1
|
Pragasam AK, Maurya S, Jain K, Pal S, Raja C, Yadav R, Kumar S, Purohit A, Pradhan D, Kajal K, Talukdar D, Singh AN, Verma J, Jana P, Rawat S, Kshetrapal P, Krishna A, Kumar S, Bansal VK, Das B, Srikanth CV, Garg PK. Invasive Salmonella Typhimurium colonizes gallbladder and contributes to gallbladder carcinogenesis through activation of host epigenetic modulator KDM6B. Cancer Lett 2025; 618:217621. [PMID: 40074067 DOI: 10.1016/j.canlet.2025.217621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Gallbladder stones alone do not explain the risk of gallbladder cancer (GBC) as the sole etiological factor. Chronic microbial infection, particularly Salmonella, has been implicated in GB carcinogenesis, but its causative role and the underlying mechanisms are largely unknown. We studied gut and gallbladder tissue microbiome through targeted metagenomics to identify pathogenic bacteria in GBC. Virulence and pathogenicity of identified Salmonella Typhimurium from GBC tissue were studied after culture by whole genome sequencing, phylogenetic analysis, mutational profiling, and pangenome analysis. Mechanistic studies for GBC carcinogenesis were carried out in a mouse model of gallstones and chronic Salmonella infection, a cellular model using GBC (NOZ) cell lines, and a xenograft tumor model. We found an increased abundance of Salmonella in the gut microbiome of patients with GBC and culturable S. Typhimurium from the gallbladder cancer tissue. Comparative genomics of S. Typhimurium isolated from the GBC tissue showed a high invasive index. S. Typhimurium isolates harbored horizontally acquired virulence functions in their accessory genome. Chronic S. Typhimurium infection caused chronic inflammation, pre-malignant changes, and tumor-promoting mechanisms in the mouse model with gallbladder stones with activation of the epigenetic modulator KDM6B both in the mouse model and human GBC. Inhibition of KDM6B reduced engrafted tumor size in SCID mice. Of the differentially regulated genes in human GBC tissue, ADAMTSL5, CX3CR1, and SPSB4 were also significantly dysregulated in NOZ cells infected with Salmonella. Chronic Salmonella infection contributes to gallbladder carcinogenesis through a host epigenetic mechanism involving KDM6B.
Collapse
Affiliation(s)
- Agila Kumari Pragasam
- Functional Genomics Laboratory, Centre for Microbial Research, BRIC-Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Sonalika Maurya
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Kajal Jain
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sujoy Pal
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Christu Raja
- Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shakti Kumar
- Functional Genomics Laboratory, Centre for Microbial Research, BRIC-Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Ayushi Purohit
- Functional Genomics Laboratory, Centre for Microbial Research, BRIC-Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Dibyabhaba Pradhan
- Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kirti Kajal
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Daizee Talukdar
- Functional Genomics Laboratory, Centre for Microbial Research, BRIC-Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Anand Narayan Singh
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jyoti Verma
- Functional Genomics Laboratory, Centre for Microbial Research, BRIC-Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Pradipta Jana
- Functional Genomics Laboratory, Centre for Microbial Research, BRIC-Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Shefali Rawat
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pallavi Kshetrapal
- Pediatric Biology Center, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Asuri Krishna
- Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Subodh Kumar
- Department of Surgery, JPN Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Virinder Kumar Bansal
- Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Bhabatosh Das
- Functional Genomics Laboratory, Centre for Microbial Research, BRIC-Translational Health Science and Technology Institute, Faridabad, 121001, India.
| | - Chittur V Srikanth
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, 121001, India.
| | - Pramod Kumar Garg
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Laganenka L, Schubert C, Sichert A, Kalita I, Barthel M, Nguyen BD, Näf J, Lobriglio T, Sauer U, Hardt WD. Interplay between chemotaxis, quorum sensing, and metabolism regulates Escherichia coli-Salmonella Typhimurium interactions in vivo. PLoS Pathog 2025; 21:e1013156. [PMID: 40315408 PMCID: PMC12074654 DOI: 10.1371/journal.ppat.1013156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 05/13/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025] Open
Abstract
Motile bacteria use chemotaxis to navigate complex environments like the mammalian gut. These bacteria sense a range of chemoeffector molecules, which can either be of nutritional value or provide a cue for the niche best suited for their survival and growth. One such cue molecule is the intra- and interspecies quorum sensing signaling molecule, autoinducer-2 (AI-2). Apart from controlling collective behavior of Escherichia coli, chemotaxis towards AI-2 contributes to its ability to colonize the murine gut. However, the impact of AI-2-dependent niche occupation by E. coli on interspecies interactions in vivo is not fully understood. Using the C57BL/6J mouse infection model, we show that chemotaxis towards AI-2 contributes to nutrient competition and thereby affects colonization resistance conferred by E. coli against the enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm). Like E. coli, S. Tm also relies on chemotaxis, albeit not towards AI-2, to compete against residing E. coli in a gut inflammation-dependent manner. Finally, utilizing a barcoded S. Tm mutant pool, we investigated the impact of AI-2 signaling in E. coli on carbohydrate utilization and central metabolism of S. Tm. Interestingly, AI-2-dependent niche colonization by E. coli was highly specific, impacting only a limited number of S. Tm mutants at distinct time points during infection. Notably, it significantly altered the fitness of mutants deficient in mannose utilization (ΔmanA, early stage infection) and, to a lesser extent, fumarate respiration (ΔdcuABC, late stage infection). The role of quorum sensing and chemotaxis in metabolic competition among bacteria remains largely unexplored. Here, we provide initial evidence that AI-2-dependent nutrient competition occurs between S. Tm and E. coli at specific time points during infection. These findings represent a crucial step toward understanding how bacteria navigate the gastrointestinal tract and engage in targeted nutrient competition within this complex three-dimensional environment.
Collapse
Affiliation(s)
- Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | | | - Andreas Sichert
- Institute of Molecular Systems Biology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Irina Kalita
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, Marburg, Germany
| | - Manja Barthel
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Bidong D. Nguyen
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Jana Näf
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Thomas Lobriglio
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
3
|
Cooper KG, Kari L, Chong A, Tandon N, Doran K, Gomes Da Silva L, Cockrell DC, Baylink A, Steele-Mortimer O. HilD-regulated chemotaxis proteins contribute to Salmonella Typhimurium colonization in the gut. mBio 2025; 16:e0039025. [PMID: 39998229 PMCID: PMC11980550 DOI: 10.1128/mbio.00390-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
In the enteric pathogen Salmonella Typhimurium, invasion and motility are coordinated by HilD, a master regulator that activates expression of genes encoding the type III secretion system 1 and some motility genes, including the chemotaxis gene mcpC. Previously, we have shown that McpC induces smooth swimming, which is important for type III secretion system 1-dependent invasion of epithelial cells. Here, we have studied another Salmonella-specific chemotaxis gene, mcpA, and demonstrate that it is also HilD regulated. Whereas HilD induction of mcpC occurs by direct derepression of H-NS, mcpA induction requires neither H-NS derepression nor the flagellar-specific sigma factor fliA; instead it occurs through a HilD-SprB regulatory cascade, providing experimental confirmation of previous transcriptional regulatory mapping. McpA and McpC contain methyl-accepting domains characteristic of bacterial chemoreceptors, and McpA also contains a chemoreceptor zinc-binding (CZB) protein domain found in a variety of bacterial proteins, many of which are involved in signaling or regulatory roles. Here, we show that, in a mouse model for acute Salmonella colitis, both mcpA and mcpC deletion mutants are outcompeted by wild-type Salmonella Typhimurium in the gut lumen. CZB domains bind Zn2+ through a conserved cysteine residue and are thought to perform redox-sensing through redox-initiated alterations in zinc homeostasis. We found that the conserved cysteine is required for McpA function in the mouse gut, thus demonstrating a virulence role for the CZB Zn2+-binding site during infection. IMPORTANCE The gut-adapted bacterium Salmonella Typhimurium causes inflammatory diarrhea via a process that involves active invasion of intestinal epithelial cells, secretion of inflammatory molecules, and recruitment of immune cells. Although bacterial motility and invasion of host cells are coordinated, how directed movement facilitates luminal survival and growth or invasion at the mucosal surface is not understood. Chemotaxis is the process by which bacteria control movement toward attractants and away from repellents. Previously, we identified a Salmonella-specific chemoreceptor, McpC, that is co-expressed with the invasion machinery and promotes smooth swimming for optimal host cell invasion. Here, we investigated another chemoreceptor, McpA, also regulated with invasion-associated genes and show it contributes to luminal expansion rather than invasion of epithelial cells. McpA activity requires a conserved Zn2+-binding domain, thought to be involved in sensing inflammation. This work demonstrates that coordination of invasion and chemotaxis plays a significant role in the gut.
Collapse
Affiliation(s)
- Kendal G. Cooper
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Laszlo Kari
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Audrey Chong
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Naman Tandon
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kathleen Doran
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Lidiane Gomes Da Silva
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Diane C. Cockrell
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Arden Baylink
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
4
|
Kroon S, Malcic D, Weidert L, Bircher L, Boldt L, Christen P, Kiefer P, Sintsova A, Nguyen BD, Barthel M, Steiger Y, Clerc M, Herzog MKM, Chen C, Gül E, Guery B, Slack E, Sunagawa S, Vorholt JA, Maier L, Lacroix C, Hausmann A, Hardt WD. Sublethal systemic LPS in mice enables gut-luminal pathogens to bloom through oxygen species-mediated microbiota inhibition. Nat Commun 2025; 16:2760. [PMID: 40113753 PMCID: PMC11926250 DOI: 10.1038/s41467-025-57979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Endotoxin-driven systemic immune activation is a common hallmark across various clinical conditions. During acute critical illness, elevated plasma lipopolysaccharide triggers non-specific systemic immune activation. In addition, a compositional shift in the gut microbiota, including an increase in gut-luminal opportunistic pathogens, is observed. Whether a causal link exists between acute endotoxemia and abundance of gut-luminal opportunistic pathogens is incompletely understood. Here, we model acute, pathophysiological lipopolysaccharide concentrations in mice and show that systemic exposure promotes a 100-10'000-fold expansion of Klebsiella pneumoniae, Escherichia coli, Enterococcus faecium and Salmonella Typhimurium in the gut within one day, without overt enteropathy. Mechanistically, this is driven by a Toll-like receptor 4-dependent increase in gut-luminal oxygen species levels, which transiently halts microbiota fermentation and fuels growth of gut-luminal facultative anaerobic pathogens through oxidative respiration. Thus, systemic immune activation transiently perturbs microbiota homeostasis and favours opportunistic pathogens, potentially increasing the risk of infection in critically ill patients.
Collapse
Affiliation(s)
- Sanne Kroon
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Dejan Malcic
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Lena Weidert
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Lea Bircher
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Leonardo Boldt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
- M3 Research Center for Malignome, Metabolome and Microbiome, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Bidong D Nguyen
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yves Steiger
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Melanie Clerc
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Mathias K-M Herzog
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Carmen Chen
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Benoit Guery
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Emma Slack
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
- M3 Research Center for Malignome, Metabolome and Microbiome, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Christophe Lacroix
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Annika Hausmann
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- reNEW - Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
5
|
Shen YL, Liu TX, Xu L, Ye BC, Zhou Y. Reversible acetylation of ribosomal protein S1 serves as a smart switch for Salmonella to rapidly adapt to host stress. Nucleic Acids Res 2025; 53:gkaf252. [PMID: 40167330 PMCID: PMC11959540 DOI: 10.1093/nar/gkaf252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
Reprogramming metabolic pathways is crucial for pathogens survival in the lethal environments. Here, we present a mechanism by which Salmonella can rapidly respond to the external environment at the translational level; namely, the dynamic acetylation changes at the K247 site of ribosomal protein S1 could modulate the different mRNAs translation to adapt to distinct infection stages. We uncovered that S1K247 preferentially recruits mRNAs associated with flagellum assembly, sulfur metabolism, and SPI-1 T3SS. Conversely, S1K247Ac catalyzed by Pat favors the mRNAs linked to arginine biosynthesis, contributing to the activation of ArgR regulating SPI-2 virulence factors and enabling survival and replication within macrophages. Notably, a K247 acetyl-mimetic mutant strain exhibited increased virulence both ex vivo and in vivo. This mechanism not only aids in further understanding how the pathogen survives in complex environment but also facilitates in identifying new targets and pathways to eliminating pathogenic bacteria.
