by the NcSRS2-iscoms was sufficient to reduce the level of parasitaemia, which probably reduced the number of parasites reaching the brain, and could be the reason for the reduction in brain parasite load and clinical symptoms. Furthermore, real-time PCR was found to be a sensitive means for rapid assessment of N. caninum in blood.
Collapse
|
36
|
Innes EA, Bartley PM, Maley SW, Wright SE, Buxton D. Comparative host–parasite relationships in ovine toxoplasmosis and bovine neosporosis and strategies for vaccination. Vaccine 2007; 25:5495-503. [PMID: 17367899 DOI: 10.1016/j.vaccine.2007.02.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 01/24/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Toxoplasma gondii and Neospora caninum are important causes of reproductive loss in ruminant species worldwide. Both parasites cause disease during pregnancy that may result in foetal death or birth of live congenitally infected offspring. T. gondii is also an important human pathogen with the main risk groups including pregnant women and immuno-compromised individuals, although clinical disease has also been observed in outbreaks among immuno-competent people. While the two parasites are closely related there are distinct differences between the two in their interactions with different host species and subsequent clinical outcome. This paper discusses the respective host-parasite relationships in ovine toxoplasmosis and bovine neosporosis and how the immune response may be host-protective, parasite-protective or contribute to disease pathogenesis, and how this knowledge may help in the development of more effective and targeted vaccination strategies.
Collapse
Affiliation(s)
- Elisabeth A Innes
- Moredun Research Institute, Pentlands Science Park, Edinburgh EH26 OPZ, United Kingdom.
| | | | | | | | | |
Collapse
|
37
|
Rosbottom A, Guy CS, Gibney EH, Smith RF, Valarcher JF, Taylor G, Williams DJL. Peripheral immune responses in pregnant cattle following Neospora caninum infection. Parasite Immunol 2007; 29:219-28. [PMID: 17371459 DOI: 10.1111/j.1365-3024.2007.00936.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experimental infection of cattle with Neospora caninum in early gestation causes foetal death, but the foetus survives infection in late gestation. An immunological mechanism of abortion has been suggested; therefore changes in the maternal immune response during pregnancy could account for these differences. We have investigated the peripheral immune responses of pregnant cattle following an intravenous inoculation with 10(7) N. caninum tachyzoites in early and late gestation. Percentages of CD2+ and CD4+ T-cells in peripheral blood mononuclear cells (PBMC) increased 1-2 weeks after infection in both early (day 70) and late (day 210) gestation, and percentages of CD8+ T-cells increased 1-2 weeks after infection at day 70. Interleukin-4 (IL-4) and interferon-gamma (IFN-gamma) mRNA expression in PBMC increased 1-2 weeks after infection at day 210 and IL-4 increased 1-2 weeks after infection at day 70. Immunomagnetic isolation of CD4+ cells from PBMC showed that they were a major source of IL-4 and IFN-gamma, and expression of both cytokines increased in CD4+ cells after infection in early and late gestation. These results suggest that CD4+ cells proliferate and express IL-4 and IFN-gamma in response to N. caninum irrespective of the stage of gestation when infection occurs.
