1
|
Singer M, Kandeel F, Husseiny MI. Salmonella-Based Vaccine: A Promising Strategy for Type 1 Diabetes. Vaccines (Basel) 2025; 13:405. [PMID: 40333284 PMCID: PMC12031388 DOI: 10.3390/vaccines13040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the progressive destruction of insulin-producing β-cells in the pancreas. Currently, no therapy exists to halt or cure T1D. Vaccination with diabetic autoantigens may offer protection against T1D development. Genetically modified, attenuated Salmonella utilizing the Salmonella-Pathogenicity Island 2 (SPI2)-encoded Type Three Secretion System (T3SS) can elicit robust immune responses, making it an attractive vaccine platform. Using SPI2-T3SS to deliver an autoantigen alongside immunomodulators and anti-CD3 antibodies induces antigen-specific regulatory T-cells. Our preclinical studies demonstrated the efficacy of a Salmonella-based vaccine in both preventing and reversing autoimmune diabetes in non-obese diabetic (NOD) mice while also exploring its genetic modifications, underlying mechanisms, and delivery strategies. This review evaluates the advantages of an oral T1D vaccine employing live, attenuated Salmonella for autoantigen delivery. We also discuss future directions for advancing this strategy in the treatment of other autoimmune diseases.
Collapse
Affiliation(s)
- Mahmoud Singer
- Department of Radiological Sciences, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Artur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohamed I. Husseiny
- Department of Translational Research and Cellular Therapeutics, Artur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Chatterjee R, Chowdhury AR, Nair AV, Hajra D, Kar A, Datey A, Shankar S, Mishra RK, Chandra N, Chakravortty D. Salmonella Typhimurium PgtE is an essential arsenal to defend against the host resident antimicrobial peptides. Microbiol Res 2023; 271:127351. [PMID: 36931126 DOI: 10.1016/j.micres.2023.127351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Salmonella enterica serovar Typhimurium is a common cause of gastroenteritis in humans and occasionally causes systemic infection. Salmonella's ability to survive and replicate within macrophages is an important characteristic during systemic infection. The outer membrane protease PgtE of S. enterica is a member of the Omptin family of outer membrane aspartate proteases which has well-characterized proteolytic activities in-vitro against a wide range of physiologically relevant substrates. However, no study has been done so far that draws a direct correlation between these in-vitro observations and the biology of the pathogen in-vivo. The main goals of this study were to characterize the pathogenesis-associated functions of pgtE and study its role in the intracellular survival and in-vivo virulence of Salmonella Typhimurium. Our study elucidated a possible role of Salmonella Typhimurium pgtE in combating host antimicrobial peptide- bactericidal/ permeability increasing protein (BPI) to survive in human macrophages. The pgtE-deficient strain of Salmonella showed attenuated proliferation and enhanced colocalization with BPI in U937 and Thp1 cells. In the presence of polymixin B, the attenuated in-vitro survival of STM ΔpgtE suggested a role of PgtE against the antimicrobial peptides. In addition, our study revealed that compared to the wild type Salmonella, the pgtE mutant is replication-deficient in C57BL/6 mice. Further, we showed that PgtE interacts directly with several antimicrobial peptides (AMPs) in the host gut. This gives the pathogen a survival advantage and helps to mount a successful infection in the host.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipasree Hajra
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Arpita Kar
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Akshay Datey
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Santhosh Shankar
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Rishi Kumar Mishra
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Nagasuma Chandra
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India; Adjunct Faculty, Indian Institute of Science Research and Education, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
3
|
Jafari Najaf Abadi MH, Abyaneh FA, Zare N, Zamani J, Abdoli A, Aslanbeigi F, Hamblin MR, Tarrahimofrad H, Rahimi M, Hashemian SM, Mirzaei H. In silico design and immunoinformatics analysis of a chimeric vaccine construct based on Salmonella pathogenesis factors. Microb Pathog 2023; 180:106130. [PMID: 37121524 DOI: 10.1016/j.micpath.2023.106130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Currently, there are two vaccines based on killed and/or weakened Salmonella bacteria, but no recombinant vaccine is available for preventing or treating the disease. We used an in silico approach to design a multi-epitope vaccine against Salmonella using OmpA, OmpS, SopB, SseB, SthA and FilC antigens. We predicted helper T lymphocyte, cytotoxic T lymphocyte, and IFN-γ epitopes. The FilC sequence was used as a bovine TLR5 agonist, and the linkers KK, AAY, GPGPG and EAAAK were used to connect epitopes. The final sequence consisted of 747 amino acid residues, and the expressed soluble protein (∼79.6 kDa) was predicted to be both non-allergenic and antigenic. The tertiary structure of modeled protein was refined and validated, and the interactions of vaccine 3D structure were evaluated using molecular docking, and molecular dynamics simulation (RMSD, RMSF and Gyration). This structurally stable protein could interact with human TLR5. The C-ImmSim server predicted that this proposed vaccine likely induces an immune response by stimulating T and B cells, making it a potential candidate for further evaluation for the prevention and treatment of Salmonella infection.
