1
|
Corrêa-Moreira D, Castro R, da Costa GL, Lima-Neto RG, Oliveira MME. Cerebrospinal fluid: a target of some fungi and an overview. Mem Inst Oswaldo Cruz 2023; 118:e220251. [PMID: 36946852 PMCID: PMC10027065 DOI: 10.1590/0074-02760220251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
Meningitis is a potentially life-threatening infection characterised by the inflammation of the leptomeningeal membranes. The estimated annual prevalence of 8.7 million cases globally and the disease is caused by many different viral, bacterial, and fungal pathogens. Although several genera of fungi are capable of causing infections in the central nervous system (CNS), the most significant number of registered cases have, as causal agents, yeasts of the genus Cryptococcus. The relevance of cryptococcal meningitis has changed in the last decades, mainly due to the increase in the number of people living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) and medications that impair the immune responses. In this context, coronavirus disease 19 (COVID-19) has also emerged as a risk factor for invasive fungal infections (IFI), including fungal meningitis (FM), due to severe COVID-19 disease is associated with increased pro-inflammatory cytokines, interleukin (IL)-1, IL-6, and tumour necrosis factor-alpha, reduced CD4-interferon-gamma expression, CD4 and CD8 T cells. The gold standard technique for fungal identification is isolating fungi in the culture of the biological material, including cerebrospinal fluid (CSF). However, this methodology has as its main disadvantage the slow or null growth of some fungal species in culture, which makes it difficult to finalise the diagnosis. In conclusions, this article, in the first place, point that it is necessary to accurately identify the etiological agent in order to assist in the choice of the therapeutic regimen for the patients, including the implementation of actions that promote the reduction of the incidence, lethality, and fungal morbidity, which includes what is healthy in the CNS.
Collapse
Affiliation(s)
- Danielly Corrêa-Moreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Rio de Janeiro, RJ, Brasil
| | - Rodolfo Castro
- Fundação Oswaldo Cruz-Fiocruz, Escola Nacional de Saúde Pública, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de Janeiro, Instituto de Saúde Coletiva, Rio de Janeiro, RJ, Brasil
| | - Gisela Lara da Costa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Rio de Janeiro, RJ, Brasil
| | | | - Manoel Marques Evangelista Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
2
|
Wang L, Rajavel M, Wu CW, Zhang C, Poindexter M, Fulgar C, Mar T, Singh J, Dhillon JK, Zhang J, Yuan Y, Abarca R, Li W, Pinkerton KE. Effects of life-stage and passive tobacco smoke exposure on pulmonary innate immunity and influenza infection in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:439-456. [PMID: 35139765 PMCID: PMC8976777 DOI: 10.1080/15287394.2022.2032518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Limited data are available on the effects of perinatal environmental tobacco smoke (ETS) exposure for early childhood influenza infection. The aim of the present study was to examine whether perinatal versus adult ETS exposure might provoke more severe systemic and pulmonary innate immune responses in mice inoculated with influenza A/Puerto Rico/8/34 virus (IAV) compared to phosphate-buffered saline (PBS). BALB/c mice were exposed to filtered air (FA) or ETS for 6 weeks during the perinatal or adult period of life. Immediately following the final exposure, mice were intranasally inoculated with IAV or PBS. Significant inflammatory effects were observed in bronchoalveolar lavage fluid of neonates inoculated with IAV (FA+IAV or ETS+IAV) compared to PBS (ETS+PBS or FA+PBS), and in the lung parenchyma of neonates administered ETS+IAV versus FA+IAV. Type I and III interferons were also elevated in the spleens of neonates, but not adults with ETS+IAV versus FA+IAV exposure. Both IAV-inoculated neonate groups exhibited significantly more CD4 T cells and increasing numbers of CD8 and CD25 T cells in lungs relative to their adult counterparts. Taken together, these results suggest perinatal ETS exposure induces an exaggerated innate immune response, which may overwhelm protective anti-inflammatory defenses against IAV, and enhances severity of infection at early life stages (e.g., in infants and young children).
Collapse
Affiliation(s)
- Lei Wang
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Maya Rajavel
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Chuanzhen Zhang
- Center for Health and the Environment, University of California, Davis, CA, USA
- Department of Gastroenterology, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Morgan Poindexter
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Ciara Fulgar
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Tiffany Mar
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Jasmine Singh
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Jaspreet K. Dhillon
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Jingjing Zhang
- Center for Health and the Environment, University of California, Davis, CA, USA
- Western China School of Public Health Department of Occupational and Environmental Health Sichuan University, Chengdu, China
| | - Yinyu Yuan
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Radek Abarca
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Wei Li
- School of Control Science and Engineering, Shandong University, Jinan, Shandong 250014, China
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, CA, USA
- Department of Pediatrics, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Goughenour KD, Zhao J, Xu J, Zhao ZP, Ganguly A, Freeman CM, Olszewski MA. Murine Inducible Nitric Oxide Synthase Expression Is Essential for Antifungal Defenses in Kidneys during Disseminated Cryptococcus deneoformans Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:2096-2106. [PMID: 34479942 DOI: 10.4049/jimmunol.2100386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Disseminated cryptococcosis has a nearly 70% mortality, mostly attributed to CNS infection, with lesser-known effects on other organs. Immune protection against Cryptococcus relies on Th1 immunity with M1 polarization, rendering macrophages fungicidal. The importance of M1-upregulated inducible NO synthase (iNOS) has been documented in pulmonary anticryptococcal defenses, whereas its role in disseminated cryptococcosis remains controversial. Here we examined the effect of iNOS deletion in disseminated (i.v.) C. deneoformans 52D infection, comparing wild-type (C57BL/6J) and iNOS-/- mice. iNOS-/- mice had significantly reduced survival and nearly 100-fold increase of the kidney fungal burden, without increases in the lungs, spleen, or brain. Histology revealed extensive lesions and almost complete destruction of the kidney cortical area with a loss of kidney function. The lack of fungal control was not due to a failure to recruit immune cells because iNOS-/- mice had increased kidney leukocytes. iNOS-/- mice also showed no defect in T cell polarization. We conclude that iNOS is critically required for local anticryptococcal defenses in the kidneys, whereas it appears to be dispensable in other organs during disseminated infection. This study exemplifies a unique phenotype of local immune defenses in the kidneys and the organ-specific importance of a single fungicidal pathway.