Collapse
Affiliation(s)
- Yi-Lin Shen
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tian-Xian Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Xu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Girón-Pérez DA, Espinoza-Gonzalez HD, Murillo Cisneros JA, Covantes-Rosales CE, Toledo-Ibarra GA, Díaz-Resendiz KJG, Barcelos-García RG, Benitez-Trinidad AB, Girón-Pérez MI. Diazoxon exposure increases susceptibility to infection by Salmonella Typhimurium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-12. [PMID: 38842028 DOI: 10.1080/09603123.2024.2363475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Various exogenous factors, such as microbiological and chemical contamination condition food security. Salmonella Typhimurium (S. Typhimurium) is the cause of salmonellosis. This bacterium utilizes phagocytosis to create bacterial reservoirs. On the other hand, exposure to chemical contaminants, such as pesticides, increases susceptibility to numerous infections. Therefore, this research aims to evaluate the effect of co-exposure to diazoxon and S. Typhimurium on the in vitro infection dynamics. For this purpose, human mononuclear cells were pre-exposed in vitro to diazoxon and then challenged with S. Typhimurium at 1, 8, and 24 h. Bacterial internalization, actin polymerization, and reactive oxygen species (ROS) were analyzed. Obtained data show that mononuclear cells previously exposed to diazoxon exhibit greater internalization of S. Typhimurium. Likewise, greater ROS production and an increase in actin polymerization were observed. Therefore, in the proposed scenario, obtained data suggest that co-exposure to diazoxon and S. Typhimurium increases susceptibility to acquiring an illness.
Collapse
Affiliation(s)
- Daniel Alberto Girón-Pérez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | | | | | - Carlos Eduardo Covantes-Rosales
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Gladys Alejandra Toledo-Ibarra
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Karina Janice Guadalupe Díaz-Resendiz
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Rocío Guadalupe Barcelos-García
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Alma Betsaida Benitez-Trinidad
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Manuel Iván Girón-Pérez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| |
Collapse
|
7
|
Guo E, Chou SZ, Lara-Tejero M, Galan JE. Cryo-EM structure of the bacterial effector protein SipA bound to F-actin reveals a unique mechanism for filament stabilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572903. [PMID: 38187563 PMCID: PMC10769390 DOI: 10.1101/2023.12.21.572903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The bacterial pathogen Salmonella spp. modulates cellular processes by delivering effector proteins through its type III secretion systems. Among these effectors, SipA facilitates bacterial invasion and promotes intestinal inflammation. The mechanisms by which this effector carries out these functions are incompletely understood although SipA's ability to modulate actin dynamics is central to some of these activities. Here we report the cryo-EM structure of SipA bound to filamentous actin. We show that this effector stabilizes actin filaments through unique interactions of its carboxy terminal domain with four actin subunits. Furthermore, our structure-function studies revealed that SipA's actin-binding activity is independent from its ability to stimulate intestinal inflammation. Overall, these studies illuminate critical aspects of Salmonella pathogenesis, and provide unique insight into the mechanisms by which a bacterial effector modulates actin dynamics.
Collapse
|
8
|
Li Z, Liu Z, Shen Y, Shen C. Design and Synthesis of 6-amido-3-carboxypyridazine Derivatives as Potent T3SS Inhibitors of Salmonella enterica Serovar Typhimurium. Med Chem 2024; 20:689-693. [PMID: 38192146 DOI: 10.2174/0115734064252833231129062005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/24/2023] [Accepted: 08/25/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Salmonella enterica (S. enterica) serovar Typhimurium, an anaerobic enteric pathogene, could cause human and animal diseases ranging from mild gastroenteritis to whole body serious infections. OBJECTIVE The goal of this paper was to synthesize new 6-amido-3-carboxypyridazine derivatives with different lengths of side chains with the aim of getting potent antibacterial agents. METHODS Synthesized compounds were analyzed by analytical techniques, such as 1H NMR, 13C NMR spectra, and mass spectrometry. We designed a series of novel 6-amido-3-carboxypyridazines using FA as the lead compound with the scaffold hopping strategy and their inhibitory activity against the effectors of type III secretion system (T3SS) using SDS-PAGE and western blot analysis for two rounds. Also, the preliminary mechanism of action of this series of compounds on T3SS was performed using real-time qPCR. RESULTS Nine 6-amido-3-carboxypyridazines was synthesized. The inhibitory activities evaluated showed that compound 2i was the most potent T3SS inhibitor, which demonstrated potent inhibitory activities on the secretion of the T3SS SPI-1 effectors in a dose-dependent manner. The transcription of SPI-1 may be affected by compound 2i through the SicA/InvF regulatory pathway. CONCLUSION The novel synthetic 6-amido-3-carboxypyridazines could act as potent leads for the development of novel antibacterial agents.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, P.R. China
| | - Zhiyong Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan, 250012, Shandong, P.R. China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan, 250012, Shandong, P.R. China
| | - Chengwu Shen
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, P.R. China
| |
Collapse
|
9
|
Li Z, Su J, Liu Z, Shen Y, Tang H. Synthesis of novel 5-amido-2-carboxypyrazines as inhibitors of the type three secretion system of Salmonella enterica serovar Typhimurium. Chem Biol Drug Des 2023; 102:574-579. [PMID: 37208982 DOI: 10.1111/cbdd.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
A series of novel 5-amido-2-carboxypyrazine derivatives were designed, synthesized and evaluated for the inhibitory activities against the T3SS of Salmonella enterica serovar Typhimurium. Preliminary results displayed that the compounds 2f, 2g, 2h and 2i showed potent inhibitory activities against T3SS. Compound 2h was identified as the most potent T3SS inhibitor and the SPI-1 effector secretion was strongly inhibited by 2h in a dose-dependent manner. The effects of compound 2h on the SPI-1 genes transcription might be via impacting the SicA/InvF regulatory pathway.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiahang Su
- Department of Pharmacy, Yantai Traditional Chinese Medicine Hospital, Yantai, China
| | - Zhiyong Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Tang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
10
|
Waanders L, van der Donk LEH, Ates LS, Maaskant J, van Hamme JL, Eldering E, van Bruggen JAC, Rietveld JM, Bitter W, Geijtenbeek TBH, Kuijl CP. Ectopic expression of cGAS in Salmonella typhimurium enhances STING-mediated IFN-β response in human macrophages and dendritic cells. J Immunother Cancer 2023; 11:jitc-2022-005839. [PMID: 37072345 PMCID: PMC10124277 DOI: 10.1136/jitc-2022-005839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Interferon (IFN)-β induction via activation of the stimulator of interferon genes (STING) pathway has shown promising results in tumor models. STING is activated by cyclic dinucleotides such as cyclic GMP-AMP dinucleotides with phosphodiester linkages 2'-5' and 3'-5' (cGAMPs), that are produced by cyclic GMP-AMP synthetase (cGAS). However, delivery of STING pathway agonists to the tumor site is a challenge. Bacterial vaccine strains have the ability to specifically colonize hypoxic tumor tissues and could therefore be modified to overcome this challenge. Combining high STING-mediated IFN-β levels with the immunostimulatory properties of Salmonella typhimurium could have potential to overcome the immune suppressive tumor microenvironment. METHODS We have engineered S. typhimurium to produce cGAMP by expression of cGAS. The ability of cGAMP to induce IFN-β and its IFN-stimulating genes was addressed in infection assays of THP-I macrophages and human primary dendritic cells (DCs). Expression of catalytically inactive cGAS is used as a control. DC maturation and cytotoxic T-cell cytokine and cytotoxicity assays were conducted to assess the potential antitumor response in vitro. Finally, by making use of different S. typhimurium type III secretion (T3S) mutants, the mode of cGAMP transport was elucidated. RESULTS Expression of cGAS in S. typhimurium results in a 87-fold stronger IFN-β response in THP-I macrophages. This effect was mediated by cGAMP production and is STING dependent. Interestingly, the needle-like structure of the T3S system was necessary for IFN-β induction in epithelial cells. DC activation included upregulation of maturation markers and induction of type I IFN response. Coculture of challenged DCs with cytotoxic T cells revealed an improved cGAMP-mediated IFN-γ response. In addition, coculture of cytotoxic T cells with challenged DCs led to improved immune-mediated tumor B-cell killing. CONCLUSION S. typhimurium can be engineered to produce cGAMPs that activate the STING pathway in vitro. Furthermore, they enhanced the cytotoxic T-cell response by improving IFN-γ release and tumor cell killing. Thus, the immune response triggered by S. typhimurium can be enhanced by ectopic cGAS expression. These data show the potential of S. typhimurium-cGAS in vitro and provides rationale for further research in vivo.
Collapse
Affiliation(s)
- Lisette Waanders
- Department of Medical Microbiology and Infection Control, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
| | - Lieve E H van der Donk
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Louis S Ates
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Janneke Maaskant
- Department of Medical Microbiology and Infection Control, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - John L van Hamme
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Eric Eldering
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
- The Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
| | - Jaco A C van Bruggen
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
| | - Joanne M Rietveld
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Amsterdam institute for Life and Environment, Vrije Universiteit, Amsterdam, Netherlands
| | - Teunis B H Geijtenbeek
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Coenraad P Kuijl
- Department of Medical Microbiology and Infection Control, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
| |
Collapse
|
11
|
Herzog MKM, Cazzaniga M, Peters A, Shayya N, Beldi L, Hapfelmeier S, Heimesaat MM, Bereswill S, Frankel G, Gahan CG, Hardt WD. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 2023; 15:2172667. [PMID: 36794831 PMCID: PMC9980611 DOI: 10.1080/19490976.2023.2172667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.
Collapse
Affiliation(s)
- Mathias K.-M. Herzog
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nizar Shayya
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Ménard S, Lacroix-Lamandé S, Ehrhardt K, Yan J, Grassl GA, Wiedemann A. Cross-Talk Between the Intestinal Epithelium and Salmonella Typhimurium. Front Microbiol 2022; 13:906238. [PMID: 35733975 PMCID: PMC9207452 DOI: 10.3389/fmicb.2022.906238] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovars are invasive gram-negative bacteria, causing a wide range of diseases from gastroenteritis to typhoid fever, representing a public health threat around the world. Salmonella gains access to the intestinal lumen after oral ingestion of contaminated food or water. The crucial initial step to establish infection is the interaction with the intestinal epithelium. Human-adapted serovars such as S. Typhi or S. Paratyphi disseminate to systemic organs and induce life-threatening disease known as typhoid fever, whereas broad-host serovars such as S. Typhimurium usually are limited to the intestine and responsible for gastroenteritis in humans. To overcome intestinal epithelial barrier, Salmonella developed mechanisms to induce cellular invasion, intracellular replication and to face host defence mechanisms. Depending on the serovar and the respective host organism, disease symptoms differ and are linked to the ability of the bacteria to manipulate the epithelial barrier for its own profit and cross the intestinal epithelium.This review will focus on S. Typhimurium (STm). To better understand STm pathogenesis, it is crucial to characterize the crosstalk between STm and the intestinal epithelium and decipher the mechanisms and epithelial cell types involved. Thus, the purpose of this review is to summarize our current knowledge on the molecular dialogue between STm and the various cell types constituting the intestinal epithelium with a focus on the mechanisms developed by STm to cross the intestinal epithelium and access to subepithelial or systemic sites and survive host defense mechanisms.
