1
|
Lu C, Wang J, Zhong G. Preclinical screen for protection efficacy of chlamydial antigens that are immunogenic in humans. Infect Immun 2023; 91:e0034923. [PMID: 37889004 PMCID: PMC10652899 DOI: 10.1128/iai.00349-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
To search for subunit vaccine candidates, immunogenic chlamydial antigens identified in humans were evaluated for protection against both infection and pathology in a mouse genital tract infection model under three different immunization regimens. The intramuscular immunization regimen was first used to evaluate 106 chlamydial antigens, which revealed that two antigens significantly reduced while 11 increased genital chlamydial burden. The two infection-reducing antigens failed to prevent pathology and 23 additional antigens even exacerbated pathology. Thus, intranasal mucosal immunization was tested next since intranasal inoculation with live Chlamydia muridarum prevented both genital infection and pathology. Two of the 29 chlamydial antigens evaluated were found to prevent genital infection but not pathology and three exacerbate pathology. To further improve protection efficacy, a combinational regimen (intranasal priming + intramuscular boosting + a third intraperitoneal/subcutaneous boost) was tested. This regimen identified four infection-reducing antigens, but only one of them prevented pathology. Unfortunately, this protective antigen was not advanced further due to its amino acid sequence homology with several human molecules. Two pathology-exacerbating antigens were also found. Nevertheless, intranasal mucosal priming with viable C. muridarum in control groups consistently prevented both genital infection and pathology regardless of the subsequent boosters. Thus, screening 140 different chlamydial antigens with 21 repeated multiple times in 17 experiments failed to identify a subunit vaccine candidate but demonstrated the superiority of viable chlamydial organisms in inducing immunity against both genital infection and pathology, laying the foundation for developing a live-attenuated Chlamydia vaccine.
Collapse
Affiliation(s)
- Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jie Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
2
|
Chen H, Peng B, Yang C, Xie L, Zhong S, Sun Z, Li Z, Wang C, Liu X, Tang X, Zhong G, Lu C. The role of an enzymatically inactive CPAF mutant vaccination in Chlamydia muridarum genital tract infection. Microb Pathog 2021; 160:105137. [PMID: 34390765 DOI: 10.1016/j.micpath.2021.105137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Chlamydia trachomatis urogenital tract infection causes pelvic inflammatory disease and infertility, increases the risk of co-infection with HPV and HIV. Chlamydial vaccination is considered the most promising approach to prevent and control its infection. Among various chlamydial vaccine candidates, chlamydial protease-like activity factor (CPAF) have been reported to provide robust protective immunity against genital chlamydial infection in mice with reduced vaginal shedding and oviduct pathology. However, CPAF is a serine protease which has enzymatical activity to degrade a large number of substrates. In order to increase the safety of CPAF vaccine, in this study, we used a mutant CPAF that is deficient in enzymatical activity to determine whether proteolytic activity of CPAF affect its vaccine efficacy. The wild type or mutant CPAF immunization causes a significant lower chlamydial shedding from the vaginal and resolve the infection as early as day 20, compared to day 28 in adjuvant control mice. More important, reduced upper reproductive tract pathology were also observed in these two groups. The mutant or wild type CPAF immunization induced not only robust splenic IFN-γ and serum IgG2a but also sIgA secretion in the vaginal fluids. Furthermore, neutralization of chlamydia with immune sera did not provide protection against oviduct pathology. However, adoptive transfer of CD4+ splenocytes isolated from the mutant or wild type CPAF immunized mice resulted in a significant and comparable reduced oviduct pathology. Our results indicate mutant CPAF vaccination is as same efficacy as wild type, and the protection relies on CD4+ T cells, which will further promote the development of CPAF as clinical chlamydial vaccine.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Bo Peng
- Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Chunfen Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Lijuan Xie
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shufang Zhong
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhenjie Sun
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhongyu Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Chuan Wang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xiao Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xin Tang
- Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Guangming Zhong
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chunxue Lu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
3
|
Lizárraga D, Carver S, Timms P. Navigating to the most promising directions amid complex fields of vaccine development: a chlamydial case study. Expert Rev Vaccines 2019; 18:1323-1337. [PMID: 31773996 DOI: 10.1080/14760584.2019.1698954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Vaccine-development research is proliferating making it difficult to determine the most promising vaccine candidates. Exemplary of this problem is vaccine development against Chlamydia, a pathogen of global public health and financial importance.Methods: We systematically extracted data from studies that included chlamydial load or host immune parameter measurements, estimating 4,453 standardized effect sizes between control and chlamydial immunization experimental groups.Results: Chlamydial immunization studies most often used (78%) laboratory mouse models. Depending on chlamydial species, single and multiple recombinant protein, viral and bacterial vectors, dendritic transfer, and dead whole pathogen were most effective at reducing chlamydial load. Immunization-driven decrease in chlamydial load was associated with increases in IFNg, IgA, IgG1, and IgG2a. Using data from individual studies, the magnitude of IgA and IgG2a increase was correlated with chlamydial load reduction. IFNg also showed this pattern for C. trachomatis, but not for C. muridarum. We also reveal the chlamydial vaccine development field to be highly bias toward studies showing these effects, limiting lessons learned from negative results.Conclusions: Most murine immunizations against Chlamydia reduced chlamydial load and increased host immune parameters. These methods are novel for vaccine development and are critical in identifying trends where large quantities of literature exist.
Collapse
Affiliation(s)
- David Lizárraga
- School of Natural Sciences, University of Tasmania, Hobart, Australia.,School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - Peter Timms
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| |
Collapse
|
4
|
CPAF, HSP60 and MOMP antigens elicit pro-inflammatory cytokines production in the peripheral blood mononuclear cells from genital Chlamydia trachomatis-infected patients. Immunobiology 2018; 224:34-41. [PMID: 30477893 DOI: 10.1016/j.imbio.2018.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Persistent inflammation caused by Chlamydia trachomatis in the female genital compartment represents one of the major causes of pelvic inflammatory disease (PID), ectopic pregnancy and infertility in females. Here, we examined the pro-inflammatory cytokine response following stimulation with three different types of C. trachomatis antigens, viz. chlamydial protease-like factor (CPAF), heat shock protein 60 (HSP60) and major outer membrane protein (MOMP). METHODS A total of 19 patients with genital C. trachomatis infection and 10 age-matched healthy controls were recruited for the study. Peripheral blood mononuclear cells (PBMCs) isolated from genital C. trachomatis-infected females were cultured in the presence of CPAF, HSP60 and MOMP antigens, and cytokines were measured by ELISA assay. RESULTS We reported that pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) were robustly secreted following antigenic exposure. Notably, CPAP and MOMP were more potent in triggering IL-1β, as compared to HSP60. Elevated levels of the proinflammatory cytokines were also noted in the samples infected with plasmid-bearing C. trachomatis as compared to those infected with plasmid-free strains. CONCLUSIONS Our study highlights distinct ability of chlamydial antigens in triggering pro-inflammatory response in the host immune cells.
Collapse
|
5
|
Sahu R, Verma R, Dixit S, Igietseme JU, Black CM, Duncan S, Singh SR, Dennis VA. Future of human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as safe vaccine delivery vehicles. Expert Rev Vaccines 2018; 17:217-227. [PMID: 29382248 PMCID: PMC6330895 DOI: 10.1080/14760584.2018.1435279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/29/2018] [Indexed: 01/12/2023]
Abstract
INTRODUCTION There is a persisting global burden and considerable public health challenge by the plethora of ocular, genital and respiratory diseases caused by members of the Gram-negative bacteria of the genus Chlamydia. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility, and interstitial pneumonia. The failures in screening and other prevention programs led to the current medical opinion that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, there is no human Chlamydia vaccine despite successful veterinary vaccines. A major challenge has been the effective delivery of vaccine antigens to induce safe and effective immune effectors to confer long-term protective immunity. The dawn of the era of biodegradable polymeric nanoparticles and the adjuvanted derivatives may accelerate the realization of the dream of human vaccine in the foreseeable future. AREAS COVERED This review focuses on the current status of human chlamydial vaccine research, specifically the potential of biodegradable polymeric nanovaccines to provide efficacious Chlamydia vaccines in the near future. EXPERT COMMENTARY The safety of biodegradable polymeric nanoparticles-based experimental vaccines with or without adjuvants and the array of available chlamydial vaccine candidates would suggest that clinical trials in humans may be imminent. Also, the promising results from vaccine testing in animal models could lead to human vaccines against trachoma and reproductive diseases simultaneously.
Collapse
Affiliation(s)
- Rajnish Sahu
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Richa Verma
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Saurabh Dixit
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Joseph U. Igietseme
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control & Prevention (CDC), Atlanta, GA, USA
| | - Carolyn M Black
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control & Prevention (CDC), Atlanta, GA, USA
| | - Skyla Duncan
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Shree R Singh
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Vida A Dennis
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| |
Collapse
|
6
|
Graspeuntner S, Bohlmann MK, Gillmann K, Speer R, Kuenzel S, Mark H, Hoellen F, Lettau R, Griesinger G, König IR, Baines JF, Rupp J. Microbiota-based analysis reveals specific bacterial traits and a novel strategy for the diagnosis of infectious infertility. PLoS One 2018; 13:e0191047. [PMID: 29315330 PMCID: PMC5760088 DOI: 10.1371/journal.pone.0191047] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/27/2017] [Indexed: 11/19/2022] Open
Abstract
Tubal factor infertility (TFI) accounts for more than 30% of the cases of female infertility and mostly resides from an inflammatory process triggered by an infection. Clinical appearances largely differ, and very often infections are not recognized or remain completely asymptomatic over time. Here, we characterized the microbial pattern in females diagnosed with infectious infertility (ININF) in comparison to females with non-infectious infertility (nININF), female sex workers (FSW) and healthy controls (fertile). Females diagnosed with infectious infertility differed significantly in the seroprevalence of IgG antibodies against the C. trachomatis proteins MOMP, OMP2, CPAF and HSP60 when compared to fertile females. Microbiota analysis using 16S amplicon sequencing of cervical swabs revealed significant differences between ININF and fertile controls in the relative read count of Gardnerella (10.08% vs. 5.43%). Alpha diversity varies among groups, which are characterized by community state types including Lactobacillus-dominated communities in fertile females, an increase in diversity in all the other groups and Gardnerella-dominated communities occurring more often in ININF. While all single parameters did not allow predicting infections as the cause of infertility, including C. trachomatis IgG/IgA status together with 16S rRNA gene analysis of the ten most frequent taxa a total of 93.8% of the females were correctly classified. Further studies are needed to unravel the impact of the cervical microbiota in the pathogenesis of infectious infertility and its potential for identifying females at risk earlier in life.