Collapse
Affiliation(s)
- Kristie D Goughenour
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| | - Jessica Zhao
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| | - Jintao Xu
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| | - Ziyin P Zhao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| | - Anutosh Ganguly
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and.,Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Christine M Freeman
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| | - Michal A Olszewski
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI; .,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| |
Collapse
|
4
|
Tsuchiya K, Hosojima S, Hara H, Kushiyama H, Mahib MR, Kinoshita T, Suda T. Gasdermin D mediates the maturation and release of IL-1α downstream of inflammasomes. Cell Rep 2021; 34:108887. [PMID: 33761363 DOI: 10.1016/j.celrep.2021.108887] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/05/2020] [Accepted: 02/27/2021] [Indexed: 01/13/2023] Open
Abstract
IL-1α serves as a pro-inflammatory cytokine. Although pro-IL-1α has cytokine activity, proteolytic maturation increases its potency and release from cells. IL-1α maturation occurs in a caspase-1-dependent manner following inflammasome activation. However, pro-IL-1α is not a substrate of caspase-1, and it remains unclear what mediates the maturation of this cytokine downstream of inflammasomes. Here, we show that gasdermin D (GSDMD), an executor of pyroptosis, is required for the rapid induction of IL-1α maturation by non-particulate inflammasome activators. Ablation of GSDMD abrogates the maturation of IL-1α, but not of IL-1β. Inflammasome-induced maturation of IL-1α relies on extracellular Ca2+ and calpains. Ca2+ influx and calpain activation are induced in a GSDMD-dependent manner. Glycine, which inhibits cell lysis, but not GSDMD pore formation, does not affect IL-1α maturation. These results suggest that during inflammasome activation, GSDMD processed by caspase-1 forms plasma membrane pores that mediate Ca2+ influx, resulting in the calpain-dependent maturation of IL-1α.
Collapse
Affiliation(s)
- Kohsuke Tsuchiya
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Shoko Hosojima
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hideki Hara
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroko Kushiyama
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mamunur Rashid Mahib
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong-4331, Bangladesh
| | - Takeshi Kinoshita
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takashi Suda
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
5
|
Cavalli G, Colafrancesco S, Emmi G, Imazio M, Lopalco G, Maggio MC, Sota J, Dinarello CA. Interleukin 1α: a comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev 2021; 20:102763. [PMID: 33482337 DOI: 10.1016/j.autrev.2021.102763] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
The interleukin (IL)-1 family member IL-1α is a ubiquitous and pivotal pro-inflammatory cytokine. The IL-1α precursor is constitutively present in nearly all cell types in health, but is released upon necrotic cell death as a bioactive mediator. IL-1α is also expressed by infiltrating myeloid cells within injured tissues. The cytokine binds the IL-1 receptor 1 (IL-1R1), as does IL-1β, and induces the same pro-inflammatory effects. Being a bioactive precursor released upon tissue damage and necrotic cell death, IL-1α is central to the pathogenesis of numerous conditions characterized by organ or tissue inflammation. These include conditions affecting the lung and respiratory tract, dermatoses and inflammatory skin disorders, systemic sclerosis, myocarditis, pericarditis, myocardial infarction, coronary artery disease, inflammatory thrombosis, as well as complex multifactorial conditions such as COVID-19, vasculitis and Kawasaki disease, Behcet's syndrome, Sjogren Syndrome, and cancer. This review illustrates the clinical relevance of IL-1α to the pathogenesis of inflammatory diseases, as well as the rationale for the targeted inhibition of this cytokine for treatment of these conditions. Three biologics are available to reduce the activities of IL-1α; the monoclonal antibody bermekimab, the IL-1 soluble receptor rilonacept, and the IL-1 receptor antagonist anakinra. These advances in mechanistic understanding and therapeutic management make it incumbent on physicians to be aware of IL-1α and of the opportunity for therapeutic inhibition of this cytokine in a broad spectrum of diseases.