Collapse
Affiliation(s)
- A Rosbottom
- Veterinary Parasitology, Liverpool School of Tropical Medicine/Faculty of Veterinary Science, University of Liverpool, Liverpool, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
Innes EA, Vermeulen AN. Vaccination as a control strategy against the coccidial parasitesEimeria,ToxoplasmaandNeospora. Parasitology 2007; 133 Suppl:S145-68. [PMID: 17274844 DOI: 10.1017/s0031182006001855] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The protozoan parasitesEimeriaspp.Toxoplasma gondiiandNeospora caninumare significant causes of disease in livestock worldwide andT. gondiiis also an important human pathogen. Drugs have been used with varying success to help control aspects of these diseases and commercial vaccines are available for all three groups of parasites. However, there are issues with increasing development of resistance to many of the anti-coccidial drugs used to help control avian eimeriosis and public concerns about the use of drugs in food animals. In addition there are no drugs available that can act against the tissue cyst stage of eitherT. gondiiorN. caninumand thus cure animals or people of infection. All three groups of parasites multiply within the cells of their host species and therefore cell mediated immune mechanisms are thought to be an important component of host protective immunity. Successful vaccination strategies for bothEimeriaandToxoplasmahave relied on using a live vaccination approach using attenuated parasites which allows correct processing and presentation of antigen to the host immune system to stimulate appropriate cell mediated immune responses. However, live vaccines can have problems with safety, short shelf-life and large-scale production; therefore there is continued interest in devising new vaccines using defined recombinant antigens. The major challenges in devising novel vaccines are to select relevant antigens and then present them to the immune system in an appropriate manner to enable the induction of protective immune responses. With all three groups of parasites, vaccine preparations comprising antigens from the different life cycle stages may also be advantageous. In the case ofEimeriaparasites there are also problems with strain-specific immunity therefore a cocktail of antigens from different parasite strains may be required. Improving our knowledge of the different parasite transmission routes, host-parasite relationships, disease pathogenesis and determining the various roles of the host immune response being at times host-protective, parasite protective and in causing immunopathology will help to tailor a vaccination strategy against a particular disease target. This paper discusses current vaccination strategies to help combat infections withEimeria,ToxoplasmaandNeosporaand recent research looking towards developing new vaccine targets and approaches.
Collapse
Affiliation(s)
- E A Innes
- Moredun Research Institute, Pentlands Science Park, Edinburgh EH26 OPZ, UK.
| | | |
Collapse
|
39
|
Maley SW, Buxton D, Macaldowie CN, Anderson IE, Wright SE, Bartley PM, Esteban-Redondo I, Hamilton CM, Storset AK, Innes EA. Characterization of the immune response in the placenta of cattle experimentally infected with Neospora caninum in early gestation. J Comp Pathol 2006; 135:130-141. [PMID: 16997005 DOI: 10.1016/j.jcpa.2006.07.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 07/05/2006] [Indexed: 11/30/2022]
Abstract
A serial examination of three groups of cattle infected intravenously (iv) (Group 1, n=8) or subcutaneously (sc) (Group 2, n=8) with live Neospora caninum tachyzoites or with VERO cells (Group 3, n=8) at 70 days' gestation was carried out and the nature of the inflammatory responses in the placenta and the presence of parasite antigen were analysed. Immune cells expressing CD3, CD4, CD8, gamma delta (gammadelta) T-cell receptors (TCR), CD79alpha cytoplasmic (cy) (B cells) and NKp46 [natural killer (NK) cells] antigens were identified immunohistochemically and cells expressing mRNA for interferon-gamma (IFN-gamma) were labelled by in-situ hybridization. Intravenous inoculation caused mortality in all fetuses from 28 days post-inoculation (dpi) onwards. Subcutaneous inoculation caused mortality in 50% of the animals by 28dpi. Pathological changes in the placenta consisted of necrosis of fetal placental villi, necrosis and inflammation in adjacent areas of the maternal septum and inflammation at the base of the maternal caruncle. The inflammatory infiltrate consisted mainly of CD3(+) lymphocytes, dominated by CD4(+) and gammadelta TCR(+) cells, with CD8(+) cells present to a lesser extent. The results from the control group indicated fewer NK cells than those occurring in the placenta of human beings or mice. Infiltration of CD4(+) cells and NKp46(+) cells was observed in the caruncular base and septa 14 days after infection, whereas infiltration of gammadelta TCR(+) cells was observed from 28 dpi onwards. To our knowledge this is the first report on the presence and distribution of NK cells in the bovine placenta. Maternal inflammatory cells expressing mRNA for IFN-gamma were identified in animals inoculated with parasites iv or sc at 14 and 28 dpi, respectively. In the sc-inoculated dams with live fetuses at 28, 42 and 56dpi, there was no evidence of parasite antigen, infiltration of immune cells or production of IFN-gamma, suggesting that the parasite had not reached the placenta. The exact cause of fetal death was not established. Tissue destruction by the parasite may have occurred; in addition, there may have been a T helper 1 (Th-1) immune response to the neospora infection at the materno-fetal interface, resulting in infiltrations of CD4T cells, gammadelta T cells and NK cells and the subsequent production of IFN-gamma. It is possible that a pro-inflammatory Th-1 response early in gestation protects the dam by eliminating the parasite; however, it may lead to destruction of the placental tissues themselves and thus be incompatible with fetal survival.