Collapse
Affiliation(s)
- Sandrine Ménard
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | | | - Katrin Ehrhardt
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Jin Yan
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Agnès Wiedemann
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- *Correspondence: Agnès Wiedemann,
| |
Collapse
|
13
|
Liu YS, Deng Y, Chen CK, Khoo BL, Chua SL. Rapid detection of microorganisms in a fish infection microfluidics platform. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128572. [PMID: 35278965 DOI: 10.1016/j.jhazmat.2022.128572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Inadequate access to clean water is detrimental to human health and aquatic industries. Waterborne pathogens can survive prolonged periods in aquatic bodies, infect commercially important seafood, and resist water disinfection, resulting in human infections. Environmental agencies and research laboratories require a relevant, portable, and cost-effective platform to monitor microbial pathogens and assess their risk of infection on a large scale. Advances in microfluidics enable better control and higher precision than traditional culture-based pathogen monitoring approaches. We demonstrated a rapid, high-throughput fish-based teleost (fish)-microbe (TelM) microfluidic-based device that simultaneously monitors waterborne pathogens in contaminated waters and assesses their infection potential under well-defined settings. A chamber-associated port allows direct access to the animal, while the transparency of the TelM platform enables clear observation of sensor readouts. As proof-of-concept, we established a wound infection model using Pseudomonas aeruginosa-contaminated water in the TelM platform, where bacteria formed biofilms on the wound and secreted a biofilm metabolite, pyoverdine. Pyoverdine was used as fluorescent sensor to correlate P. aeruginosa contamination to infection. The TelM platform was validated with environmental waterborne microbes from marine samples. Overall, the TelM platform can be readily applied to assess microbial and chemical risk in aquatic bodies in resource-constrained settings.
Collapse
Affiliation(s)
- Yang Sylvia Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yanlin Deng
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chun Kwan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China; City University of Hong Kong - Futian Shenzhen Research Institute, China.
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; Research Centre for Deep Space Explorations, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; Shenzhen Key Laboratory of Food Biological Safety Control, China.
| |
Collapse
|
14
|
Fatty Acid Homeostasis Tunes Flagellar Motility by Activating Phase 2 Flagellin Expression, Contributing to Salmonella Gut Colonization. Infect Immun 2022; 90:e0018422. [PMID: 35652649 DOI: 10.1128/iai.00184-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-chain-fatty-acid (LCFA) metabolism is a fundamental cellular process in bacteria that is involved in lipid homeostasis, energy production, and infection. However, the role of LCFA metabolism in Salmonella enterica serovar Typhimurium (S. Tm) gut infection remains unclear. Here, using a murine gastroenteritis infection model, we demonstrate involvement of LCFA metabolism in S. Tm gut colonization. The LCFA metabolism-associated transcriptional regulator FadR contributes to S. Tm gut colonization. fadR deletion alters the gene expression profile and leads to aberrant flagellar motility of S. Tm. Colonization defects in the fadR mutant are attributable to altered swimming behavior characterized by less frequently smooth swimming, resulting from reduced expression of the phase 2 flagellin FljB. Notably, changes in lipid LCFA composition by fadR deletion lead to reduced expression of fljB, which is restored by exogenous LCFA. Therefore, LCFA homeostasis may maintain proper flagellar motility by activating fljB expression, contributing to S. Tm gut colonization. Our findings improve the understanding of the effect of luminal LCFA on the virulence of enteric pathogens.
Collapse
|
15
|
uvrY deletion and acetate reduce gut colonization of Crohn's disease-associated adherent-invasive Escherichia coli by decreasing expression of type 1 fimbriae. Infect Immun 2022; 90:e0066221. [PMID: 34978926 DOI: 10.1128/iai.00662-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) is involved in onset and/or exacerbation of Crohn's disease. AIEC adapts to the gut environment by altering gene-expression programs, leading to successful gut-lumen colonization. However, the underlying mechanism of gut colonization is still far from clarified. Here, we show the role of UvrY, a response regulator of bacterial two-component signal transduction systems, in AIEC gut colonization. An AIEC mutant lacking the uvrY gene exhibited impairment of competitive colonization in the murine intestinal tract. UvrY contributes to functional expression of type 1 fimbriae by activating expression of small RNA CsrB, which confers adherence and invasion into epithelial cells on AIEC. In contrast, acetate suppresses the UvrY-dependent expression of type 1 fimbriae, resulting in less efficient cell invasion and attenuated gut colonization. Our findings might lead to therapeutic interventions for CD, in which inhibitions of UvrY activation and acetate supplementation reduce the colonization levels of AIEC by decreasing type-1 fimbriae expression.
Collapse
|
16
|
Zhang Y, Liu Y, Zhang B, Gao L, Jie J, Deng X, Liu X, Sun D, Song L, Luo J. A natural compound hyperoside targets Salmonella Typhimurium T3SS needle protein InvG. Food Funct 2022; 13:9761-9771. [DOI: 10.1039/d2fo00908k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antimicrobial actions of natural compounds derived from medicinal plants have been well documented. However, their detailed mechanism underlying the action against microorganisms remains largely unexplored. Salmonella enterica is a...
Collapse
|
17
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
18
|
Seribelli AA, Ribeiro TRM, da Silva P, Martins IM, Vilela FP, Medeiros MIC, Peronni KC, da Silva Junior WA, Moreira CG, Falcão JP. Salmonella Typhimurium ST313 isolated in Brazil revealed to be more invasive and inflammatory in murine colon compared to ST19 strains. J Microbiol 2021; 59:861-870. [PMID: 34382146 DOI: 10.1007/s12275-021-1082-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/12/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022]
Abstract
Salmonella Typhimurium (ST313) has caused an epidemic of invasive disease in sub-Saharan Africa and has been recently identified in Brazil. As the virulence of this ST is poorly understood, the present study aimed to (i) perform the RNA-seq in vitro of S. Typhimurium STm30 (ST313) grown in Luria-Bertani medium at 37°C; (ii) compare it with the RNA-seq of the S. Typhimurium SL1344 (ST19) and S. Typhimurium STm11 (ST19) strains under the same growing conditions; and (iii) examine the colonization capacity and expression of virulence genes and cytokines in murine colon. The STm30 (ST313) strain exhibited stronger virulence and was associated with a more inflammatory profile than the strains SL1344 (ST19) and STm11 (ST19), as demonstrated by transcriptome and in vivo assay. The expression levels of the hilA, sopD2, pipB, and ssaS virulence genes, other Salmonella pathogenicity islands SPI-1 and SPI-2 genes or effectors, and genes of the cytokines IL-1β, IFN-γ, TNF-α, IL-6, IL-17, IL-22, and IL-12 were increased during ST313 infection in C57BL/6J mice. In conclusion, S. Typhimurium STm30 (ST313) isolated from human feces in Brazil express higher levels of pathogenesis-related genes at 37°C and has stronger colonization and invasion capacity in murine colon due to its high expression levels of virulence genes, when compared with the S. Typhimurium SL1344 (ST19) and STm11 (ST19) strains. STm30 (ST313) also induces stronger expression of pro-inflammatory cytokines in this organ, suggesting that it causes more extensive tissue damage.
Collapse
Affiliation(s)
- Amanda Aparecida Seribelli
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 05508-220, Brazil
| | - Tamara R Machado Ribeiro
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, 01049-010, Brazil
| | - Patrick da Silva
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, 01049-010, Brazil
| | - Isabela Mancini Martins
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, 01049-010, Brazil
| | - Felipe Pinheiro Vilela
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 05508-220, Brazil
| | | | - Kamila Chagas Peronni
- Regional Blood Center of the University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 05508-220, Brazil
| | - Wilson Araújo da Silva Junior
- Regional Blood Center of the University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 05508-220, Brazil
- Ribeirão Preto Medical School, Genetics Department, University of São Paulo, Ribeirão Preto, São Paulo, 05508-220, Brazil
| | - Cristiano Gallina Moreira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, 01049-010, Brazil.
| | - Juliana Pfrimer Falcão
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 05508-220, Brazil.
| |
Collapse
|
19
|
Molecular determinants of peaceful coexistence versus invasiveness of non-Typhoidal Salmonella: Implications in long-term side-effects. Mol Aspects Med 2021; 81:100997. [PMID: 34311996 DOI: 10.1016/j.mam.2021.100997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 01/28/2023]
Abstract
The genus Salmonella represents a wide range of strains including Typhoidal and Non-Typhoidal Salmonella (NTS) isolates that exhibit illnesses of varied pathophysiologies. The more frequent NTS ensues a self-limiting enterocolitis with rare occasions of bacteremia or systemic infections. These self-limiting Salmonella strains are capable of subverting and dampening the host immune system to achieve a more prolonged survival inside the host system thus leading to chronic manifestations. Notably, emergence of new invasive NTS isolates known as invasive Non-Typhoidal Salmonella (iNTS) have worsened the disease burden significantly in some parts of the world. NTS strains adapt to attain persister phenotype intracellularly and cause relapsing infections. These chronic infections, in susceptible hosts, are also capable of causing diseases like IBS, IBD, reactive arthritis, gallbladder cancer and colorectal cancer. The present understanding of molecular mechanism of how these chronic infections are manifested is quite limited. The current work is an effort to review the prevailing knowledge emanating from a large volume of research focusing on various forms of NTS infections including those that cause localized, systemic and persistent disease. The review will further dwell into the understanding of how this pathogen contributes to the associated long term sequelae.
Collapse
|
20
|
ARHGEF26 enhances Salmonella invasion and inflammation in cells and mice. PLoS Pathog 2021; 17:e1009713. [PMID: 34242364 PMCID: PMC8294491 DOI: 10.1371/journal.ppat.1009713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/21/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Salmonella hijack host machinery in order to invade cells and establish infection. While considerable work has described the role of host proteins in invasion, much less is known regarding how natural variation in these invasion-associated host proteins affects Salmonella pathogenesis. Here we leveraged a candidate cellular GWAS screen to identify natural genetic variation in the ARHGEF26 (Rho Guanine Nucleotide Exchange Factor 26) gene that renders lymphoblastoid cells susceptible to Salmonella Typhi and Typhimurium invasion. Experimental follow-up redefined ARHGEF26’s role in Salmonella epithelial cell infection. Specifically, we identified complex serovar-by-host interactions whereby ARHGEF26 stimulation of S. Typhi and S. Typhimurium invasion into host cells varied in magnitude and effector-dependence based on host cell type. While ARHGEF26 regulated SopB- and SopE-mediated S. Typhi (but not S. Typhimurium) infection of HeLa cells, the largest effect of ARHGEF26 was observed with S. Typhimurium in polarized MDCK cells through a SopB- and SopE2-independent mechanism. In both cell types, knockdown of the ARHGEF26-associated protein DLG1 resulted in a similar phenotype and serovar specificity. Importantly, we show that ARHGEF26 plays a critical role in S. Typhimurium pathogenesis by contributing to bacterial burden in the enteric fever murine model, as well as inflammation in the colitis infection model. In the enteric fever model, SopB and SopE2 are required for the effects of Arhgef26 deletion on bacterial burden, and the impact of sopB and sopE2 deletion in turn required ARHGEF26. In contrast, SopB and SopE2 were not required for the impacts of Arhgef26 deletion on colitis. A role for ARHGEF26 on inflammation was also seen in cells, as knockdown reduced IL-8 production in HeLa cells. Together, these data reveal pleiotropic roles for ARHGEF26 during infection and highlight that many of the interactions that occur during infection that are thought to be well understood likely have underappreciated complexity. During infection, Salmonella manipulates host cells into engulfing the bacteria and establishing an intracellular niche. While many studies have identified genes involved in different stages of this Salmonella invasion process, few studies have examined how differences between human hosts contribute to infection susceptibility. Here we leveraged a candidate genetic screen to identify natural genetic variation in the human ARHGEF26 gene that correlates with Salmonella invasion. Springboarding from this result, we experimentally tested and redefined ARHGEF26’s role in Salmonella invasion, discovered a new role for ARHGEF26 in regulating inflammation during Salmonella disease, and demonstrated the relevance of these findings in mouse models. Building on how ARHGEF26 functions in other contexts, we implicated two ARHGEF26-interacting host proteins as contributors to Salmonella pathobiology. Collectively, these results identify a potential source of inter-person diversity in susceptibility to Salmonella disease and expand our molecular understanding of Salmonella infection to include a multifaceted role for ARHGEF26. They further identify important future directions in understanding how Salmonella recruit and manipulate ARHGEF26 as well as how ARHGEF26 is able to drive Salmonella-beneficial processes.