Collapse
Affiliation(s)
- Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy, and Rare Diseases, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy.
| | - Serena Colafrancesco
- Dipartimento of Clinical Sciences (Internal Medicine, Anesthesia and Resuscitation, and Cardiology), Rheumatology Unit, Sapienza University of Rome, Rome, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Firenze, Italy
| | - Massimo Imazio
- University Division of Cardiology, Cardiovascular and Throracic Department, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Giuseppe Lopalco
- Department of Emergency and Organ Transplantation, Rheumatology Unit, University of Bari, Bari, Italy
| | - Maria Cristina Maggio
- Department of Health Promotion, Maternal and Infantile Care, Department of Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Jurgen Sota
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
6
|
Sun Z, Ji N, Jiang J, Tao Y, Zhang E, Yang X, Wang Z, Chen Z, Huang M, Zhang M. Fine Particulate Matter (PM 2. 5) Promotes CD146 Expression in Alveolar Epithelial Cells and Cryptococcus neoformans Pulmonary Infection. Front Microbiol 2021; 11:525976. [PMID: 33537006 PMCID: PMC7848894 DOI: 10.3389/fmicb.2020.525976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Air pollution is a leading cause of increasing infectious lung diseases. Pulmonary cryptococcosis is a fatal fungal pneumonia in acquired immunodeficiency syndrome patients. In some cases, the pathogen Cryptococcus neoformans also develops dormant nodules in immunocompetent individuals. In the present study, we demonstrated that fine particulate matter (PM2.5) increased CD146 expression in alveolar epithelial cells and promoted C. neoformans pulmonary infection. Aryl hydrocarbon receptor (AhR) signaling was required for increased expression of CD146 in epithelial cells treated with PM2.5. In a murine model of pulmonary infection, PM2.5 promoted fungal infection, and CD146 deficiency decreased the fugal burden of C. neoformans. Our study may highlight the importance of air pollution to lung mycosis and CD146 as a target for preventing infectious lung diseases.
Collapse
Affiliation(s)
- Zhixiao Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Tao
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Enrui Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xiaofan Yang
- Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Rudman J, Evans RJ, Johnston SA. Are macrophages the heroes or villains during cryptococcosis? Fungal Genet Biol 2019; 132:103261. [DOI: 10.1016/j.fgb.2019.103261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
8
|
Shankar J, Cerqueira GC, Wortman JR, Clemons KV, Stevens DA. RNA-Seq Profile Reveals Th-1 and Th-17-Type of Immune Responses in Mice Infected Systemically with Aspergillus fumigatus. Mycopathologia 2018; 183:645-658. [PMID: 29500637 PMCID: PMC6067991 DOI: 10.1007/s11046-018-0254-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/19/2018] [Indexed: 01/15/2023]
Abstract
With the increasing numbers of immunocompromised hosts, Aspergillus fumigatus emerges as a lethal opportunistic fungal pathogen. Understanding innate and acquired immunity responses of the host is important for a better therapeutic strategy to deal with aspergillosis patients. To determine the transcriptome in the kidneys in aspergillosis, we employed RNA-Seq to obtain single 76-base reads of whole-genome transcripts of murine kidneys on a temporal basis (days 0; uninfected, 1, 2, 3 and 8) during invasive aspergillosis. A total of 6284 transcripts were downregulated, and 5602 were upregulated compared to baseline expression. Gene ontology enrichment analysis identified genes involved in innate and adaptive immune response, as well as iron binding and homeostasis, among others. Our results showed activation of pathogen recognition receptors, e.g., β-defensins, C-type lectins (e.g., dectin-1), Toll-like receptors (TLR-2, TLR-3, TLR-8, TLR-9 and TLR-13), as well as Ptx-3 and C-reactive protein among the soluble receptors. Upregulated transcripts encoding various differentiating cytokines and effector proinflammatory cytokines, as well as those encoding for chemokines and chemokine receptors, revealed Th-1 and Th-17-type immune responses. These studies form a basic dataset for experimental prioritization, including other target organs, to determine the global response of the host against Aspergillus infection.
Collapse
Affiliation(s)
- Jata Shankar
- Jaypee University of Information Technology, Solan, HP, India
- California Institute for Medical Research, San Jose, CA, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Karl V Clemons
- California Institute for Medical Research, San Jose, CA, USA.
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA.
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
9
|
The Early Innate Immune Response to, and Phagocyte-Dependent Entry of, Cryptococcus neoformans Map to the Perivascular Space of Cortical Post-Capillary Venules in Neurocryptococcosis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1653-1665. [PMID: 29929915 DOI: 10.1016/j.ajpath.2018.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 12/28/2022]
Abstract
The innate immune system is the primary defense against cryptococcal infection, but paradoxically it promotes infection of the central nervous system. We performed a detailed longitudinal study of neurocryptococcosis in normal, chimeric, green fluorescent protein phagocyte-positive mice and phagocyte-depleted mice and interrogated the central nervous system innate immune response to Cryptococcus neoformans H99 using confocal microscopy, histology, flow cytometry, and quantification of brain cytokine/chemokines and fungal burdens. C. neoformans was present in the perivascular space (PVS) of post-capillary venules. This was associated with a massive influx of blood-derived monocytes, neutrophils, and T lymphocytes into the PVS and a predominantly proinflammatory cytokine/chemokine response. Phagocytes containing cryptococci were present only in the lumen and corresponding PVS of post-capillary venules. Free cryptococci were observed breaching the glia limitans, the protective barrier between the PVS and the cerebral parenchyma. Parenchymal cryptococcomas were typically in direct contact with post-capillary venules and lacked surrounding immune cell infiltrates. Phagocyte depletion abrogated cryptococcoma formation and PVS infiltrates. Together, these observations suggest that cryptococcomas can originate via phagocyte-dependent transport across post-capillary venular endothelium into the PVS and thence via passage of free cryptococci into the brain. In conclusion, we demonstrate for the first time that the PVS of cortical post-capillary venules is the major site of the early innate immune response to, and phagocyte-dependent entry of, C. neoformans.
