1
|
Sullan RMA, Li JK, Crowley PJ, Brady LJ, Dufrêne YF. Binding forces of Streptococcus mutans P1 adhesin. ACS NANO 2015; 9:1448-60. [PMID: 25671413 PMCID: PMC4369792 DOI: 10.1021/nn5058886] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Streptococcus mutans is a Gram-positive oral bacterium that is a primary etiological agent associated with human dental caries. In the oral cavity, S. mutans adheres to immobilized salivary agglutinin (SAG) contained within the salivary pellicle on the tooth surface. Binding to SAG is mediated by cell surface P1, a multifunctional adhesin that is also capable of interacting with extracellular matrix proteins. This may be of particular importance outside of the oral cavity as S. mutans has been associated with infective endocarditis and detected in atherosclerotic plaque. Despite the biomedical importance of P1, its binding mechanisms are not completely understood. In this work, we use atomic force microscopy-based single-molecule and single-cell force spectroscopy to quantify the nanoscale forces driving P1-mediated adhesion. Single-molecule experiments show that full-length P1, as well as fragments containing only the P1 globular head or C-terminal region, binds to SAG with relatively weak forces (∼50 pN). In contrast, single-cell analyses reveal that adhesion of a single S. mutans cell to SAG is mediated by strong (∼500 pN) and long-range (up to 6000 nm) forces. This is likely due to the binding of multiple P1 adhesins to self-associated gp340 glycoproteins. Such a cooperative, long-range character of the S. mutans-SAG interaction would therefore dramatically increase the strength and duration of cell adhesion. We also demonstrate, at single-molecule and single-cell levels, the interaction of P1 with fibronectin and collagen, as well as with hydrophobic, but not hydrophilic, substrates. The binding mechanism (strong forces, cooperativity, broad specificity) of P1 provides a molecular basis for its multifunctional adhesion properties. Our methodology represents a valuable approach to probe the binding forces of bacterial adhesins and offers a tractable methodology to assess anti-adhesion therapy.
Collapse
Affiliation(s)
- Ruby May A. Sullan
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium B-1348
| | - James K. Li
- Institute for Optical Sciences, University of Toronto, Toronto, Ontario M5S 3H8, Canada
| | - Paula J. Crowley
- Department of Oral Biology, University of Florida, Gainesville, Florida 32603, United States
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida 32603, United States
| | - Yves F. Dufrêne
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium B-1348
| |
Collapse
|
2
|
Heim KP, Sullan RMA, Crowley PJ, El-Kirat-Chatel S, Beaussart A, Tang W, Besingi R, Dufrene YF, Brady LJ. Identification of a supramolecular functional architecture of Streptococcus mutans adhesin P1 on the bacterial cell surface. J Biol Chem 2015; 290:9002-19. [PMID: 25666624 DOI: 10.1074/jbc.m114.626663] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Indexed: 12/29/2022] Open
Abstract
P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer.
Collapse
Affiliation(s)
- Kyle P Heim
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| | - Ruby May A Sullan
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Paula J Crowley
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| | - Sofiane El-Kirat-Chatel
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Audrey Beaussart
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Wenxing Tang
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| | - Richard Besingi
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| | - Yves F Dufrene
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - L Jeannine Brady
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| |
Collapse
|
3
|
An intramolecular lock facilitates folding and stabilizes the tertiary structure of Streptococcus mutans adhesin P1. Proc Natl Acad Sci U S A 2014; 111:15746-51. [PMID: 25331888 DOI: 10.1073/pnas.1413018111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cariogenic bacterium Streptococcus mutans uses adhesin P1 to adhere to tooth surfaces, extracellular matrix components, and other bacteria. A composite model of P1 based on partial crystal structures revealed an unusual complex architecture in which the protein forms an elongated hybrid alpha/polyproline type II helical stalk by folding back on itself to display a globular head at the apex and a globular C-terminal region at the base. The structure of P1's N terminus and the nature of its critical interaction with the C-terminal region remained unknown, however. We have cocrystallized a stable complex of recombinant N- and C-terminal fragments and here describe a previously unidentified topological fold in which these widely discontinuous domains are intimately associated. The structure reveals that the N terminus forms a stabilizing scaffold by wrapping behind the base of P1's elongated stalk and physically "locking" it into place. The structure is stabilized through a highly favorable ΔG(solvation) on complex formation, along with extensive hydrogen bonding. We confirm the functional relevance of this intramolecular interaction using differential scanning calorimetry and circular dichroism to show that disruption of the proper spacing of residues 989-1001 impedes folding and diminishes stability of the full-length molecule, including the stalk. Our findings clarify previously unexplained functional and antigenic properties of P1.
