1
|
Blanco FC, Marini MR, Klepp LI, Vázquez CL, García EA, Bigi MM, Canal A, Bigi F. Long-term evaluation in BALBc mice of a triple mutant of Mycobacterium bovis and the Bacillus Calmette-Guérin as potential vaccines against bovine tuberculosis. Vet Microbiol 2025; 302:110371. [PMID: 39798450 DOI: 10.1016/j.vetmic.2025.110371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
There is currently no commercial vaccine available against bovine tuberculosis (bTB). Mycobacterium bovis is the primary causative agent of bTB and is closely related to Mycobacterium tuberculosis, the pathogen responsible for human TB. Despite their limitations, mouse models are invaluable in early vaccine development due to their genetic diversity, cost-effectiveness, and the availability of research tools. Researchers have tested many TB vaccines in mice, although few specifically target bTB. In this study, we developed a mutant strain of M. bovis lacking the esxA, esxB genes and the virulence gene fbpA to evaluate its long-term protective efficacy in BALB/c mice. We also analysed local immune responses and compared the results with those of BCG vaccination. Both BCG and the triple mutant strain Mb303ΔesxABΔfbpA demonstrated protection in BALB/c mice against M. bovis challenge, as evidenced by reduced bacterial lung loads. A histopathological analysis revealed the absence of ZN+ bacteria in the lungs of M. bovis-challenged mice vaccinated with BCG. In addition, mice vaccinated with the triple mutant exhibited a higher profile of protective immune CD4 + T cells in the lungs than those vaccinated with BCG. Notably, there was a negative correlation between the bacterial loads in the lungs of mice and the T cell subpopulations CD4 +KLRG1-PD1 +CCR7 + and CD4 +KLRG1-CXCR3 + , indicating that these T cell phenotypes are potential markers of protection against bTB. These findings indicate that the Mb303ΔesxABΔfbpA strain provides long-term protection against bTB. Furthermore, the results reaffirm the potential of BCG as a vaccine against this disease.
Collapse
Affiliation(s)
- Federico Carlos Blanco
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham, Buenos Aires 1686, Argentina
| | - María Rocío Marini
- Laboratorio de Anatomía Patológica, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral-Esperanza, Santa Fe, Argentina
| | - Laura Inés Klepp
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham, Buenos Aires 1686, Argentina
| | - Cristina Lourdes Vázquez
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham, Buenos Aires 1686, Argentina
| | - Elizabeth Andrea García
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham, Buenos Aires 1686, Argentina
| | | | - Ana Canal
- Laboratorio de Anatomía Patológica, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral-Esperanza, Santa Fe, Argentina
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham, Buenos Aires 1686, Argentina.
| |
Collapse
|
2
|
Mishra A, Khan A, Singh VK, Glyde E, Saikolappan S, Garnica O, Das K, Veerapandian R, Dhandayuthapani S, Jagannath C. The ΔfbpAΔsapM candidate vaccine derived from Mycobacterium tuberculosis H37Rv is markedly immunogenic in macrophages and induces robust immunity to tuberculosis in mice. Front Immunol 2024; 15:1321657. [PMID: 38975346 PMCID: PMC11224292 DOI: 10.3389/fimmu.2024.1321657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, with approximately 1.5 million deaths per year. The Bacillus Calmette-Guérin (BCG) vaccine against TB is used in infants but shows variable protection. Here, we introduce a novel approach using a double gene knockout mutant (DKO) from wild-type Mycobacterium tuberculosis (Mtb) targeting fbpA and sapM genes. DKO exhibited enhanced anti-TB gene expression in mouse antigen-presenting cells, activating autophagy and inflammasomes. This heightened immune response improved ex vivo antigen presentation to T cells. Subcutaneous vaccination with DKO led to increased protection against TB in wild-type C57Bl/6 mice, surpassing the protection observed in caspase 1/11-deficient C57Bl/6 mice and highlighting the critical role of inflammasomes in TB protection. The DKO vaccine also generated stronger and longer-lasting protection than the BCG vaccine in C57Bl/6 mice, expanding both CD62L-CCR7-CD44+/-CD127+ effector T cells and CD62L+CCR7+/-CD44+CD127+ central memory T cells. These immune responses correlated with a substantial ≥ 1.7-log10 reduction in Mtb lung burden. The DKO vaccine represents a promising new approach for TB immunization that mediates protection through autophagy and inflammasome pathways.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Vipul Kumar Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Emily Glyde
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Sankaralingam Saikolappan
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Omar Garnica
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Kishore Das
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Raja Veerapandian
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Subramanian Dhandayuthapani
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Veerapandian R, Gadad SS, Jagannath C, Dhandayuthapani S. Live Attenuated Vaccines against Tuberculosis: Targeting the Disruption of Genes Encoding the Secretory Proteins of Mycobacteria. Vaccines (Basel) 2024; 12:530. [PMID: 38793781 PMCID: PMC11126151 DOI: 10.3390/vaccines12050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB), a chronic infectious disease affecting humans, causes over 1.3 million deaths per year throughout the world. The current preventive vaccine BCG provides protection against childhood TB, but it fails to protect against pulmonary TB. Multiple candidates have been evaluated to either replace or boost the efficacy of the BCG vaccine, including subunit protein, DNA, virus vector-based vaccines, etc., most of which provide only short-term immunity. Several live attenuated vaccines derived from Mycobacterium tuberculosis (Mtb) and BCG have also been developed to induce long-term immunity. Since Mtb mediates its virulence through multiple secreted proteins, these proteins have been targeted to produce attenuated but immunogenic vaccines. In this review, we discuss the characteristics and prospects of live attenuated vaccines generated by targeting the disruption of the genes encoding secretory mycobacterial proteins.
Collapse
Affiliation(s)
- Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX 77030, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
4
|
Mycobacterial Trehalose 6,6'-Dimycolate-Induced M1-Type Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:286-294. [PMID: 31734231 DOI: 10.1016/j.ajpath.2019.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 01/25/2023]
Abstract
Murine models of Mycobacterium tuberculosis (Mtb) infection demonstrate progression of M1-like (proinflammatory) and M2-like (anti-inflammatory) macrophage morphology following primary granuloma formation. The Mtb cell wall cording factor, trehalose 6,6'-dimycolate (TDM), is a physiologically relevant and useful molecule for modeling early macrophage-mediated events during establishment of the tuberculosis-induced granuloma pathogenesis. Here, it is shown that TDM is a major driver of the early M1-like macrophage response as seen during initiation of the granulomas of primary pathology. Proinflammatory cytokines tumor necrosis factor-α, IL-1β, IL-6, and IL-12p40 are produced in lung tissue after administration of TDM to mice. Furthermore, CD11b+CD45+ macrophages with a high surface expression of the M1-like markers CD38 and CD86 were found present in regions of pathology in lungs of mice at 7 days post-TDM introduction. Conversely, only low phenotypic marker expression of M2-like markers CD206 and EGR-2 were present on macrophages. These findings suggest that TDM plays a role in establishment of the M1-like shift in the microenvironment during primary tuberculosis.
Collapse
|
5
|
Khan A, Bakhru P, Saikolappan S, Das K, Soudani E, Singh CR, Estrella JL, Zhang D, Pasare C, Ma Y, Sun J, Wang J, Hunter RL, Tony Eissa N, Dhandayuthapani S, Jagannath C. An autophagy-inducing and TLR-2 activating BCG vaccine induces a robust protection against tuberculosis in mice. NPJ Vaccines 2019; 4:34. [PMID: 31396406 PMCID: PMC6683161 DOI: 10.1038/s41541-019-0122-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/15/2019] [Indexed: 12/28/2022] Open
Abstract
Mycobacterium bovis BCG is widely used as a vaccine against tuberculosis due to M. tuberculosis (Mtb), which kills millions of people each year. BCG variably protects children, but not adults against tuberculosis. BCG evades phagosome maturation, autophagy, and reduces MHC-II expression of antigen-presenting cells (APCs) affecting T-cell activation. To bypass these defects, an autophagy-inducing, TLR-2 activating C5 peptide from Mtb-derived CFP-10 protein was overexpressed in BCG in combination with Ag85B. Recombinant BCG85C5 induced a robust MHC-II-dependent antigen presentation to CD4 T cells in vitro, and elicited stronger TH1 cytokines (IL-12, IL-1β, and TNFα) from APCs of C57Bl/6 mice increasing phosphorylation of p38MAPK and ERK. BCG85C5 also enhanced MHC-II surface expression of MΦs by inhibiting MARCH1 ubiquitin ligase that degrades MHC-II. BCG85C5 infected APCs from MyD88 or TLR-2 knockout mice showed decreased antigen presentation. Furthermore, BCG85C5 induced LC3-dependent autophagy in macrophages increasing antigen presentation. Consistent with in vitro effects, BCG85C5 markedly expanded both effector and central memory T cells in C57Bl/6 mice protecting them against both primary aerosol infection with Mtb and reinfection, but was less effective among TLR-2 knockout mice. Thus, BCG85C5 induces stronger and longer lasting immunity, and is better than BCG against tuberculosis of mice.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Pearl Bakhru
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Sankaralingam Saikolappan
- Molecular and Translational Medicine, Paul L. Foster School of Medicine Texas Tech University Health Sciences Center, El Paso, TX USA
| | - Kishore Das
- Molecular and Translational Medicine, Paul L. Foster School of Medicine Texas Tech University Health Sciences Center, El Paso, TX USA
| | - Emily Soudani
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Christopher R. Singh
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Jaymie L. Estrella
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Dekai Zhang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX USA
| | - Chandrashekhar Pasare
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Yue Ma
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Houston, TX USA
| | - Jianjun Sun
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Houston, TX USA
| | - Jin Wang
- Methodist Hospital Research Institute, Houston, TX USA
| | - Robert L. Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | | | - Subramanian Dhandayuthapani
- Molecular and Translational Medicine, Paul L. Foster School of Medicine Texas Tech University Health Sciences Center, El Paso, TX USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
- Methodist Hospital Research Institute, Houston, TX USA
| |
Collapse
|
6
|
Panchal V, Jatana N, Malik A, Taneja B, Pal R, Bhatt A, Besra GS, Thukral L, Chaudhary S, Rao V. A novel mutation alters the stability of PapA2 resulting in the complete abrogation of sulfolipids in clinical mycobacterial strains. FASEB Bioadv 2019; 1:306-319. [PMID: 32123834 PMCID: PMC6996325 DOI: 10.1096/fba.2018-00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 01/07/2023] Open
Abstract
The analysis of whole genomes has revealed specific geographical distribution of Mycobacterium tuberculosis (Mtb) strains across the globe suggestive of unique niche dependent adaptive mechanisms. We provide an important correlation of a genome-based mutation to a molecular phenotype across two predominant clinical Mtb lineages of the Indian subcontinent. We have identified a distinct lineage specific mutation-G247C, translating into an alanine-proline conversion in the papA2 gene of Indo-oceanic lineage 1 (L1) Mtb strains, and restoration of cell wall sulfolipids by simple genetic complementation of papA2 from lineage 3 (L3) or from H37Rv (lineage 4-L4) attributed the loss of this glycolipid to this specific mutation in Indo-Oceanic L1 Mtb. The investigation of structure of Mtb PapA2 revealed a distinct nonribosomal peptide synthetase (NRPS) C domain conformation with an unconventional presence of a zinc binding motif. Surprisingly, the A83P mutation did not map to either the catalytic center in the N-terminal subdomain or any of the substrate-binding region of the protein. On the contrary, the inherent ability of mutant PapA2 to form insoluble aggregates and molecular simulations with the wild-type/mutant (Wt/mut) PapA2 purports an important role for the surface associated 83rd residue in protein conformation. This study demonstrates the importance of a critical structural residue in the papA2 protein of Mtb and helps establish a link between observed genomic alteration and its molecular consequence in the successful human pathogen Mtb. Significance We demonstrate the effect of a unique SNP in PapA2 gene of Indo-oceanic Mycobacterium tuberculosis (Mtb) strains leading to the loss of sulfolipid from these strains. By X-ray crystallographic analysis and molecular dynamics (MD) simulations, we show the importance of this residue in the global PapA2 structure. The presence of a Zn atom has not been reported before for this class of proteins. Here, we provide an important link between genomic alteration and its molecular consequence in Mtb highlighting one of the many adaptive mechanisms that have contributed to its success as a human pathogen. A high degree of identity with PapA1, 3, or 4 would help in interpreting the structure of these PapA proteins and other acyl transferases of other biological systems.