Collapse
|
21
|
Pedroso AA, Lee MD, Maurer JJ. Strength Lies in Diversity: How Community Diversity Limits Salmonella Abundance in the Chicken Intestine. Front Microbiol 2021; 12:694215. [PMID: 34211451 PMCID: PMC8239400 DOI: 10.3389/fmicb.2021.694215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The transfer of the intestinal microbiota from adult to juvenile animals reduces Salmonella prevalence and abundance. The mechanism behind this exclusion is unknown, however, certain member species may exclude or promote pathogen colonization and Salmonella abundance in chickens correlates with intestinal community composition. In this study, newly hatched chicks were colonized with Salmonella Typhimurium and 16S rRNA libraries were generated from the cecal bacterial community at 21, 28, 35, and 42 days of age. Salmonella was quantified by real-time PCR. Operational taxonomic units (OTUs) were assigned, and taxonomic assignments were made, using the Ribosomal Database Project. Bacterial diversity was inversely proportional to the Salmonella abundance in the chicken cecum (p < 0.01). In addition, cecal communities with no detectable Salmonella (exclusive community) displayed an increase in the abundance of OTUs related to specific clostridial families (Ruminococcaceae, Eubacteriaceae, and Oscillospiraceae), genera (Faecalibacterium and Turicibacter) and member species (Ethanoligenens harbinense, Oscillibacter ruminantium, and Faecalibacterium prausnitzii). For cecal communities with high Salmonella abundance (permissive community), there was a positive correlation with the presence of unclassified Lachnospiraceae, clostridial genera Blautia and clostridial species Roseburia hominis, Eubacterium biforme, and Robinsoniella peoriensis. These findings strongly support the link between the intestinal bacterial species diversity and the presence of specific member species with Salmonella abundance in the chicken ceca. Exclusive bacterial species could prove effective as direct-fed microbials for reducing Salmonella in poultry while permissive species could be used to predict which birds will be super-shedders.
Collapse
Affiliation(s)
- Adriana A Pedroso
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Margie D Lee
- Department of Population Health, University of Georgia, Athens, GA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - John J Maurer
- Department of Population Health, University of Georgia, Athens, GA, United States.,Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
22
|
Salmonella enterica Serovar Typhimurium Exploits Cycling through Epithelial Cells To Colonize Human and Murine Enteroids. mBio 2021; 12:mBio.02684-20. [PMID: 33436434 PMCID: PMC7844539 DOI: 10.1128/mbio.02684-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Enterobacterial pathogens infect the gut by a multistep process, resulting in colonization of both the lumen and the mucosal epithelium. Due to experimental constraints, it remains challenging to address how luminal and epithelium-lodged pathogen populations cross-feed each other in vivo Enteroids are cultured three-dimensional miniature intestinal organs with a single layer of primary intestinal epithelial cells (IECs) surrounding a central lumen. They offer new opportunities to study enterobacterial infection under near-physiological conditions, at a temporal and spatial resolution not attainable in animal models, but remain poorly explored in this context. We employed microinjection, time-lapse microscopy, bacterial genetics, and barcoded consortium infections to describe the complete infection cycle of Salmonella enterica serovar Typhimurium in both human and murine enteroids. Flagellar motility and type III secretion system 1 (TTSS-1) promoted Salmonella Typhimurium targeting of the intraepithelial compartment and breaching of the epithelial barrier. Strikingly, however, TTSS-1 also potently boosted colonization of the enteroid lumen. By tracing the infection over time, we identified a cycle(s) of TTSS-1-driven IEC invasion, intraepithelial replication, and reemergence through infected IEC expulsion as a key mechanism for Salmonella Typhimurium luminal colonization. These findings suggest a positive feed-forward loop, through which IEC invasion by planktonic bacteria fuels further luminal population expansion, thereby ensuring efficient colonization of both the intraepithelial and luminal niches.IMPORTANCE Pathogenic gut bacteria are common causes of intestinal disease. Enteroids-cultured three-dimensional replicas of the mammalian gut-offer an emerging model system to study disease mechanisms under conditions that recapitulate key features of the intestinal tract. In this study, we describe the full life cycle of the prototype gut pathogen Salmonella enterica serovar Typhimurium within human and mouse enteroids. We map the consecutive steps and define the bacterial virulence factors that drive colonization of luminal and epithelial compartments, as well as breaching of the epithelial barrier. Strikingly, our work reveals how bacterial colonization of the epithelium potently fuels expansion also in the luminal compartment, through a mechanism involving the death and expulsion of bacterium-infected epithelial cells. These findings have repercussions for our understanding of the Salmonella infection cycle. Moreover, our work provides a comprehensive foundation for the use of microinjected enteroids to model gut bacterial diseases.
Collapse
|
23
|
Epithelium-autonomous NAIP/NLRC4 prevents TNF-driven inflammatory destruction of the gut epithelial barrier in Salmonella-infected mice. Mucosal Immunol 2021; 14:615-629. [PMID: 33731826 PMCID: PMC8075861 DOI: 10.1038/s41385-021-00381-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 02/04/2023]
Abstract
The gut epithelium is a critical protective barrier. Its NAIP/NLRC4 inflammasome senses infection by Gram-negative bacteria, including Salmonella Typhimurium (S.Tm) and promotes expulsion of infected enterocytes. During the first ~12-24 h, this reduces mucosal S.Tm loads at the price of moderate enteropathy. It remained unknown how this NAIP/NLRC4-dependent tradeoff would develop during subsequent infection stages. In NAIP/NLRC4-deficient mice, S.Tm elicited severe enteropathy within 72 h, characterized by elevated mucosal TNF (>20 pg/mg) production from bone marrow-derived cells, reduced regeneration, excessive enterocyte loss, and a collapse of the epithelial barrier. TNF-depleting antibodies prevented this destructive pathology. In hosts proficient for epithelial NAIP/NLRC4, a heterogeneous enterocyte death response with both apoptotic and pyroptotic features kept S.Tm loads persistently in check, thereby preventing this dire outcome altogether. Our results demonstrate that immediate and selective removal of infected enterocytes, by locally acting epithelium-autonomous NAIP/NLRC4, is required to avoid a TNF-driven inflammatory hyper-reaction that otherwise destroys the epithelial barrier.
Collapse
|
24
|
Role of OB-Fold Protein YdeI in Stress Response and Virulence of Salmonella enterica Serovar Enteritidis. J Bacteriol 2020; 203:JB.00237-20. [PMID: 33106344 DOI: 10.1128/jb.00237-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/01/2020] [Indexed: 01/11/2023] Open
Abstract
An essential feature of the pathogenesis of the Salmonella enterica serovar Enteritidis wild type (WT) is its ability to survive under diverse microenvironmental stress conditions, such as encountering antimicrobial peptides (AMPs) or glucose and micronutrient starvation. These stress factors trigger virulence genes carried on Salmonella pathogenicity islands (SPIs) and determine the efficiency of enteric infection. Although the oligosaccharide/oligonucleotide binding-fold (OB-fold) family of proteins has been identified as an important stress response and virulence determinant, functional information on members of this family is currently limited. In this study, we decipher the role of YdeI, which belongs to OB-fold family of proteins, in stress response and virulence of S Enteritidis. When ydeI was deleted, the ΔydeI mutant showed reduced survival during exposure to AMPs or glucose and Mg2+ starvation stress compared to the WT. Green fluorescent protein (GFP) reporter and quantitative real-time PCR (qRT-PCR) assays showed ydeI was transcriptionally regulated by PhoP, which is a major regulator of stress and virulence. Furthermore, the ΔydeI mutant displayed ∼89% reduced invasion into HCT116 cells, ∼15-fold-reduced intramacrophage survival, and downregulation of several SPI-1 and SPI-2 genes encoding the type 3 secretion system apparatus and effector proteins. The mutant showed attenuated virulence compared to the WT, confirmed by its reduced bacterial counts in feces, mesenteric lymph node (mLN), spleen, and liver of C57BL/6 mice. qRT-PCR analyses of the ΔydeI mutant displayed differential expression of 45 PhoP-regulated genes, which were majorly involved in metabolism, transport, membrane remodeling, and drug resistance under different stress conditions. YdeI is, therefore, an important protein that modulates S Enteritidis virulence and adaptation to stress during infection.IMPORTANCE S Enteritidis during its life cycle encounters diverse stress factors inside the host. These intracellular conditions allow activation of specialized secretion systems to cause infection. We report a conserved membrane protein, YdeI, and elucidate its role in protection against various intracellular stress conditions. A key aspect of the study of a pathogen's stress response mechanism is its clinical relevance during host-pathogen interaction. Bacterial adaptation to stress plays a vital role in evolution of a pathogen's resistance to therapeutic agents. Therefore, investigation of the role of YdeI is vital for understanding the molecular basis of regulation of Salmonella pathogenesis. In conclusion, our findings may contribute to finding potential targets to develop new intervention strategies for treatment and prevention of enteric diseases.
Collapse
|
25
|
Ellermann M, Pacheco AR, Jimenez AG, Russell RM, Cuesta S, Kumar A, Zhu W, Vale G, Martin SA, Raj P, McDonald JG, Winter SE, Sperandio V. Endocannabinoids Inhibit the Induction of Virulence in Enteric Pathogens. Cell 2020; 183:650-665.e15. [PMID: 33031742 DOI: 10.1016/j.cell.2020.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/30/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Endocannabinoids are host-derived lipid hormones that fundamentally impact gastrointestinal (GI) biology. The use of cannabis and other exocannabinoids as anecdotal treatments for various GI disorders inspired the search for mechanisms by which these compounds mediate their effects, which led to the discovery of the mammalian endocannabinoid system. Dysregulated endocannabinoid signaling was linked to inflammation and the gut microbiota. However, the effects of endocannabinoids on host susceptibility to infection has not been explored. Here, we show that mice with elevated levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG) are protected from enteric infection by Enterobacteriaceae pathogens. 2-AG directly modulates pathogen function by inhibiting virulence programs essential for successful infection. Furthermore, 2-AG antagonizes the bacterial receptor QseC, a histidine kinase encoded within the core Enterobacteriaceae genome that promotes the activation of pathogen-associated type three secretion systems. Taken together, our findings establish that endocannabinoids are directly sensed by bacteria and can modulate bacterial function.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alline R Pacheco
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Angel G Jimenez
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Regan M Russell
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Santiago Cuesta
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aman Kumar
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenhan Zhu
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gonçalo Vale
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sarah A Martin
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prithvi Raj
- Microbiome Research Lab, Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sebastian E Winter
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vanessa Sperandio
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
26
|
Honeycutt JD, Wenner N, Li Y, Brewer SM, Massis LM, Brubaker SW, Chairatana P, Owen SV, Canals R, Hinton JCD, Monack DM. Genetic variation in the MacAB-TolC efflux pump influences pathogenesis of invasive Salmonella isolates from Africa. PLoS Pathog 2020; 16:e1008763. [PMID: 32834002 PMCID: PMC7446830 DOI: 10.1371/journal.ppat.1008763] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023] Open
Abstract
The various sub-species of Salmonella enterica cause a range of disease in human hosts. The human-adapted Salmonella enterica serovar Typhi enters the gastrointestinal tract and invades systemic sites to cause enteric (typhoid) fever. In contrast, most non-typhoidal serovars of Salmonella are primarily restricted to gut tissues. Across Africa, invasive non-typhoidal Salmonella (iNTS) have emerged with an ability to spread beyond the gastrointestinal tract and cause systemic bloodstream infections with increased morbidity and mortality. To investigate this evolution in pathogenesis, we compared the genomes of African iNTS isolates with other Salmonella enterica serovar Typhimurium and identified several macA and macB gene variants unique to African iNTS. MacAB forms a tripartite efflux pump with TolC and is implicated in Salmonella pathogenesis. We show that macAB transcription is upregulated during macrophage infection and after antimicrobial peptide exposure, with macAB transcription being supported by the PhoP/Q two-component system. Constitutive expression of macAB improves survival of Salmonella in the presence of the antimicrobial peptide C18G. Furthermore, these macAB variants affect replication in macrophages and influence fitness during colonization of the murine gastrointestinal tract. Importantly, the infection outcome resulting from these macAB variants depends upon both the Salmonella Typhimurium genetic background and the host gene Nramp1, an important determinant of innate resistance to intracellular bacterial infection. The variations we have identified in the MacAB-TolC efflux pump in African iNTS may reflect evolution within human host populations that are compromised in their ability to clear intracellular Salmonella infections.