Collapse
|
4
|
Immunogenicity and in vitro and in vivo protective effects of antibodies targeting a recombinant form of the Streptococcus mutans P1 surface protein. Infect Immun 2014; 82:4978-88. [PMID: 25225243 DOI: 10.1128/iai.02074-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus mutans is a major etiologic agent of dental caries, a prevalent worldwide infectious disease and a serious public health concern. The surface-localized S. mutans P1 adhesin contributes to tooth colonization and caries formation. P1 is a large (185-kDa) and complex multidomain protein considered a promising target antigen for anticaries vaccines. Previous observations showed that a recombinant P1 fragment (P1(39-512)), produced in Bacillus subtilis and encompassing a functional domain, induces antibodies that recognize the native protein and interfere with S. mutans adhesion in vitro. In the present study, we further investigated the immunological features of P1(39-512) in combination with the following different adjuvants after parenteral administration to mice: alum, a derivative of the heat-labile toxin (LT), and the phase 1 flagellin of S. Typhimurium LT2 (FliCi). Our results demonstrated that recombinant P1(39-512) preserves relevant conformational epitopes as well as salivary agglutinin (SAG)-binding activity. Coadministration of adjuvants enhanced anti-P1 serum antibody responses and affected both epitope specificity and immunoglobulin subclass switching. Importantly, P1(39-512)-specific antibodies raised in mice immunized with adjuvants showed significantly increased inhibition of S. mutans adhesion to SAG, with less of an effect on SAG-mediated bacterial aggregation, an innate defense mechanism. Oral colonization of mice by S. mutans was impaired in the presence of anti-P1(39-512) antibodies, particularly those raised in combination with adjuvants. In conclusion, our results confirm the utility of P1(39-512) as a potential candidate for the development of anticaries vaccines and as a tool for functional studies of S. mutans P1.
Collapse
|
5
|
Heim KP, Crowley PJ, Brady LJ. An intramolecular interaction involving the N terminus of a streptococcal adhesin affects its conformation and adhesive function. J Biol Chem 2013; 288:13762-74. [PMID: 23539625 DOI: 10.1074/jbc.m113.459974] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND P1 is an adhesin on the surface of Streptococcus mutans. RESULTS Destroying the high affinity interaction between the N and C termini of S. mutans P1 creates a non-adherent phenotype. CONCLUSION The N terminus facilitates proper folding, function, and stability within recombinant P1. SIGNIFICANCE The relationship between folding, maturation, and cell surface assembly is critical to understanding the P1 mechanism of action. The adhesin P1 is localized on the surface of the oral pathogen Streptococcus mutans and facilitates an interaction with the glycoprotein complex salivary agglutinin that is comprised primarily of the scavenger receptor gp340. Recent crystal structures of P1 display an unusual structure in which the protein folds back upon itself to form an elongated hybrid helical stalk with a globular head at the apex and a globular C-terminal region at the base. The N terminus of P1 has not yet been characterized. In this report we describe the contribution of an interaction between the N-terminal and C-terminal portions of the protein that is required for proper function of P1 on the surface of S. mutans. Utilizing recombinant N-terminal and C-terminal fragments, we employed isothermal titration calorimetry and native gel electrophoresis to demonstrate that these fragments form a high affinity and stable complex in solution. Furthermore, circular dichroism and surface plasmon resonance measurements indicated that the N-terminal fragment contributes to the folding and increases the functionality of the C-terminal fragment in trans. Finally, we utilized circular dichroism, surface plasmon resonance, and differential scanning calorimetry to show that an N-terminal 106-amino acid segment within P1 contributes to the proper folding and function of the full-length recombinant molecule and increases the stability of its elongated hybrid helical stalk.