Collapse
Affiliation(s)
- Vipul Panchal
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) CampusNew DelhiIndia
| | - Nidhi Jatana
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Anchal Malik
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Bhupesh Taneja
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) CampusNew DelhiIndia
| | | | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and InfectionUniversity of BirminghamBirminghamUK
| | - Gurdyal S Besra
- School of Biosciences and Institute of Microbiology and InfectionUniversity of BirminghamBirminghamUK
| | - Lipi Thukral
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) CampusNew DelhiIndia
| | - Sarika Chaudhary
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Vivek Rao
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) CampusNew DelhiIndia
| |
Collapse
|
7
|
Gupta T, LaGatta M, Helms S, Pavlicek RL, Owino SO, Sakamoto K, Nagy T, Harvey SB, Papania M, Ledden S, Schultz KT, McCombs C, Quinn FD, Karls RK. Evaluation of a temperature-restricted, mucosal tuberculosis vaccine in guinea pigs. Tuberculosis (Edinb) 2018; 113:179-188. [PMID: 30514501 DOI: 10.1016/j.tube.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 12/13/2022]
Abstract
Tuberculosis (TB) is currently the leading cause of death in humans by a single infectious agent, Mycobacterium tuberculosis. The Bacillus Calmette-Guérin (BCG) vaccine prevents pulmonary TB with variable efficacy, but can cause life-threatening systemic infection in HIV-infected infants. In this study, TBvac85, a derivative of Mycobacterium shottsii expressing M. tuberculosis Antigen 85B, was examined as a safer alternative to BCG. Intranasal vaccination of guinea pigs with TBvac85, a naturally temperature-restricted species, resulted in serum Ag85B-specific IgG antibodies. Delivery of the vaccine by this route also induced protection equivalent to intradermal BCG based on organ bacterial burdens and lung pathology six weeks after aerosol challenge with M. tuberculosis strain Erdman. These results support the potential of TBvac85 as the basis of an effective TB vaccine. Next-generation derivatives expressing multiple M. tuberculosis immunogens are in development.
Collapse
Affiliation(s)
- Tuhina Gupta
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Monica LaGatta
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Pathens, Inc., Athens, GA, USA
| | - Shelly Helms
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Rebecca L Pavlicek
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Simon O Owino
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Pathens, Inc., Athens, GA, USA
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Stephen B Harvey
- Animal Resources Program, University of Georgia, Athens, GA, USA; Department of Population Heath, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Mark Papania
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephanie Ledden
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | | | - Frederick D Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Pathens, Inc., Athens, GA, USA
| | - Russell K Karls
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Pathens, Inc., Athens, GA, USA.
| |
Collapse
|
8
|
Villela AD, Rodrigues VDS, Pinto AFM, Wink PL, Sánchez-Quitian ZA, Petersen GO, Campos MM, Basso LA, Santos DS. Characterisation of iunH gene knockout strain from Mycobacterium tuberculosis. Mem Inst Oswaldo Cruz 2017; 112:203-208. [PMID: 28225907 PMCID: PMC5319374 DOI: 10.1590/0074-02760160462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis. The better understanding of important metabolic pathways from M. tuberculosis can contribute to the development of novel therapeutic and prophylactic strategies to combat TB. Nucleoside hydrolase (MtIAGU-NH), encoded by iunH gene (Rv3393), is an enzyme from purine salvage pathway in M. tuberculosis. MtIAGU-NH accepts inosine, adenosine, guanosine, and uridine as substrates, which may point to a pivotal metabolic role. OBJECTIVES Our aim was to construct a M. tuberculosis knockout strain for iunH gene, to evaluate in vitro growth and the effect of iunH deletion in M. tuberculosis in non-activated and activated macrophages models of infection. METHODS A M. tuberculosis knockout strain for iunH gene was obtained by allelic replacement, using pPR27xylE plasmid. The complemented strain was constructed by the transformation of the knockout strain with pNIP40::iunH. MtIAGU-NH expression was analysed by Western blot and LC-MS/MS. In vitro growth was evaluated in Sauton’s medium. Bacterial load of non-activated and interferon-γ activated RAW 264.7 cells infected with knockout strain was compared with wild-type and complemented strains. FINDINGS Western blot and LC-MS/MS validated iunH deletion at protein level. The iunH knockout led to a delay in M. tuberculosis growth kinetics in Sauton’s medium during log phase, but did not affect bases and nucleosides pool in vitro. No significant difference in bacterial load of knockout strain was observed when compared with both wild-type and complemented strains after infection of non-activated and interferon-γ activated RAW 264.7 cells. MAIN CONCLUSION The disruption of iunH gene does not influence M. tuberculosis growth in both non-activated and activated RAW 264.7 cells, which show that iunH gene is not important for macrophage invasion and virulence. Our results indicated that MtIAGU-NH is not a target for drug development.
Collapse
Affiliation(s)
- Anne Drumond Villela
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil
| | - Valnês da Silva Rodrigues
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil.,Pontifícia Universidade Católica do Rio Grande do Sul, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brasil.,Pontifícia Universidade Católica do Rio Grande do Sul, Instituto de Toxicologia e Farmacologia, Porto Alegre, RS, Brasil
| | - Antônio Frederico Michel Pinto
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil
| | - Priscila Lamb Wink
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil.,Pontifícia Universidade Católica do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brasil
| | - Zilpa Adriana Sánchez-Quitian
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil.,Pontifícia Universidade Católica do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brasil
| | - Guilherme Oliveira Petersen
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil
| | - Maria Martha Campos
- Pontifícia Universidade Católica do Rio Grande do Sul, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brasil.,Pontifícia Universidade Católica do Rio Grande do Sul, Instituto de Toxicologia e Farmacologia, Porto Alegre, RS, Brasil.,Pontifícia Universidade Católica do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brasil
| | - Luiz Augusto Basso
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil.,Pontifícia Universidade Católica do Rio Grande do Sul, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brasil.,Pontifícia Universidade Católica do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brasil
| | - Diógenes Santiago Santos
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil.,Pontifícia Universidade Católica do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brasil
| |
Collapse
|
9
|
Cafaro A, Piccaro G, Altavilla G, Gigantino V, Matarese G, Olivieri E, Ferrantelli F, Ensoli B, Palma C. HIV-1 Tat protein vaccination in mice infected with Mycobacterium tuberculosis is safe, immunogenic and reduces bacterial lung pathology. BMC Infect Dis 2016; 16:442. [PMID: 27549342 PMCID: PMC4994248 DOI: 10.1186/s12879-016-1724-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 07/19/2016] [Indexed: 01/01/2023] Open
Abstract
Background The therapeutic HIV-1 Tat protein vaccine is in advanced clinical development. Tuberculosis, the main AIDS co-infection, is highly endemic in areas where AIDS prevention through vaccination is needed. However, safety and immunogenicity of Tat vaccination in the course of Mycobacterium tuberculosis (Mtb) infection is still unknown and it prevents the possibility to administer the vaccine to Mtb-infected individuals. We addressed the interplay and effects of Tat vaccination on Mtb infection in immunocompetent mice. Methods C57BL/6 mice were vaccinated or not with Bacillus Calmette-Guerin (BCG), the current tuberculosis vaccine, and after 5 weeks were infected with Mtb by intravenous route. The Tat protein was injected intradermally at 1, 2 and 4 weeks after Mtb challenge. Eight weeks after Mtb infection, all mice were sacrificed, and both the degree of pathology and immune responses to Mtb and Tat were evaluated. As additional control, some mice were either vaccinated or not with BCG, were not challenged with Mtb, but received the Tat protein. Statistical significances were evaluated by one-way or two-way ANOVA and Tukey’s multiple comparisons post-test. Results In the lungs of Mtb-infected mice, Tat-vaccine did not favour Mtb replication and indeed reduced both area of cellular infiltration and protein levels of Interferon-γ, Chemokine (C-C motif) ligand-4 and Interleukin-1β, pathological events triggered by Mtb-infection. Moreover, the protection against Mtb infection conferred by BCG remained good after Tat protein treatment. In spleen cells of Mtb-infected mice, Tat vaccination enhanced Mtb-specific Interferon-γ and Interleukin-17 responses, which may have a protective role. Of note, Mtb infection reduced, but did not suppress, the development of anti-Tat antibodies, required for Tat vaccine efficacy and the titer of anti-Tat IgG was potentiated by BCG vaccination in Mtb-free mice. In general, Tat treatment was well tolerated in both Mtb-infected and Mtb-free mice. Conclusions Tat protein vaccine, administered in Mtb-infected mice with a protocol resembling that used in the clinical trials, was safe, immunogenic, limited the lung Mtb-associated immunopathology and did not abrogate the protective efficacy of BCG. These data provide preliminary evidence for a safe use of Tat vaccine in people vaccinated with BCG and/or suffering from tuberculosis.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, Rome, 299 00161, Italy.