Collapse
Affiliation(s)
- Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - Michael K. Bohlmann
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein, Luebeck, Schleswig-Holstein, Germany
- Department of Obstetrics and Gynecology, University Hospital Mannheim, Mannheim, Baden-Wuertemberg, Germany
| | - Kathrin Gillmann
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - Runa Speer
- Berlin Department of Public Health, Center for Sexual Health, Berlin, Berlin, Germany
| | - Sven Kuenzel
- Max Planck Institute for Evolutionary Biology, Ploen, Schleswig-Holstein, Germany
| | - Heike Mark
- Berlin Department of Public Health, Center for Sexual Health, Berlin, Berlin, Germany
| | - Friederike Hoellen
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein, Luebeck, Schleswig-Holstein, Germany
| | - Reinhard Lettau
- Outpatient Medical Care for Gynecology, Luebeck, Schleswig-Holstein, Germany
| | - Georg Griesinger
- Department of Reproductive Medicine and Gynecological Endocrinology, University Hospital of Schleswig-Holstein, Luebeck, Schleswig-Holstein, Germany
| | - Inke R. König
- Institute of Medical Biometry and Statistics, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - John F. Baines
- Max Planck Institute for Evolutionary Biology, Ploen, Schleswig-Holstein, Germany
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
- * E-mail:
| |
Collapse
|
7
|
Zhong G, Brunham RC, de la Maza LM, Darville T, Deal C. National Institute of Allergy and Infectious Diseases workshop report: "Chlamydia vaccines: The way forward". Vaccine 2017; 37:7346-7354. [PMID: 29097007 DOI: 10.1016/j.vaccine.2017.10.075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/24/2017] [Indexed: 01/06/2023]
Abstract
Chlamydia trachomatis (Ct), an intracellular pathogen, is the most common bacterial sexually transmitted infection. In addition to acute cervicitis and urethritis, Ct can lead to serious sequelae of significant public health burden including pelvic inflammatory disease (PID) and infertility. Ct control efforts have not resulted in desired outcomes such as reduced incidence and reinfection, and this highlights the need for the development of an effective Ct vaccine. To this end, NIAID organized a workshop to consider the current status of Ct vaccine research and address critical questions in Ct vaccine design and clinical testing. Topics included the goal(s) of a vaccine and the feasibility of achieving these goals, animal models of infection including mouse and nonhuman primate (NHP) models, and correlates of protection to guide vaccine design. Decades of research have provided both whole cell-based and subunit vaccine candidates for development. At least one is currently in clinical development and efforts now need to be directed toward further development of the most attractive candidates. Overall, the discussions and presentations from the workshop highlighted optimism about the current status of Ct vaccine research and detailed the remaining gaps and questions needed to move vaccines forward.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Robert C Brunham
- Vaccine Research Laboratory, UBC Centre for Disease Control, University of British Columbia, Vancouver, BC V5Z 4R4, Canada
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-7509, USA
| | - Carolyn Deal
- Division of Microbiology and Infectious Diseases, NIAID, Bethesda, MD, USA
| |
Collapse
|
8
|
Wali S, Gupta R, Yu JJ, Lanka GKK, Chambers JP, Guentzel MN, Zhong G, Murthy AK, Arulanandam BP. Chlamydial protease-like activity factor mediated protection against C. trachomatis in guinea pigs. Immunol Cell Biol 2016; 95:454-460. [PMID: 27990018 PMCID: PMC5449249 DOI: 10.1038/icb.2016.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 01/30/2023]
Abstract
We have comprehensively demonstrated using the mouse model that intranasal immunization with recombinant chlamydial protease-like activity factor (rCPAF) leads to a significant reduction in bacterial burden, genital tract pathology and preserves fertility following intravaginal genital chlamydial challenge. In the present report, we evaluated the protective efficacy of rCPAF immunization in guinea pigs, a second animal model for genital chlamydial infection. Using a vaccination strategy similar to the mouse model, we intranasally immunized female guinea pigs with rCPAF plus CpG deoxynucleotides (CpG; as an adjuvant), and challenged intravaginally with C. trachomatis serovar D (CT-D). Immunization with rCPAF/CpG significantly reduced vaginal CT-D shedding and induced resolution of infection by day 24, compared to day 33 in CpG alone treated and challenged animals. Immunization induced robust anti-rCPAF serum IgG 2 weeks following the last immunization, and was sustained at a high level 4 weeks post challenge. Upregulation of antigen specific IFN-γ gene expression was observed in rCPAF/CpG vaccinated splenocytes. Importantly, a significant reduction in inflammation in the genital tissue in rCPAF/CpG-immunized guinea pigs compared to CpG-immunized animals was observed. Taken together, this study provides evidence of the protective efficacy of rCPAF as a vaccine candidate in a second animal model of genital chlamydial infection.
Collapse
Affiliation(s)
- Shradha Wali
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Gopala Krishna Koundinya Lanka
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - James P Chambers
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - M Neal Guentzel
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ashlesh K Murthy
- Department of Pathology, Midwestern University, Downers Grove, IL, USA
| | - Bernard P Arulanandam
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| |
Collapse
|
9
|
Yang Z, Tang L, Zhou Z, Zhong G. Neutralizing antichlamydial activity of complement by chlamydia-secreted protease CPAF. Microbes Infect 2016; 18:669-674. [PMID: 27436813 DOI: 10.1016/j.micinf.2016.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 06/22/2016] [Accepted: 07/05/2016] [Indexed: 01/19/2023]
Abstract
Ascending infection by sexually transmitted Chlamydia trachomatis is required for chlamydial induction of tubal pathology. To achieve ascension, the C. trachomatis organisms may have to spread from cell to cell, which inevitably exposes the organisms to extracellular mucosal effectors such as complement factors that are known to possess strong antichlamydial activities. Here, we report that the chlamydia-secreted protease CPAF efficiently neutralized complement factor C3-dependent antichlamydial activity. The neutralization was dependent on the proteolytic activity of CPAF and correlated with the CPAF-mediated degradation of complement factor C3 and factor B. As a result, CPAF preferentially inhibited the alternative complement activation pathway. The significance and limitation of these observations were discussed.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Lingli Tang
- Department of Clinic Diagnosis, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Endocrinology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guangming Zhong
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
10
|
Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis. Infect Immun 2015; 83:4710-8. [PMID: 26416906 DOI: 10.1128/iai.01075-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/16/2015] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen that replicates in a membrane-bound vacuole termed the inclusion. Early in the infection cycle, the pathogen extensively modifies the inclusion membrane through incorporation of numerous type III secreted effector proteins, called inclusion membrane proteins (Incs). These proteins are characterized by a bilobed hydrophobic domain of 40 amino acids. The presence of this domain has been used to predict up to 59 putative Incs for C. trachomatis; however, localization to the inclusion membrane with specific antibodies has been demonstrated for only about half of them. Here, we employed recently developed genetic tools to verify the localization of predicted Incs that had not been previously localized to the inclusion membrane. Expression of epitope-tagged putative Incs identified 10 that were previously unverified as inclusion membrane localized and thus authentic Incs. One novel Inc and 3 previously described Incs were localized to inclusion membrane microdomains, as evidenced by colocalization with phosphorylated Src (p-Src). Several predicted Incs did not localize to the inclusion membrane but instead remained associated with the bacteria. Using Yersinia as a surrogate host, we demonstrated that many of these are not secreted via type III secretion, further suggesting they may not be true Incs. Collectively, our results highlight the utility of genetic tools for demonstrating secretion from chlamydia. Further mechanistic studies aimed at elucidating effector function will advance our understanding of how the pathogen maintains its unique intracellular niche and mediates interactions with the host.
Collapse
|
11
|
Zheng J, Ding T, Chen Z, Fang H, Li H, Lu H, Wu Y. Preparation and evaluation of monoclonal antibodies against chlamydial protease-like activity factor to detect Chlamydia pneumoniae antigen in early pediatric pneumonia. Eur J Clin Microbiol Infect Dis 2015; 34:1319-26. [PMID: 25761740 DOI: 10.1007/s10096-015-2343-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/01/2015] [Indexed: 10/23/2022]
Abstract
Chlamydia pneumoniae causes diseases in humans, including community-acquired pneumonia, bronchitis, and sinusitis. It is also associated with atherosclerosis, coronary heart disease, and hyperlipidemia. In this study, we investigated novel materials with which to develop a sensitive and specific method to identify early C. pneumoniae infection, to allow more effective clinical treatment and prevention. We prepared novel monoclonal antibodies (mAbs) against a recombinant protein equivalent to the immunodominant region of chlamydial protease-like activity factor (CPAF) from C. pneumoniae. The mAbs specifically reacted with the endogenous CPAF antigen of the C. pneumoniae type strain in immunoblotting and indirect immunofluorescence (IIF) assays, but did not react with C. trachomatis type strains or genital secretions from patients with acute C. trachomatis infection. The mAb with the highest titer was used to develop a new IIF assay and enzyme-linked immunosorbent assay (ELISA) to detect the C. pneumoniae antigen in clinical specimens from child patients suspected of pneumonia. The sensitivity, specificity, and concordance rate of the mAb-based IIF and ELISA tests were compared with those of polymerase chain reaction (PCR). Our results show that these mAbs have excellent specificity and may be used to develop new screening tools for the diagnosis of early pediatric pneumonia.