Collapse
Affiliation(s)
- Kyle P Heim
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
6
|
Fc receptor-targeted mucosal vaccination as a novel strategy for the generation of enhanced immunity against mucosal and non-mucosal pathogens. Arch Immunol Ther Exp (Warsz) 2009; 57:311-23. [PMID: 19688186 DOI: 10.1007/s00005-009-0040-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 03/30/2009] [Indexed: 12/22/2022]
Abstract
Numerous studies have demonstrated that targeting immunogens to Fcgamma receptors (FcgammaR) on antigen (Ag)-presenting cells (APC) can enhance humoral and cellular immunity in vitro and in vivo. FcgammaR are classified based on their molecular weight, IgG-Fc binding affinities, IgG subclass binding specificity, and cellular distribution and they consist of activating and inhibitory receptors. However, despite the potential advantages of targeting Ag to FcR at mucosal sites, very little is known regarding the role of FcR in mucosal immunity or the efficacy of FcR-targeted mucosal vaccines. In addition, recent work has suggested that FcRn is present in the lungs of adult mice and humans and can transport FcRn-targeted Ag to FcgammaR-bearing APC within mucosal lymphoid tissue. In this review we will discuss the need for new vaccine strategies, the potential for FcR-targeted vaccines to fill this need, the impact of activating versus inhibitory FcgammaR on FcR-targeted vaccination, the significance of focusing on mucosal immunity, as well as caveats that could impact the use of FcR targeting as a mucosal vaccine strategy.
Collapse
|
7
|
Requirements for surface expression and function of adhesin P1 from Streptococcus mutans. Infect Immun 2008; 76:2456-68. [PMID: 18362133 DOI: 10.1128/iai.01315-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report, we define requirements for the successful translocation and functional maturation of the adhesin P1 of Streptococcus mutans. Conformational epitopes recognized by anti-P1 monoclonal antibodies (MAbs) were further characterized, thus facilitating the use of particular MAbs as tools to monitor the locations of various forms of the protein. We show that correct localization of P1 is dependent on structural features of the molecule itself, including a requisite A region-P region intramolecular interaction that occurs within the cell prior to secretion. P1 also was shown to be affected by several members of the protein-folding-secretion-turnover apparatus. It does not achieve a fully functional form in the absence of the trigger factor PPIase homolog RopA, and its translocation is delayed when DnaK levels are limited. In addition, dnaK message levels are differentially altered in the presence of P1 lacking the alanine-rich compared to the proline-rich repeat domains. Lastly, nonsecreted P1 lacking the P region accumulates within the cell in the absence of htrA, implying an intracellular HtrA protease function in the degradation and turnover of this particular internal-deletion polypeptide. However, the opposite effect is seen for full-length P1, suggesting a sensing mechanism and substrate-dependent alteration in HtrA's function and effect that is consistent with its known ability to switch between chaperone and protease, depending on environmental perturbations.
Collapse
|
8
|
Isoda R, Robinette RA, Pinder TL, McArthur WP, Brady LJ. Basis of beneficial immunomodulation by monoclonal antibodies against Streptococcus mutans adhesin P1. ACTA ACUST UNITED AC 2007; 51:102-11. [PMID: 17614961 DOI: 10.1111/j.1574-695x.2007.00279.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously identified five monoclonal antibodies (MAbs) against Streptococcus mutans adhesin P1 that modulate the humoral response when bound to whole bacteria and immune complexes (ICs) are administered to BALB/c mice. The two MAbs that redirected the response towards increased efficacy recognize discontinuous epitopes involving pre-alanine-rich domain sequence; therefore, to evaluate whether epitope specificity contributes to a desirable outcome a further MAb with this characteristic was tested. A beneficial immune response was promoted. None of the three MAbs that promoted a beneficial response was opsonic, suggesting that increased uptake of ICs by phagocytes does not mediate the improvement of the IC-elicited antibodies to inhibit bacterial adherence. Finally, two of the six anti-P1 MAbs activated complement but did not partition according to desirable vs. nondesirable effects.