Collapse
Affiliation(s)
| | | | - Noushid Zare
- Faculty of Pharmacy, International Campus, Tehran University of Medical Science, Tehran, Iran
| | - Javad Zamani
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Amirhossein Abdoli
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Aslanbeigi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Mohammadreza Rahimi
- Infectious Diseases Research Center, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Seyed Mohammadreza Hashemian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, 1983535511, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Mbongue JC, Alhoshani A, Rawson J, Garcia PA, Gonzalez N, Ferreri K, Kandeel F, Husseiny MI. Tracking of an Oral Salmonella-Based Vaccine for Type 1 Diabetes in Non-obese Diabetic Mice. Front Immunol 2020; 11:712. [PMID: 32411136 PMCID: PMC7198770 DOI: 10.3389/fimmu.2020.00712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/30/2020] [Indexed: 11/28/2022] Open
Abstract
Type 1 diabetes (T1D) arises secondary to immune-driven destruction of pancreatic β-cells and manifests as insulin-deficient hyperglycemia. We showed that oral vaccination with live attenuated Salmonella, which simultaneously delivers autoantigens and a TGFβ expression vector to immune cells in the gut mucosa, provides protection against the progression of T1D in non-obese diabetic (NOD) mice. In this study we employed the Sleeping Beauty (SB) transposon system that is composed of a transposase and transposon encoding the td-Tomato to express red fluorescent protein (RFP) to permanently mark the cells that take up the Salmonella vaccine. After animal vaccination, the transposon labeled-dendritic cells (DCs) with red fluorescence appeared throughout the secondary lymphoid tissues. Furthermore, Sleeping Beauty containing tgfβ1 gene (SB-tgfβ1) co-expressed TGFβ and RFP. The labeled DCs were detected predominantly in Peyer's patches (PP) and mesenteric lymph nodes (MLN) and expressed CD103 surface marker. CD103+ DCs induced tolerogenic effects and gut homing. TGFβ significantly increased programmed death-ligand-1 (PDL-1 or CD274) expression in the DCs in the MLN and PP of treated mice. Also, TGFβ increased cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) levels in CD4+ cells in MLN and PP. Interestingly, DCs increased in all lymphatic organs of mice vaccinated with oral live Salmonella-based vaccine expressing preproinsulin (PPI), in combination with TGFβ, IL10, and subtherapeutic-doses of anti-CD3 mAb compared with vehicle-treated mice. These DCs are mostly tolerogenic in MLN and PP. Furthermore the DCs obtained from vaccine-treated but not vehicle-treated mice suppressed in vitro T cell proliferation. These data suggest that the MLN and the PP are a central hub for the beneficial anti-diabetic effects of an oral Salmonella-based vaccine prevention of diabetes in rodents.
Collapse
Affiliation(s)
- Jacques C. Mbongue
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jeffrey Rawson
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Pablo A. Garcia
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Nelson Gonzalez
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Kevin Ferreri
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Mohamed I. Husseiny
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Wang Y, Cai Y, Zhang J, Liu D, Gong X, Pan Z, Geng S, Jiao X. Controversy Surrounding the Function of SpiC Protein in Salmonella: An Overview. Front Microbiol 2019; 10:1784. [PMID: 31440219 PMCID: PMC6693482 DOI: 10.3389/fmicb.2019.01784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/18/2019] [Indexed: 01/19/2023] Open
Abstract
Salmonella is an important pathogenic microorganism that can infect humans and animals and has been studied globally as a model microorganism for its pathogenesis. The SpiC protein of T3SS2 is a significant factor that has been studied for almost 20 years, but to date, the function/effect of SpiC in the pathogenesis of Salmonella has not been completely understood. There is controversy over the functions of SpiC protein in the literature. Thus, an overview of the literature on SpiC protein is provided here which highlights expression features of SpiC protein and its various functions and effect.
Collapse
Affiliation(s)
- Yaonan Wang
- College of Bioscience and Biotechnology and College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuan Cai
- College of Bioscience and Biotechnology and College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jian Zhang
- College of Bioscience and Biotechnology and College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Dong Liu
- Research and Development Center, State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, China
| | - Xiao Gong
- Research and Development Center, State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, China
| | - Zhiming Pan
- College of Bioscience and Biotechnology and College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shizhong Geng
- College of Bioscience and Biotechnology and College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xin'an Jiao
- College of Bioscience and Biotechnology and College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Arora D, Sharma C, Jaglan S, Lichtfouse E. Live-Attenuated Bacterial Vectors for Delivery of Mucosal Vaccines, DNA Vaccines, and Cancer Immunotherapy. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [PMCID: PMC7123696 DOI: 10.1007/978-3-030-01881-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccines save millions of lives each year from various life-threatening infectious diseases, and there are more than 20 vaccines currently licensed for human use worldwide. Moreover, in recent decades immunotherapy has become the mainstream therapy, which highlights the tremendous potential of immune response mediators, including vaccines for prevention and treatment of various forms of cancer. However, despite the tremendous advances in microbiology and immunology, there are several vaccine preventable diseases which still lack effective vaccines. Classically, weakened forms (attenuated) of pathogenic microbes were used as vaccines. Although the attenuated microbes induce effective immune response, a significant risk of reversion to pathogenic forms remains. While in the twenty-first century, with the advent of genetic engineering, microbes can be tailored with desired properties. In this review, I have focused on the use of genetically modified bacteria for the delivery of vaccine antigens. More specifically, the live-attenuated bacteria, derived from pathogenic bacteria, possess many features that make them highly suitable vectors for the delivery of vaccine antigens. Bacteria can theoretically express any heterologous gene or can deliver mammalian expression vectors harboring vaccine antigens (DNA vaccines). These properties of live-attenuated microbes are being harnessed to make vaccines against several infectious and noninfectious diseases. In this regard, I have described the desired features of live-attenuated bacterial vectors and the mechanisms of immune responses manifested by live-attenuated bacterial vectors. Interestingly anaerobic bacteria are naturally attracted to tumors, which make them suitable vehicles to deliver tumor-associated antigens thus I have discussed important studies investigating the role of bacterial vectors in immunotherapy. Finally, I have provided important discussion on novel approaches for improvement and tailoring of live-attenuated bacterial vectors for the generation of desired immune responses.