| | - Giovanni Piccaro
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, Rome, 299 00161, Italy
| | | | - Vincenzo Gigantino
- Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy.,Dipartimento di Patologia Fondazione G. Pascale IRCCS, Naples, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina e Chirurgia, Università di Salerno, Salerno, Italy.,MultiMedica IRCCS, Milan, Italy
| | - Erika Olivieri
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, Rome, 299 00161, Italy
| | - Flavia Ferrantelli
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, Rome, 299 00161, Italy
| | - Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, Rome, 299 00161, Italy
| | - Carla Palma
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, Rome, 299 00161, Italy.
| |
Collapse
|
10
|
Prendergast KA, Counoupas C, Leotta L, Eto C, Bitter W, Winter N, Triccas JA. The Ag85B protein of the BCG vaccine facilitates macrophage uptake but is dispensable for protection against aerosol Mycobacterium tuberculosis infection. Vaccine 2016; 34:2608-15. [PMID: 27060378 DOI: 10.1016/j.vaccine.2016.03.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 02/09/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
Abstract
Defining the function and protective capacity of mycobacterial antigens is crucial for progression of tuberculosis (TB) vaccine candidates to clinical trials. The Ag85B protein is expressed by all pathogenic mycobacteria and is a component of multiple TB vaccines under evaluation in humans. In this report we examined the role of the BCG Ag85B protein in host cell interaction and vaccine-induced protection against virulent Mycobacterium tuberculosis infection. Ag85B was required for macrophage infection in vitro, as BCG deficient in Ag85B expression (BCG:(Δ85B)) was less able to infect RAW 264.7 macrophages compared to parental BCG, while an Ag85B-overexpressing BCG strain (BCG:(oex85B)) demonstrated improved uptake. A similar pattern was observed in vivo after intradermal delivery to mice, with significantly less BCG:(Δ85B) present in CD64(hi)CD11b(hi) macrophages compared to BCG or BCG:(oex85B). After vaccination of mice with BCG:(Δ85B) or parental BCG and subsequent aerosol M. tuberculosis challenge, similar numbers of activated CD4(+) and CD8(+) T cells were detected in the lungs of infected mice for both groups, suggesting the reduced macrophage uptake observed by BCG:(Δ85B) did not alter host immunity. Further, vaccination with both BCG:(Δ85B) and parental BCG resulted in a comparable reduction in pulmonary M. tuberculosis load. These data reveal an unappreciated role for Ag85B in the interaction of mycobacteria with host cells and indicates that single protective antigens are dispensable for protective immunity induced by BCG.
Collapse
Affiliation(s)
- Kelly A Prendergast
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia; Mycobacterial Research Group, Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW, Australia
| | - Claudio Counoupas
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia; Mycobacterial Research Group, Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW, Australia
| | - Lisa Leotta
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia; Mycobacterial Research Group, Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW, Australia
| | - Carolina Eto
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Nathalie Winter
- INRA, Université de Tours, UMR 1282, Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - James A Triccas
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia; Mycobacterial Research Group, Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Lactoferrin: A Modulator for Immunity against Tuberculosis Related Granulomatous Pathology. Mediators Inflamm 2015; 2015:409596. [PMID: 26788020 PMCID: PMC4691619 DOI: 10.1155/2015/409596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/30/2015] [Indexed: 01/21/2023] Open
Abstract
There is great need for a therapeutic that would limit tuberculosis related pathology and thus curtail spread of disease between individuals by establishing a "firebreak" to slow transmission. A promising avenue to increase current therapeutic efficacy may be through incorporation of adjunct components that slow or stop development of aggressive destructive pulmonary pathology. Lactoferrin, an iron-binding glycoprotein found in mucosal secretions and granules of neutrophils, is just such a potential adjunct therapeutic agent. The focus of this review is to explore the utility of lactoferrin to serve as a therapeutic tool to investigate "disruption" of the mycobacterial granuloma. Proposed concepts for mechanisms underlying lactoferrin efficacy to control immunopathology are supported by data generated based on in vivo models using nonpathogenic trehalose 6,6'-dimycolate (TDM, cord factor).
Collapse
|
12
|
Ng TW, Saavedra-Ávila NA, Kennedy SC, Carreño LJ, Porcelli SA. Current efforts and future prospects in the development of live mycobacteria as vaccines. Expert Rev Vaccines 2015; 14:1493-507. [PMID: 26366616 DOI: 10.1586/14760584.2015.1089175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of more effective vaccines against Mycobacterium tuberculosis (Mtb) remains a major goal in the effort to reduce the enormous global burden of disease caused by this pathogen. Whole-cell vaccines based on live mycobacteria with attenuated virulence represent an appealing approach, providing broad antigen exposure and intrinsic adjuvant properties to prime durable immune responses. However, designing vaccine strains with an optimal balance between attenuation and immunogenicity has proven to be extremely challenging. Recent basic and clinical research efforts have broadened our understanding of Mtb pathogenesis and created numerous new vaccine candidates that have been designed to overcome different aspects of immune evasion by Mtb. In this review, we provide an overview of the current efforts to create improved vaccines against tuberculosis based on modifications of live attenuated mycobacteria. In addition, we discuss the use of such vaccine strains as vectors for stimulating protective immunity against other infectious diseases and cancers.
Collapse
Affiliation(s)
- Tony W Ng
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Noemí A Saavedra-Ávila
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steven C Kennedy
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Leandro J Carreño
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA.,b 2 Millennium Institute on Immunology and Immunotherapy, Programa Disciplinario de Inmunologia, Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Steven A Porcelli
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
13
|
Garhyan J, Bhuyan S, Pulu I, Kalita D, Das B, Bhatnagar R. Preclinical and Clinical Evidence of Mycobacterium tuberculosis Persistence in the Hypoxic Niche of Bone Marrow Mesenchymal Stem Cells after Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1924-34. [PMID: 26066709 DOI: 10.1016/j.ajpath.2015.03.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/02/2015] [Accepted: 03/17/2015] [Indexed: 01/23/2023]
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of pulmonary tuberculosis, is difficult to eliminate by antibiotic therapy. We recently identified CD271(+) bone marrow-mesenchymal stem cells (BM-MSCs) as a potential site of MTB persistence after therapy. Herein, we have characterized the potential hypoxic localization of the post-therapy MTB-infected CD271(+) BM-MSCs in both mice and human subjects. We first demonstrate that in a Cornell model of MTB persistence in mice, green fluorescent protein-labeled virulent MTB-strain H37Rv was localized to pimonidazole (an in vivo hypoxia marker) positive CD271(+) BM-MSCs after 90 days of isoniazid and pyrazinamide therapy that rendered animal's lung noninfectious. The recovered CD271(+) BM-MSCs from post-therapy mice, when injected into healthy mice, caused active tuberculosis infection in the animal's lung. Moreover, MTB infection significantly increased the hypoxic phenotype of CD271(+) BM-MSCs. Next, in human subjects, previously treated for pulmonary tuberculosis, the MTB-containing CD271(+) BM-MSCs exhibited high expression of hypoxia-inducible factor 1α and low expression of CD146, a hypoxia down-regulated cell surface marker of human BM-MSCs. These data collectively demonstrate the potential localization of MTB harboring CD271(+) BM-MSCs in the hypoxic niche, a critical microenvironmental factor that is well known to induce the MTB dormancy phenotype.
Collapse
Affiliation(s)
- Jaishree Garhyan
- KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Seema Bhuyan
- KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Ista Pulu
- KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Deepjyoti Kalita
- KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Bikul Das
- KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Department of Immunity and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts.
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
14
|
Welsh KJ, Hunter RL, Actor JK. Trehalose 6,6'-dimycolate--a coat to regulate tuberculosis immunopathogenesis. Tuberculosis (Edinb) 2014; 93 Suppl:S3-9. [PMID: 24388646 DOI: 10.1016/s1472-9792(13)70003-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) remains a significant public health burden worldwide. Treatment of this disease requires a minimum of six months and there is no vaccine available for the most common form of the disease. Increasing evidence suggests that the mycobacterial glycolipid trehalose 6,6' dimycolate (TDM; cord factor) plays a key role in the pathogenesis of TB disease. TDM protects the TB bacilli from macrophage-mediated killing, inhibits effective antigen presentation, and reduces the formation of protective T-cell responses. TDM promotes initiation of granuloma formation and likely plays a role in caseation. Furthermore, TDM may contribute to the development of post primary disease. Receptors for TDM were recently described and are expected to contribute to our knowledge of the molecular pathogenesis of TB disease. In this manner, understanding TDM may prove promising towards development of targeted TB therapeutics to limit clinical pathologies.