Collapse
Affiliation(s)
- Jared D. Honeycutt
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nicolas Wenner
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Yan Li
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Susan M. Brewer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Liliana M. Massis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sky W. Brubaker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Phoom Chairatana
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siân V. Owen
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rocío Canals
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jay C. D. Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
27
|
Wrobel A, Saragliadis A, Pérez-Ortega J, Sittman C, Göttig S, Liskiewicz K, Spence MH, Schneider K, Leo JC, Arenas J, Linke D. The inverse autotransporters of Yersinia ruckeri, YrInv and YrIlm, contribute to biofilm formation and virulence. Environ Microbiol 2020; 22:2939-2955. [PMID: 32372498 DOI: 10.1111/1462-2920.15051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022]
Abstract
Yersinia ruckeri causes enteric redmouth disease (ERM) that mainly affects salmonid fishes and leads to significant economic losses in the aquaculture industry. An increasing number of outbreaks and the lack of effective vaccines against some serotypes necessitates novel measures to control ERM. Importantly, Y. ruckeri survives in the environment for long periods, presumably by forming biofilms. How the pathogen forms biofilms and which molecular factors are involved in this process, remains unclear. Yersinia ruckeri produces two surface-exposed adhesins, belonging to the inverse autotransporters (IATs), called Y. ruckeri invasin (YrInv) and Y. ruckeri invasin-like molecule (YrIlm). Here, we investigated whether YrInv and YrIlm play a role in biofilm formation and virulence. Functional assays revealed that YrInv and YrIlm promote biofilm formation on different abiotic substrates. Confocal microscopy revealed that they are involved in microcolony interaction and formation, respectively. The effect of both IATs on biofilm formation correlated with the presence of different biopolymers in the biofilm matrix, including extracellular DNA, RNA and proteins. Moreover, YrInv and YrIlm contributed to virulence in the Galleria mellonella infection model. Taken together, we propose that both IATs are possible targets for the development of novel diagnostic and preventative strategies to control ERM.
Collapse
Affiliation(s)
- Agnieszka Wrobel
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | | | - Jesús Pérez-Ortega
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | - Carolin Sittman
- Institute of Medical Microbiology and Infection Control, Hospital of Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, Hospital of Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | | - Jack C Leo
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway.,Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG1 4FQ, UK
| | - Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands.,Unit of Microbiology of the Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
28
|
Fattinger SA, Böck D, Di Martino ML, Deuring S, Samperio Ventayol P, Ek V, Furter M, Kreibich S, Bosia F, Müller-Hauser AA, Nguyen BD, Rohde M, Pilhofer M, Hardt WD, Sellin ME. Salmonella Typhimurium discreet-invasion of the murine gut absorptive epithelium. PLoS Pathog 2020; 16:e1008503. [PMID: 32365138 PMCID: PMC7224572 DOI: 10.1371/journal.ppat.1008503] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/14/2020] [Accepted: 03/26/2020] [Indexed: 01/15/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S.Tm) infections of cultured cell lines have given rise to the ruffle model for epithelial cell invasion. According to this model, the Type-Three-Secretion-System-1 (TTSS-1) effectors SopB, SopE and SopE2 drive an explosive actin nucleation cascade, resulting in large lamellipodia- and filopodia-containing ruffles and cooperative S.Tm uptake. However, cell line experiments poorly recapitulate many of the cell and tissue features encountered in the host’s gut mucosa. Here, we employed bacterial genetics and multiple imaging modalities to compare S.Tm invasion of cultured epithelial cell lines and the gut absorptive epithelium in vivo in mice. In contrast to the prevailing ruffle-model, we find that absorptive epithelial cell entry in the mouse gut occurs through “discreet-invasion”. This distinct entry mode requires the conserved TTSS-1 effector SipA, involves modest elongation of local microvilli in the absence of expansive ruffles, and does not favor cooperative invasion. Discreet-invasion preferentially targets apicolateral hot spots at cell–cell junctions and shows strong dependence on local cell neighborhood. This proof-of-principle evidence challenges the current model for how S.Tm can enter gut absorptive epithelial cells in their intact in vivo context. Bacterial pathogens can use secreted effector molecules to drive entry into host cells. Studies of the intestinal pathogen S.Tm have been central to uncover the mechanistic basis for the entry process. More than two decades of research have resulted in a detailed model for how S.Tm invades gut epithelial cells through effector triggering of large Rho-GTPase-dependent actin ruffles. However, the evidence for this model comes predominantly from studies in cultured cell lines. These experimental systems lack many of the architectural and signaling features of the intact gut epithelium. Our study surprisingly reveals that in the intact mouse gut, S.Tm invades absorptive epithelial cells through a process that does not require the Rho-GTPase-activating effectors and can proceed in the absence of the prototypical ruffling response. Instead, S.Tm exploits another effector, SipA, to sneak in through discreet entry structures close to cell–cell junctions. Our results challenge the current model for S.Tm epithelial cell entry and emphasizes the need of taking a physiological host cell context into account when studying bacterium–host cell interactions.
Collapse
Affiliation(s)
- Stefan A. Fattinger
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Desirée Böck
- Institute of Molecular Biology & Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Maria Letizia Di Martino
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sabrina Deuring
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Pilar Samperio Ventayol
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Viktor Ek
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Furter
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Saskia Kreibich
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Francesco Bosia
- Institute of Molecular Biology & Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | - Bidong D. Nguyen
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Pilhofer
- Institute of Molecular Biology & Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
- * E-mail: (MP); (WDH); (MES)
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
- * E-mail: (MP); (WDH); (MES)
| | - Mikael E. Sellin
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail: (MP); (WDH); (MES)
| |
Collapse
|
29
|
Pfister SP, Schären OP, Beldi L, Printz A, Notter MD, Mukherjee M, Li H, Limenitakis JP, Werren JP, Tandon D, Cuenca M, Hagemann S, Uster SS, Terrazos MA, Gomez de Agüero M, Schürch CM, Coelho FM, Curtiss R, Slack E, Balmer ML, Hapfelmeier S. Uncoupling of invasive bacterial mucosal immunogenicity from pathogenicity. Nat Commun 2020; 11:1978. [PMID: 32332737 PMCID: PMC7181798 DOI: 10.1038/s41467-020-15891-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
There is the notion that infection with a virulent intestinal pathogen induces generally stronger mucosal adaptive immunity than the exposure to an avirulent strain. Whether the associated mucosal inflammation is important or redundant for effective induction of immunity is, however, still unclear. Here we use a model of auxotrophic Salmonella infection in germ-free mice to show that live bacterial virulence factor-driven immunogenicity can be uncoupled from inflammatory pathogenicity. Although live auxotrophic Salmonella no longer causes inflammation, its mucosal virulence factors remain the main drivers of protective mucosal immunity; virulence factor-deficient, like killed, bacteria show reduced efficacy. Assessing the involvement of innate pathogen sensing mechanisms, we show MYD88/TRIF, Caspase-1/Caspase-11 inflammasome, and NOD1/NOD2 nodosome signaling to be individually redundant. In colonized animals we show that microbiota metabolite cross-feeding may recover intestinal luminal colonization but not pathogenicity. Consequent immunoglobulin A immunity and microbial niche competition synergistically protect against Salmonella wild-type infection.
Collapse
Affiliation(s)
- Simona P Pfister
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Olivier P Schären
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Andrea Printz
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Matheus D Notter
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Mohana Mukherjee
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Hai Li
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM) Inselspital, Bern, Switzerland
| | - Julien P Limenitakis
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM) Inselspital, Bern, Switzerland
| | - Joel P Werren
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Disha Tandon
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Miguelangel Cuenca
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stefanie Hagemann
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephanie S Uster
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Miguel A Terrazos
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Mercedes Gomez de Agüero
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM) Inselspital, Bern, Switzerland
| | - Christian M Schürch
- Institute of Pathology, University of Bern, Bern, Switzerland
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fernanda M Coelho
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Roy Curtiss
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Emma Slack
- Institute for Food, Nutrition and Health, D-HEST, ETH Zürich, Switzerland
| | - Maria L Balmer
- Department of Biomedicine, Immunobiology, University of Basel, Basel, Switzerland
| | | |
Collapse
|
30
|
Salmonella Typhimurium Triggered Unilateral Epididymo-Orchitis and Splenomegaly in a Holstein Bull in Assiut, Egypt: A Case Report. Pathogens 2020; 9:pathogens9040314. [PMID: 32344573 PMCID: PMC7238186 DOI: 10.3390/pathogens9040314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022] Open
Abstract
This report illustrates, for the first time, a case of unilateral orchitis and epididymitis in a Holstein-Friesian bull, associated with Salmonella enterica infection (Salmonella enterica serovar Typhimurium). A one and a half-year-old Holstein-Friesian bull had arrived at the Veterinary Hospital of Assiut University suffering from anorexia accompanied with persistent fever, which did not respond to oxytetracycline and flunixin meglumine injection for 15 days. Gross examination revealed left scrotal enlargement (three times its normal size), heat sensation, and induration of the testis and epididymis, which was painful on external palpation. Microbiological and pathological examinations of the left testicle, epididymis, and spleen samples were performed. S. Typhimurium was recovered from the affected tissues and its critical virulence genes (stn, avrA and sopB) were identified. Pathological examination revealed a unilateral necrotizing intratubular pyogranulomatus orchitis and epididymitis with severe peri-orchitis. In addition, splenomegaly with a firm and large whitish nodular capsular structure associated with different stages of granulomatous reaction around the white and red pulp. To the authors' knowledge, this report is the first isolation of S. Typhimurium from the epididymis and testicles of a Holstein-Friesian bull. These results highlight the importance of including S. Typhimurium among the health disorders associated with stressful situations in bovine with orchitis and or/epididymitis. In Egypt, Salmonella spp. infection as being enzootic with high probability of dissemination should be considered one of genital health problems among cattle farms.
Collapse
|
31
|
Maronek M, Link R, Ambro L, Gardlik R. Phages and Their Role in Gastrointestinal Disease: Focus on Inflammatory Bowel Disease. Cells 2020; 9:E1013. [PMID: 32325706 PMCID: PMC7226564 DOI: 10.3390/cells9041013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are a group of chronic autoinflammatory diseases including Crohn's disease and ulcerative colitis. Although the molecular mechanisms governing the pathogenesis of gastrointestinal inflammation are not completely clear, the main factors are presumed to be genetic predisposition, environmental exposure, and the intestinal microbiome. Hitherto, most of the studies focusing on the role of the microbiome studied the action and effect of bacteria. However, the intestinal microbiome comprises other members of the microbial community as well, namely, fungi, protozoa, and viruses. We believe that bacteriophages are among the main orchestrators of the effect of microbiota on the gut mucosa. Therefore, this review aims to summarize the knowledge of the role of intestinal phageome in IBD and to discuss the concept of phage therapy and its future applications.