Collapse
Affiliation(s)
- J Zheng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Complement factor C5 but not C3 contributes significantly to hydrosalpinx development in mice infected with Chlamydia muridarum. Infect Immun 2014; 82:3154-63. [PMID: 24842924 DOI: 10.1128/iai.01833-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hydrosalpinx is a pathological hallmark of tubal infertility associated with chlamydial infection. However, the mechanisms of hydrosalpinx remain unknown. Here, we report that complement factor 5 (C5) contributes significantly to chlamydial induction of hydrosalpinx. Mice lacking C5 (C5(-/-)) failed to develop any hydrosalpinx, while ∼42% of the corresponding wild-type mice (C5(+/+)) did so following intravaginal infection with Chlamydia muridarum. Surprisingly, deficiency in C3 (C3(-/-)), an upstream component of the complement system, did not affect mouse susceptibility to chlamydial induction of hydrosalpinx. Interestingly, C5 activation was induced by chlamydial infection in oviducts of C3(-/-) mice, explaining why the C3(-/-) mice remained susceptible to chlamydial induction of hydrosalpinx. Similar levels of live chlamydial organisms were recovered from oviduct tissues of both C5(-/-) and C5(+/+) mice, suggesting that C5 deficiency did not affect C. muridarum ascending infection. Furthermore, C5(-/-) mice were still more resistant to hydrosalpinx induction than C5(+/+) mice, even when live C. muridarum organisms were directly delivered into the upper genital tract, both confirming the role of C5 in promoting hydrosalpinx and indicating that the C5-facilitated hydrosalpinx was not due to enhancement of ascending infection. The C5(-/-) mice displayed significantly reduced lumenal inflammatory infiltration and cytokine production in oviduct tissue, suggesting that C5 may contribute to chlamydial induction of hydrosalpinx by enhancing inflammatory responses.
Collapse
|
14
|
Signaling via tumor necrosis factor receptor 1 but not Toll-like receptor 2 contributes significantly to hydrosalpinx development following Chlamydia muridarum infection. Infect Immun 2014; 82:1833-9. [PMID: 24549331 DOI: 10.1128/iai.01668-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chlamydial infection in the lower genital tract can lead to hydrosalpinx, which is accompanied by activation of both pattern recognition receptor TLR2- and inflammatory cytokine receptor TNFR1-mediated signaling pathways. In the current study, we compared the relative contributions of these two receptors to chlamydial induction of hydrosalpinx in mice. We found that mice with or without deficiencies in TLR2 or TNFR1 displayed similar time courses of live organism shedding from vaginal swabs, suggesting that these receptor-mediated signaling pathways are not required for controlling chlamydial lower genital infection. However, mice deficient in TNFR1 but not TLR2 developed significantly reduced hydrosalpinx. The decreased pathogenicity correlated with a significant reduction in interleukin-17 by in vitro-restimulated splenocytes of TNFR1-deficient mice. Although TLR2-deficient mice developed hydrosalpinx as severe as that of wild-type mice, peritoneal macrophages from mice deficient in TLR2 but not TNFR1 produced significantly reduced cytokines upon chlamydial stimulation, suggesting that reduced macrophage responses to chlamydial infection do not always lead to a reduction in hydrosalpinx. Thus, we have demonstrated that the signaling pathways triggered by the cytokine receptor TNFR1 play a more significant role in chlamydial induction of hydrosalpinx than those mediated by the pattern recognition receptor TLR2, which has laid a foundation for further revealing the chlamydial pathogenic mechanisms.
Collapse
|
15
|
Olsen AW, Andersen P, Follmann F. Characterization of protective immune responses promoted by human antigen targets in a urogenital Chlamydia trachomatis mouse model. Vaccine 2014; 32:685-92. [DOI: 10.1016/j.vaccine.2013.11.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/15/2013] [Accepted: 11/27/2013] [Indexed: 11/30/2022]
|
16
|
A Conrad T, Yang Z, Ojcius D, Zhong G. A path forward for the chlamydial virulence factor CPAF. Microbes Infect 2013; 15:1026-32. [PMID: 24141088 DOI: 10.1016/j.micinf.2013.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/26/2013] [Accepted: 09/02/2013] [Indexed: 12/14/2022]
Abstract
CPAF is a conserved and secreted protease from obligate intracellular bacteria of the order Chlamydiales. Recently, it was demonstrated that most of its host targets are an artifact of inaccurate methods. This review aims to summarize key features of CPAF and propose new approaches for evaluating its role in chlamydial pathogenesis.
Collapse
Affiliation(s)
- Turner A Conrad
- Department of Microbiology and Immunology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
17
|
Li W, Murthy AK, Lanka GK, Chetty SL, Yu JJ, Chambers JP, Zhong G, Forsthuber TG, Guentzel MN, Arulanandam BP. A T cell epitope-based vaccine protects against chlamydial infection in HLA-DR4 transgenic mice. Vaccine 2013; 31:5722-8. [PMID: 24096029 DOI: 10.1016/j.vaccine.2013.09.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/05/2013] [Accepted: 09/19/2013] [Indexed: 01/01/2023]
Abstract
Vaccination with recombinant chlamydial protease-like activity factor (rCPAF) has been shown to provide robust protection against genital Chlamydia infection. Adoptive transfer of IFN-γ competent CPAF-specific CD4⁺ T cells was sufficient to induce early resolution of chlamydial infection and reduction of subsequent pathology in recipient IFN-γ-deficient mice indicating the importance of IFN-γ secreting CD4⁺ T cells in host defense against Chlamydia. In this study, we identify CD4⁺ T cell reactive CPAF epitopes and characterize the activation of epitope-specific CD4⁺ T cells following antigen immunization or Chlamydia challenge. Using the HLA-DR4 (HLA-DRB1*0401) transgenic mouse for screening overlapping peptides that induced T cell IFN-γ production, we identified at least 5 CPAF T cell epitopes presented by the HLA-DR4 complex. Immunization of HLA-DR4 transgenic mice with a rCPAFep fusion protein containing these 5 epitopes induced a robust cell-mediated immune response and significantly accelerated the resolution of genital and pulmonary Chlamydia infection. rCPAFep vaccination induced CPAF-specific CD4⁺ T cells in the spleen were detected using HLA-DR4/CPAF-epitope tetramers. Additionally, CPAF-specific CD4⁺ clones could be detected in the mouse spleen following Chlamydia muridarum and a human Chlamydia trachomatis strain challenge using these novel tetramers. These results provide the first direct evidence that a novel CPAF epitope vaccine can provide protection and that HLA-DR4/CPAF-epitope tetramers can detect CPAF epitope-specific CD4⁺ T cells in HLA-DR4 mice following C. muridarum or C. trachomatis infection. Such tetramers could be a useful tool for monitoring CD4⁺ T cells in immunity to Chlamydia infection and in developing epitope-based human vaccines using the murine model.
Collapse
Affiliation(s)
- Weidang Li
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States; Department of Pathology and Department of Dental Medicine, Midwestern University, Downers Grove, IL 60515, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lu C, Lei L, Peng B, Tang L, Ding H, Gong S, Li Z, Wu Y, Zhong G. Chlamydia trachomatis GlgA is secreted into host cell cytoplasm. PLoS One 2013; 8:e68764. [PMID: 23894341 PMCID: PMC3722199 DOI: 10.1371/journal.pone.0068764] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 06/04/2013] [Indexed: 12/03/2022] Open
Abstract
Glycogen has been localized both inside and outside Chlamydia trachomatis organisms. We now report that C. trachomatis glycogen synthase (GlgA) was detected in both chlamydial organism-associated and -free forms. The organism-free GlgA molecules were localized both in the lumen of chlamydial inclusions and in the cytosol of host cells. The cytosolic GlgA displayed a distribution pattern similar to that of a known C. trachomatis-secreted protease, CPAF. The detection of GlgA was specific since the anti-GlgA antibody labeling was only removed by preabsorption with GlgA but not CPAF fusion proteins. GlgA was detectable at 12h and its localization into host cell cytosol only became apparent at 24h after infection. The cytosolic localization of GlgA was conserved among all C. trachomatis serovars. However, the significance of the GlgA secretion into host cell cytoplasm remains unclear since, while expression of chlamydial GlgA in HeLa cells increased glycogen stores, it did not affect a subsequent infection with C. trachomatis. Similar to several other C. trachomatis-secreted proteins, GlgA is immunogenic in women urogenitally infected with C. trachomatis, suggesting that GlgA is expressed and may be secreted into host cell cytosol during C. trachomatis infection in humans. These findings have provided important information for further understanding C. trachomatis pathogenic mechanisms.
Collapse
Affiliation(s)
- Chunxue Lu
- Department of Pathogen Biology, University of South China, Hengyang, Hunan, China
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Lei Lei
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Bo Peng
- Department of Pathogen Biology, University of South China, Hengyang, Hunan, China
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Lingli Tang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Honglei Ding
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Siqi Gong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Zhongyu Li
- Department of Pathogen Biology, University of South China, Hengyang, Hunan, China
| | - Yimou Wu
- Department of Pathogen Biology, University of South China, Hengyang, Hunan, China
- * E-mail: (YW); (GZ)
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail: (YW); (GZ)
| |
Collapse
|
19
|
Contribution of interleukin-12 p35 (IL-12p35) and IL-12p40 to protective immunity and pathology in mice infected with Chlamydia muridarum. Infect Immun 2013; 81:2962-71. [PMID: 23753624 DOI: 10.1128/iai.00161-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The p35 molecule is unique to interleukin-12 (IL-12), while p40 is shared by both IL-12 and IL-23. IL-12 promotes Th1 T cell responses, while IL-23 promotes Th17 T cell responses. The roles of IL-12p35- and IL-12p40-mediated responses in chlamydial infection were compared in mice following an intravaginal infection with Chlamydia muridarum. Mice deficient in either IL-12p35 or p40 both developed similar but prolonged infection time courses, confirming the roles of IL-12-mediated immune responses in clearing primary infection. However, all mice, regardless of genotype, cleared reinfection within 2 weeks, suggesting that an IL-12- or IL-23-independent adaptive immunity is protective against chlamydial infection. All infected mice developed severe oviduct hydrosalpinx despite the increased Th2 responses in IL-12p35- or IL-12p40-deficient mice, suggesting that Th2-dominant responses can contribute to Chlamydia-induced inflammatory pathology. Compared to IL-12p35 knockout mice, the IL-12p40-deficient mice exhibited more extensive spreading of chlamydial organisms into kidney tissues, leading to significantly increased incidence of pyelonephritis, which both confirms the role of IL-12 or IL-23-independent host responses in Chlamydia-induced pathologies and suggests that in the absence of IL-12/IFN-γ-mediated Th1 immunity, an IL-23-mediated response may play an important role in restricting chlamydial organisms from spreading into distal organs. These observations together provide important information for both understanding chlamydial pathogenesis and developing anti-Chlamydia vaccines.