Collapse
Affiliation(s)
- Ryutaro Isoda
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
9
|
McArthur WP, Rhodin NR, Seifert TB, Oli MW, Robinette RA, Demuth DR, Brady LJ. Characterization of epitopes recognized by anti-Streptococcus mutans P1 monoclonal antibodies. ACTA ACUST UNITED AC 2007; 50:342-53. [PMID: 17535300 DOI: 10.1111/j.1574-695x.2007.00260.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sequences contributing to epitopes recognized by a panel of monoclonal antibodies (mAbs) against the Streptococcus mutans surface protein P1 were delineated by Western blot and enzyme-linked immunosorbent assay using a battery of deletion constructs and recombinant polypeptides. mAbs that recognize complex discontinuous epitopes reconstituted by combining the alanine-rich and proline-rich repeat domains and varying degrees of flanking sequence were identified as well as mAbs that bound epitopes contained within contiguous segments of P1. Cross-reactivity with SspA and SspB from Streptococcus gordonii is also reported. This information enables insight into the structure and function of a streptococcal adhesin and its correlates of protection and furthers our understanding of the immunomodulatory and bacterial-adherence inhibition activities of anti-P1 mAbs.
Collapse
Affiliation(s)
- William P McArthur
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Moss CX, Tree TI, Watts C. Reconstruction of a pathway of antigen processing and class II MHC peptide capture. EMBO J 2007; 26:2137-47. [PMID: 17396153 PMCID: PMC1852786 DOI: 10.1038/sj.emboj.7601660] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 02/26/2007] [Indexed: 11/10/2022] Open
Abstract
Endocytosed antigens are proteolytically processed and small amounts of peptides captured by class II MHC molecules. The details of antigen proteolysis, peptide capture and how destruction of T-cell epitopes is avoided are incompletely understood. Using the tetanus toxin antigen, we show that the introduction of 3-6 cleavage sites is sufficient to trigger a partially unfolded conformation able to bind to class II MHC molecules. The known locations of T-cell epitopes and protease cleavage sites predict that large domains of processed antigen (8-35 kDa) are captured under these conditions. Remarkably, when antigen is bound to the B-cell antigen receptor (BCR), processing can trigger a concerted 'hand-over' reaction whereby BCR-associated processed antigen is captured by neighbouring class II MHC molecules. Early capture of minimally processed antigen and confinement of the processing and class II MHC loading reaction to the membrane plane may improve the likelihood of T-cell epitope survival in the class II MHC pathway and may help explain the reciprocal relationships observed between B- and T-cell epitopes in many protein antigens and autoantigens.
Collapse
Affiliation(s)
- Catherine X Moss
- Division of Cell Biology & Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Timothy I Tree
- Department of Immunobiology, King's College London, Guy's King's & St Thomas' School of Medicine, London, UK
| | - Colin Watts
- Division of Cell Biology & Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Division of Cell Biology and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. Tel.: +44 1382 384233; Fax: +44 1382 385783; E-mail:
| |
Collapse
|
11
|
Guo QY, Xiao G, Li R, Guan SM, Zhu XL, Wu JZ. Treatment of Streptococcus mutans with antisense oligodeoxyribonucleotides to gtfB mRNA inhibits GtfB expression and function. FEMS Microbiol Lett 2006; 264:8-14. [PMID: 17020543 DOI: 10.1111/j.1574-6968.2006.00378.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We examined the effects of phosphorothioate-modified antisense oligodeoxyribonucleotides (PS-ODN) targeted to mRNA transcribed from gtfB, which encodes synthesis of water-insoluble glucans in Streptococcus mutans. Treatment of S. mutans with 10 muM antisense PS-ODNs inhibited gtfB mRNA transcription, GtfB expression and water-insoluble glucan synthesis. The architecture of biofilms formed by antisense PS-ODNs-treated S. mutans showed reduced biomass, more dispersed distribution with enlarged interspaces and fewer layers of attached cells. PS-ODN treatment had no effect on the growth of S. mutans. Our results indicated that it might be feasible to use antisense PS-ODN as a novel agent in caries prevention.