Collapse
Affiliation(s)
- Martin Maronek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Rene Link
- Institute of Experimental Medicine, Faculty of Medicine, University of Pavol Jozef Šafárik, 040 11 Košice, Slovakia; (R.L.); (L.A.)
| | - Lubos Ambro
- Institute of Experimental Medicine, Faculty of Medicine, University of Pavol Jozef Šafárik, 040 11 Košice, Slovakia; (R.L.); (L.A.)
| | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| |
Collapse
|
32
|
Miller EA, Elnekave E, Flores-Figueroa C, Johnson A, Kearney A, Munoz-Aguayo J, Tagg KA, Tschetter L, Weber BP, Nadon CA, Boxrud D, Singer RS, Folster JP, Johnson TJ. Emergence of a Novel Salmonella enterica Serotype Reading Clonal Group Is Linked to Its Expansion in Commercial Turkey Production, Resulting in Unanticipated Human Illness in North America. mSphere 2020; 5:e00056-20. [PMID: 32295868 PMCID: PMC7160679 DOI: 10.1128/msphere.00056-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023] Open
Abstract
Two separate human outbreaks of Salmonella enterica serotype Reading occurred between 2017 and 2019 in the United States and Canada, and both outbreaks were linked to the consumption of raw turkey products. In this study, a comprehensive genomic investigation was conducted to reconstruct the evolutionary history of S. Reading from turkeys and to determine the genomic context of outbreaks involving this infrequently isolated Salmonella serotype. A total of 988 isolates of U.S. origin were examined using whole-genome-based approaches, including current and historical isolates from humans, meat, and live food animals. Broadly, isolates clustered into three major clades, with one apparently highly adapted turkey clade. Within the turkey clade, isolates clustered into three subclades, including an "emergent" clade that contained only isolates dated 2016 or later, with many of the isolates from these outbreaks. Genomic differences were identified between emergent and other turkey subclades, suggesting that the apparent success of currently circulating subclades is, in part, attributable to plasmid acquisitions conferring antimicrobial resistance, gain of phage-like sequences with cargo virulence factors, and mutations in systems that may be involved in beta-glucuronidase activity and resistance towards colicins. U.S. and Canadian outbreak isolates were found interspersed throughout the emergent subclade and the other circulating subclade. The emergence of a novel S Reading turkey subclade, coinciding temporally with expansion in commercial turkey production and with U.S. and Canadian human outbreaks, indicates that emergent strains with higher potential for niche success were likely vertically transferred and rapidly disseminated from a common source.IMPORTANCE Increasingly, outbreak investigations involving foodborne pathogens are difficult due to the interconnectedness of food animal production and distribution, and homogeneous nature of industry integration, necessitating high-resolution genomic investigations to determine their basis. Fortunately, surveillance and whole-genome sequencing, combined with the public availability of these data, enable comprehensive queries to determine underlying causes of such outbreaks. Utilizing this pipeline, it was determined that a novel clone of Salmonella Reading has emerged that coincided with increased abundance in raw turkey products and two outbreaks of human illness in North America. The rapid dissemination of this highly adapted and conserved clone indicates that it was likely obtained from a common source and rapidly disseminated across turkey production. Key genomic changes may have contributed to its apparent continued success in commercial turkeys and ability to cause illness in humans.
Collapse
Affiliation(s)
- Elizabeth A Miller
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Ehud Elnekave
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | | | - Abigail Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Ashley Kearney
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Canada
| | - Jeannette Munoz-Aguayo
- Mid-Central Research and Outreach Center, University of Minnesota, Willmar, Minnesota, USA
| | | | - Lorelee Tschetter
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Canada
| | - Bonnie P Weber
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Celine A Nadon
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Canada
| | - Dave Boxrud
- Minnesota Department of Health, Saint Paul, Minnesota, USA
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Jason P Folster
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
- Mid-Central Research and Outreach Center, University of Minnesota, Willmar, Minnesota, USA
| |
Collapse
|
33
|
Gulati A, Shukla R, Mukhopadhaya A. Salmonella Effector SteA Suppresses Proinflammatory Responses of the Host by Interfering With IκB Degradation. Front Immunol 2019; 10:2822. [PMID: 31921113 PMCID: PMC6914705 DOI: 10.3389/fimmu.2019.02822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is known to cause its virulence by secreting various effector proteins directly into the host cytoplasm via two distinct type III secretion systems (T3SS-1 and T3SS-2). Generally, T3SS-1-delivered effectors help Salmonella Typhimurium in the early phases of infection including invasion and immune modulation of the host cells, whereas T3SS-2 effectors mainly help in the survival of Salmonella Typhimurium within the host cells including maintenance of Salmonella-containing vacuole, replication of the bacteria, and dissemination. Some of the effectors are secreted via both T3SS-1 and T3SS-2, suggesting their role in distinct phases of infection of host cells. SteA is such an effector that is secreted by both T3SS-1 and T3SS-2. It has been shown to control the membrane dynamics of the Salmonella-containing vacuole within the host cells in the late phases of infection. In this manuscript, toward characterizing the T3SS-1 function of SteA, we found that SteA suppresses inflammatory responses of the host by interfering with the nuclear factor kappa B pathway. Our initial observation showed that the mice infected with steA-deleted Salmonella Typhimurium (ΔsteA) died earlier compared to the wild-type bacteria due to heightened immune responses, which indicated that SteA might suppress immune responses. Furthermore, our study revealed that SteA suppresses immune responses in macrophages by interfering with the degradation of IκB, the inhibitor of nuclear factor kappa B. SteA suppresses the ubiquitination and hence degradation of IκB by acting on Cullin-1 of the Skp-1, Cullin-1, F-box (SCF)-E3 ligase complex. Our study revealed that SteA suppresses a key step necessary for E3 ligase activation, i.e., neddylation of Cullin-1 by interfering with dissociation of its inhibitor Cand-1.
Collapse
Affiliation(s)
- Aakanksha Gulati
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sahibzada Ajit Singh Nagar, India
| | - Rhythm Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sahibzada Ajit Singh Nagar, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sahibzada Ajit Singh Nagar, India
| |
Collapse
|
34
|
Mechesso AF, Quah Y, Park SC. Ginsenoside Rg3 reduces the adhesion, invasion, and intracellular survival of Salmonella enterica serovar Typhimurium. J Ginseng Res 2019; 45:75-85. [PMID: 33437159 PMCID: PMC7790883 DOI: 10.1016/j.jgr.2019.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 11/28/2022] Open
Abstract
Background Invasive infections due to foodborne pathogens, including Salmonella enterica serovar Typhimurium, are prevalent and life-threatening. This study aimed to evaluate the effects of ginsenoside Rg3 (Rg3) on the adhesion, invasion, and intracellular survival of S. Typhimurium. Methods The impacts of Rg3 on bacterial growth and host cell viability were determined using the time kill and the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays, respectively. Gentamicin assay and confocal microscopic examination were undertaken to determine the effects of Rg3 on the adhesive and invasive abilities of S. Typhimurium to Caco-2 and RAW 264.7 cells. Quantitative reverse transcription polymerase chain reaction was performed to assess the expression of genes correlated with the adhesion, invasion, and virulence of S. Typhimurium. Results Subinhibitory concentrations of Rg3 significantly reduced (p < 0.05) the adhesion, invasion, and intracellular survival of S. Typhimurium. Rg3 considerably reduced (p < 0.05) the bacterial motility as well as the release of nitrite from infected macrophages in a concentration-dependent manner. The expression of genes related to the adhesion, invasion, quorum sensing, and virulence of S. Typhimurium including cheY, hilA, OmpD, PrgK, rsgE, SdiA, and SipB was significantly reduced after Rg3 treatment. Besides, the compound downregulated rac-1 and Cdc-42 that are essential for actin remodeling and membrane ruffling, thereby facilitating Salmonella entry into host cells. This report is the first to describe the effects of Rg3 on "trigger" entry mechanism and intracellular survival S. Typhimurium. Conclusion Rg3 could be considered as a supplement agent to prevent S. Typhimurium infection.
Collapse
Affiliation(s)
- Abraham F Mechesso
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yixian Quah
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
35
|
Sinha A, Maurice CF. Bacteriophages: Uncharacterized and Dynamic Regulators of the Immune System. Mediators Inflamm 2019; 2019:3730519. [PMID: 31582898 PMCID: PMC6754933 DOI: 10.1155/2019/3730519] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022] Open
Abstract
The human gut is an extremely active immunological site interfacing with the densest microbial community known to colonize the human body, the gut microbiota. Despite tremendous advances in our comprehension of how the gut microbiota is involved in human health and interacts with the mammalian immune system, most studies are incomplete as they typically do not consider bacteriophages. These bacterial viruses are estimated to be as numerous as their bacterial hosts, with tremendous and mostly uncharacterized genetic diversity. In addition, bacteriophages are not passive members of the gut microbiota, as highlighted by the recent evidence for their active involvement in human health. Yet, how bacteriophages interact with their bacterial hosts and the immune system in the human gut remains poorly described. Here, we aim to fill this gap by providing an overview of bacteriophage communities in the gut during human development, detailing recent findings for their bacterial-mediated effects on the immune response and summarizing the latest evidence for direct interactions between them and the immune system. The dramatic increase in antibiotic-resistant bacterial pathogens has spurred a renewed interest in using bacteriophages for therapy, despite the many unknowns about bacteriophages in the human body. Going forward, more studies encompassing the communities of bacteria, bacteriophages, and the immune system in diverse health and disease settings will provide invaluable insight into this dynamic trio essential for human health.
Collapse
Affiliation(s)
- Anshul Sinha
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Corinne F. Maurice
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Chong A, Starr T, Finn CE, Steele-Mortimer O. A role for the Salmonella Type III Secretion System 1 in bacterial adaptation to the cytosol of epithelial cells. Mol Microbiol 2019; 112:1270-1283. [PMID: 31370104 DOI: 10.1111/mmi.14361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that invades the intestinal epithelium. Following invasion of epithelial cells, Salmonella survives and replicates within two distinct intracellular niches. While all of the bacteria are initially taken up into a membrane bound vacuole, the Salmonella-containing vacuole or SCV, a significant proportion of them promptly escape into the cytosol. Cytosolic Salmonella replicates more rapidly compared to the vacuolar population, although the reasons for this are not well understood. SipA, a multi-function effector protein, has been shown to affect intracellular replication and is secreted by cytosolic Salmonella via the invasion-associated Type III Secretion System 1 (T3SS1). Here, we have used a multipronged microscopy approach to show that SipA does not affect bacterial replication rates per se, but rather mediates intra-cytosolic survival and/or initiation of replication following bacterial egress from the SCV. Altogether, our findings reveal an important role for SipA in the early survival of cytosolic Salmonella.
Collapse
Affiliation(s)
- Audrey Chong
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Tregei Starr
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ciaran E Finn
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
37
|
Alghoribi MF, Doumith M, Alrodayyan M, Al Zayer M, Köster WL, Muhanna A, Aljohani SM, Balkhy HH, Desin TS. S. Enteritidis and S. Typhimurium Harboring SPI-1 and SPI-2 Are the Predominant Serotypes Associated With Human Salmonellosis in Saudi Arabia. Front Cell Infect Microbiol 2019; 9:187. [PMID: 31214517 PMCID: PMC6554431 DOI: 10.3389/fcimb.2019.00187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) strains are Gram negative bacterial pathogens that are associated with foodborne illness worldwide. During the process of infection, Salmonella uses two molecular injectisomes known as Type 3 Secretion Systems (T3SS) to secrete virulence factors that are encoded by Salmonella Pathogenicity Island-1 (SPI-1) and SPI-2 into host cells. These secretion systems play a major role in virulence, as shown in various animal models, but little is known about their role in human infections. In Saudi Arabia, NTS strains frequently cause human infections but data regarding these pathogenic strains is fairly limited. The aim of this study was to characterize Salmonella human clinical isolates in Riyadh, Saudi Arabia, by determining their serotype, testing for the presence of SPI-1 and SPI-2 genes and to determine the antibiotic resistance profiles of these strains. Using the rapid Check and Trace Salmonella™ (CTS) system our results demonstrate that S. Enteritidis and S. Typhimurium were the predominant serovars, followed by S. Livingstone, S. Kentucky and S. Poona among a list of 36 serovars reported for the first time in the country. In addition, SPI-1 genes were detected in 99% of the isolates, while the sifA gene (SPI-2) was not detected in 13.5% of the isolates. These results suggest that both the SPI-1 and SPI-2 virulence determinants are important for human infection. Moreover, we report the presence of a Multi-Drug (MDR) carbapenem resistant S. Kentucky isolate harboring the blaOXA−48 gene not reported previously in Saudi Arabia.