Collapse
Affiliation(s)
- Kerry J Welsh
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, Texas, USA
| | - Robert L Hunter
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, Texas, USA
| | - Jeffrey K Actor
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, Texas, USA.
| |
Collapse
|
15
|
Prozorov AA, Fedorova IA, Bekker OB, Danilenko VN. The virulence factors of Mycobacterium tuberculosis: Genetic control, new conceptions. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414080055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Chauhan P, Reddy PV, Singh R, Jaisinghani N, Gandotra S, Tyagi AK. Secretory phosphatases deficient mutant of Mycobacterium tuberculosis imparts protection at the primary site of infection in guinea pigs. PLoS One 2013; 8:e77930. [PMID: 24205032 PMCID: PMC3799640 DOI: 10.1371/journal.pone.0077930] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022] Open
Abstract
Background The failure of Mycobacterium bovis Bacille Calmette-Guérin to impart satisfactory protection against adult pulmonary tuberculosis has necessitated the development of more effective TB vaccines. The assumption that the vaccine strain should be antigenically as similar as possible to the disease causing pathogen has led to the evaluation of M.tuberculosis mutants as candidate tuberculosis vaccines. Methods/Principal Findings In this study, we have generated a mutant of M.tuberculosis (Mtb∆mms) by disrupting 3 virulence genes encoding a mycobacterial secretory acid phosphatase (sapM) and two phosphotyrosine protein phosphatases (mptpA and mptpB) and have evaluated its protective efficacy in guinea pigs. We observed that Mtb∆mms was highly attenuated in THP-1 macrophages. Moreover, no bacilli were recovered from the lungs and spleens of guinea pigs after 10 weeks of Mtb∆mms inoculation, although, initially, the mutant exhibited some growth in the spleens. Subsequently, when Mtb∆mms was evaluated for its protective efficacy, we observed that similar to BCG vaccination, Mtb∆mms exhibited a significantly reduced CFU in the lungs of guinea pigs when compared with the unvaccinated animals at 4 weeks after challenge. In addition, our observations at 12 weeks post challenge demonstrated that Mtb∆mms exhibited a more sustainable and superior protection in lungs as compared to BCG. However, the mutant failed to control the hematogenous spread as the splenic bacillary load between Mtb∆mms vaccinated and sham immunized animals was not significantly different. The gross pathological observations and histopathological observations corroborated the bacterial findings. Inspite of disruption of phosphatase genes in MtbΔmms, the lipid profiles of M.tuberculosis and MtbΔmms were identical indicating thereby that the phenotype of the mutant was ascribed to the loss of phosphatase genes and the influence was not related to any alteration in the lipid composition. Conclusions/Significance This study highlights the importance of M.tuberculosis mutants in imparting protection against pulmonary TB.
Collapse
Affiliation(s)
- Priyanka Chauhan
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - P. Vineel Reddy
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Ramandeep Singh
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | | | - Sheetal Gandotra
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anil K. Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- ∗ E-mail:
| |
Collapse
|
17
|
|
18
|
Romano M, Huygen K. An update on vaccines for tuberculosis – there is more to it than just waning of BCG efficacy with time. Expert Opin Biol Ther 2012; 12:1601-10. [DOI: 10.1517/14712598.2012.721768] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Nocardia brasiliensis cell wall lipids modulate macrophage and dendritic responses that favor development of experimental actinomycetoma in BALB/c mice. Infect Immun 2012; 80:3587-601. [PMID: 22851755 DOI: 10.1128/iai.00446-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nocardia brasiliensis is a Gram-positive facultative intracellular bacterium frequently isolated from human actinomycetoma. However, the pathogenesis of this infection remains unknown. Here, we used a model of bacterial delipidation with benzine to investigate the role of N. brasiliensis cell wall-associated lipids in experimental actinomycetoma. Delipidation of N. brasiliensis with benzine resulted in complete abolition of actinomycetoma without affecting bacterial viability. Chemical analyses revealed that trehalose dimycolate and an unidentified hydrophobic compound were the principal compounds extracted from N. brasiliensis with benzine. By electron microscopy, the extracted lipids were found to be located in the outermost membrane layer of the N. brasiliensis cell wall. They also appeared to confer acid-fastness. In vitro, the extractable lipids from the N. brasiliensis cell wall induced the production of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and CCL-2 in macrophages. The N. brasiliensis cell wall extractable lipids inhibited important macrophage microbicidal effects, such as tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) production, phagocytosis, bacterial killing, and major histocompatibility complex class II (MHC-II) expression in response to gamma interferon (IFN-γ). In dendritic cells (DCs), N. brasiliensis cell wall-associated extractable lipids suppressed MHC-II, CD80, and CD40 expression while inducing tumor growth factor β (TGF-β) production. Immunization with delipidated N. brasiliensis induced partial protection preventing actinomycetoma. These findings suggest that N. brasiliensis cell wall-associated lipids are important for actinomycetoma development by inducing inflammation and modulating the responses of macrophages and DCs to N. brasiliensis.
Collapse
|
20
|
Saikolappan S, Estrella J, Sasindran SJ, Khan A, Armitige LY, Jagannath C, Dhandayuthapani S. The fbpA/sapM double knock out strain of Mycobacterium tuberculosis is highly attenuated and immunogenic in macrophages. PLoS One 2012; 7:e36198. [PMID: 22574140 PMCID: PMC3344844 DOI: 10.1371/journal.pone.0036198] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 03/31/2012] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of death due to bacterial infections in mankind, and BCG, an attenuated strain of Mycobacterium bovis, is an approved vaccine. BCG sequesters in immature phagosomes of antigen presenting cells (APCs), which do not fuse with lysosomes, leading to decreased antigen processing and reduced Th1 responses. However, an Mtb derived ΔfbpA attenuated mutant underwent limited phagosome maturation, enhanced immunogenicity and was as effective as BCG in protecting mice against TB. To facilitate phagosome maturation of ΔfbpA, we disrupted an additional gene sapM, which encodes for an acid phosphatase. Compared to the wild type Mtb, the ΔfbpAΔsapM (double knock out; DKO) strain was attenuated for growth in mouse macrophages and PMA activated human THP1 macrophages. Attenuation correlated with increased oxidants in macrophages in response to DKO infection and enhanced labeling of lysosomal markers (CD63 and rab7) on DKO phagosomes. An in vitro Antigen 85B peptide presentation assay was used to determine antigen presentation to T cells by APCs infected with DKO or other mycobacterial strains. This revealed that DKO infected APCs showed the strongest ability to present Ag85B to T cells (>2500 pgs/mL in 4 hrs) as compared to APCs infected with wild type Mtb or ΔfbpA or ΔsapM strain (<1000 pgs/mL in 4 hrs), indicating that DKO strain has enhanced immunogenicity than other strains. The ability of DKO to undergo lysosomal fusion and vacuolar acidification correlated with antigen presentation since bafilomycin, that inhibits acidification in APCs, reduced antigen presentation. Finally, the DKO vaccine elicited a better Th1 response in mice after subcutaneous vaccination than either ΔfbpA or ΔsapM. Since ΔfbpA has been used in mice as a candidate vaccine and the DKO (ΔfbpAΔsapM) mutant is more immunogenic than ΔfbpA, we propose the DKO is a potential anti-tuberculosis vaccine.
Collapse
Affiliation(s)
- Sankaralingam Saikolappan
- Regional Academic Health Center and Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Jaymie Estrella
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Smitha J. Sasindran
- Regional Academic Health Center and Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Arshad Khan
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Lisa Y. Armitige
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Chinnaswamy Jagannath
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Subramanian Dhandayuthapani
- Regional Academic Health Center and Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| |
Collapse
|
21
|
Warrier T, Tropis M, Werngren J, Diehl A, Gengenbacher M, Schlegel B, Schade M, Oschkinat H, Daffe M, Hoffner S, Eddine AN, Kaufmann SHE. Antigen 85C inhibition restricts Mycobacterium tuberculosis growth through disruption of cord factor biosynthesis. Antimicrob Agents Chemother 2012; 56:1735-43. [PMID: 22290959 PMCID: PMC3318338 DOI: 10.1128/aac.05742-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/04/2012] [Indexed: 11/20/2022] Open
Abstract
The antigen 85 (Ag85) protein family, consisting of Ag85A, -B, and -C, is vital for Mycobacterium tuberculosis due to its role in cell envelope biogenesis. The mycoloyl transferase activity of these proteins generates trehalose dimycolate (TDM), an envelope lipid essential for M. tuberculosis virulence, and cell wall arabinogalactan-linked mycolic acids. Inhibition of these enzymes through substrate analogs hinders growth of mycobacteria, but a link to mycolic acid synthesis has not been established. In this study, we characterized a novel inhibitor of Ag85C, 2-amino-6-propyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile (I3-AG85). I3-AG85 was isolated from a panel of four inhibitors that exhibited structure- and dose-dependent inhibition of M. tuberculosis division in broth culture. I3-AG85 also inhibited M. tuberculosis survival in infected primary macrophages. Importantly, it displayed an identical MIC against the drug-susceptible H37Rv reference strain and a panel of extensively drug-resistant/multidrug-resistant M. tuberculosis strains. Nuclear magnetic resonance analysis indicated binding of I3-AG85 to Ag85C, similar to its binding to the artificial substrate octylthioglucoside. Quantification of mycolic acid-linked lipids of the M. tuberculosis envelope showed a specific blockade of TDM synthesis. This was accompanied by accumulation of trehalose monomycolate, while the overall mycolic acid abundance remained unchanged. Inhibition of Ag85C activity also disrupted the integrity of the M. tuberculosis envelope. I3-AG85 inhibited the division of and reduced TDM synthesis in an M. tuberculosis strain deficient in Ag85C. Our results indicate that Ag85 proteins are promising targets for novel antimycobacterial drug design.