Collapse
Affiliation(s)
- Divya Arora
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Chetan Sharma
- Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab India
| | - Sundeep Jaglan
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Eric Lichtfouse
- Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Aix en Provence, France
| |
Collapse
|
7
|
Kim WK, Moon JY, Cho JS, Hur J. Protective efficacy by various doses of a new brucellosis vaccine candidate based on Salmonella strains expressing Brucella abortus BSCP31, Omp3b and superoxide dismutase against brucellosis in murine model. Pathog Dis 2018; 75:4056147. [PMID: 28873944 PMCID: PMC5808651 DOI: 10.1093/femspd/ftx094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022] Open
Abstract
Brucella species are important etiological agents of zoonotic diseases. Attenuated Salmonella strains expressing Brucella abortus BCSP31, Omp3b and superoxide dismutase proteins were tested as vaccine candidates in this study. In order to determine the optimal dose for intraperitoneal (IP) inoculation required to obtain effective protection against brucellosis, mice were immunized with various doses of a mixture of the three vaccine strains. Fifty BALB/c mice were divided into five equal groups (groups A–E). Group A mice were intraperitoneally inoculated with 100 μL of sterile phosphate-buffered saline. Group B, C, D and E mice were intraperitoneally immunized with approximately 1.2 × 105 colony-forming units (CFU) mL−1 of Salmonella containing pMMP65 in 100 μL and with 1.2 × 104 CFU mL−1, 1.2 × 105 CFU mL−1 and 1.2 × 106 CFU mL−1 of the mixture of the three strains in 100 μL, respectively. Serum IgG, tumor necrosis factor alpha and interferon gamma concentrations were significantly higher in group E than in groups A–D. Following challenge with B. abortus 544, the challenge strain was not detected in the spleen of any mouse from group E. Thus, IP immunization with 1.2 × 106 CFU mL−1 of the mixture of the three vaccine strains induced immune responses and provided effective protection against brucellosis in mice.
Collapse
Affiliation(s)
- Won Kyong Kim
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University Iksan Campus, Iksan 54596, South Korea
| | - Ja Young Moon
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University Iksan Campus, Iksan 54596, South Korea
| | - Jeong Sang Cho
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University Iksan Campus, Iksan 54596, South Korea
| | - Jin Hur
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University Iksan Campus, Iksan 54596, South Korea
| |
Collapse
|
8
|
Rashid MI, Naz A, Ali A, Andleeb S. Prediction of vaccine candidates against Pseudomonas aeruginosa: An integrated genomics and proteomics approach. Genomics 2017; 109:274-283. [PMID: 28487172 DOI: 10.1016/j.ygeno.2017.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/10/2017] [Accepted: 05/05/2017] [Indexed: 11/27/2022]
Abstract
Pseudomonas aeruginosa is among top critical nosocomial infectious agents due to its persistent infections and tendency for acquiring drug resistance mechanisms. To date, there is no vaccine available for this pathogen. We attempted to exploit the genomic and proteomic information of P. aeruginosa though reverse-vaccinology approaches to unveil the prospective vaccine candidates. P. aeruginosa strain PAO1 genome was subjected to sequential prioritization approach following genomic, proteomics and structural analyses. Among, the predicted vaccine candidates: surface components of antibiotic efflux pumps (Q9HY88, PA2837), chaperone-usher pathway components (CupC2, CupB3), penicillin binding protein of bacterial cell wall (PBP1a/mrcA), extracellular component of Type 3 secretory system (PscC) and three uncharacterized secretory proteins (PA0629, PA2822, PA0978) were identified as potential candidates qualifying all the set criteria. These proteins were then analyzed for potential immunogenic surface exposed epitopes. These predicted epitopes may provide a basis for development of a reliable subunit vaccine against P. aeruginosa.
Collapse
Affiliation(s)
- Muhammad Ibrahim Rashid
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Anam Naz
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, Pakistan.
| | - Saadia Andleeb
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
9
|
Dubreuil JD, Isaacson RE, Schifferli DM. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0006-2016. [PMID: 27735786 PMCID: PMC5123703 DOI: 10.1128/ecosalplus.esp-0006-2016] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors: adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17, and F18 fimbriae. Once established in the animal small intestine, ETEC produce enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes: heat-labile toxins that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This review describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics, and the identification of potential new targets by genomics are presented in the context of animal ETEC.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Québec J2S 7C6, Canada
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Dieter M Schifferli
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
10
|
Kim WK, Moon JY, Kim S, Hur J. Comparison between Immunization Routes of Live Attenuated Salmonella Typhimurium Strains Expressing BCSP31, Omp3b, and SOD of Brucella abortus in Murine Model. Front Microbiol 2016; 7:550. [PMID: 27148232 PMCID: PMC4837157 DOI: 10.3389/fmicb.2016.00550] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
Live, attenuated Salmonella Typhimurium vaccine candidate expressing BCSP31, Omp3b, and SOD proteins of Brucella abortus was constructed. Thirty BALB/c mice were divided equally into three groups, Group A, were intraperitoneally (IP) inoculated with 100 μl of approximately 1.2 × 106 colony-forming units (CFUs)/ml of the Salmonella containing vector only in 100 μl as a control. And groups B and C mice were orally and IP immunized with approximately 1.2 × 109 CFU/ml of the mixture of three delivery strains in 10 μl and IP immunized with approximately 1.2 × 106 CFU/ml of the mixture in 100 μl, respectively. The serum IgG, TNF-α and IFN-γ concentrations in groups B (except Omp3b) and C were significantly higher than those in group A. Following challenge with B. abortus strain 544; challenge strain was detected <103 CFU from the spleen of all mice of group C. These results suggest that IP immunization with the mixture of the vaccine candidate can induce immune responses, and can effectively protect mice against brucellosis.