Collapse
Affiliation(s)
- Majed F Alghoribi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Michel Doumith
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Maha Alrodayyan
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Maha Al Zayer
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Wolfgang L Köster
- Vaccine and Infectious Disease Organization-International Vaccine Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Abdulhai Muhanna
- John H. Stroger Junior Hospital of Cook County, Chicago, IL, United States
| | - Sameera M Aljohani
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Hanan H Balkhy
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Taseen S Desin
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
|
39
|
The Role of the Host in Driving Phenotypic Heterogeneity in Salmonella. Trends Microbiol 2019; 27:508-523. [PMID: 30755344 DOI: 10.1016/j.tim.2019.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
The complex infection environment within hosts exerts unique stresses across tissues and cell types, selecting for phenotypic heterogeneity in bacterial populations. Pathogens maintain variability during infection as a strategy to cope with fluctuating host immune conditions, leading to diversification of virulence phenotypes. Recent improvements in single-cell analyses have revealed that distinct bacterial subpopulations contribute unique colonization and growth strategies across infection sites. We discuss several examples of host-driven phenotypic heterogeneity in Salmonella populations throughout the course of infection, highlighting how variation in gene expression, growth rate, immune evasion, and metabolic activity contribute to overall bacterial success at the population level. We additionally focus our discussion on the implications of diversity within bacterial communities for antimicrobial efficacy.
Collapse
|
40
|
Singh PK, Kapoor A, Lomash RM, Kumar K, Kamerkar SC, Pucadyil TJ, Mukhopadhyay A. Salmonella SipA mimics a cognate SNARE for host Syntaxin8 to promote fusion with early endosomes. J Cell Biol 2018; 217:4199-4214. [PMID: 30309979 PMCID: PMC6279372 DOI: 10.1083/jcb.201802155] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/17/2018] [Accepted: 09/18/2018] [Indexed: 01/06/2023] Open
Abstract
Intracellular pathogens can modulate host Rabs and SNAREs to support their replication and immune evasion. Singh et al. show that the Salmonella effector SipA functionally mimics an R-SNARE and recruits host Q-SNAREs to promote membrane fusion. Thus, SNARE mimicry by this intracellular pathogen effector modulates the host trafficking machinery for Salmonella survival. SipA is a major effector of Salmonella, which causes gastroenteritis and enteric fever. Caspase-3 cleaves SipA into two domains: the C-terminal domain regulates actin polymerization, whereas the function of the N terminus is unknown. We show that the cleaved SipA N terminus binds and recruits host Syntaxin8 (Syn8) to Salmonella-containing vacuoles (SCVs). The SipA N terminus contains a SNARE motif with a conserved arginine residue like mammalian R-SNAREs. SipAR204Q and SipA1–435R204Q do not bind Syn8, demonstrating that SipA mimics a cognate R-SNARE for Syn8. Consequently, Salmonella lacking SipA or that express the SipA1–435R204Q SNARE mutant are unable to recruit Syn8 to SCVs. Finally, we show that SipA mimicking an R-SNARE recruits Syn8, Syn13, and Syn7 to the SCV and promotes its fusion with early endosomes to potentially arrest its maturation. Our results reveal that SipA functionally substitutes endogenous SNAREs in order to hijack the host trafficking pathway and promote Salmonella survival.
Collapse
Affiliation(s)
| | - Anjali Kapoor
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Kamal Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | |
Collapse
|
41
|
Wu SC, Chu XL, Su JQ, Cui ZQ, Zhang LY, Yu ZJ, Wu ZM, Cai ML, Li HX, Zhang ZJ. Baicalin protects mice against Salmonella typhimurium infection via the modulation of both bacterial virulence and host response. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 48:21-31. [PMID: 30195877 DOI: 10.1016/j.phymed.2018.04.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/15/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The worsening problems of antibiotic resistance prompt the need for alternative strategies. Baicalin, which is isolated from Scutellaria baicalensisi, has been demonstrated to exhibit anti-inflammatory, anti-virulence and antimicrobial effects. Salmonella typhimurium is an important foodborne pathogenic bacteriaum that causes gastrointestinal disease in humans and many animals. PURPOSE The aim of this study was to investigate the effects of baicalin on S. typhimurium infection in mice and its possible mechanism in vitro. STUDY DESIGN To evaluate the effect of baicalin in vivo, mice were orally administered of baicalin, and then were infected by an intragastric administration of S. typhimurium. The minimal inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of baicalin, baicalein, and oroxylin A against S. typhimurium were detected under the guides of the Clinical and Laboratory Standards Institute. In vitro, Caco-2 cells were infected with S. typhimurium in the presence or absence of baicalin, baicalein, and oroxylin A at sub-MICs. METHODS In the in vivo experiment, the body weight loss, the serum levels of TNFα, IL-6, and lactic dehydrogenase (LDH), the pathological changes of the caecum and the caecum bacterial burdens were examined. The MICs and MBCs of baicalin, baicalein, and oroxylin A against S. typhimurium were detected by two-fold serial dilutions. In vitro, Caco-2 cells were infected with S. typhimurium, and the invasion capacity, TNFα, nitrate, and LDH were analysed. The transcription levels of Salmonella pathogenicity island 1 virulence associated genes (sopB, sopE, sopE2) of S. typhimurium in the presence of baicalin, baicalein, and oroxylin A were detected by qRT-PCR. RESULTS Our results showed that baicalin significantly decreased the body weight loss, the serum levels of TNFα, IL-6, and LDH, and the caecum bacterial burdens of mice challenged with S. typhimurium. Histological examination showed that baicalin decreased the lesion in the caecum of S. typhimurium-infected mice. MICs and MBCs of baicalin, and oroxylin A. against S. typhimurium were > 128 µg/ml. MICs and MBCs of baicalein against S. typhimurium were 64 µg/ml, and > 128 µg/ml, respectively. Pretreatment of Caco-2 cells or S. typhimurium with baicalin, baicalein, and oroxylin A significantly inhibited the invasion of Caco-2 cells by S. typhimurium in a dose-dependent manner. Sub-MICs of baicalin, baicalein, and oroxylin A also significantly decreased the levels of TNFα, nitrate, and LDH from S. typhimurium-infected Caco-2 cells. Moreover, the transcription levels of sopB, sopE, and sopE2 were significantly suppressed by baicalin, baicalein, and oroxylin A. CONCLUSIONS These results demonstrated that baicalin is a promising agent for the prevention of S. typhimurium infection via the modulation of both bacterial virulence and host response.
Collapse
Affiliation(s)
- Shuai-Cheng Wu
- Department of Animal Medicine, College of Agriculture and Forestry, Linyi University, No.1, Gong'ye Road, Linyi, Shandong 276000, PR China; College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| | - Xiu-Ling Chu
- Department of Animal Science, College of Agriculture, Liaocheng University, No. 1, Hu'nan Road, Liaocheng, Shandong 252000, PR China
| | - Jian-Qing Su
- Department of Animal Science, College of Agriculture, Liaocheng University, No. 1, Hu'nan Road, Liaocheng, Shandong 252000, PR China
| | - Zhen-Qiang Cui
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin 130062, PR China
| | - Li-Yan Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin 130062, PR China
| | - Zhen-Jiang Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin 130062, PR China
| | - Zong-Mei Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin 130062, PR China
| | - Meng-Lu Cai
- Department of Animal Medicine, College of Agriculture and Forestry, Linyi University, No.1, Gong'ye Road, Linyi, Shandong 276000, PR China
| | - Han-Xiao Li
- Department of Animal Medicine, College of Agriculture and Forestry, Linyi University, No.1, Gong'ye Road, Linyi, Shandong 276000, PR China
| | - Zi-Jie Zhang
- Department of Animal Medicine, College of Agriculture and Forestry, Linyi University, No.1, Gong'ye Road, Linyi, Shandong 276000, PR China
| |
Collapse
|
42
|
Novel Role of VisP and the Wzz System during O-Antigen Assembly in Salmonella enterica Serovar Typhimurium Pathogenesis. Infect Immun 2018; 86:IAI.00319-18. [PMID: 29866904 DOI: 10.1128/iai.00319-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 01/18/2023] Open
Abstract
Salmonella enterica serovars are associated with diarrhea and gastroenteritis and are a helpful model for understanding host-pathogen mechanisms. Salmonella enterica serovar Typhimurium regulates the distribution of O antigen (OAg) and presents a trimodal distribution based on Wzy polymerase and the WzzST (long-chain-length OAg [L-OAg]) and WzzfepE (very-long-chain-length OAg [VL-OAg]) copolymerases; however, several mechanisms regulating this process remain unclear. Here, we report that LPS modifications modulate the infectious process and that OAg chain length determination plays an essential role during infection. An increase in VL-OAg is dependent on Wzy polymerase, which is promoted by a growth condition resembling the environment of Salmonella-containing vacuoles (SCVs). The virulence- and stress-related periplasmic protein (VisP) participates in OAg synthesis, as a ΔvisP mutant presents a semirough OAg phenotype. The ΔvisP mutant has greatly decreased motility and J774 macrophage survival in a colitis model of infection. Interestingly, the phenotype is restored after mutation of the wzzST or wzzfepE gene in a ΔvisP background. Loss of both the visP and wzzST genes promotes an imbalance in flagellin secretion. L-OAg may function as a shield against host immune systems in the beginning of an infectious process, and VL-OAg protects bacteria during SCV maturation and facilitates intramacrophage replication. Taken together, these data highlight the roles of OAg length in generating phenotypes during S Typhimurium pathogenesis and show the periplasmic protein VisP as a novel protein in the OAg biosynthesis pathway.
Collapse
|
43
|
Tanner JR, Kingsley RA. Evolution of Salmonella within Hosts. Trends Microbiol 2018; 26:986-998. [PMID: 29954653 PMCID: PMC6249985 DOI: 10.1016/j.tim.2018.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/22/2018] [Accepted: 06/01/2018] [Indexed: 11/18/2022]
Abstract
Within-host evolution has resulted in thousands of variants of Salmonella that exhibit remarkable diversity in host range and disease outcome, from broad host range to exquisite host restriction, causing gastroenteritis to disseminated disease such as typhoid fever. Within-host evolution is a continuing process driven by genomic variation that occurs during each infection, potentiating adaptation to a new niche resulting from changes in animal husbandry, the use of antimicrobials, and emergence of immune compromised populations. We discuss key advances in our understanding of the evolution of Salmonella within the host, inferred from (i) the process of host adaptation of Salmonella pathovars in the past, and (ii) direct observation of the generation of variation and selection of beneficial traits during single infections. Salmonella is a bacterial pathogen with remarkable diversity in its host range and pathogenicity due to past within-host evolution in vertebrate species that modified ancestral mechanisms of pathogenesis. Variation arising during infection includes point mutations, new genes acquired through horizontal gene transfer (HGT), deletions, and genomic rearrangements. Beneficial mutations increase in frequency within the host and, if they retain the ability to be transmitted to subsequent hosts, may become fixed in the population. Whole-genome sequencing of sequential isolates from clinical infections reveals within-host HGT and point mutations that impact therapy and clinical management. HGT is the primary mechanism for evolution in prokaryotes and is synergised by complex networks of transfer involving the microbiome. Within-host evolution of Salmonella, resulting in new pathovars, can proceed in the absence of HGT.