Collapse
MESH Headings
- Animals
- CD3 Complex/genetics
- CD3 Complex/metabolism
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cattle
- Cattle Diseases/immunology
- Cattle Diseases/metabolism
- Cattle Diseases/parasitology
- Cattle Diseases/pathology
- Coccidiosis/immunology
- Coccidiosis/pathology
- Coccidiosis/veterinary
- Female
- Fetal Death
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Neospora/immunology
- Neospora/pathogenicity
- Placenta/immunology
- Placenta/metabolism
- Placenta/parasitology
- Placenta/pathology
- Pregnancy
- Pregnancy, Animal/immunology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th1 Cells/pathology
Collapse
Affiliation(s)
- S W Maley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ.
| | - D Buxton
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ
| | - C N Macaldowie
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ
| | - I E Anderson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ
| | - S E Wright
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ
| | - P M Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ
| | - I Esteban-Redondo
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ
| | - C M Hamilton
- Department of Zoology, Trinity College, Dublin 2, Ireland
| | - A K Storset
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, PO Box 8146, dep., N-0033, Oslo, Norway
| | - E A Innes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ
| |
Collapse
|
40
|
Williams DJL, Guy CS, Smith RF, Ellis J, Björkman C, Reichel MP, Trees AJ. Immunization of cattle with live tachyzoites of Neospora caninum confers protection against fetal death. Infect Immun 2006; 75:1343-8. [PMID: 17145943 PMCID: PMC1828590 DOI: 10.1128/iai.00777-06] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neospora caninum is an obligate intracellular protozoan parasite that causes abortion in cattle. It is normally found as a latent infection controlled by a T-helper-cell type 1 response involving CD4(+) cytotoxic T cells and gamma interferon. Cattle may be infected by two different routes: transplacentally as a result of activation of the latent infection in the mother causing congenital infection or abortion and by ingestion of oocysts, which, if it occurs during gestation, can also result in abortion. Here, for the first time, we establish proof that live vaccination protects against fetal death, whereas immunization using whole-tachyzoite lysate in different adjuvants fails to protect against fetal death. Strong antibody responses were induced in all the vaccinated groups, and the quality and magnitude of these responses were similar in the live- and the lysate-vaccinated groups. In contrast, only the group immunized with live tachyzoites had strong cellular and gamma interferon responses prior to challenge, and these responses correlated with protection against fetopathy. These results suggest that a cellular immune response may be important in the mechanisms involved in protection against N. caninum-associated abortions.
Collapse
Affiliation(s)
- D J L Williams
- Veterinary Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
41
|
Graham SP, Saya R, Awino E, Ngugi D, Nyanjui JK, Hecker R, Taracha ELN, Nene V. Immunostimulatory CpG oligodeoxynucleotides enhance the induction of bovine CD4+ cytotoxic T-lymphocyte responses against the polymorphic immunodominant molecule of the protozoan parasite Theileria parva. Vet Immunol Immunopathol 2006; 115:383-9. [PMID: 17197038 DOI: 10.1016/j.vetimm.2006.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 10/18/2006] [Accepted: 11/15/2006] [Indexed: 11/21/2022]
Abstract
Enhancement of the induction of cytotoxic T-cell responses by immunostimulatory CpG oligodeoxynucleotides has been described in humans and mouse models. The present study attempted to address whether CpG has a similar effect in cattle. Immunisation of cattle with a recombinant form of the polymorphic immunodominant molecule from Theileria parva emulsified with immunostimulatory CpG oligodeoxynucleotides in adjuvant had no effect on the induction of antibody responses including the isotype profile, but significantly enhanced the induction of cytolytic responses that were mediated by CD4+CD3+ T cells utilizing the perforin-granzyme pathway.