Collapse
|
10
|
Shourian M, Ralph B, Angers I, Sheppard DC, Qureshi ST. Contribution of IL-1RI Signaling to Protection against Cryptococcus neoformans 52D in a Mouse Model of Infection. Front Immunol 2018; 8:1987. [PMID: 29403476 PMCID: PMC5780350 DOI: 10.3389/fimmu.2017.01987] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 alpha (IL-1α) and interleukin-1 beta (IL-1β) are pro-inflammatory cytokines that are induced after Cryptococcus neoformans infection and activate the interleukin-1 receptor type I (IL-1RI). To establish the role of IL-1RI signaling in protection against cryptococcal infection, we analyzed wild-type (WT) and IL-1RI-deficient (IL-1RI−/−) mice on the BALB/c background. IL-1RI−/− mice had significantly reduced survival compared to WT mice after intratracheal challenge with C. neoformans 52D. Microbiological analysis showed a significant increase in the lung and brain fungal burden of IL-1RI−/− compared to WT mice beginning at weeks 1 and 4 postinfection, respectively. Histopathology showed that IL-1RI−/− mice exhibit greater airway epithelial mucus secretion and prominent eosinophilic crystals that were absent in WT mice. Susceptibility of IL-1RI−/− mice was associated with significant induction of a Th2-biased immune response characterized by pulmonary eosinophilia, M2 macrophage polarization, and recruitment of CD4+ IL-13+ T cells. Expression of pro-inflammatory [IL-1α, IL-1β, TNFα, and monocyte chemoattractant protein 1 (MCP-1)], Th1-associated (IFNγ), and Th17-associated (IL-17A) cytokines was significantly reduced in IL-1RI−/− lungs compared to WT. WT mice also had higher expression of KC/CXCL1 and sustained neutrophil recruitment to the lung; however, antibody-mediated depletion of these cells showed that they were dispensable for lung fungal clearance. In conclusion, our data indicate that IL-1RI signaling is required to activate a complex series of innate and adaptive immune responses that collectively enhance host defense and survival after C. neoformans 52D infection in BALB/c mice.
Collapse
Affiliation(s)
- Mitra Shourian
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Ben Ralph
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Isabelle Angers
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada.,Program in Translational Research in Respiratory Diseases, Department of Critical Care, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada
| | - Donald C Sheppard
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Salman T Qureshi
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada.,Program in Translational Research in Respiratory Diseases, Department of Critical Care, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Abstract
The interleukin (IL)-1 family of cytokines is currently comprised of 11 members that have pleiotropic functions in inflammation and cancer. IL-1α and IL-1β were the first members of the IL-1 family to be described, and both signal via the same receptor, IL-1R. Over the last decade, much progress has been made in our understanding of biogenesis of IL-1β and its functions in human diseases. Studies from our laboratory and others have highlighted the critical role of nod-like receptors (NLRs) and multi-protein complexes known as inflammasomes in the regulation of IL-1β maturation. Recent studies have increased our appreciation of the role played by IL-1α in inflammatory diseases and cancer. However, the mechanisms that regulate the production of IL-1α and its bioavailability are relatively understudied. In this review, we summarize the distinctive roles played by IL-1α in inflammatory diseases and cancer. We also discuss our current knowledge about the mechanisms that control IL-1α biogenesis and activity, and the major unanswered questions in its biology.
Collapse
Affiliation(s)
- Ankit Malik
- Department of Immunology St. Jude Children’s Research Hospital, Memphis, TN 38105
| | | |
Collapse
|
12
|
Di Paolo NC, Shayakhmetov DM. Interleukin 1α and the inflammatory process. Nat Immunol 2016; 17:906-13. [PMID: 27434011 PMCID: PMC5152572 DOI: 10.1038/ni.3503] [Citation(s) in RCA: 402] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/31/2016] [Indexed: 02/08/2023]
Abstract
Inflammation occurs after disruption of tissue homeostasis by cell stress, injury or infection and ultimately involves the recruitment and retention of cells of hematopoietic origin, which arrive at the affected sites to resolve damage and initiate repair. Interleukin 1α (IL-1α) and IL-1β are equally potent inflammatory cytokines that activate the inflammatory process, and their deregulated signaling causes devastating diseases manifested by severe acute or chronic inflammation. Although much attention has been given to understanding the biogenesis of IL-1β, the biogenesis of IL-1α and its distinctive role in the inflammatory process remain poorly defined. In this review we examine key aspects of IL-1α biology and regulation and discuss its emerging importance in the initiation and maintenance of inflammation that underlie the pathology of many human diseases.