Collapse
|
20
|
Chlamydia trachomatis outer membrane complex protein B (OmcB) is processed by the protease CPAF. J Bacteriol 2012; 195:951-7. [PMID: 23222729 DOI: 10.1128/jb.02087-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously reported that the Chlamydia trachomatis outer membrane complex protein B (OmcB) was partially processed in Chlamydia-infected cells. We have now confirmed that the OmcB processing occurred inside live cells during chlamydial infection and was not due to proteolysis during sample harvesting. OmcB processing was preceded by the generation of active CPAF, a serine protease known to be able to cross the inner membrane via a Sec-dependent pathway, suggesting that active CPAF is available for processing OmcB in the periplasm. In a cell-free system, CPAF activity is both necessary and sufficient for processing OmcB. Both depletion of CPAF from Chlamydia-infected cell lysates with a CPAF-specific antibody and blocking CPAF activity with a CPAF-specific inhibitory peptide removed the OmcB processing ability of the lysates. A highly purified wild-type CPAF but not a catalytic residue-substituted mutant CPAF was sufficient for processing OmcB. Most importantly, in chlamydial culture, inhibition of CPAF with a specific inhibitory peptide blocked OmcB processing and reduced the recovery of infectious organisms. Thus, we have identified OmcB as a novel authentic target for the putative chlamydial virulence factor CPAF, which should facilitate our understanding of the roles of CPAF in chlamydial biology and pathogenesis.
Collapse
|
21
|
Chen AL, Johnson KA, Lee JK, Sütterlin C, Tan M. CPAF: a Chlamydial protease in search of an authentic substrate. PLoS Pathog 2012; 8:e1002842. [PMID: 22876181 PMCID: PMC3410858 DOI: 10.1371/journal.ppat.1002842] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/22/2012] [Indexed: 01/13/2023] Open
Abstract
Bacteria in the genus Chlamydia are major human pathogens that cause an intracellular infection. A chlamydial protease, CPAF, has been proposed as an important virulence factor that cleaves or degrades at least 16 host proteins, thereby altering multiple cellular processes. We examined 11 published CPAF substrates and found that there was no detectable proteolysis when CPAF activity was inhibited during cell processing. We show that the reported proteolysis of these putative CPAF substrates was due to enzymatic activity in cell lysates rather than in intact cells. Nevertheless, Chlamydia-infected cells displayed Chlamydia-host interactions, such as Golgi reorganization, apoptosis resistance, and host cytoskeletal remodeling, that have been attributed to CPAF-dependent proteolysis of host proteins. Our findings suggest that other mechanisms may be responsible for these Chlamydia-host interactions, and raise concerns about all published CPAF substrates and the proposed roles of CPAF in chlamydial pathogenesis. Chlamydia are bacteria that invade eukaryotic host cells and live within a membrane-bound compartment called the chlamydial inclusion. Growth and survival of these important human and animal pathogens depends on extensive interactions with the host cell, which allow chlamydiae to acquire critical nutrients and to avoid host anti-microbial defenses. Chlamydiae are proposed to cause many of these host-pathogen interactions through the cleavage or degradation of host proteins by the chlamydial protease CPAF, which is secreted into the host cytoplasm. Here, we raise questions about the proposed roles of this virulence factor during infection, as well as its published substrates. We found that there was no detectable cleavage or degradation of 11 previously reported CPAF substrates in Chlamydia-infected cells and that CPAF-mediated proteolysis of these host proteins occurs during cell harvest and lysis. However, we still observed host-pathogen interactions previously attributed to CPAF proteolysis of these proteins, suggesting that Chlamydia is likely to cause these effects on the host cell through other mechanisms. Our findings call for a re-evaluation of all published CPAF substrates as well as the proposed roles of this protease in chlamydial pathogenesis.
Collapse
Affiliation(s)
- Allan L. Chen
- Department of Microbiology and Molecular Genetics, University of California at Irvine, Irvine, California, United States of America
| | - Kirsten A. Johnson
- Department of Microbiology and Molecular Genetics, University of California at Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, California, United States of America
| | - Jennifer K. Lee
- Department of Microbiology and Molecular Genetics, University of California at Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, California, United States of America
| | - Christine Sütterlin
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, California, United States of America
- * E-mail: (CS); (MT)
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California at Irvine, Irvine, California, United States of America
- Department of Medicine, University of California at Irvine, Irvine, California, United States of America
- * E-mail: (CS); (MT)
| |
Collapse
|
22
|
Chlamydia trachomatis antigens recognized in women with tubal factor infertility, normal fertility, and acute infection. Obstet Gynecol 2012; 119:1009-16. [PMID: 22525912 DOI: 10.1097/aog.0b013e3182519326] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To identify Chlamydia trachomatis antigens associated with tubal factor infertility and acute infection. METHODS A C trachomatis proteome array was used to compare antibody profiles among women with tubal factor infertility, normal fertility, and acute C trachomatis infection. RESULTS Thirteen immunodominant antigens reacted with 50% or more sera from all women (n=73). Six C trachomatis antigens were uniquely recognized in women with tubal factor infertility. Combining fragmentation of the six antigens with serum sample dilution, chlamydial antigens HSP60, CT376, CT557, and CT443 could discriminate between women with tubal factor infertility and women with normal fertility with a sensitivity of 63% (95% confidence interval [CI] 0.41-0.77) and specificity of 100% (95% CI 0.91-1), respectively. These antigens were designated as tubal factor infertility-associated antigens. However, these tubal factor antigens were unable to distinguish tubal factor infertility patients from those with acute infection. A combination of CT875 and CT147 distinguished women with acute infection from all other C trachomatis-exposed women with a detection sensitivity of 63% (95% CI 0.41-0.77) and specificity of 100% (95% CI 0.95-1), respectively. Thus, CT875 and CT147 were designated as acute infection-associated antigens. CONCLUSION A sequential screening of antibodies against panels of C trachomatis antigens can be used to identify women with tubal factor infertility and acute C trachomatis infection. LEVEL OF EVIDENCE II.
Collapse
|
23
|
Mapping immunodominant antigens and H-2-linked antibody responses in mice urogenitally infected with Chlamydia muridarum. Microbes Infect 2012; 14:659-65. [PMID: 22421110 DOI: 10.1016/j.micinf.2012.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 01/07/2023]
Abstract
To identify immunodominant antigens and MHC-restricted antibody responses, seven different strains of mice were intravaginally infected with Chlamydia muridarum and compared for antibody responses to 257 C. muridarum proteins. The 7 strains of mice recognized a total of 109 proteins as antigens, of which, 5 antigens (TC0660, TC0727, TC0828, TC0726 & TC0268) were each recognized by 60% or more mice from each mouse strain and thus designated as immunodominant antigens. Furthermore, antibody responses to 19 other antigens displayed strong associations with mouse H-2 haplotypes, including 6 antigens (TC0480, TC0912, TC0229, TCA04, TC0289 & TC0892) whose antibody responses were linked to H-2(b), 8 (TC0035, TC0387, TC0052, TC0781, TC0373, TC0117, TC0066 & TC0396) to H-2(d) and 5 (TC0512, TC0177, TC0589, TC0794 & TC0596) to H-2(k) haplotypes respectively. Interestingly, H-2(b) was negatively associated with antibody responses to most of the antigens that were positively linked to H-2(d) or H-2(k) haplotypes. These results by mapping Chlamydia trachomatis antigens commonly recognized by mice with different strain background and H-2 genes and revealing antigen association with H-2 haplotypes have provided important information for developing chlamydial subunit vaccines and understanding chlamydial pathogenesis.
Collapse
|
24
|
Igietseme JU, Eko FO, Black CM. Chlamydia vaccines: recent developments and the role of adjuvants in future formulations. Expert Rev Vaccines 2012; 10:1585-96. [PMID: 22043957 DOI: 10.1586/erv.11.139] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacteria of the genus Chlamydia cause a plethora of ocular, genital and respiratory diseases that continue to pose a considerable public health challenge worldwide. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility and interstitial pneumonia. The rampart asymptomatic infections prevent timely and effective antibiotic treatments, and quite often clinical presentation of sequelae is the first evidence of an infection. Besides, significant broad coverage in population screening and treatment is economically and logistically impractical, and mass education for public awareness has been ineffective. The current medical opinion is that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, a human vaccine has yet to be realized despite successful veterinary vaccines. Fortunately, recent advances in chlamydial immunobiology, cell biology, molecular pathogenesis, genomics, antigen discovery and animal models of infections are hastening progress toward an efficacious vaccine. Thus, it is established that Chlamydia immunity is mediated by T cells and a complementary antibody response, and several potential vaccine candidates have been identified. However, further advances are needed in effective vaccine delivery systems and safe potent adjuvants to boost and sustain immune responses for long-lasting protective immunity. This article focuses on the current status of human chlamydial vaccine research, specifically how application of new delivery systems and human compatible adjuvants could lead to a timely achievement of efficacious Chlamydia vaccines. The ranking of the candidate vaccine antigens for human vaccine development will await the availability of results from studies in which the antigens are tested by comparable experimental standards, such as antigen-adjuvant combination, route of delivery and possible toxicity.
Collapse
Affiliation(s)
- Joseph U Igietseme
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MailStop G-36, Atlanta, GA 30333, USA.
| | | | | |
Collapse
|
25
|
Kebbi-Beghdadi C, Lienard J, Uyttebroeck F, Baud D, Riederer BM, Greub G. Identification of immunogenic proteins of Waddlia chondrophila. PLoS One 2012; 7:e28605. [PMID: 22238579 PMCID: PMC3251552 DOI: 10.1371/journal.pone.0028605] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 11/11/2011] [Indexed: 11/20/2022] Open
Abstract
Evidence is growing for a role of Waddlia chondrophila as an agent of adverse pregnancy outcomes in both humans and ruminants. This emerging pathogen, member of the order Chlamydiales, is also implicated in bronchiolitis and lower respiratory tract infections. Until now, the serological diagnosis of W. chondrophila infection has mainly relied on manually intensive tests including micro-immunofluorescence and Western blotting. Thus, there is an urgent need to establish reliable high throughput serological assays. Using a combined genomic and proteomic approach, we detected 57 immunogenic proteins of W. chondrophila, of which 17 were analysed by mass spectrometry. Two novel hypothetical proteins, Wim3 and Wim4, were expressed as recombinant proteins in Escherichia coli, purified and used as antigens in an ELISA test. Both proteins were recognized by sera of rabbits immunized with W. chondrophila as well as by human W. chondrophila positive sera but not by rabbit pre-immune sera nor human W. chondrophila negative sera. These results demonstrated that the approach chosen is suitable to identify immunogenic proteins that can be used to develop a serological test. This latter will be a valuable tool to further clarify the pathogenic potential of W. chondrophila.