Collapse
Affiliation(s)
- Simon P Graham
- International Livestock Research Institute, PO Box 30709, Nairobi 00100, Kenya.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hemphill A, Vonlaufen N, Naguleswaran A. Cellular and immunological basis of the host-parasite relationship during infection with Neospora caninum. Parasitology 2006; 133:261-78. [PMID: 16753081 DOI: 10.1017/s0031182006000485] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 04/04/2006] [Accepted: 04/08/2006] [Indexed: 11/07/2022]
Abstract
Neospora caninum is an apicomplexan parasite that is closely related to Toxoplasma gondii, the causative agent of toxoplasmosis in humans and domestic animals. However, in contrast to T. gondii, N. caninum represents a major cause of abortion in cattle, pointing towards distinct differences in the biology of these two species. There are 3 distinct key features that represent potential targets for prevention of infection or intervention against disease caused by N. caninum. Firstly, tachyzoites are capable of infecting a large variety of host cells in vitro and in vivo. Secondly, the parasite exploits its ability to respond to alterations in living conditions by converting into another stage (tachyzoite-to-bradyzoite or vice versa). Thirdly, by analogy with T. gondii, this parasite has evolved mechanisms that modulate its host cells according to its own requirements, and these must, especially in the case of the bradyzoite stage, involve mechanisms that ensure long-term survival of not only the parasite but also of the host cell. In order to elucidate the molecular and cellular bases of these important features of N. caninum, cell culture-based approaches and laboratory animal models are being exploited. In this review, we will summarize the current achievements related to host cell and parasite cell biology, and will discuss potential applications for prevention of infection and/or disease by reviewing corresponding work performed in murine laboratory infection models and in cattle.
Collapse
Affiliation(s)
- A Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| | | | | |
Collapse
|
43
|
Dubey JP, Buxton D, Wouda W. Pathogenesis of bovine neosporosis. J Comp Pathol 2006; 134:267-89. [PMID: 16712863 DOI: 10.1016/j.jcpa.2005.11.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 11/28/2005] [Indexed: 11/29/2022]
Abstract
The protozoan parasite Neospora caninum is a major pathogen of cattle and dogs, being a significant cause of abortion in cattle in many countries. It is one of the most efficiently transmitted parasites, with up to 90% of cattle infected in some herds. The pathogenesis of abortion due to Neospora is complex and only partially understood. Losses occur after a primary infection during pregnancy but more commonly as the result of recrudescence of a persistent infection during pregnancy. Parasitaemia is followed by invasion of the placenta and fetus. It is suggested that abortion occurs when primary parasite-induced placental damage jeopardises fetal survival directly or causes release of maternal prostaglandins that in turn cause luteolysis and abortion. Fetal damage may also occur due to primary tissue damage caused by the multiplication of N. caninum in the fetus or due to insufficient oxygen/nutrition, secondary to placental damage. In addition, maternal immune expulsion of the fetus may occur associated with maternal placental inflammation and the release of maternal pro-inflammatory cytokines in the placenta. Thus N. caninum is a primary pathogen capable of causing abortion either through maternal placental inflammation, maternal and fetal placental necrosis, fetal damage, or a combination of all three. The question of how N. caninum kills the fetus exposes the complex and finely balanced biological processes that have evolved to permit bovine and other mammalian pregnancies to occur. Defining these immunological mechanisms will shed light on potential methods of control of bovine neosporosis and enrich our understanding of the continuity of mammalian and protozoal survival.
Collapse
Affiliation(s)
- J P Dubey
- Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, BARC-East, Building 1001, 10300 Baltimore Avenue, Beltsville, MD 20705-2350, USA
| | | | | |
Collapse
|
44
|
Abstract
Current vaccine strategies against influenza focus on generating robust antibody responses. Because of the high degree of antigenic drift among circulating influenza strains over the course of a year, vaccine strains must be reformulated specifically for each influenza season. The time delay from isolating the pandemic strain to large-scale vaccine production would be detrimental in a pandemic situation. A vaccine approach based on cell-mediated immunity that avoids some of these drawbacks is discussed here. Specifically, cell-mediated responses typically focus on peptides from internal influenza proteins, which are far less susceptible to antigenic variation. We review the literature on the role of CD4+ and CD8+ T cell-mediated immunity in influenza infection and the available data on the role of these responses in protection from highly pathogenic influenza infection. We discuss the advantages of developing a vaccine based on cell-mediated immune responses toward highly pathogenic influenza virus and potential problems arising from immune pressure.