Collapse
Affiliation(s)
- Thulasi Warrier
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Marielle Tropis
- Institute of Pharmacology and Structural Biology, CNRS, and University of Toulouse (Toulouse III), Toulouse, France
| | - Jim Werngren
- Swedish Institute for Communicable Disease Control, Solna, Sweden
| | - Anne Diehl
- NMR Group, Leibniz Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Martin Gengenbacher
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Brigitte Schlegel
- NMR Group, Leibniz Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Markus Schade
- AstraZeneca Ltd., DECS Biophysics, Macclesfield, United Kingdom
| | - Hartmut Oschkinat
- NMR Group, Leibniz Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Mamadou Daffe
- Institute of Pharmacology and Structural Biology, CNRS, and University of Toulouse (Toulouse III), Toulouse, France
| | - Sven Hoffner
- Swedish Institute for Communicable Disease Control, Solna, Sweden
| | - Ali Nasser Eddine
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
22
|
Ligon LS, Hayden JD, Braunstein M. The ins and outs of Mycobacterium tuberculosis protein export. Tuberculosis (Edinb) 2011; 92:121-32. [PMID: 22192870 DOI: 10.1016/j.tube.2011.11.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis is an important pathogen that infects approximately one-third of the world's population and kills almost two million people annually. An important aspect of M. tuberculosis physiology and pathogenesis is its ability to export proteins into and across the thick mycobacterial cell envelope, where they are ideally positioned to interact with the host. In addition to the specific proteins that are exported by M. tuberculosis, the systems through which these proteins are exported represent potential targets for future drug development. M. tuberculosis possesses two well-known and conserved export systems: the housekeeping Sec pathway and the Tat pathway. In addition, M. tuberculosis possesses specialized export systems including the accessory SecA2 pathway and five ESX pathways. Here we review the current understanding of each of these export systems, with a focus on M. tuberculosis, and discuss the contribution of each system to disease and physiology.
Collapse
Affiliation(s)
- Lauren S Ligon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, CB #7290, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
23
|
Roche CM, Smith A, Lindsey DR, Meher A, Schluns K, Arora A, Armitige LY, Jagannath C. The ΔfbpA attenuated candidate vaccine from Mycobacterium tuberculosis, H37Rv primes for a stronger T-bet dependent Th1 immunity in mice. Tuberculosis (Edinb) 2011; 91 Suppl 1:S96-104. [PMID: 22082615 DOI: 10.1016/j.tube.2011.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ΔfbpA candidate vaccine derived from Mycobacterium tuberculosis (H37Rv) (Mtb) protects mice better than BCG against tuberculosis, and we investigated the hypothesis that ΔfbpA may induce a stronger Th1 immunity. Since T-bet transcription factor regulates Th1 immunity, mice infected with ΔfbpA, BCG vaccine and related mycobacteria were analyzed for T-bet positive T cells. Mouse dendritic cells (DCs) or macrophages were also pulsed with excretory-secreted antigens (ES; Antigen-85B, ESAT-6 and CFP10) and cocultured with T cells from immunized or naïve mice and tested for in vitro induction of T-bet and IFN-γ. In both models, ΔfbpA mutant induced a stronger response of T-bet(+)CD4 T cells, which correlated with an increased expansion of IFN-γ(+)CD4 T cells in vivo and in vitro. When DCs pulsed with ES antigens were allowed to stimulate T cells, ESAT-6 and CFP-10 failed to induce a recall expansion of T-bet(+)IFN-γ(+)CD4 T cells from BCG vaccinated mice. Thus, deletion of RD1 in BCG seems to reduce its ability to induce T-bet and induce stronger Th1 immunity. Finally, mice were vaccinated with ΔfbpA and BCG and challenged with virulent Mtb for evaluation of protection and T cell expansion. ΔfbpA vaccinated mice showed a rapid and stronger expansion of CD4(+)CXCR3(+) IFN-γ(+) T cells in the lungs of Mtb challenged mice, compared to those which had BCG vaccine. ΔfbpA immunized mice also showed a better decline of the Mtb bacterial counts of the lungs. Mtb derived ΔfbpA candidate vaccine therefore induces qualitatively better T-bet dependent Th1 immunity than BCG vaccine.
Collapse
Affiliation(s)
- Cherie M Roche
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, 6431 Fannin, MSB 2.200, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mukhopadhyay S, Nair S, Ghosh S. Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiol Rev 2011; 36:463-85. [PMID: 22092372 DOI: 10.1111/j.1574-6976.2011.00302.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/31/2011] [Accepted: 08/05/2011] [Indexed: 01/12/2023] Open
Abstract
Tuberculosis (TB) remains a major health problem worldwide. Attempts to control this disease have proved difficult owing to our poor understanding of the pathobiology of Mycobacterium tuberculosis and the emergence of strains that are resistant to multiple drugs currently available for treatment. Genome-wide expression profiling has provided new insight into the transcriptome signatures of the bacterium during infection, notably of macrophages and dendritic cells. These data indicate that M. tuberculosis expresses numerous genes to evade the host immune responses, to suit its intracellular life style, and to respond to various antibiotic drugs. Among the intracellularly induced genes, several have functions in lipid metabolism, cell wall synthesis, iron uptake, oxidative stress resistance, protein secretion, or inhibition of apoptosis. Herein we review these findings and discuss possible ways to exploit the data to understand the complex etiology of TB and to find new effective drug targets.
Collapse
Affiliation(s)
- Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India.
| | | | | |
Collapse
|
25
|
Li Q, Singh CR, Ma S, Price ND, Jagannath C. Label-free proteomics and systems biology analysis of mycobacterial phagosomes in dendritic cells and macrophages. J Proteome Res 2011; 10:2425-39. [PMID: 21413810 PMCID: PMC3090528 DOI: 10.1021/pr101245u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proteomics has been applied to study intracellular bacteria and phagocytic vacuoles in different host cell lines, especially macrophages (Mφs). For mycobacterial phagosomes, few studies have identified over several hundred proteins for systems assessment of the phagosome maturation and antigen presentation pathways. More importantly, there has been a scarcity in publication on proteomic characterization of mycobacterial phagosomes in dendritic cells (DCs). In this work, we report a global proteomic analysis of Mφ and DC phagosomes infected with a virulent, an attenuated, and a vaccine strain of mycobacteria. We used label-free quantitative proteomics and bioinformatics tools to decipher the regulation of phagosome maturation and antigen presentation pathways in Mφs and DCs. We found that the phagosomal antigen presentation pathways are repressed more in DCs than in Mφs. The results suggest that virulent mycobacteria might co-opt the host immune system to stimulate granuloma formation for persistence while minimizing the antimicrobial immune response to enhance mycobacterial survival. The studies on phagosomal proteomes have also shown promise in discovering new antigen presentation mechanisms that a professional antigen presentation cell might use to overcome the mycobacterial blockade of conventional antigen presentation pathways.
Collapse
Affiliation(s)
- Qingbo Li
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, United States.
| | | | | | | | | |
Collapse
|
26
|
Festjens N, Bogaert P, Batni A, Houthuys E, Plets E, Vanderschaeghe D, Laukens B, Asselbergh B, Parthoens E, De Rycke R, Willart MA, Jacques P, Elewaut D, Brouckaert P, Lambrecht BN, Huygen K, Callewaert N. Disruption of the SapM locus in Mycobacterium bovis BCG improves its protective efficacy as a vaccine against M. tuberculosis. EMBO Mol Med 2011; 3:222-34. [PMID: 21328541 PMCID: PMC3377067 DOI: 10.1002/emmm.201000125] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 12/23/2022] Open
Abstract
Mycobacterium bovis bacille Calmette-Guerin (BCG) provides only limited protection against pulmonary tuberculosis. We tested the hypothesis that BCG might have retained immunomodulatory properties from its pathogenic parent that limit its protective immunogenicity. Mutation of the molecules involved in immunomodulation might then improve its vaccine potential. We studied the vaccine potential of BCG mutants deficient in the secreted acid phosphatase, SapM, or in the capping of the immunomodulatory ManLAM cell wall component with α-1,2-oligomannoside. Both systemic and intratracheal challenge of mice with Mycobacterium tuberculosis following vaccination showed that the SapM mutant, compared to the parental BCG vaccine, provided better protection: it led to longer-term survival. Persistence of the SapM-mutated BCG in vivo resembled that of the parental BCG indicating that this mutation will likely not compromise the safety of the BCG vaccine. The SapM mutant BCG vaccine was more effective than the parental vaccine in inducing recruitment and activation of CD11c(+) MHC-II(int) CD40(int) dendritic cells (DCs) to the draining lymph nodes. Thus, SapM acts by inhibiting recruitment of DCs and their activation at the site of vaccination.
Collapse
Affiliation(s)
- Nele Festjens
- Unit for Medical Biotechnology, Department for Molecular Biomedical Research, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Single nucleotide polymorphisms in cell wall biosynthesis-associated genes and phylogeny of Mycobacterium tuberculosis lineages. INFECTION GENETICS AND EVOLUTION 2010; 10:459-66. [DOI: 10.1016/j.meegid.2010.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 11/20/2022]
|
28
|
Hunter RL, Armitige L, Jagannath C, Actor JK. TB research at UT-Houston--a review of cord factor: new approaches to drugs, vaccines and the pathogenesis of tuberculosis. Tuberculosis (Edinb) 2009; 89 Suppl 1:S18-25. [PMID: 20006299 PMCID: PMC3682682 DOI: 10.1016/s1472-9792(09)70007-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tuberculosis remains a major threat as drug resistance continues to increase. Pulmonary tuberculosis in adults is responsible for 80% of clinical cases and nearly 100% of transmission of infection. Unfortunately, since we have no animal models of adult type pulmonary tuberculosis, the most important type of disease remains largely out of reach of modern science and many fundamental questions remain unanswered. This paper reviews research dating back to the 1950's providing compelling evidence that cord factor (trehalose 6,6 dimycolate [TDM]) is essential for understanding tuberculosis. However, the original papers by Bloch and Noll were too far ahead of their time to have immediate impact. We can now recognize that the physical and biologic properties of cord factor are unprecedented in science, especially its ability to switch between two sets of biologic activities with changes in conformation. While TDM remains on organisms, it protects them from killing within macrophages, reduces antibiotic effectiveness and inhibits the stimulation of protective immune responses. If it comes off organisms and associates with lipid, TDM becomes a driver of tissue damage and necrosis. Studies emanating from cord factor research have produced (1) a rationale for improving vaccines, (2) an approach to new drugs that overcome natural resistance to antibiotics, (3) models of caseating granulomas that reproduce multiple manifestations of human tuberculosis. (4) evidence that TDM is a key T cell antigen in destructive lesions of tuberculosis, and (5) a new understanding of the pathology and pathogenesis of postprimary tuberculosis that can guide more informative studies of long standing mysteries of tuberculosis.