Collapse
Affiliation(s)
- Carole Kebbi-Beghdadi
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Julia Lienard
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Frederic Uyttebroeck
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - David Baud
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Beat M. Riederer
- Department of Cellular Biology and Morphology, University of Lausanne, Lausanne, Switzerland
- Proteomics Unit, Department of Psychiatric Neurosciences, Cery, Prilly-Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Identification of antigen-specific antibody responses associated with upper genital tract pathology in mice infected with Chlamydia muridarum. Infect Immun 2011; 80:1098-106. [PMID: 22158739 DOI: 10.1128/iai.05894-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Urogenital infection with Chlamydia trachomatis in some women can lead to upper genital tract pathologies, such as hydrosalpinx, potentially affecting fertility. In the current study, 27 of 40 mice intravaginally infected with Chlamydia muridarum developed visible hydrosalpinges in the oviduct while the remaining 13 did not, although all infected mice displayed similar infection time courses. Antisera from the 40 mice recognized 130 out of 257 C. muridarum proteins as antigens and 17 as immunodominant antigens. Importantly, the 27 mice with hydrosalpinges preferentially recognized two C. muridarum proteins (TC0582 and TC0912, designated pathology-associated antigens) while the 13 mice with no hydrosalpinx preferentially recognized 10 proteins (TC0047, TC0117, TC0190, TC0197, TC0257, TC0279, TC0326, TC0630, TC0689, and TC0816, designated nonpathology antigens). The preferential recognition was validated by absorption and independently confirmed in Western blots. The C. trachomatis homolog of TC0912 is encoded by a highly polymorphic gene that is associated with ocular pathogenesis. A fragment of TC0912 was found to improve the differentiation of hydrosalpinx from nonhydrosalpinx mice. TC0582 is a highly conserved ATP synthase, and it may contribute to chlamydial pathogenesis via mechanisms similar to those hypothesized for the highly conserved HSP60. Thus, we have identified chlamydial antigens and epitopes that are associated with either susceptibility or resistance to upper genital tract pathology, which will help us to further understand chlamydial pathogenesis and to develop anti-Chlamydia subunit vaccines.
Collapse
|
27
|
Lu C, Zeng H, Li Z, Lei L, Yeh IT, Wu Y, Zhong G. Protective immunity against mouse upper genital tract pathology correlates with high IFNγ but low IL-17 T cell and anti-secretion protein antibody responses induced by replicating chlamydial organisms in the airway. Vaccine 2011; 30:475-85. [PMID: 22079265 DOI: 10.1016/j.vaccine.2011.10.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/20/2011] [Accepted: 10/22/2011] [Indexed: 01/02/2023]
Abstract
To search for optimal immunization conditions for inducing protective immunity against upper genital tract pathologies caused by chlamydial intravaginal infection, we compared protection efficacy in mice immunized intranasally or intramuscularly with live or inactivated Chlamydia muridarum organisms. Mice immunized intranasally with live organisms developed strong protection against both vaginal shedding of infectious organisms and upper genital tract pathologies. The protection correlated with a robust antigen-specific T cell response with high IFNγ but low IL-17. Although a significant level of IL-5 was also detected, these mice maintained an overall Th1-dorminant immunity following immunization and challenge infection. On the contrary, mice immunized intranasally with inactivated organisms or intramuscularly with live or inactivated organisms produced high levels of IL-17 and still developed significant upper genital tract pathologies. High titers of antibodies against chlamydial secretion antigens were detected only in mice immunized intranasally with live organisms but not mice in other groups, suggesting that the intranasally inoculated live organisms were able to undergo replication and immune responses to the chlamydial secretion proteins may contribute to protective immunity. These observations have provided important information on how to develop subunit vaccines for inducing protective immunity against urogenital infection with Chlamydia trachomatis organisms.
Collapse
Affiliation(s)
- Chunxue Lu
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
The chlamydial periplasmic stress response serine protease cHtrA is secreted into host cell cytosol. BMC Microbiol 2011; 11:87. [PMID: 21527029 PMCID: PMC3107777 DOI: 10.1186/1471-2180-11-87] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 04/28/2011] [Indexed: 01/05/2023] Open
Abstract
Background The periplasmic High Temperature Requirement protein A (HtrA) plays important roles in bacterial protein folding and stress responses. However, the role of chlamydial HtrA (cHtrA) in chlamydial pathogenesis is not clear. Results The cHtrA was detected both inside and outside the chlamydial inclusions. The detection was specific since both polyclonal and monoclonal anti-cHtrA antibodies revealed similar intracellular labeling patterns that were only removed by absorption with cHtrA but not control fusion proteins. In a Western blot assay, the anti-cHtrA antibodies detected the endogenous cHtrA in Chlamydia-infected cells without cross-reacting with any other chlamydial or host cell antigens. Fractionation of the infected cells revealed cHtrA in the host cell cytosol fraction. The periplasmic cHtrA protein appeared to be actively secreted into host cell cytosol since no other chlamydial periplasmic proteins were detected in the host cell cytoplasm. Most chlamydial species secreted cHtrA into host cell cytosol and the secretion was not inhibitable by a type III secretion inhibitor. Conclusion Since it is hypothesized that chlamydial organisms possess a proteolysis strategy to manipulate host cell signaling pathways, secretion of the serine protease cHtrA into host cell cytosol suggests that the periplasmic cHtrA may also play an important role in chlamydial interactions with host cells.
Collapse
|
29
|
Chlamydia trachomatis secretion of an immunodominant hypothetical protein (CT795) into host cell cytoplasm. J Bacteriol 2011; 193:2498-509. [PMID: 21441519 DOI: 10.1128/jb.01301-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Chlamydia-specific hypothetical protein CT795 was dominantly recognized by human antisera produced during C. trachomatis infection but not by animal antisera raised against dead chlamydia organisms. The immundominant region recognized by the human antibodies was mapped to the N-terminal fragment T22-S69. The endogenous CT795 was detected in the cytoplasm of host cells during C. trachomatis infection and was highly enriched in the host cytosolic fraction but absent in the purified chlamydia organisms, suggesting that CT795 is synthesized and secreted into host cell cytoplasm without incorporation into the organisms. All C. trachomatis serovars tested secreted CT795. A predicted signal peptide of CT795 directed the mature PhoA to cross Escherichia coli inner membranes. The secretion of CT795 in Chlamydia-infected cells was inhibited by a C(16) compound targeting signal peptidase I, but not by a C(1) compound known to block the type III secretion pathway. These results suggest that CT795, like CPAF (a Chlamydia-secreted virulence factor), is secreted into the host cell cytoplasm via a sec-dependent mechanism and not by a type III secretion pathway. The above characterizations of CT795 have provided important information for further understanding the potential roles of CT795 in C. trachomatis pathogenesis.
Collapse
|
30
|
A Chlamydia trachomatis OmcB C-terminal fragment is released into the host cell cytoplasm and is immunogenic in humans. Infect Immun 2011; 79:2193-203. [PMID: 21422182 DOI: 10.1128/iai.00003-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Chlamydia trachomatis outer membrane complex protein B (OmcB) is an antigen with diagnostic and vaccine relevance. To further characterize OmcB, we generated antibodies against OmcB C-terminal (OmcBc) and N-terminal (OmcBn) fragments. Surprisingly, the anti-OmcBc antibody detected dominant signals in the host cell cytosol, while the anti-OmcBn antibody exclusively labeled intrainclusion signals in C. trachomatis-infected cells permeabilized with saponin. Western blot analyses revealed that OmcB was partially processed into OmcBc and OmcBn fragments. The processed OmcBc was released into host cell cytosol, while the OmcBn and remaining full-length OmcB were retained within the chlamydial inclusions. The organism-associated OmcB epitopes became detectable only after the C. trachomatis-infected cells were permeabilized with strong detergents such as SDS. However, the harsh permeabilization conditions also led to the leakage of the already secreted OmcBc and chlamydia-secreted protease (CPAF) out of the host cells. The OmcBc processing and release occurred in all biovars of C. trachomatis. Moreover, the released OmcBc but not the retained OmcBn was highly immunogenic in C. trachomatis-infected women, which is consistent with the concept that exposure of chlamydial proteins to host cell cytosol is accompanied by increased immunogenicity. These observations have provided important information for further exploring/optimizing OmcB as a target for the development of diagnosis methods and vaccines.
Collapse
|
31
|
Gong S, Lei L, Chang X, Belland R, Zhong G. Chlamydia trachomatis secretion of hypothetical protein CT622 into host cell cytoplasm via a secretion pathway that can be inhibited by the type III secretion system inhibitor compound 1. MICROBIOLOGY-SGM 2011; 157:1134-1144. [PMID: 21233161 DOI: 10.1099/mic.0.047746-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using antibodies raised with C. trachomatis fusion proteins, we localized a hypothetical protein encoded by the ORF ct622 in the cytoplasm of C. trachomatis-infected mammalian cells. The detection was specific since the antibody labelling of CT622 protein was removed by preabsorption with CT622 but not other fusion proteins. We similarly confirmed that CT621, a known secretion protein encoded by a hypothetical ORF downstream of ct622, was secreted into host cell cytosol. Proteins CT622 and CT621 displayed a similar secretion pattern, with both intra-inclusion and host cell cytosol localization, that was distinct from that of CPAF (chlamydial protease/proteasome-like activity factor). However, the expression and secretion kinetics differed significantly between CT622 and CT621: CT622 mRNA was detected at 2 h, protein at 6 h and secretion of protein into host cell cytoplasm at 36 h post-infection, while CT621 mRNA was detected at 8 h, protein at 16 h and secretion at 24 h. The secretion of both CT622 and CT621 was blocked by N'-(3,5-dibromo-2-hydroxybenzylidene)-4-nitrobenzohydrazide (compound 1), an inhibitor known to target the type III secretion system of bacteria. These results suggest that CT621 and CT622 may fulfil different functions during chlamydial intracellular growth. Further characterization of these proteins may generate important information for understanding chlamydial pathogenesis.