Collapse
Affiliation(s)
- Nelson C Di Paolo
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dmitry M Shayakhmetov
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Transplantation and Immune-mediated Disorders, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Yau B, Mitchell AJ, Too LK, Ball HJ, Hunt NH. Interferon-γ-Induced Nitric Oxide Synthase-2 Contributes to Blood/Brain Barrier Dysfunction and Acute Mortality in Experimental Streptococcus pneumoniae Meningitis. J Interferon Cytokine Res 2015; 36:86-99. [PMID: 26418460 DOI: 10.1089/jir.2015.0078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The proinflammatory cytokine interferon-gamma (IFNγ) recently was shown to play a crucial role in experimental pneumococcal meningitis (PM) pathogenesis, and we aimed in this study to investigate IFNγ-driven nitric oxide synthase-2 (NOS2)-mediated pathogenesis of murine PM. We demonstrate that costimulation of toll-like receptors and IFNγ receptors was synergistic for NOS2 expression in cultured murine microglia. Using an experimental PM model, wild-type mice treated with anti-IFNγ antibody, as well as IFNγ and NOS2 gene knockout (GKO) mice, were inoculated intracerebroventricularly with 10(3) colony-forming units of Streptococcus pneumoniae (WU2 strain). Mice were monitored daily during a 200-h disease course to assess survival rate and blood-brain barrier (BBB) permeability measured at 48 h. IFNγ deficiency was protective in PM, with an approximate 3-fold increase in survival rates in both antibody-treated and IFNγ GKO mice compared to controls (P < 0.01). At 48 h postinoculation, brain NOS2 mRNA expression was significantly increased in an IFNγ-dependent manner. Mortality was significantly delayed in NOS2 GKO mice compared to controls (P < 0.01), and BBB dysfunction was reduced by 54% in IFNγ GKO mice and abolished in NOS2 GKO. These data suggest that IFNγ-dependent expression of NOS2 in the brain contributes to BBB breakdown and early mortality in murine PM.
Collapse
Affiliation(s)
- Belinda Yau
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Andrew J Mitchell
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia .,2 Centenary Institute for Cancer Medicine and Cell Biology , Newtown, New South Wales, Australia
| | - Lay Khoon Too
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Helen J Ball
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Nicholas H Hunt
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| |
Collapse
|
14
|
COLOMBO ANACAROLINE, RODRIGUES MARCIOL. Fungal colonization of the brain: anatomopathological aspects of neurological cryptococcosis. ACTA ACUST UNITED AC 2015; 87:1293-309. [DOI: 10.1590/0001-3765201520140704] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Brain infection by the fungus Cryptococcus neoformans results in an estimated 500,000 human deaths per annum. Colonization of the central nervous system (CNS) by C. neoformans causes different clinical syndromes that involve interaction of a number of fungal components with distinct brain cells. In this manuscript, our literature review confirmed the notion that the Cryptococcus field is expanding rapidly, but also suggested that studies on neuropathogenesis still represent a small fraction of basic research activity in the field. We therefore discussed anatomical and physiological aspects of the brain during infection by C. neoformans, in addition to mechanisms by which brain resident cells interact with the fungus. This review suggests that multiple efforts are necessary to improve the knowledge on how C. neoformans affects brain cells, in order to enable the generation of new therapeutic tools in a near future.
Collapse
Affiliation(s)
- ANA CAROLINE COLOMBO
- Universidade Federal do Rio de Janeiro, Brazil; Universidade Federal do Rio de Janeiro, Brazil
| | - MARCIO L. RODRIGUES
- Universidade Federal do Rio de Janeiro, Brazil; Fundação Oswaldo Cruz, Brazil
| |
Collapse
|
15
|
Anand R, Shankar J, Tiwary BN, Singh AP. Aspergillus flavus induces granulomatous cerebral aspergillosis in mice with display of distinct cytokine profile. Cytokine 2015; 72:166-72. [PMID: 25647272 DOI: 10.1016/j.cyto.2015.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/05/2014] [Accepted: 01/07/2015] [Indexed: 11/16/2022]
Abstract
Aspergillus flavus is one of the leading Aspergillus spp. resulting in invasive aspergillosis of central nervous system (CNS) in human beings. Immunological status in aspergillosis of central nervous system remains elusive in case of both immunocompetent and immunocompromised patients. Since cytokines are the major mediators of host response, evaluation of disease pathology along with cytokine profile in brain may provide snapshots of neuro-immunological response. An intravenous model of A. flavus infection was utilized to determine the pathogenicity of infection and cytokine profile in the brain of male BALB/c mice. Enumeration of colony forming units and histopathological analyses were performed on the brain tissue at distinct time periods. The kinetics of cytokines (TNF-α, IFN-γ, IL-12/IL-23p40, IL-6, IL-23, IL-17A and IL-4) was evaluated at 6, 12, 24, 48, 72 and 96h post infection (hPI) in brain homogenates using murine cytokine specific enzyme linked immunosorbent assay. Histological analysis exhibited the hyphae with leukocyte infiltrations leading to formation of granulomata along with ischemia and pyknosis of neurons in the brain of infected mice. Diseased mice displayed increased secretion of IFN-γ, IL-12p40 and IL-6 with a concomitant reduction in the secretion of Th2 cytokine IL-4, and Th17 promoting cytokine, IL-23 during the late phase of infection. A.flavus induced inflammatory granulomatous cerebral aspergillosis in mice, characterized by a marked increase in the Th1 cytokines and neurons undergoing necrosis. A marked increase in necrosis of neurons with concurrent inflammatory responses might have led to the host mortality during late phase of infection.