Collapse
Affiliation(s)
- Won K Kim
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University Iksan, South Korea
| | - Ja Y Moon
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University Iksan, South Korea
| | - Suk Kim
- College of Veterinary Medicine, Gyeongsang National University Jinju, South Korea
| | - Jin Hur
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University Iksan, South Korea
| |
Collapse
|
11
|
Zhang Y, Zhang X, Liao X, Huang X, Cao S, Wen X, Wen Y, Wu R, Liu W. Construction of a bivalent DNA vaccine co-expressing S genes of transmissible gastroenteritis virus and porcine epidemic diarrhea virus delivered by attenuated Salmonella typhimurium. Virus Genes 2016; 52:354-64. [PMID: 26980672 DOI: 10.1007/s11262-016-1316-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/02/2016] [Indexed: 02/02/2023]
Abstract
Porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) can cause severe diarrhea in newborn piglets and led to significant economic losses. The S proteins are the main structural proteins of PEDV and TGEV capable of inducing neutralizing antibodies in vivo. In this study, a DNA vaccine SL7207 (pVAXD-PS1-TS) co-expressing S proteins of TGEV and PEDV delivered by attenuated Salmonella typhimurium was constructed and its immunogenicity in piglets was investigated. Twenty-day-old piglets were orally immunized with SL7207 (pVAXD-PS1-TS) at a dosage of 1.6 × 10(11) CFU per piglet and then booster immunized with 2.0 × 10(11) CFU after 2 weeks. Humoral immune responses, as reflected by virus neutralizing antibodies and specific IgG and sIgA, and cellular immune responses, as reflected by IFN-γ, IL-4, and lymphocyte proliferation, were evaluated. SL7207 (pVAXD-PS1-TS) simultaneously elicited immune responses against TGEV and PEDV after oral immunization. The immune levels started to increase at 2 weeks after immunization and increased to levels statistically significantly different than controls at 4 weeks post-immunization, peaking at 6 weeks and declined at 8 weeks. The humoral, mucosal, and cellular immune responses induced by SL7207 (pAXD-PS1-TS) were significantly higher than those of the PBS and SL7207 (pVAXD) (p < 0.01). In particular, the levels of IFN-γ and IL-4 were higher than those induced by the single-gene vaccine SL7207 (pVAXD-PS1) (p < 0.05). These results demonstrated that SL7207 (pVAXD-PS1-TS) possess the immunological functions of the two S proteins of TGEV and PEDV, indicating that SL7207 (pVAXD-PS1-TS) is a candidate oral vaccine for TGE and PED.
Collapse
Affiliation(s)
- Yudi Zhang
- Research Center of Swine Disease and Laboratory of Animal Infectious Disease and Microarray, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaohui Zhang
- Research Center of Swine Disease and Laboratory of Animal Infectious Disease and Microarray, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaodan Liao
- Research Center of Swine Disease and Laboratory of Animal Infectious Disease and Microarray, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaobo Huang
- Research Center of Swine Disease and Laboratory of Animal Infectious Disease and Microarray, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Sanjie Cao
- Research Center of Swine Disease and Laboratory of Animal Infectious Disease and Microarray, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xintian Wen
- Research Center of Swine Disease and Laboratory of Animal Infectious Disease and Microarray, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiping Wen
- Research Center of Swine Disease and Laboratory of Animal Infectious Disease and Microarray, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Wu
- Research Center of Swine Disease and Laboratory of Animal Infectious Disease and Microarray, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wumei Liu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
12
|
Abstract
The first described adhesive antigen of Escherichia coli strains isolated from animals was the K88 antigen, expressed by strains from diarrheic pigs. The K88 antigen was visible by electron microscopy as a surface-exposed filament that was thin and flexible and had hemagglutinating properties. Many different fimbriae have been identified in animal enterotoxigenic E. coli (ETEC) and have been discussed in this article. The role of these fimbriae in the pathogenesis of ETEC has been best studied with K88, K99, 987P, and F41. Each fimbrial type carries at least one adhesive moiety that is specific for a certain host receptor, determining host species, age, and tissue specificities. ETEC are the most frequently diagnosed pathogens among neonatal and post-weaning piglets that die of diarrhea. Immune electron microscopy of animal ETEC fimbriae usually shows that the minor subunits are located at the fimbrial tips and at discrete sites along the fimbrial threads. Since fimbriae most frequently act like lectins by binding to the carbohydrate moieties of glycoproteins or glycolipids, fimbrial receptors have frequently been studied with red blood cells of various animal species. Identification and characterization of the binding moieties of ETEC fimbrial adhesins should be useful for the design of new prophylactic or therapeutic strategies. Some studies describing potential receptor or adhesin analogues that interfere with fimbria-mediated colonization have been described in the article.
Collapse
|
13
|
Zhang D, Huang X, Zhang X, Cao S, Wen X, Wen Y, Wu R, Liang E. Construction of an oral vaccine for transmissible gastroenteritis virus based on the TGEV N gene expressed in an attenuated Salmonella typhimurium vector. J Virol Methods 2015; 227:6-13. [PMID: 26297958 DOI: 10.1016/j.jviromet.2015.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 01/16/2023]
Abstract
This research aimed to develop an oral vaccine for transmissible gastroenteritis virus (TGEV) based on the TGEV N gene expressed in an attenuated Salmonella typhimurium vector and aimed to evaluate the vaccine's immune response in piglets. Recombinant plasmid pVAX-N was transformed into competent cells of attenuated S. typhimurium SL7207 via electroporation. After it was identified via RT-PCR and double digestion, the screened recombinant bacteria presenting pVAX-N were named SL7207 (pVAX-N). To evaluate the safety and stability of the developed vaccine, different dosages (5 × 10(8), 1 × 10(9), and 2 × 10(9) CFU/mice) of SL7207 (pVAX-N) were inoculated to 6-week-old mice. Piglets below 20 days of age were dosed with 1 × 10(12) CFU. Humoral (neutralization titer and specific IgG), cellular (interleukin-4, γ-interferon, and peripheral lymphocyte proliferation), and mucosal (sIgA) immune responses were detected and evaluated. The three immunizing dosages were determined to be safe for mice and were completely eliminated 8 weeks after the first inoculation. Results of antibody and cytokine detection indicated that SL7207 (pVAX-N) could significantly induce antibody-IgG, antibody-IgA, interleukin-4, and γ-interferon, whose value was maximized on the 6th week. Results confirmed that the recombinant vaccine increased the proliferation of peripheral T lymphocyte. In conclusion, the oral vaccine was developed successfully, and the vaccine could significantly induce humoral, cellular, and mucosal immune responses in piglets.