Collapse
Affiliation(s)
- Siqi Gong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Lei Lei
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Xiaotong Chang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Robert Belland
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
32
|
Cochrane M, Armitage CW, O’Meara CP, Beagley KW. Towards a Chlamydia trachomatis vaccine: how close are we? Future Microbiol 2010; 5:1833-56. [DOI: 10.2217/fmb.10.148] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections and preventable blindness worldwide. The incidence of chlamydial sexually transmitted infections has increased rapidly and current antibiotic therapy has failed as an intervention strategy. The most accepted strategy for protection and/or control of chlamydial infections is a vaccine that induces both local neutralizing antibodies to prevent infections by the extracellular elementary bodies and a cell-mediated immune response to target the intracellular infection. This article will discuss the challenges in vaccine design for the prevention of chlamydial urogenital infection and/or disease, including selection of target antigens, discussion of effective delivery systems, immunization routes and adjuvants for induction of protective immunity at the targeted mucosal surface whilst minimizing severe inflammatory disease sequelae.
Collapse
Affiliation(s)
- Melanie Cochrane
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Charles W Armitage
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Connor P O’Meara
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | | |
Collapse
|
33
|
Characterization of Pgp3, a Chlamydia trachomatis plasmid-encoded immunodominant antigen. J Bacteriol 2010; 192:6017-24. [PMID: 20851898 DOI: 10.1128/jb.00847-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human antibody recognition of Chlamydia trachomatis plasmid-encoded Pgp3 protein is dependent on the native conformation of Pgp3. The structural basis for the conformation dependence and the function of Pgp3 remain unknown. Here, we report that Pgp3 trimerization is required for the recognition of Pgp3 by human antibodies. In a native polyacrylamide gel, Pgp3 purified from a bacterial expression system migrated as stable trimers that were dissociated into monomers only by treatment with urea or sodium dodecyl sulfate (SDS) but not nonionic detergents. Human antibodies recognized trimeric but not monomeric Pgp3, suggesting that Pgp3 is presented to the human immune system as trimers during C. trachomatis infection. The endogenous Pgp3 secreted into the chlamydial outer membrane complex or host cell cytosol is always trimerized. Intact Pgp3 trimers were eluted from the outer membrane complex by a combination of nonionic detergents with reducing agents but not by the presence of either alone. These observations have provided important information for further understanding the role of Pgp3 in chlamydial pathogenesis and potentially optimizing Pgp3 as a subunit vaccine candidate antigen.
Collapse
|
34
|
Wang J, Zhang Y, Lu C, Lei L, Yu P, Zhong G. A genome-wide profiling of the humoral immune response to Chlamydia trachomatis infection reveals vaccine candidate antigens expressed in humans. THE JOURNAL OF IMMUNOLOGY 2010; 185:1670-80. [PMID: 20581152 DOI: 10.4049/jimmunol.1001240] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A whole genome scale proteome array consisting of 908 open reading frames encoded in Chlamydia trachomatis genome and plasmid was used to profile anti-chlamydial Ab responses. A total of 719 chlamydial proteins was recognized by one or more antisera from 99 women urogenitally infected with C. trachomatis. Revealing such a large C. trachomatis ANTIGENome in humans might partially be attributed to the significantly improved detection sensitivity of the whole genome scale proteome array assay because both linear and conformation-dependent Abs were detected by the array assay. Twenty-seven of the 719 Ags were recognized by >or=50% antisera, thus designated as immunodominant Ags. Comparison of Ag profiles recognized by live chlamydial organism-infected versus dead organism-immunized hosts led to the identification of infection-dependent or in vivo expressed Ags. The infection-dependent Ags induced Abs only in live organism-infected, but not in dead organism-immunized hosts. Many of these Ags were highly expressed during replication, but only minimally packaged into the infectious elementary bodies. Because inactivated whole chlamydial organism-based vaccines failed to induce protection in humans, identification of the infection-dependent or in vivo expressed immunodominant Ags in humans should greatly facilitate the selection of promising chlamydial subunit vaccine candidates for further evaluation. This approach may also be applicable to other pathogens.
Collapse
Affiliation(s)
- Jie Wang
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
35
|
Chen D, Lei L, Flores R, Huang Z, Wu Z, Chai J, Zhong G. Autoprocessing and self-activation of the secreted protease CPAF in Chlamydia-infected cells. Microb Pathog 2010; 49:164-73. [PMID: 20510344 DOI: 10.1016/j.micpath.2010.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/14/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
The Chlamydia-secreted protease/proteasome-like activity factor (CPAF) is synthesized as a proenzyme (proCPAF) and requires processing for proteolytic activity. Recent structural studies have further demonstrated that CPAF is a serine protease that can undergo autoprocessing and self-activation in a concentration-dependent manner in vitro. However, it is not known how CPAF is processed and activated during chlamydial infection. In the current study, we used a mutant CPAF designated as CPAF(E558A) that is deficient in processing by itself as a substrate to search for putative CPAF activation factor(s) in Chlamydia-infected cells. CPAF(E558A) was processed by the lysates made from Chlamydia-infected cells and the processing activity correlated with the presence of endogenous active CPAF in the fractionated lysate samples. CPAF produced in the Chlamydia-infected cells is required for processing the mutant CPAF(E558A) since the processing activity was removed by depletion with anti-CPAF but not control antibodies. Furthermore, a purified and activated wild type CPAF alone was sufficient for processing CPAF(E558A) and no other chlamydial proteases are required. Finally, fusion tag-induced oligomerization can lead to autoprocessing and self-activation of the wild type CPAF in mammalian cells. These observations together have demonstrated that CPAF undergoes autoprocessing and self-activation during chlamydial infection.
Collapse
Affiliation(s)
- Ding Chen
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Skwor T, Kandel RP, Basravi S, Khan A, Sharma B, Dean D. Characterization of humoral immune responses to chlamydial HSP60, CPAF, and CT795 in inflammatory and severe trachoma. Invest Ophthalmol Vis Sci 2010; 51:5128-36. [PMID: 20463311 DOI: 10.1167/iovs.09-5113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Chlamydia trachomatis (Ct) remains the leading global cause of preventable blindness. There are limited data on humoral immune responses in trachoma. Evaluating these responses is important for understanding host-pathogen interactions and informing vaccine design. Antibodies to chlamydial heat shock protein 60 (cHSP60) have been associated with infertility and trachomatous scarring. Other proteins, including chlamydial protease-associated factor (CPAF) and a hypothetical protein unique to the family Chlamydiaceae, CT795, elicit strong immune responses in urogenital infections, but their role in trachomatous disease is unknown. METHODS This study was conducted to expand on previous cHSP60 findings and evaluate the association of CPAF and CT795 antibodies with ocular Ct infection and disease. Clinical trachoma grading was performed, and conjunctival samples were obtained from individuals with trachomatous trichiasis (TT; one or more inturned eyelashes) or inflammatory trachoma without trichiasis and control subjects without disease, all of whom resided in trachoma-endemic regions of Nepal. Ct infection was determined using commercial PCR. IgG and IgA tear antibodies against cHSP60, CT795, and CPAF fusion proteins were measured by quantitative ELISA. RESULTS Significantly higher IgG antibody levels were found against cHSP60, CPAF, and CT795 in the inflammatory cases compared with levels in the controls (P < 0.005 for all three). Ct infection was independently associated with IgG antibodies against all three immunogens in the inflammatory cases but not in the controls (P = 0.025, P = 0.03 and P = 0.017, respectively). Only IgG antibodies against CPAF were significantly elevated among the TT cases (P = 0.013). CONCLUSIONS Among individuals with trachoma, IgG antibody responses to CPAF are likely to be both a marker and risk factor for inflammatory trachoma and severe trachomatous disease.
Collapse
Affiliation(s)
- Troy Skwor
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | | | | | | | | | | |
Collapse
|
37
|
Chen L, Lei L, Chang X, Li Z, Lu C, Zhang X, Wu Y, Yeh IT, Zhong G. Mice deficient in MyD88 Develop a Th2-dominant response and severe pathology in the upper genital tract following Chlamydia muridarum infection. THE JOURNAL OF IMMUNOLOGY 2010; 184:2602-10. [PMID: 20124098 DOI: 10.4049/jimmunol.0901593] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MyD88, a key adaptor molecule required for many innate immunity receptor-activated signaling pathways, was evaluated in a Chlamydia muridarum urogenital tract infection model. Compared with wild-type mice, MyD88 knockout (KO) mice failed to produce significant levels of inflammatory cytokines in the genital tract during the first week of chlamydial infection. MyD88 KO mice developed a Th2-dominant whereas wild-type mice developed a Th1/Th17-dominant immune response after chlamydial infection. Despite the insufficient production of early inflammatory cytokines and lack of Th1/Th17-dominant adaptive immunity, MyD88 KO mice appeared to be as resistant to chlamydial intravaginal infection as wild-type mice based on the number of live organisms recovered from vaginal samples. However, significantly high numbers of chlamydial organisms were detected in the upper genital tract tissues of MyD88 KO mice. Consequently, MyD88 KO mice developed more severe pathology in the upper genital tract. These results together have demonstrated that MyD88-dependent signaling pathway is not only required for inflammatory cytokine production in the early phase of host response to chlamydial infection but also plays a critical role in the development of Th1/Th17 adaptive immunity, both of which may be essential for limiting ascending infection and reducing pathology of the upper genital tract by chlamydial organisms.