Collapse
Affiliation(s)
- Qing-Yu Guo
- Department of Oral Biology, College of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
12
|
Teng YTA. Protective and destructive immunity in the periodontium: Part 1--innate and humoral immunity and the periodontium. J Dent Res 2006; 85:198-208. [PMID: 16498065 DOI: 10.1177/154405910608500301] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Based on the results of recent research in the field, the present paper will discuss the protective and destructive aspects of the innate vs. adaptive (humoral and cell-mediated) immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) the Toll-like receptors (TLR), the innate immune repertoire for recognizing the unique molecular patterns of microbial components that trigger innate and adaptive immunity for effective host defenses, in some general non-oral vs. periodontal microbial infections; (ii) T-cell-mediated immunity, Th-cytokines, and osteoclastogenesis in periodontal disease progression; and (iii) some molecular techniques developed and used to identify critical microbial virulence factors or antigens associated with host immunity (using Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species). Therefore, further understanding of the molecular interactions and mechanisms associated with the host's innate and adaptive immune responses will facilitate the development of new and innovative therapeutics for future periodontal treatments.
Collapse
Affiliation(s)
- Y-T A Teng
- Laboratory of Molecular Microbial Immunity, Eastman Department of Dentistry, Eastman Dental Center, Box-683, 625 Elmwood Ave., Rochester, NY 14620, USA.
| |
Collapse
|
13
|
Casadevall A, Pirofski LA. A Reappraisal of Humoral Immunity Based on Mechanisms of Antibody‐Mediated Protection Against Intracellular Pathogens. Adv Immunol 2006; 91:1-44. [PMID: 16938537 DOI: 10.1016/s0065-2776(06)91001-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sometime in the mid to late twentieth century the study of antibody-mediated immunity (AMI) entered the doldrums, as many immunologists believed that the function of AMI was well understood, and was no longer deserving of intensive investigation. However, beginning in the 1990s studies using monoclonal antibodies (mAbs) revealed new functions for antibodies, including direct antimicrobial effects and their ability to modify host inflammatory and cellular responses. Furthermore, the demonstration that mAbs to several intracellular bacterial and fungal pathogens were protective issued a serious challenge to the paradigm that host defense against such microbes was strictly governed by cell-mediated immunity (CMI). Hence, a new view of AMI is emerging. This view is based on the concept that a major function of antibody (Ab) is to amplify or subdue the inflammatory response to a microbe. In this regard, the "damage-response framework" of microbial pathogenesis provides a new conceptual viewpoint for understanding mechanisms of AMI. According to this view, the ability of an Ab to affect the outcome of a host-microbe interaction is a function of its capacity to modify the damage ensuing from such an interaction. In fact, it is increasingly apparent that the efficacy of an Ab cannot be defined either by immunoglobulin or epitope characteristics alone, but rather by a complex function of Ab variables, such as specificity, isotype, and amount, host variables, such as genetic background and immune status, and microbial variables, such as inoculum, mechanisms of avoiding host immune surveillance and pathogenic strategy. Consequently, far from being understood, recent findings in AMI imply a system with unfathomable complexity and the field is poised for a long overdue renaissance.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine and Montefoire Medical Center, Bronx, New York, USA
| | | |
Collapse
|
14
|
Brady LJ. Antibody-mediated immunomodulation: a strategy to improve host responses against microbial antigens. Infect Immun 2005; 73:671-8. [PMID: 15664904 PMCID: PMC547018 DOI: 10.1128/iai.73.2.671-678.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- L Jeannine Brady
- Department of Oral Biology, University of Florida, PO Box 100424, Gainesville, FL 32610-0424, USA.