Collapse
Affiliation(s)
- Jennifer R Tanner
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, UK
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, UK.
| |
Collapse
|
44
|
Jaslow SL, Gibbs KD, Fricke WF, Wang L, Pittman KJ, Mammel MK, Thaden JT, Fowler VG, Hammer GE, Elfenbein JR, Ko DC. Salmonella Activation of STAT3 Signaling by SarA Effector Promotes Intracellular Replication and Production of IL-10. Cell Rep 2018; 23:3525-3536. [PMID: 29924996 PMCID: PMC6314477 DOI: 10.1016/j.celrep.2018.05.072] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/24/2018] [Accepted: 05/21/2018] [Indexed: 12/23/2022] Open
Abstract
Salmonella enterica is an important foodborne pathogen that uses secreted effector proteins to manipulate host pathways to facilitate survival and dissemination. Different S. enterica serovars cause disease syndromes ranging from gastroenteritis to typhoid fever and vary in their effector repertoire. We leveraged this natural diversity to identify stm2585, here designated sarA (Salmonella anti-inflammatory response activator), as a Salmonella effector that induces production of the anti-inflammatory cytokine IL-10. RNA-seq of cells infected with either ΔsarA or wild-type S. Typhimurium revealed that SarA activates STAT3 transcriptional targets. Consistent with this, SarA is necessary and sufficient for STAT3 phosphorylation, STAT3 inhibition blocks IL-10 production, and SarA and STAT3 interact by co-immunoprecipitation. These effects of SarA contribute to intracellular replication in vitro and bacterial load at systemic sites in mice. Our results demonstrate the power of using comparative genomics for identifying effectors and that Salmonella has evolved mechanisms for activating an important anti-inflammatory pathway.
Collapse
Affiliation(s)
- Sarah L Jaslow
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Kyle D Gibbs
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - W Florian Fricke
- Department of Nutrigenomics, University of Hohenheim, Stuttgart, Germany
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Kelly J Pittman
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Mark K Mammel
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Joshua T Thaden
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Vance G Fowler
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Gianna E Hammer
- Department of Immunology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Johanna R Elfenbein
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA; Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
45
|
dos Santos AMP, Ferrari RG, Conte-Junior CA. Virulence Factors in Salmonella Typhimurium: The Sagacity of a Bacterium. Curr Microbiol 2018; 76:762-773. [DOI: 10.1007/s00284-018-1510-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
|
46
|
Zhang Y, Liu Y, Wang T, Deng X, Chu X. Natural compound sanguinarine chloride targets the type III secretion system of Salmonella enterica Serovar Typhimurium. Biochem Biophys Rep 2018; 14:149-154. [PMID: 29761161 PMCID: PMC5948472 DOI: 10.1016/j.bbrep.2018.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 11/24/2022] Open
Abstract
The type III secretion system (T3SS) is a key virulence mechanism of many Gram-negative bacterial pathogens. Upon contact between bacteria and host cells, T3SS transfers a series of effectors from the bacterial cytosol to host cells. It is widely known that a mutation in T3SS does not impair bacterial growth, thereby avoiding any subsequent development of resistance. Thus, T3SS is expected to be a candidate therapeutic target. While developing the T3SS screening method, we discovered that sanguinarine chloride, a natural compound, could decrease the production of the SPI-1 type III secretion system main virulence proteins SipA and SipB and prevent the invasion of HeLa cells by Salmonella enterica serovar Typhimurium without affecting the growth of Salmonella. Furthermore, sanguinarine chloride downregulated the transcription of HilA and consequently regulated the expression of the SPI-1 apparatus and effector genes. In summary, our study directly demonstrated that this putative SPI-1 inhibitor belongs to a novel class of anti-Salmonella compounds. Sanguinarine chloride effectively inhibits the translocation of a SipA-Lactamase fusion into mammalian cells. Sanguinarine chloride inhibits the invasion of Hela cells by Salmonella enterica serovar Typhimurium. Sanguinarine chloride inhibits the secretion of SPI-1 virulence proteins. Sanguinarine chloride inhibits SPI-1 effectors through SPI-1 transcription regulate.
Collapse
Affiliation(s)
- Yong Zhang
- Center of Infection and Immunity, First Hospital, Jilin University, Changchun 130061, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Tingting Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuming Deng
- Center of Infection and Immunity, First Hospital, Jilin University, Changchun 130061, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiao Chu
- Center of Infection and Immunity, First Hospital, Jilin University, Changchun 130061, China
| |
Collapse
|
47
|
Zhang K, Riba A, Nietschke M, Torow N, Repnik U, Pütz A, Fulde M, Dupont A, Hensel M, Hornef M. Minimal SPI1-T3SS effector requirement for Salmonella enterocyte invasion and intracellular proliferation in vivo. PLoS Pathog 2018. [PMID: 29522566 PMCID: PMC5862521 DOI: 10.1371/journal.ppat.1006925] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Effector molecules translocated by the Salmonella pathogenicity island (SPI)1-encoded type 3 secretion system (T3SS) critically contribute to the pathogenesis of human Salmonella infection. They facilitate internalization by non-phagocytic enterocytes rendering the intestinal epithelium an entry site for infection. Their function in vivo has remained ill-defined due to the lack of a suitable animal model that allows visualization of intraepithelial Salmonella. Here, we took advantage of our novel neonatal mouse model and analyzed various bacterial mutants and reporter strains as well as gene deficient mice. Our results demonstrate the critical but redundant role of SopE2 and SipA for enterocyte invasion, prerequisite for transcriptional stimulation and mucosal translocation in vivo. In contrast, the generation of a replicative intraepithelial endosomal compartment required the cooperative action of SipA and SopE2 or SipA and SopB but was independent of SopA or host MyD88 signaling. Intraepithelial growth had no critical influence on systemic spread. Our results define the role of SPI1-T3SS effector molecules during enterocyte invasion and intraepithelial proliferation in vivo providing novel insight in the early course of Salmonella infection. Non-typhoidal Salmonella represent a major causative agent of gastroenteritis worldwide. Hallmark of the pathogenesis is their ability to actively invade the intestinal epithelium by virtue of their type 3 secretion system that delivers bacterial virulence factors directly into the host cell cytosol. The role of these virulence factors during enterocyte entry and intraepithelial growth has only been investigated in vitro since the previously established in vivo models in small animals did not allow visualization of intraepithelial Salmonella. However, immortalized cell lines lack the overlaying mucus layer, final cell lineage differentiation, apical-basolateral polarization as well as continuous migration along the crypt villus axis and thus the role of virulence factors during the Salmonella infection in vivo has remained largely undefined. Here, we took advantage of our novel neonatal mouse infection model and for the first time systematically analyzed the importance of Salmonella virulence factors for enterocyte invasion and intraepithelial growth.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Ambre Riba
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Monika Nietschke
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Andreas Pütz
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Aline Dupont
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Mathias Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
- * E-mail:
| |
Collapse
|
48
|
Zhang K, Griffiths G, Repnik U, Hornef M. Seeing is understanding: Salmonella's way to penetrate the intestinal epithelium. Int J Med Microbiol 2017; 308:97-106. [PMID: 28939439 DOI: 10.1016/j.ijmm.2017.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The molecular processes that govern host-microbial interaction illustrate not only the sophisticated and multifaceted mechanisms that protect the host from infection, but also the elaborated features of microbial pathogens that have evolved to overcome or evade the host's immune system. Here we focus on Salmonella that like other enteric pathogens must overcome the intestinal mucosal immune system, a surface constantly on alert and evolved to restrict the enteric microbiota. We discuss the initial step of Salmonella infection, the penetration of the intestinal epithelial barrier and the models used to study this fascinating aspect of microbial pathogenesis.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| | | | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Mathias Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
49
|
Fu S, Hiley L, Octavia S, Tanaka MM, Sintchenko V, Lan R. Comparative genomics of Australian and international isolates of Salmonella Typhimurium: correlation of core genome evolution with CRISPR and prophage profiles. Sci Rep 2017; 7:9733. [PMID: 28851865 PMCID: PMC5575072 DOI: 10.1038/s41598-017-06079-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica subsp enterica serovar Typhimurium (S. Typhimurium) is a serovar with broad host range. To determine the genomic diversity of S. Typhimurium, we sequenced 39 isolates (37 Australian and 2 UK isolates) representing 14 Repeats Groups (RGs) determined primarily by clustered regularly interspaced short palindromic repeats (CRISPR). Analysis of single nucleotide polymorphisms (SNPs) among the 39 isolates yielded an average of 1,232 SNPs per isolate, ranging from 128 SNPs to 11,339 SNPs relative to the reference strain LT2. Phylogenetic analysis of the 39 isolates together with 66 publicly available genomes divided the 105 isolates into five clades and 19 lineages, with the majority of the isolates belonging to clades I and II. The composition of CRISPR profiles correlated well with the lineages, showing progressive deletion and occasional duplication of spacers. Prophage genes contributed nearly a quarter of the S. Typhimurium accessory genome. Prophage profiles were found to be correlated with lineages and CRISPR profiles. Three new variants of HP2-like P2 prophage, several new variants of P22 prophage and a plasmid-like genomic island StmGI_0323 were found. This study presents evidence of horizontal transfer from other serovars or species and provides a broader understanding of the global genomic diversity of S. Typhimurium.
Collapse
Affiliation(s)
- Songzhe Fu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Lester Hiley
- Public Health Microbiology Laboratory, Forensic and Scientific Services, Queensland Department of Health, Brisbane, Queensland, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
50
|
Spiga L, Winter MG, Furtado de Carvalho T, Zhu W, Hughes ER, Gillis CC, Behrendt CL, Kim J, Chessa D, Andrews-Polymenis HL, Beiting DP, Santos RL, Hooper LV, Winter SE. An Oxidative Central Metabolism Enables Salmonella to Utilize Microbiota-Derived Succinate. Cell Host Microbe 2017; 22:291-301.e6. [PMID: 28844888 DOI: 10.1016/j.chom.2017.07.018] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 06/23/2017] [Accepted: 07/28/2017] [Indexed: 12/31/2022]
Abstract
The mucosal inflammatory response induced by Salmonella serovar Typhimurium creates a favorable niche for this gut pathogen. Conventional wisdom holds that S. Typhimurium undergoes an incomplete tricarboxylic acid (TCA) cycle in the anaerobic mammalian gut. One change during S. Typhimurium-induced inflammation is the production of oxidized compounds by infiltrating neutrophils. We show that inflammation-derived electron acceptors induce a complete, oxidative TCA cycle in S. Typhimurium, allowing the bacteria to compete with the microbiota for colonization. A complete TCA cycle facilitates utilization of the microbiota-derived fermentation product succinate as a carbon source. S. Typhimurium succinate utilization genes contribute to efficient colonization in conventionally raised mice, but provide no growth advantage in germ-free mice. Mono-association of gnotobiotic mice with Bacteroides, a major succinate producer, restores succinate utilization in S. Typhimurium. Thus, oxidative central metabolism enables S. Typhimurium to utilize a variety of carbon sources, including microbiota-derived succinate.
Collapse
Affiliation(s)
- Luisella Spiga
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria G Winter
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tatiane Furtado de Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Wenhan Zhu
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth R Hughes
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Caroline C Gillis
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cassie L Behrendt
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Department of Clinical Science, Quantitative Biomedical Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniela Chessa
- Department of Biomedical Science, School of Medicine, University of Sassari, Sassari, Italy
| | - Helene L Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University System Health Science Center, Bryan, TX 77807, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Renato L Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lora V Hooper
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sebastian E Winter
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|