Collapse
Affiliation(s)
- Lili Chen
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chaganty BKR, Murthy AK, Evani SJ, Li W, Guentzel MN, Chambers JP, Zhong G, Arulanandam BP. Heat denatured enzymatically inactive recombinant chlamydial protease-like activity factor induces robust protective immunity against genital chlamydial challenge. Vaccine 2010; 28:2323-9. [PMID: 20056182 DOI: 10.1016/j.vaccine.2009.12.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/10/2009] [Accepted: 12/23/2009] [Indexed: 01/18/2023]
Abstract
We have shown previously that vaccination with recombinant chlamydial protease-like activity factor (rCPAF) plus interleukin-12 as an adjuvant induces robust protective immunity against primary genital Chlamydia muridarum challenge in mice. Since CPAF is a protease, we compared the effects of enzymatically active and inactive (heat denatured) rCPAF to determine whether proteolytic activity is expendable for the induction of protective immunity against chlamydial challenge. Active, but not inactive, rCPAF immunization induced high levels of anti-active CPAF antibody, whereas both induced robust splenic CPAF-specific IFN-gamma production. Vaccination with active or inactive rCPAF induced enhanced vaginal chlamydial clearance as early as day 6 with complete resolution of infection by day 18, compared to day 30 in mock-vaccinated and challenged animals. Importantly, significant and comparable reductions in oviduct pathology were observed in active and inactive rCPAF-vaccinated mice compared to mock-vaccinated animals. Thus, rCPAF induced anti-chlamydial immunity is largely independent of enzymatic activity and secondary or higher order protein conformation.
Collapse
Affiliation(s)
- Bharat K R Chaganty
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Greub G, Kebbi-Beghdadi C, Bertelli C, Collyn F, Riederer BM, Yersin C, Croxatto A, Raoult D. High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach. PLoS One 2009; 4:e8423. [PMID: 20037647 PMCID: PMC2793016 DOI: 10.1371/journal.pone.0008423] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/25/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. METHODS/PRINCIPAL FINDINGS We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. CONCLUSIONS/SIGNIFICANCE This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.
Collapse
Affiliation(s)
- Gilbert Greub
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Rockey DD, Wang J, Lei L, Zhong G. Chlamydia vaccine candidates and tools for chlamydial antigen discovery. Expert Rev Vaccines 2009; 8:1365-77. [PMID: 19803759 DOI: 10.1586/erv.09.98] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The failure of the inactivated Chlamydia-based vaccine trials in the 1960s has led researchers studying Chlamydia to take cautious and rational approaches to develop safe and effective chlamydial vaccines. Subsequent research efforts focused on three areas. The first is the analysis of the immunobiology of chlamydial infection in animal models, with supporting clinical studies, to identify the immune correlates of both protective immunity and pathological responses. Second, recent radical improvements in genomics, proteomics and associated technologies have assisted in the implementation of creative approaches to search for suitable vaccine candidates. Third, progress in the analysis of host response and adjuvanticity regulating both innate and adaptive immunity at the mucosal site of infection has led to progress in the design of optimal delivery and adjuvant systems for enhancing protective immunity. Considerable progress has been made in the first two areas but research efforts to better define the factors that regulate immunity at mucosal sites of infection and to develop strategies to boost protective immunity via immunomodulation, effective delivery systems and potent adjuvants, have remained elusive. In this article, we will summarize progress in these areas with a focus on chlamydial vaccine antigen discovery, and discuss future directions towards the development of a safe and effective chlamydial vaccine.
Collapse
Affiliation(s)
- Daniel D Rockey
- Associate Professor, College of Veterinary Medicine, Oregon State University, 211 Dryden Hall, Corvallis, OR 97331-4804, USA.
| | | | | | | |
Collapse
|
41
|
Karyagina AS, Alexeevsky AV, Spirin SA, Zigangirova NA, Gintsburg AL. Effector proteins of chlamydiae. Mol Biol 2009. [DOI: 10.1134/s0026893309060016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Murthy AK, Guentzel MN, Zhong G, Arulanandam BP. Chlamydial protease-like activity factor--insights into immunity and vaccine development. J Reprod Immunol 2009; 83:179-84. [PMID: 19853923 DOI: 10.1016/j.jri.2009.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 04/24/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
Chlamydia trachomatis is a Gram-negative obligate intracellular pathogen that remains the leading cause of bacterial sexually transmitted disease worldwide, despite the availability of efficacious antimicrobial therapy. Given that chlamydial infections cause severe pathological sequelae in the upper genital tract, a licensed vaccine to prevent infection and disease would be an ideal solution. Chlamydial protease-like activity factor (CPAF) is a protein secreted in considerable amounts into the cytosol of infected cells and released into the extracellular milieu upon cellular lysis, which therefore is accessible to the host immune system. This is further substantiated by the observation that CPAF is immunodominant among other antigens in Chlamydia sero-positive humans. The efficacy of vaccination with CPAF against genital chlamydial challenge has been evaluated extensively in the murine model. This review will discuss important insights into the potential of CPAF as a component of an anti-chlamydial vaccine.
Collapse
Affiliation(s)
- Ashlesh K Murthy
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, One UTSA circle, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|
43
|
Zhong G. Killing me softly: chlamydial use of proteolysis for evading host defenses. Trends Microbiol 2009; 17:467-74. [PMID: 19765998 DOI: 10.1016/j.tim.2009.07.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/06/2009] [Accepted: 07/13/2009] [Indexed: 12/13/2022]
Abstract
Chlamydial infections in humans cause severe health problems, including blinding trachoma and sexually transmitted diseases. Although the involved pathogenic mechanisms remain unclear, the ability to replicate and maintain long-term residence in the infected cells seems to significantly contribute to chlamydial pathogenicity. These obligate intracellular parasites maintain a delicate balance between exploiting and protecting their host: they occupy intracellular space and acquire nutrients from the infected cells, but at the same time they have to maintain the integrity of the host cells for the completion of their intracellular growth. For this purpose, chlamydiae hijack certain signaling pathways that prevent the host cells from undergoing apoptosis induced by intracellular stress and protect the infected cells from recognition and attack by host defenses. Interestingly, one of the strategies that chlamydiae use for these purposes is the induction of limited proteolysis of host proteins, which is the main focus of this article.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
44
|
Forsbach-Birk V, Simnacher U, Pfrepper KI, Soutschek E, Kiselev AO, Lampe MF, Meyer T, Straube E, Essig A. Identification and evaluation of a combination of chlamydial antigens to support the diagnosis of severe and invasive Chlamydia trachomatis infections. Clin Microbiol Infect 2009; 16:1237-44. [PMID: 19723133 DOI: 10.1111/j.1469-0691.2009.03041.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chlamydia trachomatis is the most common sexually transmitted organism in industrialized countries. Nucleic acid amplification testing, using non-invasively collected specimens, is considered to be the method of choice for diagnosis of chlamydial infections of the urethra and the lower genital tract. Serological testing has the potential to circumvent the problem of specimen sampling in invasive C. trachomatis infections of the upper genital tract. However, only a few defined chlamydial antigens have been used in a standardized diagnostic assay format. In this study, we used serological two-dimensional proteomic analysis to broaden the spectrum of diagnostically relevant C. trachomatis proteins. The genes encoding an assortment of already known chlamydial antigens, as well as immunogenic proteins that have not been described before, were cloned, and the recombinant proteins were purified in order to compare their diagnostic usefulness in parallel with a newly developed line immunoassay. With 189 sera collected from patients with and without C. trachomatis infection, recombinant major outer membrane protein (MOMP), chlamydial protease-like activity factor (CPAF), outer membrane protein 2 (OMP2), translocated actin-recruiting protein, and polymorphic membrane protein D (PmpD) showed the highest level of diagnostic sensitivity and specificity. In patients suffering from ascending and invasive C. trachomatis infections, such as pelvic inflammatory disease and lymphogranuloma venereum, the sensitivity reached with these proteins ranged between 71% (PmpD) and 94% (OMP2), and the specificity ranged between 82% (PmpD) and 100% (MOMP and OMP2). Recombinant thio-specific antioxidant peroxidase, ribosomal protein S1 (RpsA) and hypothetical protein 17 showed lower sensitivity but comparably high specificity, ranging from 94% to 100%. The novel line immunoassay based on defined recombinant antigens has promise for improved serodiagnosis in severe and invasive C. trachomatis infections.
Collapse
Affiliation(s)
- V Forsbach-Birk
- Institute of Medical Microbiology and Hygiene, University Hospital of Ulm, Ulm, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gupta R, Vardhan H, Srivastava P, Salhan S, Mittal A. Modulation of cytokines and transcription factors (T-Bet and GATA3) in CD4 enriched cervical cells of Chlamydia trachomatis infected fertile and infertile women upon stimulation with chlamydial inclusion membrane proteins B and C. Reprod Biol Endocrinol 2009; 7:84. [PMID: 19698128 PMCID: PMC2736965 DOI: 10.1186/1477-7827-7-84] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/22/2009] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Chlamydial Inclusion membrane proteins (Incs), are involved in biochemical interactions with host cells and infecting Chlamydiae. We have previously reported the role of two Chlamydia trachomatis (CT) Incs, namely IncB and IncC in generating host immunity in CT infected women. Emerging data shows involvement of Inc stimulated CD4 positive T cells in aiding host immunity in infected fertile and infertile women through the secretion of interferon gamma. However the lack of data on the intra-cytokine interplay to these Incs in infected cell milieu prompted us to investigate further. METHODS A total of 14 CT-positive fertile, 18 CT-positive infertile women and 25 uninfected controls were enrolled in this study. CD8 depleted, CD4 enriched cervical cells were isolated and upon stimulation with IncB and IncC, modulation of cytokines (Interleukin (IL)-1 Beta, IL-4, IL-5, IL-6, IL-10, Interferon-gamma, IL-12, IL-23, Tumor Necrosis Factor-alpha and Granulocyte macrophage colony-stimulating factor (GM-CSF) and T cell lineage regulating transcription factors T-Bet and GATA3 was determined by real-time reverse-transcriptase (RT)-PCR and ELISA. RESULTS Significant higher expression (P < 0.05) of Interferon-gamma, IL-12, IL-23 and GM-CSF were found in Inc-stimulated CD4 enriched cervical cells of CT-positive fertile women and contrastingly high IL-1 Beta, IL-4, IL-5, IL-6 and IL-10 levels were found in CT-positive infertile women. Positive correlation (P < 0.05) was found between Interferon-gamma and T-Bet levels in CT-positive fertile women and IL-4 mRNA and GATA3 levels in CT-positive infertile patients upon IncB and IncC stimulation. CONCLUSION Overall our data shows that CT IncB and IncC are able to upregulate expression of cytokines, namely interferon-gamma, IL-12, IL-23 and GM-CSF in CT-positive fertile women while expression of IL-1 Beta, IL-4, IL-5, IL-6 and IL-10 were upregulated in CT-positive infertile women. Our study also suggests that Incs are able to modulate expression of T cell lineage determinants indicating their involvement in regulation of immune cells.