| |
Collapse
|
15
|
Oli MW, Rhodin N, McArthur WP, Brady LJ. Redirecting the humoral immune response against Streptococcus mutans antigen P1 with monoclonal antibodies. Infect Immun 2004; 72:6951-60. [PMID: 15557617 PMCID: PMC529146 DOI: 10.1128/iai.72.12.6951-6960.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adhesin P1 of Streptococcus mutans has been studied as an anticaries vaccine antigen. An anti-P1 monoclonal antibody (MAb) bound to S. mutans prior to mucosal immunization of mice was shown previously to alter the amount, specificity, isotype, and biological activity of anti-P1 antibodies. The present study was undertaken to screen this and four additional anti-P1 MAbs for immunomodulatory activity when complexed with S. mutans and administered by a systemic route and to evaluate sera from immunized mice for the ability to inhibit adherence of S. mutans to immobilized human salivary agglutinin. All five MAbs tested influenced murine anti-P1 serum antibody responses in terms of subclass distribution and/or specificity. The effects varied depending on which MAb was used and its coating concentration. Two MAbs promoted a more effective, and two others a less effective, adherence inhibition response. An inverse relationship was observed between the ability of the MAbs themselves to inhibit adherence and the ability of antibodies elicited following immunization with immune complexes to inhibit adherence. Statistically significant correlations were demonstrated between the levels of anti-P1 serum immunoglobulin G2a (IgG2a) and IgG2b, but not of IgG1 or IgG3, and the ability of sera from immunized animals to inhibit bacterial adherence. These results indicate that multiple anti-P1 MAbs can mediate changes in the immune response and that certain alterations are potentially more biologically relevant than others. Immunomodulation by anti-P1 MAbs represents a useful strategy to improve the beneficial immune response against S. mutans.
Collapse
Affiliation(s)
- Monika W Oli
- Department of Oral Biology, P.O. Box 100424, Health Science Center, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Arturo Casadevall
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | |
Collapse
|
17
|
Rhodin NR, Cutalo JM, Tomer KB, McArthur WP, Brady LJ. Characterization of the Streptococcus mutans P1 epitope recognized by immunomodulatory monoclonal antibody 6-11A. Infect Immun 2004; 72:4680-8. [PMID: 15271929 PMCID: PMC470667 DOI: 10.1128/iai.72.8.4680-4688.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 04/12/2004] [Accepted: 05/13/2004] [Indexed: 11/20/2022] Open
Abstract
Monoclonal antibody (MAb) 6-11A directed against Streptococcus mutans surface adhesin P1 was shown previously to influence the mucosal immunogenicity of this organism in BALB/c mice. The specificity of anti-P1 serum immunoglobulin G (IgG) and secretory IgA antibodies and the subclass distribution of anti-P1 serum IgG antibodies were altered, and the ability of elicited serum antibodies to inhibit S. mutans adherence in vitro was in certain cases increased. MAb 6-11A is known to recognize an epitope dependent on the presence of the proline-rich region of the protein, although it does not bind directly to the isolated P-region domain. In this report, we show that MAb 6-11A recognizes a complex discontinuous epitope that requires the simultaneous presence of the alanine-rich repeat domain (A-region) and the P-region. Formation of the core epitope requires the interaction of these segments of P1. Residues amino terminal to the A-region also contributed to recognition by MAb 6-11A but were not essential for binding. Characterization of the MAb 6-11A epitope will enable insight into potential mechanisms of immunomodulation and broaden our understanding of the tertiary structure of P1.
Collapse
Affiliation(s)
- Nikki R Rhodin
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | |
Collapse
|