Collapse
Affiliation(s)
- Paul G Thomas
- St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
45
|
Williams DJL, Trees AJ. Review Article. Protecting babies: vaccine strategies to prevent foetopathy in Neospora caninum-infected cattle. Parasite Immunol 2006; 28:61-7. [PMID: 16441503 DOI: 10.1111/j.1365-3024.2005.00809.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neospora caninum is an apicomplexan protozoan parasite that is a significant infectious abortifacient agent in cattle. Despite the fact that it is a member of a well described taxonomic group, it is a relatively newly discovered parasite and its biology is not yet fully understood. Cattle become infected either congenitally via transplacental transmission or post-natally by ingesting oocysts derived from the definitive host; dogs and coyotes are the only definitive hosts that have been described to date. It is not known which of these two forms of transmission occurs most frequently and which is the most likely to result in abortion; there are no drugs available to treat infected cattle, so current control strategies rely on prevention of infection by management methods and strict hygiene; an effective vaccine would be a great advantage in its control. Neospora caninum is an economically important veterinary pathogen, but we can also draw analogies between its foetopathic effects and those of human pathogens such as Toxoplasma gondii, Chlamydophila abortus and Plasmodium falciparum. Understanding the immune response and the materno-foetal relationship in N. caninum-infected cattle may help us to design vaccination strategies, not only for neosporosis but also for other foetopathic agents.
Collapse
Affiliation(s)
- D J L Williams
- Veterinary Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | | |
Collapse
|
46
|
Boysen P, Klevar S, Olsen I, Storset AK. The protozoan Neospora caninum directly triggers bovine NK cells to produce gamma interferon and to kill infected fibroblasts. Infect Immun 2006; 74:953-60. [PMID: 16428740 PMCID: PMC1360307 DOI: 10.1128/iai.74.2.953-960.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cells are considered to be key players in the early innate responses to protozoan infections, primarily indirectly by producing gamma interferon (IFN-gamma) in response to cytokines, like interleukin 12 (IL-12). We demonstrate that live, as well as heat-inactivated, tachyzoites of Neospora caninum, a Toxoplasma-like protozoan, directly trigger production of IFN-gamma from purified, IL-2-activated bovine NK cells. This response occurred independently of IL-12 but was increased by the addition of the cytokine. A similar IFN-gamma response was measured in cocultures of NK cells and N. caninum-infected autologous fibroblasts. However, no NK cell-derived IFN-gamma response was detected when cells were cultured with soluble antigens from the organism, indicating that intact tachyzoites or nonsoluble components are necessary for NK cell triggering. Furthermore, N. caninum-infected autologous fibroblasts had increased susceptibility to NK cell cytotoxicity compared to uninfected fibroblasts. This cytotoxicity was largely mediated by a perforin-mediated mechanism. The activating receptor NKp46 was involved in cytotoxicity against fibroblasts but could not explain the increased cytotoxicity against infected targets. Interestingly, N. caninum tachyzoites were able to infect cultured NK cells, in which tachyzoites proliferated inside parasitophorous vacuoles. Together, these findings underscore the role of NK cells as primary responders during a protozoan infection, describe intracellular protozoan infection of NK cells in vitro for the first time, and represent the first functional study of purified bovine NK cells in response to infection.