Collapse
Affiliation(s)
- Dan Zhang
- Laboratory of Animal Infectious Disease and Microarray, Laboratory of Zoonosis and Pig Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an 625014, China
| | - Xiaobo Huang
- Laboratory of Animal Infectious Disease and Microarray, Laboratory of Zoonosis and Pig Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an 625014, China; Sichuan Science-observation Experiment Station of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Ya'an 625014, China.
| | - Xiaohui Zhang
- Laboratory of Animal Infectious Disease and Microarray, Laboratory of Zoonosis and Pig Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an 625014, China
| | - Sanjie Cao
- Laboratory of Animal Infectious Disease and Microarray, Laboratory of Zoonosis and Pig Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an 625014, China; Sichuan Science-observation Experiment Station of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Ya'an 625014, China
| | - Xintian Wen
- Laboratory of Animal Infectious Disease and Microarray, Laboratory of Zoonosis and Pig Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an 625014, China; Sichuan Science-observation Experiment Station of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Ya'an 625014, China
| | - Yiping Wen
- Laboratory of Animal Infectious Disease and Microarray, Laboratory of Zoonosis and Pig Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an 625014, China; Sichuan Science-observation Experiment Station of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Ya'an 625014, China
| | - Rui Wu
- Laboratory of Animal Infectious Disease and Microarray, Laboratory of Zoonosis and Pig Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an 625014, China; Sichuan Science-observation Experiment Station of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Ya'an 625014, China
| | - Entao Liang
- Laboratory of Animal Infectious Disease and Microarray, Laboratory of Zoonosis and Pig Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
14
|
Abstract
This chapter reviews papers mostly written since 2005 that report results using live attenuated bacterial vectors to deliver after administration through mucosal surfaces, protective antigens, and DNA vaccines, encoding protective antigens to induce immune responses and/or protective immunity to pathogens that colonize on or invade through mucosal surfaces. Papers that report use of such vaccine vector systems for parenteral vaccination or to deal with nonmucosal pathogens or do not address induction of mucosal antibody and/or cellular immune responses are not reviewed.
Collapse
|
15
|
Generation of an attenuated Salmonella-delivery strains expressing adhesin and toxin antigens for progressive atrophic rhinitis, and evaluation of its immune responses in a murine model. Vaccine 2014; 32:5057-64. [DOI: 10.1016/j.vaccine.2014.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 06/05/2014] [Accepted: 07/08/2014] [Indexed: 11/22/2022]
|
16
|
Zhang J, De Masi L, John B, Chen W, Schifferli DM. Improved delivery of the OVA-CD4 peptide to T helper cells by polymeric surface display on Salmonella. Microb Cell Fact 2014; 13:80. [PMID: 24898796 PMCID: PMC4055283 DOI: 10.1186/1475-2859-13-80] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 05/19/2014] [Indexed: 12/31/2022] Open
Abstract
Background Autotransporter proteins represent a treasure trove for molecular engineers who modify Gram-negative bacteria for the export or secretion of foreign proteins across two membrane barriers. A particularly promising direction is the development of autotransporters as antigen display or secretion systems. Immunologists have been using ovalbumin as a reporter antigen for years and have developed sophisticated tools to detect specific T cells that respond to ovalbumin. Although ovalbumin-expressing bacteria are being used to trace T cell responses to colonizing or invading pathogens, current constructs for ovalbumin presentation have not been optimized. Results The activation of T helper cells in response to ovalbumin was improved by displaying the OVA-CD4 reporter epitope as a multimer on the surface of Salmonella and fused to the autotransporter MisL. Expression was optimized by including tandem in vivo promoters and two post-segregational killing systems for plasmid stabilization. Conclusions The use of an autotransporter protein to present relevant epitope repeats on the surface of bacteria, combined with additional techniques favoring stable and efficient in vivo transcription, optimizes antigen presentation to T cells. The technique of multimeric epitope surface display should also benefit the development of new Salmonella or other enterobacterial vaccines.
Collapse
Affiliation(s)
| | | | | | | | - Dieter M Schifferli
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
17
|
Abstract
Over the past three decades, a powerful array of techniques has been developed for expressing heterologous proteins and saccharides on the surface of bacteria. Surface-engineered bacteria, in turn, have proven useful in a variety of settings, including high-throughput screening, biofuel production, and vaccinology. In this chapter, we provide a comprehensive review of methods for displaying polypeptides and sugars on the bacterial cell surface, and discuss the many innovative applications these methods have found to date. While already an important biotechnological tool, we believe bacterial surface display may be further improved through integration with emerging methodology in other fields, such as protein engineering and synthetic chemistry. Ultimately, we envision bacterial display becoming a multidisciplinary platform with the potential to transform basic and applied research in bacteriology, biotechnology, and biomedicine.
Collapse
|
18
|
Hur J, Lee JH. Optimization of immune strategy for a construct of Salmonella-delivered ApxIA, ApxIIA, ApxIIIA and OmpA antigens of Actinobacillus pleuropneumoniae for prevention of porcine pleuropneumonia using a murine model. Vet Res Commun 2013; 38:87-91. [DOI: 10.1007/s11259-013-9586-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2013] [Indexed: 11/28/2022]
|
19
|
Hur J, Lee JH. Protection against neonatal Escherichia coli diarrhea by vaccination of sows with a novel multivalent vaccine candidate expressing E. coli adhesins associated with neonatal pig colibacillosis. Res Vet Sci 2013; 94:198-204. [DOI: 10.1016/j.rvsc.2012.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 08/04/2012] [Accepted: 08/07/2012] [Indexed: 11/25/2022]
|
20
|
Byrd W, Boedeker EC. Attenuated Escherichia coli strains expressing the colonization factor antigen I (CFA/I) and a detoxified heat-labile enterotoxin (LThK63) enhance clearance of ETEC from the lungs of mice and protect mice from intestinal ETEC colonization and LT-induced fluid accumulation. Vet Immunol Immunopathol 2013; 152:57-67. [DOI: 10.1016/j.vetimm.2012.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Hur J, Stein BD, Lee JH. A vaccine candidate for post-weaning diarrhea in swine constructed with a live attenuated Salmonella delivering Escherichia coli K88ab, K88ac, FedA, and FedF fimbrial antigens and its immune responses in a murine model. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2012; 76:186-94. [PMID: 23277697 PMCID: PMC3384281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/26/2011] [Indexed: 06/01/2023]
Abstract
In order to construct a novel vaccine candidate for preventing post-weaning diarrhea in swine, the individual genes for Escherichia coli K88ab, K88ac, FedA, and FedF fimbriae were inserted into a secretion plasmid pBP244 containing asd, lepB, secA, and secB. These were transformed into Salmonella Typhimurium Δlon ΔcpxR Δasd. Secretion of the individual recombinant fimbrial antigens was confirmed by immunoblot analysis. Groups 1 and 2 mice received a single oral dose of the vaccine mixture and S. Typhimurium carrying pBP244 only as a control, respectively. In groups 3 and 4, mice were primed and boosted with the vaccine mixture and S. Typhimurium carrying pBP244 only as a control, respectively. In general, all immunized mice had significantly increased serum immunoglobulin (Ig)G (P < 0.05) and intestinal secretory IgA against the individual fimbrial antigens compared with those mice in the control group. In the IgG2a and IgG1 titer assay, only IgG2a titer was increased in group 1, while both IgG2a and IgG1 titers were increased in group 3. Furthermore, the vaccine strains were not detected in the excreted feces of any immunized mice. Thus, the vaccine candidate can be highly immunogenic and be safe to the environment.