Collapse
Affiliation(s)
- Robert L Hunter
- University of Texas--Houston Medical School, Department of Pathology and Laboratory, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
29
|
Rao PK, Singh CR, Jagannath C, Li Q. A systems biology approach to study the phagosomal proteome modulated by mycobacterial infections. Int J Clin Exp Med 2009; 2:233-247. [PMID: 19918316 PMCID: PMC2773677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 09/08/2009] [Indexed: 05/28/2023]
Abstract
Systems biology and proteomics have recently contributed significantly to the insight into the biogenesis and immunity-related functions of the phagosome. To gain insight into the modulation of the phagosomal proteome by the wild-type Mycobacterium tuberculosis H37Rv reference strain, an attenuated mutant of the H37Rv strain, and the BCG Pasteur vaccine strain, we employed the nano-liquid chromatography/LTQ-FTMS based proteomics approach and a systems biology approach to analyze the bacillus-containing phagosomes purified from the bone-marrow-derived BMA3.A3 macrophages infected with the three different mycobacterial strains. We identified 322 proteins at a false-discovery rate of 2%. These proteins were quantified with a label-free proteomics method. All but one of these proteins is mouse proteins. The gene ontology analysis of these mouse proteins suggests that lysosomal proteins represented <3% of the detected proteins, supporting the observation that these mycobacterial strains inhibit or limit the phagosome maturation process. The results also indicate that the endoplasmic reticulum (ER) proteins do not constitute a major part of the phagosome proteome, supporting the phagosome maturation model of the role of ER in phagosome biogenesis. This phagosome maturation model is in contrast to the phagocytosis model which predicts that half of the phagosome membrane is derived from ER. This pilot study demonstrates that a combination of proteomics, multivariate analysis, and systems biology promises to bring forward new insights into the mycobacterial pathogenesis and the interconnected phagosome biology.
Collapse
Affiliation(s)
- Prahlad K. Rao
- Center for Pharmaceutical Biotechnology, University of Illinois at ChicagoChicago, IL 60607, USA
| | - Christoher R. Singh
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences CenterHouston, TX 77030, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences CenterHouston, TX 77030, USA
| | - Qingbo Li
- Center for Pharmaceutical Biotechnology, University of Illinois at ChicagoChicago, IL 60607, USA
- Department of Microbiology and Immunology, University of Illinois at ChicagoChicago, IL 60612, USA
| |
Collapse
|
30
|
Hwang SA, Wilk K, Kruzel ML, Actor JK. A novel recombinant human lactoferrin augments the BCG vaccine and protects alveolar integrity upon infection with Mycobacterium tuberculosis in mice. Vaccine 2009; 27:3026-34. [PMID: 19428915 PMCID: PMC2680785 DOI: 10.1016/j.vaccine.2009.03.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/04/2009] [Accepted: 03/17/2009] [Indexed: 11/24/2022]
Abstract
Lactoferrin, an iron binding glycoprotein, possesses multiple immune modulatory activities, including the ability to promote antigen specific cell-mediated immunity. Previous studies showed that adding bovine lactoferrin to the BCG vaccine (an attenuated strain of Mycobacterium bovis Bacillus Calmette Guerin) resulted in increased host protective responses upon subsequent challenge with virulent Erdman Mycobacterium tuberculosis (MTB) in mice. The studies outlined here investigate utility of a novel recombinant human lactoferrin to enhance the BCG vaccine and protect against alveolar injury during experimental MTB infection in mice. Sialylated and non-sialylated forms of the recombinant human lactoferrin (rhLF), glycoengineered in yeast (Pichia pastoris) and expressing humanized N-glycosylation patterns, were examined for their ability to enhance efficacy of the BCG vaccine in a murine TB model system. Results indicated that the sialylated form of the recombinant human lactoferrin generated increased antigen specific recall responses to BCG antigens. Furthermore, augmented protection was demonstrated using the sialylated lactoferrin adjuvant with BCG, resulting in significant reduction in associated pathology following challenge with virulent organisms.
Collapse
Affiliation(s)
- Shen-An Hwang
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, TX
| | - Katarzyna Wilk
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, TX
| | - Marian L. Kruzel
- Department of Integrative Biology and Pharmacology, University of Texas-Houston Medical School, Houston, TX
| | - Jeffrey K. Actor
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, TX
- Program in Molecular Pathology, University of Texas-Houston Medical School, Houston, TX
| |
Collapse
|
31
|
Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med 2009; 15:267-76. [PMID: 19252503 DOI: 10.1038/nm.1928] [Citation(s) in RCA: 377] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/12/2009] [Indexed: 02/02/2023]
Abstract
The variable efficacy of Bacille Calmette Guerin (BCG) vaccination against tuberculosis has prompted efforts to improve the vaccine. In this study, we used autophagy to enhance vaccine efficacy against tuberculosis in a mouse model. We examined the effect of autophagy on the processing of the immunodominant mycobacterial antigen Ag85B by antigen presenting cells (APCs), macrophages and dendritic cells (DCs). We found that rapamycin-induced autophagy enhanced Ag85B presentation by APCs infected with wild-type Mycobacterium tuberculosis H37Rv, H37Rv-derived DeltafbpA attenuated candidate vaccine or BCG. Furthermore, rapamycin enhanced localization of mycobacteria with autophagosomes and lysosomes. Rapamycin-enhanced antigen presentation was attenuated when autophagy was suppressed by 3-methyladenine or by small interfering RNA against beclin-1. Notably, mice immunized with rapamycin-treated DCs infected with either DeltafbpA or BCG showed enhanced T helper type 1-mediated protection when challenged with virulent Mycobacterium tuberculosis. Finally, overexpression of Ag85B in BCG induced autophagy in APCs and enhanced immunogenicity in mice, suggesting that vaccine efficacy can be enhanced by augmenting autophagy-mediated antigen presentation.
Collapse
|
32
|
Rao PK, Li Q. Principal Component Analysis of Proteome Dynamics in Iron-starved Mycobacterium Tuberculosis. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2009; 2:19-31. [PMID: 19436767 PMCID: PMC2680294 DOI: 10.4172/jpb.1000058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The goal of this study is to use principal component analysis (PCA) for multivariate analysis of proteome dynamics based on both protein abundance and turnover information generated by high-resolution mass spectrometry. We previously reported assessing protein dynamics in iron-starved Mycobacterium tuberculosis, revealing interesting interconnection among the cellular processes involving protein synthesis, degradation, and secretion (Anal. Chem. 80, 6860-9). In this study, we use target-decoy database search approach to select peptides for quantitation at a false discovery rate of 4.2%. We further use PCA to reduce the data dimensions for simpler interpretation. The PCA results indicate that the protein turnover and relative abundance properties are approximately orthogonal in the data space defined by the first three principal components. We show the potential of the Hotelling's T2 (T2) value as a quantifiable index for comparing changes between protein functional categories. The T2 value represents the gross change of a protein in both abundance and turnover. Close examination of the antigen 85 complex demonstrates that T2 correctly predicts the coordinated changes of the antigen 85 complex proteins. The multi-dimensional protein dynamics data further reveal the secretion of the antigen 85 complex. Overall, this study demonstrates PCA as an effective means to facilitate interpretation of the multivariate proteome dynamics dataset which otherwise would remain a significant challenge using traditional methods.
Collapse
Affiliation(s)
- Prahlad K Rao
- Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | |
Collapse
|
33
|
Ryndak M, Wang S, Smith I. PhoP, a key player in Mycobacterium tuberculosis virulence. Trends Microbiol 2008; 16:528-34. [PMID: 18835713 DOI: 10.1016/j.tim.2008.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 08/01/2008] [Accepted: 08/25/2008] [Indexed: 01/29/2023]
Abstract
The Mycobacterium tuberculosis PhoPR two-component system is essential for virulence in animal models of tuberculosis. Recent articles have shown that among the reasons for the attenuation of the M. tuberculosis H37Ra strain is a mutation in the phoP gene that prevents the secretion of proteins that are important for virulence. There is a need for new anti-tubercular therapies because of the emergence of multi-drug-resistant M. tuberculosis strains and also the variable efficacy of the currently used bacille Calmette-Guérin vaccine. Because of its major role in M. tuberculosis pathogenicity, PhoP is a potential target candidate. This review summarizes our understanding of PhoPR's role in virulence and discusses areas in which our knowledge is limited.
Collapse
Affiliation(s)
- Michelle Ryndak
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 225 Warren Street Newark, NJ 07103, USA
| | | | | |
Collapse
|
34
|
Rao PK, Rodriguez GM, Smith I, Li Q. Protein dynamics in iron-starved Mycobacterium tuberculosis revealed by turnover and abundance measurement using hybrid-linear ion trap-Fourier transform mass spectrometry. Anal Chem 2008; 80:6860-9. [PMID: 18690695 PMCID: PMC2768315 DOI: 10.1021/ac800288t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To study the proteome response of Mycobacterium tuberculosis H37Rv to a change in iron level, iron-starved late-log-phase cells were diluted in fresh low- and high-iron media containing [ (15)N]-labeled asparagine as the sole nitrogen source for labeling the proteins synthesized upon dilution. We determined the relative protein abundance and protein turnover in M. tuberculosis H37Rv under these two conditions. For measurements, we used a high-resolution hybrid-linear ion trap-Fourier transform mass spectrometer coupled with nanoliquid chromatography separation. While relative protein abundance analysis shows that only 5 proteins were upregulated by high iron, 24 proteins had elevated protein turnover for the cells in the high-iron medium. This suggests that protein turnover is a sensitive parameter to assess the proteome dynamics. Cluster analysis was used to explore the interconnection of protein abundance and turnover, revealing coordination of the cellular processes of protein synthesis, degradation, and secretion that determine the abundance and allocation of a protein in the cytosol and the extracellular matrix of the cells. Further potential utility of the approach is discussed.