Collapse
Affiliation(s)
- Preben Boysen
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O. Box 8146 Dep., N-0033 Oslo, Norway
| | | | | | | |
Collapse
|
47
|
Teixeira L, Marques A, Meireles CS, Seabra AR, Rodrigues D, Madureira P, Faustino AMR, Silva C, Ribeiro A, Ferreira P, Correia da Costa JM, Canada N, Vilanova M. Characterization of the B-cell immune response elicited in BALB/c mice challenged with Neospora caninum tachyzoites. Immunology 2005; 116:38-52. [PMID: 16108816 PMCID: PMC1802410 DOI: 10.1111/j.1365-2567.2005.02195.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Activation of B cells occurring in hosts infected with protozoan parasites has been implicated either in protective or parasite-evasion immune-mediated mechanisms. Intraperitoneal inoculation of Neospora caninum tachyzoites into BALB/c mice induces an acute response characterized by a rapid increase in the numbers of CD69-expressing peritoneal and splenic B cells. This early B-cell stimulatory effect preceded an increase in the numbers of total and immunoglobulin-secreting splenic B cells and a rise in serum levels of N. caninum-specific immunoglobulins, predominantly of the immunoglobulin G2a (IgG2a) and IgM isotypes. Increased numbers of B cells expressing the costimulatory molecules CD80 and CD86 were also observed in the N. caninum-infected mice. The B-cell stimulatory effect observed in mice challenged with N. caninum tachyzoites was reduced in mice challenged with gamma-irradiated parasites. Contrasting with the peripheral B-cell expansion, a depletion of B-lineage cells was observed in the bone-marrow of the N. caninum-infected mice. Intradermal immunization of BALB/c mice with diverse N. caninum antigenic preparations although inducing the production of parasite-specific antibodies nevertheless impaired interferon-gamma (IFN-gamma) mRNA expression and caused lethal susceptibility to infection in mice inoculated with a non-lethal parasitic inoculum. This increased susceptibility to N. caninum was not observed in naïve mice passively transferred with anti-N. caninum antibodies. Taken together, these results show that N. caninum induces in BALB/c mice a parasite-specific, non-polyclonal, B-cell response, reinforce previous observations made by others showing that immunization with N. caninum whole structural antigens increases susceptibility to murine neosporosis and further stress the role of IFN-gamma in the host protective immune mechanisms against this parasite.
Collapse
Affiliation(s)
- Luzia Teixeira
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Innes EA, Wright S, Bartley P, Maley S, Macaldowie C, Esteban-Redondo I, Buxton D. The host–parasite relationship in bovine neosporosis. Vet Immunol Immunopathol 2005; 108:29-36. [PMID: 16098610 DOI: 10.1016/j.vetimm.2005.07.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Infection with the protozoan parasite Neospora caninum is thought to be a major cause of reproductive failure in cattle worldwide. Cattle infected with the parasite are three to seven times more likely to abort compared to uninfected cattle. The parasite may be transmitted to cattle through the ingestion of oocysts that are shed in the faeces of acutely infected dogs (definitive host of N. caninum) or by congenital infection from mother to foetus via the placenta. Interestingly, transplacental transmission can occur over consecutive pregnancies and congenitally infected heifers can transmit the parasite to their own offspring. This repeated vertical transmission observed in naturally infected cattle suggests that cattle do not easily develop effective immunity to the parasite, presenting a significant challenge to the development of a control strategy based on vaccination. Neosporosis is a disease of pregnancy and studying the bovine maternal and foetal immune responses during pregnancy will help us to understand the change in the balance between the parasite and the host that may result in disease of the foetus. Studies in non-pregnant cattle and in murine models of infection have shown the importance of T-helper 1-type immune responses involving pro-inflammatory cytokines, such as IFNgamma and IL-12, in limiting intracellular multiplication of the parasite. During pregnancy, changes occur in the immune system allowing the mother to accept the foetal allograft. Research in other species has stressed the crucial role of T-helper 2-type cytokines at the materno-foetal interface in maintaining the pregnancy and regulating the potentially damaging effect of Th-1 responses. Studies in cattle have shown that cell proliferation and IFNgamma responses may be significantly down-regulated around mid-gestation. This may mean that cattle are less able to cope with N. caninum infection at this time and are more likely to transmit the parasite to the foetus. Another important factor is the gestational age and hence immuno-competence of the foetus at the time of infection. Early in gestation, N. caninum infection of the placenta and subsequently the foetus usually proves fatal, whereas infection occurring in mid to late pregnancy may result in the birth of a congenitally infected but otherwise healthy calf. Studies of foetal immune responses have shown that at 14 weeks of gestation, lymphocytes only respond to mitogen, while by 24 weeks (mid-gestation), they respond to antigen by proliferating and releasing IFNgamma. Clearly, there are several factors influencing the outcome of N. caninum infection in pregnancy: the timing, quantity and duration of parasitaemia, the effectiveness of the maternal immune response and the ability of the foetus to mount an immune response against the parasite. The challenge is to design a vaccine that will prevent foetal infection by N. caninum. This is likely to involve a fine balancing act with the immune system that will allow intervention in a manner that will tip the host-parasite balance in favour of the host without compromising the pregnancy.