Collapse
Affiliation(s)
- Jin Hur
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Republic of Korea (Hur, Lee); Indiana Molecular Biology Institute, Indiana University, Bloomington, Indiana 47405, USA (Stein)
| | - Barry D. Stein
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Republic of Korea (Hur, Lee); Indiana Molecular Biology Institute, Indiana University, Bloomington, Indiana 47405, USA (Stein)
| | - John Hwa Lee
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Republic of Korea (Hur, Lee); Indiana Molecular Biology Institute, Indiana University, Bloomington, Indiana 47405, USA (Stein)
| |
Collapse
|
22
|
Chen YN, Wu CC, Lin TL. Identification and characterization of a neutralizing-epitope-containing spike protein fragment in turkey coronavirus. Arch Virol 2011; 156:1525-35. [PMID: 21594597 PMCID: PMC7086772 DOI: 10.1007/s00705-011-1020-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/02/2011] [Indexed: 12/27/2022]
Abstract
Little is known about the neutralizing epitopes in turkey coronavirus (TCoV). The spike (S) protein gene of TCoV was divided into 10 fragments to identify the antigenic region containing neutralizing epitopes. The expression and antigenicity of S fragments was confirmed by immunofluorescence antibody (IFA) assay using an anti-histidine monoclonal antibody or anti-TCoV serum. Polyclonal antibodies raised against expressed S1 (amino acid position 1 to 573 from start codon of S protein), 4F/4R (482-678), 6F/6R (830-1071), or Mod4F/Epi4R (476-520) S fragment recognized native S1 protein and TCoV in the intestines of TCoV-infected turkey embryos. Anti-TCoV serum reacted with recombinant 4F/4R, 6F/6R, and Mod4F/Epi4R in a western blot. The results of a virus neutralization assay indicated that the carboxyl terminal region of the S1 protein (Mod4F/Epi4R) or the combined carboxyl terminal S1 and amino terminal S2 protein (4F/4R) possesses the neutralizing epitopes, while the S2 fragment (6F/6R) contains antigenic epitopes but not neutralizing epitopes.
Collapse
Affiliation(s)
- Yi-Ning Chen
- Department of Comparative Pathobiology, Purdue University, 406 South University Street, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
23
|
Enhancement of immune responses by an attenuated Salmonella enterica serovar Typhimurium strain secreting an Escherichia coli heat-labile enterotoxin B subunit protein as an adjuvant for a live Salmonella vaccine candidate. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:203-9. [PMID: 21159921 DOI: 10.1128/cvi.00407-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A plasmid harboring eltB, the gene encoding heat-labile enterotoxin (LTB), was constructed by insertion of eltB into an Asd(+) β-lactamase signal plasmid (pMMP65). This was introduced into the Δlon ΔcpxR Δasd Salmonella enterica serovar Typhimurium strain and designated the LTB adjuvant strain. LTB protein production and secretion from the strain were demonstrated with an immunoblot assay and enzyme-linked immunosorbent assay. The LTB strain was evaluated for enhancement of immunity and protection efficacy induced by a previously constructed live Salmonella vaccine candidate. In addition, immunization strategies using the LTB strain were optimized for effective salmonellosis protection. Seventy female BALB/c mice were divided into seven groups (A to G; n = 10 mice per group). Mice were primed at 6 weeks of age and boosted at 9 weeks of age. All mice were orally challenged with a virulent wild-type strain at week 3 postbooster. Serum IgG and IgA titers from mice immunized with the LTB strain alone or with a mixture of the LTB strain and the vaccine candidate were significantly increased. The secretory IgA titers from mice immunized with the LTB strain alone or with the mixture were at least 2.2 times greater than those of control mice. In addition, all group E mice (primed with the vaccine-LTB mixture and boosted with the vaccine candidate) were free of clinical signs of salmonellosis and survived a virulent challenge. In contrast, death due to the challenge was 100% in control mice, 80% in group A mice (single immunization with the vaccine candidate), 60% in group B mice (primed and boosted with the vaccine candidate), 40% in group C mice (single immunization with the LTB strain), 30% in group D mice (primed and boosted with the LTB strain), and 30% in group F mice (primed and boosted with the vaccine-LTB mixture). These results suggest that vaccination with the LTB strain, especially when added at the prime stage only, effectively enhances immune responses and protection against salmonellosis.