Collapse
Affiliation(s)
- Prahlad K. Rao
- Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607
| | - G. Marcela Rodriguez
- TB Center, The Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103
| | - Issar Smith
- TB Center, The Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103
| | - Qingbo Li
- Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
35
|
Axelrod S, Oschkinat H, Enders J, Schlegel B, Brinkmann V, Kaufmann SHE, Haas A, Schaible UE. Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell Microbiol 2008; 10:1530-45. [DOI: 10.1111/j.1462-5822.2008.01147.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Katti MK, Dai G, Armitige LY, Marrero CR, Daniel S, Singh CR, Lindsey DR, Dhandayuthapani S, Hunter RL, Jagannath C. The Delta fbpA mutant derived from Mycobacterium tuberculosis H37Rv has an enhanced susceptibility to intracellular antimicrobial oxidative mechanisms, undergoes limited phagosome maturation and activates macrophages and dendritic cells. Cell Microbiol 2008; 10:1286-303. [PMID: 18248626 PMCID: PMC3668688 DOI: 10.1111/j.1462-5822.2008.01126.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis H37Rv (Mtb) excludes phagocyte oxidase (phox) and inducible nitric oxide synthase (iNOS) while preventing lysosomal fusion in macrophages (MPhis). The antigen 85A deficient (Delta fbpA) mutant of Mtb was vaccinogenic in mice and the mechanisms of attenuation were compared with MPhis infected with H37Rv and BCG. Delta fbpA contained reduced amounts of trehalose 6, 6, dimycolate and induced minimal levels of SOCS-1 in MPhis. Blockade of oxidants enhanced the growth of Delta fbpA in MPhis that correlated with increased colocalization with phox and iNOS. Green fluorescent protein-expressing strains within MPhis or purified phagosomes were analysed for endosomal traffick with immunofluorescence and Western blot. Delta fbpA phagosomes were enriched for rab5, rab11, LAMP-1 and Hck suggesting enhanced fusion with early, recycling and late endosomes in MPhis compared with BCG or H37Rv. Delta fbpA phagosomes were thus more mature than H37Rv or BCG although, they failed to acquire rab7 and CD63 preventing lysosomal fusion. Finally, Delta fbpA infected MPhis and dendritic cells (DCs) showed an enhanced MHC-II and CD1d expression and primed immune T cells to release more IFN-gamma compared with those infected with BCG and H37Rv. Delta fbpA was thus more immunogenic in MPhis and DCs because of an enhanced susceptibility to oxidants and increased maturation.
Collapse
Affiliation(s)
- Muralidhar K. Katti
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Guixiang Dai
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Lisa Y. Armitige
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Carlos Rivera Marrero
- Department of Pulmonary Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Sundarsingh Daniel
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Christopher R. Singh
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Devin R. Lindsey
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | | | - Robert L. Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| |
Collapse
|
37
|
Smith KC, Orme IM, Starke JR. Tuberculosis vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
38
|
|
39
|
Guidry TV, Hunter RL, Actor JK. Mycobacterial glycolipid trehalose 6,6'-dimycolate-induced hypersensitive granulomas: contribution of CD4+ lymphocytes. MICROBIOLOGY (READING, ENGLAND) 2007; 153:3360-3369. [PMID: 17906135 PMCID: PMC2583334 DOI: 10.1099/mic.0.2007/010850-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The granulomatous response is a characteristic histological feature of Mycobacterium tuberculosis infection responsible for organism containment. The development of cell-mediated immunity is essential for protection against disease, as well as being required for maintenance of the sequestering granulomatous response. Trehalose 6,6'-dimycolate (TDM; cord factor), a glycolipid associated with the cell wall of mycobacteria, is implicated as a key immunogenic component in M. tuberculosis infection. Models of TDM-induced hypersensitive granulomatous response have similar pathologies to that of active tuberculosis infection. Prior immunization (sensitization) of mice with TDM results in exacerbated histological damage, inflammation and lymphocytic infiltration upon subsequent TDM challenge. Adoptive transfer experiments were performed to ascertain the cell phenotype governing this response; CD4(+) cells were identified as critical for development of related pathology. Mice receiving CD4(+) cells from donor TDM-immunized mice demonstrated significantly increased production of Th1-type cytokines IFN-gamma and IL-12 within the lung upon subsequent TDM challenge. Control groups receiving naïve CD4(+) cells, or CD8(+) or CD19(+) cells isolated from TDM-immunized donors, did not exhibit an exacerbated response. The identified CD4(+) cells isolated from TDM-immunized mice produced significant amounts of IFN-gamma and IL-2 when exposed to TDM-pulsed macrophages in vitro. These experiments provide further evidence for involvement of a cell-mediated response in TDM-induced granuloma formation, which mimics pathological damage elicited during M. tuberculosis infection.
Collapse
Affiliation(s)
- Tera V. Guidry
- University of Texas-Houston Health Science Center, Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| | - Robert L. Hunter
- University of Texas-Houston Medical School, Department of Pathology and Laboratory Medicine, Program in Molecular Pathology, 6431 Fannin, Houston, TX 77030, USA
| | - Jeffrey K. Actor
- University of Texas-Houston Medical School, Department of Pathology and Laboratory Medicine, Program in Molecular Pathology, 6431 Fannin, Houston, TX 77030, USA
| |
Collapse
|
40
|
Jayakumar D, Jacobs WR, Narayanan S. Protein kinase E of Mycobacterium tuberculosis has a role in the nitric oxide stress response and apoptosis in a human macrophage model of infection. Cell Microbiol 2007; 10:365-74. [PMID: 17892498 DOI: 10.1111/j.1462-5822.2007.01049.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mycobacterium tuberculosis, an intracellular pathogen, inhibits macrophage apoptosis to support survival and replication inside the host cell. We provide evidence that the functional serine/threonine kinase, PknE, is important for survival of M. tuberculosis that enhances macrophage viability by inhibiting apoptosis. A promoter of PknE identified in this study was shown to respond to nitric oxide stress. Deletion of pknE in virulent M. tuberculosis, H37Rv, resulted in a strain that has increased resistance to nitric oxide donors and increased sensitivity to reducing agents. The deletion mutant created by specialized transduction induced enhanced apoptosis while inhibiting necrosis. The pknE mutant also modifies the innate immune response as shown by the marked decline in the pro-inflammatory cytokines in a macrophage model of infection. These findings suggest a novel mechanism, by which PknE senses nitric oxide stress and prevents apoptosis by interfering with host signalling pathways.
Collapse
Affiliation(s)
- Deepak Jayakumar
- Department of Immunology, Tuberculosis Research Centre (ICMR), Chetput, Chennai-600031, India
| | | | | |
Collapse
|
41
|
Connelly MA, Moulton RA, Smith AK, Lindsey DR, Sinha M, Wetsel RA, Jagannath C. Mycobacteria-primed macrophages and dendritic cells induce an up-regulation of complement C5a anaphylatoxin receptor (CD88) in CD3+ murine T cells. J Leukoc Biol 2006; 81:212-20. [PMID: 16997854 DOI: 10.1189/jlb.1005582] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Complement C5a anaphylatoxin is a potent activator of macrophages, neutrophils, and dendritic cells (DC) and binds the C5a receptor (C5a-R; CD88). Although C5a is chemotactic for T cells, expression of C5a-R on murine T cells has been disputed. We report here that naïve, Con A-activated, and cytokine (IL-12, IL-18)-stimulated murine CD3+ T cells from three strains of mice [C57Bl/6, B10.nSn (C5+/+), B10.on (C5-/-)] lacked C5a-R, as evaluated by immunophenotyping with an anti-C5a-R mAb. Ligation of CD3 induced a modest up-regulation with 3% of CD3+ T cells expressing cell surface C5a-R. T cells primed by APC differentiate into effector T cells. Activation of mycobacteria [bacillus Calmette-Guerin (BCG)]-sensitized T cells through MHC II and TCR interactions via BCG-infected macrophages enhanced the expression of C5a-R with approximately 14% of CD3+ T cells positive for C5a-R. Comparable expression was found in C5+/+ as well as C5-/- strains of mice (14% and 15%, respectively). Furthermore, anti-CD3-activated T cells were primed by BCG-infected DC, and a larger proportion of the primed T cells expressed C5a-R (30-40%). Finally, mice infected with BCG showed significant numbers of CD3+ T cells expressing C5a-R in the spleens during infection. As APC, such as macrophages and DC, can secrete C5 and cleave C5 to C5a and C5b through a peptidase, we suggest that macrophage and DC-T cell interactions can up-regulate C5a-R on T cells through MHC II-TCR and provide a C5a peptide for additional local activation of T cells via C5a-R.
Collapse
Affiliation(s)
- Mary Anne Connelly
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, MSB 2.200, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Singh CR, Moulton RA, Armitige LY, Bidani A, Snuggs M, Dhandayuthapani S, Hunter RL, Jagannath C. Processing and presentation of a mycobacterial antigen 85B epitope by murine macrophages is dependent on the phagosomal acquisition of vacuolar proton ATPase and in situ activation of cathepsin D. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:3250-9. [PMID: 16920965 DOI: 10.4049/jimmunol.177.5.3250] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mycobacterium tuberculosis (strain H37Rv) and bacillus Calmette-Guérin (BCG) vaccine inhibit phagosome maturation in macrophages and their effect on processing, and presentation of a secreted Ag85 complex B protein, Ag85B, by mouse macrophages was analyzed. Macrophages were infected with GFP-expressing mycobacterial strains and analyzed for in situ localization of vacuolar proton ATPase (v-ATPase) and cathepsin D (Cat D) using Western blot analysis and immunofluorescence. H37Rv and BCG phagosomes excluded the v-ATPase and maintained neutral pH while the attenuated H37Ra strain acquired v-ATPase and acidified. Mycobacterial phagosomes acquired Cat D, although strains BCG and H37Rv phagosomes contained the inactive 46-kDa form, whereas H37Ra phagosomes had the active 30-kDa form. Infected macrophages were overlaid with a T cell hybridoma specific for an Ag85B epitope complexed with MHC class II. Coincident with active Cat D, H37Ra-infected macrophages presented the epitope to T cells inducing IL-2, whereas H37Rv- and BCG-infected macrophages were less efficient in IL-2 induction. Bafilomycin inhibited the induction of macrophage-induced IL-2 from T cells indicating that v-ATPase was essential for macrophage processing of Ag85B. Furthermore, the small interfering RNA interference of Cat D synthesis resulted in a marked decrease in the levels of macrophage-induced IL-2. Thus, a v-ATPase-dependent phagosomal activation of Cat D was required for the generation of an Ag85B epitope by macrophages. Reduced processing of Ag85B by H37Rv- and BCG-infected macrophages suggests that phagosome maturation arrest interferes with the efficient processing of Ags in macrophages. Because Ag85B is immunodominant, this state may lead to a decreased ability of the wild-type as well as the BCG vaccine to induce protective immunity.