Collapse
Affiliation(s)
- R Anand
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi 110067, India.
| | - J Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, HP 173234, India
| | - B N Tiwary
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G. 495009, India
| | - A P Singh
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi 110067, India.
| |
Collapse
|
16
|
Brunke S, Seider K, Fischer D, Jacobsen ID, Kasper L, Jablonowski N, Wartenberg A, Bader O, Enache-Angoulvant A, Schaller M, d'Enfert C, Hube B. One small step for a yeast--microevolution within macrophages renders Candida glabrata hypervirulent due to a single point mutation. PLoS Pathog 2014; 10:e1004478. [PMID: 25356907 PMCID: PMC4214790 DOI: 10.1371/journal.ppat.1004478] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/17/2014] [Indexed: 12/25/2022] Open
Abstract
Candida glabrata is one of the most common causes of candidemia, a life-threatening, systemic fungal infection, and is surpassed in frequency only by Candida albicans. Major factors contributing to the success of this opportunistic pathogen include its ability to readily acquire resistance to antifungals and to colonize and adapt to many different niches in the human body. Here we addressed the flexibility and adaptability of C. glabrata during interaction with macrophages with a serial passage approach. Continuous co-incubation of C. glabrata with a murine macrophage cell line for over six months resulted in a striking alteration in fungal morphology: The growth form changed from typical spherical yeasts to pseudohyphae-like structures – a phenotype which was stable over several generations without any selective pressure. Transmission electron microscopy and FACS analyses showed that the filamentous-like morphology was accompanied by changes in cell wall architecture. This altered growth form permitted faster escape from macrophages and increased damage of macrophages. In addition, the evolved strain (Evo) showed transiently increased virulence in a systemic mouse infection model, which correlated with increased organ-specific fungal burden and inflammatory response (TNFα and IL-6) in the brain. Similarly, the Evo mutant significantly increased TNFα production in the brain on day 2, which is mirrored in macrophages confronted with the Evo mutant, but not with the parental wild type. Whole genome sequencing of the Evo strain, genetic analyses, targeted gene disruption and a reverse microevolution experiment revealed a single nucleotide exchange in the chitin synthase-encoding CHS2 gene as the sole basis for this phenotypic alteration. A targeted CHS2 mutant with the same SNP showed similar phenotypes as the Evo strain under all experimental conditions tested. These results indicate that microevolutionary processes in host-simulative conditions can elicit adaptations of C. glabrata to distinct host niches and even lead to hypervirulent strains. Evolution is not limited to making new species emerge and others perish over the millennia. It is also a central force in shorter-term interactions between microbes and hosts. A good example can be found in fungi, which are an underestimated cause of human diseases. Some fungi exist as commensals, and have adapted well to life on human epithelia. But as facultative pathogens, they face a different, hostile environment. We tested the ability of C. glabrata, a pathogen closely related to baker's yeast, to adapt to macrophages. We found that by adaptation, it changed its growth type completely. This allowed the fungus to escape the phagocytes, and increased its virulence in a mouse model. Sequencing the complete genome revealed surprisingly few mutations. Further analyses allowed us to detect the single mutation responsible for the phenotype, and to recreate it in the parental strain. Our work shows that fungi can adapt to immune cells, and that this adaptation can lead to an increased virulence. Since commensals are continuously exposed to host cells, we suggest that this ability could lead to unexpected phenotype changes, including an increase in virulence potential.
Collapse
Affiliation(s)
- Sascha Brunke
- Integrated Research and Treatment Center, Sepsis und Sepsisfolgen, Center for Sepsis Control and Care (CSCC), Universitätsklinikum Jena, Jena, Germany
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Katja Seider
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Daniel Fischer
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Ilse D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Nadja Jablonowski
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Anja Wartenberg
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Oliver Bader
- Institute for Medical Microbiology and German National Reference Centre for Systemic Mycoses, University Medical Centre Göttingen, Göttingen, Germany
| | - Adela Enache-Angoulvant
- APHP, Hôpital Bicêtre, Service de Bactériologie-Virologie-Parasitologie, Laboratoire de Parasitologie-Mycologie, Kremlin-Bicêtre, France
| | - Martin Schaller
- Department of Dermatology, Eberhard-Karls-University, Tübingen, Germany
| | - Christophe d'Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Bernhard Hube
- Integrated Research and Treatment Center, Sepsis und Sepsisfolgen, Center for Sepsis Control and Care (CSCC), Universitätsklinikum Jena, Jena, Germany
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
- Friedrich Schiller University, Jena, Germany
- * E-mail:
| |
Collapse
|
17
|
Chen XY, Wang ZC, Li J, Liu XL, Sun YH. Regulation of synoviocyte activity by resveratrol in rats with adjuvant arthritis. Exp Ther Med 2013; 6:172-176. [PMID: 23935741 PMCID: PMC3735719 DOI: 10.3892/etm.2013.1078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/08/2013] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the preventive effects of resveratrol (Res) on rats with adjuvant arthritis (AA) and the mechanism(s) of action. An AA model was established by injection of Freund’s complete adjuvant (FCA). Vascular endothelial growth factor (VEGF) was visualized in joint specimens using immunohistochemistry. IL-1β and TNF-α production in synoviocytes was determined by radioimmunoassay (RIA). The mRNA expression of IL-1β and TNF-α was observed in synoviocytes using the reverse transcription (RT)-PCR method. The synoviocytes of the AA model were stimulated by Res or treated with the protein kinase C (PKC) inhibitor chelerythrine prior to stimulation. The expression of phosphorylated ERK1/2 (p-ERK1/2) was detected by western blotting. Res was able to reduce the elevated levels of IL-1β and TNF-α, and inhibit the mRNA expression of IL-1β and TNF-α in the synoviocytes of the AA model rats. VEGF expression in the Res-treated group was significantly lowered. The protein expression levels of p-ERK1/2 were significantly higher in the Res-treated group compared with those of the model group, while p-ERK1/2 was markedly lower in the group pretreated with chelerythrine. Res has a therapeutic effect on AA rats, which may be correlated with its immunoregulatory actions, and may activate p-ERK1/2 in synoviocytes via PKC.