Collapse
|
24
|
Chin'ombe N, Bourn WR, Williamson AL, Shephard EG. Oral vaccination with a recombinant Salmonella vaccine vector provokes systemic HIV-1 subtype C Gag-specific CD4+ Th1 and Th2 cell immune responses in mice. Virol J 2009; 6:87. [PMID: 19555490 PMCID: PMC2708135 DOI: 10.1186/1743-422x-6-87] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/25/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recombinant Salmonella vaccine vectors may potentially be used to induce specific CD4+ T cell responses against foreign viral antigens. Such immune responses are required features of vaccines against pathogens such as human immunodeficiency virus type 1 (HIV-1). The aim of this study was to investigate the induction of systemic HIV-1-specific CD4+ T helper (Th) responses in mice after oral immunization with a live attenuated Salmonella vaccine vector that expressed HIV-1 subtype C Gag. Groups of BALB/c mice were vaccinated orally three times (4 weeks apart) with this recombinant Salmonella. At sacrifice, 28 days after the last immunization, systemic CD4+ Th1 and Th2 cytokine responses were evaluated by enzyme-linked immunospot assay and cytometric bead array. HIV-1 Gag-specific IgG1 and IgG2a humoral responses in the serum were determined by enzyme-linked immunosorbent assay. RESULTS Mice vaccinated with the recombinant Salmonella elicited both HIV-1-specific Th1 (interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha)) and Th2 (interleukin-4 (IL-4) and interleukin-5 (IL-5)) cytokine responses. The vaccine induced 70 (IFN-gamma) spot-forming units (SFUs)/10e(6) splenocytes and 238 IL-4 SFUs/10e(6) splenocytes. Splenocytes from vaccinated mice also produced high levels of Th1 and Th2 cytokines upon stimulation with a Gag CD4 peptide. The levels of IFN-gamma, TNF-alpha, IL-4 and IL-5 were 7.5-, 29.1-, 26.2- and 89.3-fold above the background, respectively. Both HIV-1 Gag-specific IgG1 and IgG2a antibodies were detected in the sera of vaccinated mice. CONCLUSION The study highlights the potential of orally-delivered attenuated Salmonella as mucosal vaccine vectors for HIV-1 Subtype C Gag to induce Gag-specific CD4+ Th1 and Th2 cellular immune responses and antibodies which may be important characteristics required for protection against HIV-1 infection.
Collapse
Affiliation(s)
- Nyasha Chin'ombe
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa.
| | | | | | | |
Collapse
|
25
|
Capsular antigen fraction 1 and Pla modulate the susceptibility of Yersinia pestis to pulmonary antimicrobial peptides such as cathelicidin. Infect Immun 2008; 76:1456-64. [PMID: 18227173 DOI: 10.1128/iai.01197-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Inhaled Yersinia pestis produces a severe primary pneumonia known as pneumonic plague, which is contagious and highly lethal to humans and animals. In this study, we first determined the susceptibility of Y. pestis KIM6 to antimicrobial molecules of the airways. We found that (i) rat bronchoalveolar lavage fluid (rBALF) effectively killed KIM6 cells growing at 37 degrees C; (ii) the antibacterial components of rBALF were small peptides (<10 kDa) that included two cationic antimicrobial peptides (CAMPs), the rat cathelicidin rCRAMP, and beta-defensin RBD-1; (iii) the human cathelicidin LL-37 killed KIM6 cells as well as rBALF did; and (iv) the bactericidal property of LL-37 was synergistically amplified by human beta-defensin 1, another constitutively expressed pulmonary CAMP. Second, the effects of three major surface proteins of Y. pestis, namely, the capsular antigen fraction 1 (F1), the pH 6 antigen (Psa fimbriae), and the outer membrane protease Pla, on the bactericidal effect of the antimicrobial rBALF peptides was determined with corresponding deletion mutants. We showed that (i) a Y. pestis psa mutant was only slightly more susceptible to rBALF than the parental KIM6 strain, (ii) a caf (F1 gene) mutant and a caf psa mutant were resistant to rBALF or LL-37, (iii) a caf pla mutant was as susceptible to the effect of rBALF or LL-37 as KIM6 was (caf+ pla+), and (iv) only the single caf mutant (pla+), but not KIM6 or the caf pla double mutant, degraded LL-37. The activity of Pla toward LL-37 was confirmed with pla mutants carrying a single-residue substitution affecting plasminogen cleavage. Taken together, our data indicated that Pla might act as a virulence factor not only by processing plasminogen but also by inactivating CAMPs, particularly when F1 is not expressed.
Collapse
|
26
|
Zhou JF, Hua XG, Cui L, Zhu JG, Miao DN, Zou Y, He XZ, Su WG. Effective inhibition of porcine transmissible gastroenteritis virus replication in ST cells by shRNAs targeting RNA-dependent RNA polymerase gene. Antiviral Res 2007; 74:36-42. [PMID: 17287033 PMCID: PMC7114347 DOI: 10.1016/j.antiviral.2006.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 12/17/2006] [Accepted: 12/29/2006] [Indexed: 11/22/2022]
Abstract
Transmissible gastroenteritis virus (TGEV) is identified as one of the most important pathogenic agents during swine enteric infection, leading to high mortality in neonatal pigs and severe annual economic loss in swine-producing areas. Up to date, various vaccines developed against TGEV still need to be improved. To exploit the possibility of using RNA interference (RNAi) as a strategy against TGEV infection, two shRNA-expressing plasmids (pEGFP-U6/P1 and pEGFP-U6/P2) targeting the RNA-dependent RNA polymerase (RdRp) gene of TGEV were constructed and transfected into swine testicular (ST) cells. The cytopathic effect (CPE) and MTS assays demonstrated that both shRNAs were capable of protecting cells against TGEV invasion with very high specificity and efficiency. A real-time quantitative RT-PCR further confirmed that the amounts of viral RNAs in cell cultures pre-transfected with the two plasmids were reduced by 95.2% and up to 100%, respectively. Our results suggest that RNAi might be a promising new strategy against TGEV infection.
Collapse
Affiliation(s)
- Jun-fang Zhou
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 2678 Qixin Road, Shanghai 201101, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Husseiny MI, Wartha F, Hensel M. Recombinant vaccines based on translocated effector proteins of Salmonella Pathogenicity Island 2. Vaccine 2007; 25:185-93. [PMID: 16887239 DOI: 10.1016/j.vaccine.2005.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 10/13/2005] [Accepted: 11/10/2005] [Indexed: 01/17/2023]
Abstract
Attenuated live Salmonella enterica are useful carriers for the delivery of heterologous antigens for vaccination. Effector proteins translocated by type III secretion systems (T3SS) of Salmonella have been successfully utilized for antigen delivery. Here we investigated the use of effector proteins of the T3SS encoded by Salmonella Pathogenicity Island 2 (SPI2). We observed that the effector protein SseF is suitable for delivery of various fusion proteins with heterologous antigens. The efficiency of this carrier protein was demonstrated in vaccination experiments with fusion proteins with Listeria monocytogenes protective antigens. SseF can thus be used as a versatile vehicle for translocation of heterologous proteins for vaccination.