Collapse
Affiliation(s)
- Christopher R Singh
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yang CS, Lee JS, Song CH, Hur GM, Lee SJ, Tanaka S, Akira S, Paik TH, Jo EK. Protein kinase C zeta plays an essential role for Mycobacterium tuberculosis-induced extracellular signal-regulated kinase 1/2 activation in monocytes/macrophages via Toll-like receptor 2. Cell Microbiol 2006; 9:382-96. [PMID: 16925784 DOI: 10.1111/j.1462-5822.2006.00797.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study characterized the upstream signalling molecules involved in extracellular signal-regulated kinase (ERK) 1/2 activation and determined their effects on differential tumour necrosis factor (TNF)-alpha expression by monocytes/macrophages infected with virulent or avirulent mycobacteria. The avirulent Mycobacterium tuberculosis (MTB) strain H37Ra (MTBRa) induced higher levels of activation of ERK 1/2 and the upstream MAPK kinase (MEK)1 and, subsequently, higher levels of TNF-alpha expression in human primary monocytes and monocyte-derived macrophages, as compared with MTB strain H37Rv (MTBRv). The MTB-induced activation of ERK 1/2 was not dependent on Ras or Raf. However, inhibition of the activity of atypical protein kinase C (PKC) zeta decreased the in vitro phosphorylation of MEK, ERK 1/2 activation and subsequent TNF-alpha induction caused by MTBRv or MTBRa. Toll-like receptor (TLR) 2 was found to play a major role in MTB-induced TNF-alpha expression and PKCzeta phosphorylation. Co-immunoprecipitation experiments showed that PKCzeta interacts physically with TLR2 after MTB stimulation. Moreover, PKCzeta phosphorylation was increased more in macrophages following MTBRa, versus MTBRv, infection. This is the first demonstration that PKCzeta interacts with TLR2 to play an essential role in MTB-induced ERK 1/2 activation and subsequent TNF-alpha expression in monocytes/macrophages.
Collapse
Affiliation(s)
- Chul-Su Yang
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Stewart JN, Rivera HN, Karls R, Quinn FD, Roman J, Rivera-Marrero CA. Increased pathology in lungs of mice after infection with an alpha-crystallin mutant of Mycobacterium tuberculosis: changes in cathepsin proteases and certain cytokines. MICROBIOLOGY-SGM 2006; 152:233-244. [PMID: 16385133 DOI: 10.1099/mic.0.28275-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Latency and reactivation are a significant problem that contributes to the incidence, transmission and pathogenesis of tuberculosis. The mechanisms involved in these processes, at the level of both the bacillus and the host, are poorly understood. In Mycobacterium tuberculosis the alpha-crystallin (acr) gene has been linked to latency, because it is highly expressed during hypoxic growth conditions. Deletion of the acr gene in M. tuberculosis H37Rv (Deltaacr strain) was previously shown to reduce the intracellular growth of bacilli in macrophages; however, its impact on pathogenesis in vivo was unknown. This study demonstrated that infection of C57BL6 mice with Deltaacr results in lung bacillary loads 1-2 log units higher in comparison to parental H37Rv. Haematoxylin/eosin staining of lungs revealed exacerbated pathology characterized by extensive obliteration of alveolar air spaces by granulomatous inflammation. RT-PCR analysis and immunostaining of lungs showed that infection with either H37Rv or Deltaacr results in the differential expression of lysosomal cathepsin proteases. A slight increase in the expression of the matrix-degrading acidic-type cathepsins B, D and H was noted in Deltaacr-infected mice and was associated with clusters of macrophages within lung granulomas. Deltaacr-infected mice also showed high serum levels of TNF-alpha, IFN-gamma and G-CSF, suggesting that Acr may play a role in modulating the host response to infection.
Collapse
Affiliation(s)
- Julie N Stewart
- Atlanta VA Medical Center Research Service, Room 12C 106, 1670 Clairmont Rd, Decatur, GA 30033, USA
| | - Hilda N Rivera
- Atlanta VA Medical Center Research Service, Room 12C 106, 1670 Clairmont Rd, Decatur, GA 30033, USA
| | - Russell Karls
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Frederick D Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jesse Roman
- Atlanta VA Medical Center Research Service, Room 12C 106, 1670 Clairmont Rd, Decatur, GA 30033, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Athens, GA 30602, USA
| | - Carlos A Rivera-Marrero
- Atlanta VA Medical Center Research Service, Room 12C 106, 1670 Clairmont Rd, Decatur, GA 30033, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Athens, GA 30602, USA
| |
Collapse
|
45
|
Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M, Smith I. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 2006; 60:312-30. [PMID: 16573683 DOI: 10.1111/j.1365-2958.2006.05102.x] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two-component signal transduction systems (2-CS) play an important role in bacterial pathogenesis. In the work presented here, we have studied the effects of a mutation in the Mycobacterium tuberculosis (Mtb) PhoPR 2-CS on the pathogenicity, physiology and global gene expression of this bacterial pathogen. Disruption of PhoPR causes a marked attenuation of growth in macrophages and mice and prevents growth in low-Mg2+ media. The inability to grow in THP-1 macrophages can be partially overcome by the addition of excess Mg2+ during infection. Global transcription assays demonstrate PhoP is a positive transcriptional regulator of several genes, but do not support the hypothesis that the Mtb PhoPR system is sensing Mg2+ starvation, as is the case with the Salmonella typhimurium PhoPQ 2-CS. The genes that were positively regulated include those found in the pks2 and the msl3 gene clusters that encode enzymes for the biosynthesis of sulphatides and diacyltrehalose and polyacyltrehalose respectively. Complementary biochemical studies, in agreement with recent results from another group, indicate that these complex lipids are also absent from the phoP mutant, and the lack of these components in its cell envelope may indirectly cause the mutant's high-Mg2+ growth requirement. The experiments reported here provide functional evidence for the PhoPR 2-CS involvement in Mtb pathogenesis, and they suggest that a major reason for the attenuation observed in the phoP mutant is the absence of certain complex lipids that are known to be important for virulence.
Collapse
Affiliation(s)
- Shaun B Walters
- TB Center, The Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
46
|
Orme IM. Preclinical testing of new vaccines for tuberculosis: A comprehensive review. Vaccine 2006; 24:2-19. [PMID: 16139397 DOI: 10.1016/j.vaccine.2005.07.078] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 07/22/2005] [Indexed: 10/25/2022]
Abstract
The past decade has seen an explosive increase in the development of potential new tuberculosis vaccine candidates, as well as the establishment of at least two testing centers. Various animal models, but particularly the mouse and guinea pig models, have provided a lot information about how new vaccines can reduce disease progression and how this influences the pathology of the disease, but there is still much to learn at the immunological level, particularly in terms of the nature of the T cell response that is needed to confer long lived resistance. Several categories of vaccine candidates have been tried to date, and there are at least five individual vaccines moving towards clinical evaluation. There are still areas of the field that are poorly developed however. These include the fact that we have no models of post- exposure vaccination, or any models of latent disease. In addition, no standardized models of safety/toxicology exist as yet, which will be needed before extensive clinical development of the new vaccines.
Collapse
Affiliation(s)
- Ian M Orme
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Lake Street, Fort Collins, CO 80523, USA.
| |
Collapse
|
47
|
Nguyen L, Chinnapapagari S, Thompson CJ. FbpA-Dependent biosynthesis of trehalose dimycolate is required for the intrinsic multidrug resistance, cell wall structure, and colonial morphology of Mycobacterium smegmatis. J Bacteriol 2005; 187:6603-11. [PMID: 16166521 PMCID: PMC1251576 DOI: 10.1128/jb.187.19.6603-6611.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 06/10/2005] [Indexed: 11/20/2022] Open
Abstract
Ligation of mycolic acids to structural components of the mycobacterial cell wall generates a hydrophobic, impermeable barrier that provides resistance to toxic compounds such as antibiotics. Secreted proteins FbpA, FbpB, and FbpC attach mycolic acids to arabinogalactan, generating mycolic acid methyl esters (MAME) or trehalose, generating alpha,alpha'-trehalose dimycolate (TDM; also called cord factor). Our studies of Mycobacterium smegmatis showed that disruption of fbpA did not affect MAME levels but resulted in a 45% reduction of TDM. The fbpA mutant displayed increased sensitivity to both front-line tuberculosis-targeted drugs as well as other broad-spectrum antibiotics widely used for antibacterial chemotherapy. The irregular, hydrophobic surface of wild-type M. smegmatis colonies became hydrophilic and smooth in the mutant. While expression of M. smegmatis fbpA restored defects of the mutant, heterologous expression of the Mycobacterium tuberculosis fbpA gene was less effective. A single mutation in the M. smegmatis FbpA esterase domain inactivated its ability to provide antibiotic resistance. These data show that production of TDM by FbpA is essential for the intrinsic antibiotic resistance and normal colonial morphology of some mycobacteria and support the concept that FbpA-specific inhibitors, alone or in combination with other antibiotics, could provide an effective treatment to tuberculosis and other mycobacterial diseases.
Collapse
Affiliation(s)
- Liem Nguyen
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | | | | |
Collapse
|