Collapse
Affiliation(s)
- Xiao-Yu Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, Anhui 230032
| | | | | | | | | |
Collapse
|
18
|
Vijayan A, Gómez CE, Espinosa DA, Goodman AG, Sanchez-Sampedro L, Sorzano COS, Zavala F, Esteban M. Adjuvant-like effect of vaccinia virus 14K protein: a case study with malaria vaccine based on the circumsporozoite protein. THE JOURNAL OF IMMUNOLOGY 2012; 188:6407-17. [PMID: 22615208 DOI: 10.4049/jimmunol.1102492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of subunit vaccines for malaria that elicit a strong, long-term memory response is an intensive area of research, with the focus on improving the immunogenicity of a circumsporozoite (CS) protein-based vaccine. In this study, we found that a chimeric protein, formed by fusing vaccinia virus protein 14K (A27) to the CS of Plasmodium yoelii, induces strong effector memory CD8(+) T cell responses in addition to high-affinity Abs when used as a priming agent in the absence of any adjuvant, followed by an attenuated vaccinia virus boost expressing CS in murine models. Moreover, priming with the chimeric protein improved the magnitude and polyfunctionality of cytokine-secreting CD8(+) T cells. This fusion protein formed oligomers/aggregates that led to activation of STAT-1 and IFN regulatory factor-3 in human macrophages, indicating a type I IFN response, resulting in NO, IL-12, and IL-6 induction. Furthermore, this vaccination regimen inhibited the liver stage development of the parasite, resulting in sterile protection. In summary, we propose a novel approach in designing CS based pre-erythrocytic vaccines against Plasmodium using the adjuvant-like effect of the immunogenic vaccinia virus protein 14K.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Departamento de Biología Celular y Molecular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
PPAR Regulation of Inflammatory Signaling in CNS Diseases. PPAR Res 2011; 2008:658520. [PMID: 18670616 PMCID: PMC2490815 DOI: 10.1155/2008/658520] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 04/22/2008] [Accepted: 05/12/2008] [Indexed: 12/25/2022] Open
Abstract
Central nervous system (CNS) is an immune privileged site, nevertheless inflammation associates with many CNS diseases. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors that regulate immune and inflammatory responses. Specific ligands for PPARα, γ, and δ isoforms have proven effective in the animal models of multiple sclerosis (MS), Alzheimer's disease, Parkinson's disease, and trauma/stroke, suggesting their use in the treatment of neuroinflammatory diseases. The activation of NF-κB and Jak-Stat signaling pathways and secretion of inflammatory cytokines are critical in the pathogenesis of CNS diseases. Interestingly, PPAR agonists mitigate CNS disease by modulating inflammatory signaling network in immune cells. In this manuscript, we review the current knowledge on how PPARs regulate neuroinflammatory signaling networks in CNS diseases.
Collapse
|
20
|
Naseemuddin M, Iqbal A, Nasti TH, Ghandhi JL, Kapadia AD, Yusuf N. Cell mediated immune responses through TLR4 prevents DMBA-induced mammary carcinogenesis in mice. Int J Cancer 2011; 130:765-74. [PMID: 21455984 DOI: 10.1002/ijc.26100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/18/2011] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) activate signals that are critically involved in the initiation of adaptive immune responses and many tumorigenic chemicals have been associated with activation of those pathways. To determine the role of TLR-4 (TLR4) in mammary carcinogenesis, we subjected TLR4 deficient and wild type (WT) mice to oral gavage with carcinogenic polyaromatic hydrocarbon 7,12-dimethylbenz(a)anthracene (DMBA). TLR4 deficient mice developed more tumors relative to the WT mice. T cells of TLR4 deficient mice produced elevated levels of IL-17 and lower levels of IFN-γ relative to WT mice. IL-12 secreted by CD11c(+) cells was higher in WT mice, whereas greater amounts of IL-23 were produced by CD11c(+) cells from TLR4 deficient mice. Moreover, there was higher incidence of regulatory T cells in TLR4 deficient mice than WT mice. Similarly, various markers of angiogenesis [matrix metalloproteinases (MMP)-2 and MMP-9, CD31 and vascular endothelial growth factor] were highly expressed in tumors from TLR4 deficient mice than WT mice. The results of this study indicate that TLR4 plays an important role in the prevention of DMBA induced mouse mammary tumorigenesis and efforts to divert the cell-mediated immune response may, therefore, prove to be beneficial in the prevention of mammary tumors.