Collapse
Affiliation(s)
- Elisabeth A Innes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 OPZ, UK. lee.innes.@moredun.ac.uk
| | | | | | | | | | | | | |
Collapse
|
49
|
Tuo W, Fetterer RH, Davis WC, Jenkins MC, Dubey JP. NEOSPORA CANINUM ANTIGENS DEFINED BY ANTIGEN-DEPENDENT BOVINE CD4+T CELLS. J Parasitol 2005; 91:564-8. [PMID: 16108548 DOI: 10.1645/ge-386r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Neosporosis is an important cause of pregnancy loss in cattle worldwide. The objective of the present study was to identify Neospora caninum antigens as vaccine candidates using antigen-specific, short-term CD4+ T cells established from N. caninum-immunized and -challenged cows. Whole N. caninum tachyzoite lysate was separated into 6 fractions by DEAE anion-exchange chromatography using high-pressure liquid chromatography (HPLC). The CD4+ T-cell proliferation assay results indicated that antigenic activity was associated with proteins from HPLC fractions 4-6, with fraction 5 exhibiting the highest antigenic activity. Also, SDS-PAGE analysis revealed a 16-kDa protein in fractions 4-6 that was recognized by anti-N. caninum antibodies. This 16-kDa protein was absent in other fractions, and it may be a target of a T-cell response in cattle. Further identification of immunogenic proteins of N. caninum may facilitate development of subunit vaccines against neosporosis.
Collapse
Affiliation(s)
- Wenbin Tuo
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA.
| | | | | | | | | |
Collapse
|
50
|
Staska LM, Davies CJ, Brown WC, McGuire TC, Suarez CE, Park JY, Mathison BA, Abbott JR, Baszler TV. Identification of vaccine candidate peptides in the NcSRS2 surface protein of Neospora caninum by using CD4+ cytotoxic T lymphocytes and gamma interferon-secreting T lymphocytes of infected holstein cattle. Infect Immun 2005; 73:1321-9. [PMID: 15731029 PMCID: PMC1064910 DOI: 10.1128/iai.73.3.1321-1329.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, our laboratory showed that Holstein cattle experimentally infected with Neospora caninum develop parasite-specific CD4+ cytotoxic T lymphocytes (CTL) that lyse infected, autologous target cells through a perforin-granzyme pathway. To identify specific parasite antigens inducing bovine CTL and helper T-lymphocyte responses for vaccine development against bovine neosporosis, the tachyzoite major surface proteins NcSAG1 and NcSRS2 were targeted. In whole tachyzoite antigen-expanded bovine T-lymphocyte lines, recombinant NcSRS2 induced potent memory CD4+- and CD8+-T-lymphocyte activation, as indicated by proliferation and gamma interferon (IFN-gamma) secretion, while recombinant NcSAG1 induced a minimal memory response. Subsequently, T-lymphocyte epitope-bearing peptides of NcSRS2 were mapped by using overlapping peptides covering the entire NcSRS2 sequence. Four experimentally infected cattle with six different major histocompatibility complex (MHC) class II haplotypes were the source of immune cells used to identify NcSRS2 peptides presented by Holstein MHC haplotypes. NcSRS2 peptides were mapped by using IFN-gamma secretion by rNcSRS2-stimulated, short-term T-lymphocyte cell lines, IFN-gamma enzyme-linked immunospot (ELISPOT) assay with peripheral blood mononuclear cells, and 51Cr release cytotoxicity assay of rNcSRS2-stimulated effector cells. Four N. caninum-infected Holstein cattle developed NcSRS2 peptide-specific T lymphocytes detected ex vivo in peripheral blood by IFN-gamma ELISPOT and in vitro by measuring T-lymphocyte IFN-gamma production and cytotoxicity. An immunodominant region of NcSRS2 spanning amino acids 133 to 155 was recognized by CD4+ T lymphocytes from the four cattle. These findings support investigation of subunit N. caninum vaccines incorporating NcSRS2 gene sequences or peptides for induction of NcSRS2 peptide-specific CTL and IFN-gamma-secreting T lymphocytes in cattle with varied MHC genotypes.
Collapse
Affiliation(s)
- Lauren M Staska
- Department of Veterinary Microbiology and Pathology, Bustad Hall, Washington State University, Pullman, WA 99164-7040, USA
| | | | | | | | | | | | | | | | | |
Collapse
|