Collapse
Affiliation(s)
- Mohamed I Husseiny
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, FAU Erlangen-Nürnberg, Wasserturmstr. 3-5, D-91054 Erlangen, Germany
| | | | | |
Collapse
|
28
|
Tobar JA, Carreño LJ, Bueno SM, González PA, Mora JE, Quezada SA, Kalergis AM. Virulent Salmonella enterica serovar typhimurium evades adaptive immunity by preventing dendritic cells from activating T cells. Infect Immun 2006; 74:6438-48. [PMID: 17057096 PMCID: PMC1695529 DOI: 10.1128/iai.00063-06] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Dendritic cells (DCs) constitute the link between innate and adaptive immunity by directly recognizing pathogen-associated molecular patterns (PAMPs) in bacteria and by presenting bacterial antigens to T cells. Recognition of PAMPs renders DCs as professional antigen-presenting cells able to prime naïve T cells and initiate adaptive immunity against bacteria. Therefore, interfering with DC function would promote bacterial survival and dissemination. Understanding the molecular mechanisms that have evolved in virulent bacteria to evade activation of adaptive immunity requires the characterization of virulence factors that interfere with DC function. Salmonella enterica serovar Typhimurium, the causative agent of typhoid-like disease in the mouse, can prevent antigen presentation to T cells by avoiding lysosomal degradation in DCs. Here, we show that this feature of virulent Salmonella applies in vivo to prevent activation of adaptive immunity. In addition, this attribute of virulent Salmonella requires functional expression of a type three secretion system (TTSS) and effector proteins encoded within the Salmonella pathogenicity island 2 (SPI-2). In contrast to wild-type virulent Salmonella, mutant strains carrying specific deletions of SPI-2 genes encoding TTSS components or effectors proteins are targeted to lysosomes and are no longer able to prevent DCs from activating T cells in vitro or in vivo. SPI-2 mutant strains are attenuated in vivo, showing reduced tissue colonization and enhanced T-cell activation, which confers protection against a challenge with wild-type virulent Salmonella. Our data suggest that impairment of DC function by the activity of SPI-2 gene products is crucial for Salmonella pathogenesis.
Collapse
Affiliation(s)
- Jaime A Tobar
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda #340, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
29
|
Chen H, Schifferli DM. Comparison of a fimbrial versus an autotransporter display system for viral epitopes on an attenuated Salmonella vaccine vector. Vaccine 2006; 25:1626-33. [PMID: 17169467 PMCID: PMC7115504 DOI: 10.1016/j.vaccine.2006.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/25/2006] [Accepted: 11/02/2006] [Indexed: 11/02/2022]
Abstract
Attenuated Salmonella have been used as vectors to deliver foreign antigens as live vaccines. We have previously developed an efficient surface-display system by genetically engineering 987P fimbriae to present transmissible gastroenteritis virus (TGEV) C and A epitopes for the induction of anti-TGEV antibodies with a Salmonella vaccine vector. Here, this system was compared with an autotransporter protein surface display system. The TGEV C and A epitopes were fused to the passenger domain of the MisL autotransporter of Salmonella. Expression of both the MisL- and 987P subunit FasA-fusions to the TGEV epitopes were under the control of in vivo-induced promoters. Expression of the TGEV epitopes from the Salmonella typhimurium CS4552 (crp cya asd pgtE) vaccine strain was greater when the epitopes were fused to MisL than when they were fused to the 987P FasA subunit. However, when BALB/c mice were orally immunized with the Salmonella vector expressing the TGEV epitopes from either one of the fusion constructs or both together, the highest level of anti-TGEV antibody was obtained with the 987P-TGEV immunogen-displaying vector. This result suggested that better immune responses towards specific epitopes could be obtained by using a polymeric display system such as fimbriae.
Collapse
|
30
|
Husseiny MI, Hensel M. Evaluation of an intracellular-activated promoter for the generation of live Salmonella recombinant vaccines. Vaccine 2005; 23:2580-90. [PMID: 15780440 DOI: 10.1016/j.vaccine.2004.11.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/21/2004] [Accepted: 11/09/2004] [Indexed: 11/30/2022]
Abstract
Salmonella enterica serovar Typhimurium is a versatile host organism for the generation of recombinant live vaccines for mucosal immunization. We investigated the performance of an intracellular-activated promoter for expression of heterologous antigens by Salmonella carrier strains. We observed that intracellular expressed antigens were more efficient in elicitation of humoral and cellular immune responses than constitutively expressed antigens. Furthermore, the intracellular-activated promoter was more efficient in combination with a carrier strain deficient in SPI2 gene sseC than with the conventional aroA strain. We propose that intracellular-activated promoters will be useful tools for construction of efficient recombinant live vaccines.
Collapse
Affiliation(s)
- Mohamed I Husseiny
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, FAU Erlangen-Nürnberg, Wasserturmstrasse 3-5, D-91054 Erlangen, Germany
| | | |
Collapse
|
31
|
Ricca E, Cutting SM. Emerging Applications of Bacterial Spores in Nanobiotechnology. J Nanobiotechnology 2003; 1:6. [PMID: 14675488 PMCID: PMC317360 DOI: 10.1186/1477-3155-1-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Accepted: 12/15/2003] [Indexed: 11/25/2022] Open
Abstract
Bacterial spores are robust and dormant life forms with formidable resistance properties, in part, attributable to the multiple layers of protein that encase the spore in a protective and flexible shield. The coat has a number of features pertinent to the emerging field of nanobiotechnology including self-assembling protomers and the capacity for engineering and delivery of foreign molecules. This review gives an account of recent progress describing the use of the spore, and specifically, the spore coat as a vehicle for heterologous antigen presentation and protective immunization (vaccination). As interest in the spore coat increases it seems likely that they will be exploited further for drug and enzyme delivery as well as a source of novel self-assembling proteins.
Collapse
Affiliation(s)
- Ezio Ricca
- Dipartimento di Fisiologia Generale ed Ambientale, Università Federico II, Napoli, Italy
| | - Simon M Cutting
- School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| |
Collapse
|