Collapse
Affiliation(s)
- Rishein Gupta
- Institute of Pathology-ICMR, Safdarjang Hospital Campus, Post Box no. 4909, New Delhi-110 029, India
| | - Harsh Vardhan
- Institute of Pathology-ICMR, Safdarjang Hospital Campus, Post Box no. 4909, New Delhi-110 029, India
| | - Pragya Srivastava
- Institute of Pathology-ICMR, Safdarjang Hospital Campus, Post Box no. 4909, New Delhi-110 029, India
| | - Sudha Salhan
- Department of Gynaecology & Obstetrics, Safdarjung Hospital, New Delhi-110 029, India
| | - Aruna Mittal
- Institute of Pathology-ICMR, Safdarjang Hospital Campus, Post Box no. 4909, New Delhi-110 029, India
| |
Collapse
|
46
|
Abstract
A secreted chlamydial protease designated CPAF (Chlamydial Protease/proteasome-like Activity Factor) degrades host proteins, enabling Chlamydia to evade host defenses and replicate. The mechanistic details of CPAF action, however, remain obscure. We used a computational approach to search the protein databank for structures that are compatible with the CPAF amino acid sequence. The results reveal that CPAF possesses a fold similar to that of the catalytic domains of the tricorn protease from Thermoplasma acidophilum,and that CPAF residues H105, S499, and E558 are structurally analogous to the tricorn protease catalytic triad residues H746, S965, and D1023. Substitution of these putative CPAF catalytic residues blocked CPAF from degrading substrates in vitro, while the wild type and a noncatalytic control mutant of CPAF remained cleavage-competent. Substrate cleavage is also correlated with processing of CPAF into N-terminal (CPAFn) and C-terminal (CPAFc) fragments, suggesting that these putative catalytic residues may also be required for CPAF maturation.
Collapse
|
47
|
Distinct roles of CD28- and CD40 ligand-mediated costimulation in the development of protective immunity and pathology during Chlamydia muridarum urogenital infection in mice. Infect Immun 2009; 77:3080-9. [PMID: 19398542 DOI: 10.1128/iai.00611-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Infection with Chlamydia muridarum in the mouse urogenital tract can induce both protective immunity and inflammatory pathologies, which has been used as a model for understanding the immune and pathogenic mechanisms of C. trachomatis infection. We compared the roles of CD28- and CD40 ligand (CD40L)-mediated costimulation in C. muridarum infection. Mice with CD28 or CD80/CD86 gene knockout (KO) displayed an infection course similar to that of wild-type mice during both primary and secondary infection, suggesting that CD28-mediated costimulation is not required for protection against C. muridarum infection. However, mice deficient in CD40L or CD40 displayed a prolonged infection course after primary or secondary infection, suggesting that CD40-CD40L costimulation plays an essential role in the development of anti-C. muridarum immunity. Interestingly, the CD28- or CD80/CD86-deficient mice displayed significantly lower levels of inflammatory pathologies in the upper genital tracts after primary infection, although the attenuation in inflammation was no longer significant during secondary infection. However, the CD40L or CD40 KO mice developed inflammatory pathologies as severe as those in wild-type mice following either primary or secondary infection despite the obvious deficits in adaptive immunity in these KO mice. The resistance of CD28 or CD80/CD86 KO mice to chlamydial infection correlated with production of gamma interferon, while the development of inflammatory pathologies in CD40L or CD40 KO mice correlated with the production of other proinflammatory cytokines in mouse urogenital tracts during the early stages of the infection. These observations together suggest that C. muridarum-induced protective immunity and inflammatory pathologies can be mediated by distinct costimulatory signals.
Collapse
|
48
|
Wang J, Chen L, Chen F, Zhang X, Zhang Y, Baseman J, Perdue S, Yeh IT, Shain R, Holland M, Bailey R, Mabey D, Yu P, Zhong G. A chlamydial type III-secreted effector protein (Tarp) is predominantly recognized by antibodies from humans infected with Chlamydia trachomatis and induces protective immunity against upper genital tract pathologies in mice. Vaccine 2009; 27:2967-80. [PMID: 19428908 DOI: 10.1016/j.vaccine.2009.02.095] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 01/07/2023]
Abstract
Chlamydia trachomatis genome is predicted to encode a type III secretion system consisting of more than 40 open reading frames (ORFs). To test whether these ORFs are expressed and immunogenic during chlamydial infection in humans, we expressed 55 chlamydial ORFs covering all putative type III secretion components plus control molecules as fusion proteins and measured the reactivity of these fusion proteins with antibodies from patients infected with C. trachomatis in the urogenital tract (24 antisera) or in the ocular tissue (8 antisera). Forty-five of the 55 proteins were recognized by at least 1 of the 32 human antisera, suggesting that these proteins are both expressed and immunogenic during chlamydial infection in humans. Tarp, a putative type III secretion effector protein, was identified as a novel immunodominant antigen due to its reactivity with the human antisera at high frequency and titer. The expression and immunogenicity of Tarp were confirmed in cell culture and mouse systems. Tarp was mainly associated with the infectious form of chlamydial organisms and became undetectable between 13 and 24 h during the infection cycle in cell culture. Mice intravaginally infected with C. muridarum developed Tarp-specific humoral and cellular immune responses. More importantly, immunization of mice with Tarp induced Th1-dominant immunity that significantly reduced the shedding of live organisms from the lower genital tract and attenuated inflammatory pathologies in the fallopian tube tissues. These observations have demonstrated that Tarp, an immunodominant antigen identified by human antisera, can induce protective immunity against chlamydial infection and pathology in mice.
Collapse
Affiliation(s)
- Jie Wang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Li W, Murthy AK, Guentzel MN, Seshu J, Forsthuber TG, Zhong G, Arulanandam BP. Antigen-specific CD4+ T cells produce sufficient IFN-gamma to mediate robust protective immunity against genital Chlamydia muridarum infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:3375-82. [PMID: 18292563 DOI: 10.4049/jimmunol.180.5.3375] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chlamydia has been shown to evade host-specific IFN-gamma-mediated bacterial killing; however, IFN-gamma-deficient mice exhibit suboptimal late phase vaginal Chlamydia muridarum clearance, greater dissemination, and oviduct pathology. These findings introduce constraints in understanding results from murine chlamydial vaccination studies in context of potential implications to humans. In this study, we used mice deficient in either IFN-gamma or the IFN-gamma receptor for intranasal vaccination with a defined secreted chlamydial Ag, chlamydial protease-like activity factor (CPAF), plus CpG and examined the role of IFN-gamma derived from adoptively transferred Ag-specific CD4+ T cells in protective immunity against genital C. muridarum infection. We found that early Ag-specific IFN-gamma induction and CD4+ T cell infiltration correlates with the onset of genital chlamydial clearance. Adoptively transferred IFN-gamma competent CPAF-specific CD4+ T cells failed to enhance the resolution of genital chlamydial infection within recipient IFN-gamma receptor-deficient mice. Conversely, IFN-gamma production from adoptively transferred CPAF-specific CD4+ T cells was sufficient in IFN-gamma-deficient mice to induce early resolution of infection and reduction of subsequent pathology. These results provide the first direct evidence that enhanced anti-C. muridarum protective immunity induced by Ag-specific CD4+ T cells is dependent upon IFN-gamma signaling and that such cells produce sufficient IFN-gamma to mediate the protective effects. Additionally, MHC class II pathway was sufficient for induction of robust protective anti-C. muridarum immunity. Thus, targeting soluble candidate Ags via MHC class II to CD4+ T cells may be a viable vaccine strategy to induce optimal IFN-gamma production for effective protective immunity against human genital chlamydial infection.
Collapse
Affiliation(s)
- Weidang Li
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX 78249, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Li Z, Zhong Y, Lei L, Wu Y, Wang S, Zhong G. Antibodies from women urogenitally infected with C. trachomatis predominantly recognized the plasmid protein pgp3 in a conformation-dependent manner. BMC Microbiol 2008; 8:90. [PMID: 18541036 PMCID: PMC2432062 DOI: 10.1186/1471-2180-8-90] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Accepted: 06/09/2008] [Indexed: 12/30/2022] Open
Abstract
Background C. trachomatis organisms carry a cryptic plasmid that encodes 8 open reading frames designated as pORF1 to 8. It is not clear whether all 8 pORFs are expressed during C. trachomatis infection in humans and information on the functionality of the plasmid proteins is also very limited. Results When antibodies from women urogenitally infected with C. trachomatis were reacted with the plasmid proteins, all 8 pORFs were positively recognized by one or more human antibody samples with the recognition of pORF5 protein (known as pgp3) by most antibodies and with the highest titers. The antibody recognition of the pORFs was blocked by C. trachomatis-infected HeLa but not normal HeLa cell lysates. The pgp3 fusion protein-purified human IgG detected the endogenous pgp3 in the cytosol of C. trachomatis-infected cells with an intracellular distribution pattern similar to that of CPAF, a chlamydial genome-encoded protease factor. However, the human antibodies no longer recognized pgp3 but maintained recognition of CPAF when both antigens were linearized or heat-denatured. The pgp3 conformation is likely maintained by the C-terminal 75% amino acid sequence since further deletion blocked the binding by the human antibodies and two conformation-dependent mouse monoclonal antibodies. Conclusion The plasmid-encoded 8 proteins are both expressed and immunogenic with pgp3 as the most immunodominant antigen during chlamydial infection in humans. More importantly, the human anti-pgp3 antibodies are highly conformation-dependent. These observations have provided important information for further understanding the function of the plasmid-encoded proteins and exploring the utility of pgp3 in chlamydial diagnosis and vaccination.
Collapse
Affiliation(s)
- Zhongyu Li
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|