Collapse
Affiliation(s)
- Mohammed Naseemuddin
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, AL 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
21
|
Osterholzer JJ, Chen GH, Olszewski MA, Zhang YM, Curtis JL, Huffnagle GB, Toews GB. Chemokine receptor 2-mediated accumulation of fungicidal exudate macrophages in mice that clear cryptococcal lung infection. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:198-211. [PMID: 21224057 DOI: 10.1016/j.ajpath.2010.11.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/27/2010] [Accepted: 09/02/2010] [Indexed: 12/20/2022]
Abstract
Clearance of pulmonary infection with the fungal pathogen Cryptococcus neoformans is associated with the accumulation and activation of lung macrophages. However, the phenotype of these macrophages and the mechanisms contributing to their accumulation are not well-defined. In this study, we used an established murine model of cryptococcal lung infection and flow cytometric analysis to identify alveolar macrophages (AMs) and the recently described exudate macrophages (ExMs). Exudate macrophages are distinguished from AMs by their strong expression of CD11b and major histocompatibility complex class II and modest expression of costimulatory molecules. Exudate macrophages substantially outnumber AMs during the effector phase of the immune response; and accumulation of ExMs, but not AMs, was chemokine receptor 2 (CCR2) dependent and attributable to the recruitment and subsequent differentiation of Ly-6C(high) monocytes originating from the bone marrow and possibly the spleen. Peak ExM accumulation in wild-type (CCR2(+/+)) mice coincided with maximal lung expression of mRNA for inducible nitric oxide synthase and correlated with the known onset of cryptococcal clearance in this strain of mice. Exudate macrophages purified from infected lungs displayed a classically activated effector phenotype characterized by cryptococcal-enhanced production of inducible nitric oxide synthase and tumor necrosis factor α. Cryptococcal killing by bone marrow-derived ExMs was CCR2 independent and superior to that of AMs. We conclude that clearance of cryptococcal lung infection requires the CCR2-mediated massive accumulation of fungicidal ExMs derived from circulating Ly-6C(high) monocytes.
Collapse
Affiliation(s)
- John J Osterholzer
- Pulmonary Section, Medical Service, Ann Arbor Veterans Affairs Health System, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
San-Blas G, Burger E. Experimental medical mycological research in Latin America - a 2000-2009 overview. Rev Iberoam Micol 2010; 28:1-25. [PMID: 21167301 DOI: 10.1016/j.riam.2010.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 11/26/2022] Open
Abstract
An overview of current trends in Latin American Experimental Medical Mycological research since the beginning of the 21(st) century is done (search from January 2000 to December 2009). Using the PubMed and LILACS databases, the authors have chosen publications on medically important fungi which, according to our opinion, are the most relevant because of their novelty, interest, and international impact, based on research made entirely in the Latin American region or as part of collaborative efforts with laboratories elsewhere. In this way, the following areas are discussed: 1) molecular identification of fungal pathogens; 2) molecular and clinical epidemiology on fungal pathogens of prevalence in the region; 3) cell biology; 4) transcriptome, genome, molecular taxonomy and phylogeny; 5) immunology; 6) vaccines; 7) new and experimental antifungals.
Collapse
Affiliation(s)
- Gioconda San-Blas
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| | | |
Collapse
|
23
|
Brown AJP, Haynes K, Quinn J. Nitrosative and oxidative stress responses in fungal pathogenicity. Curr Opin Microbiol 2009; 12:384-91. [PMID: 19616469 PMCID: PMC2728829 DOI: 10.1016/j.mib.2009.06.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/04/2009] [Accepted: 06/04/2009] [Indexed: 11/30/2022]
Abstract
Fungal pathogenicity has arisen in polyphyletic manner during evolution, yielding fungal pathogens with diverse infection strategies and with differing degrees of evolutionary adaptation to their human host. Not surprisingly, these fungal pathogens display differing degrees of resistance to the reactive oxygen and nitrogen species used by human cells to counteract infection. Furthermore, whilst evolutionarily conserved regulators, such as Hog1, are central to such stress responses in many fungal pathogens, species-specific differences in their roles and regulation abound. In contrast, there is a high degree of commonality in the cellular responses to reactive oxygen and nitrogen species evoked in evolutionarily divergent fungal pathogens.
Collapse
Affiliation(s)
- Alistair J P Brown
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK.
| | | | | |
Collapse
|
24
|
Role of dendritic cells and alveolar macrophages in regulating early host defense against pulmonary infection with Cryptococcus neoformans. Infect Immun 2009; 77:3749-58. [PMID: 19564388 DOI: 10.1128/iai.00454-09] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Successful pulmonary clearance of the encapsulated yeast Cryptococcus neoformans requires a T1 adaptive immune response. This response takes up to 3 weeks to fully develop. The role of the initial, innate immune response against the organism is uncertain. In this study, an established model of diphtheria toxin-mediated depletion of resident pulmonary dendritic cells (DC) and alveolar macrophages (AM) was used to assess the contribution of these cells to the initial host response against cryptococcal infection. The results demonstrate that depletion of DC and AM one day prior to infection results in rapid clinical deterioration and death of mice within 6 days postinfection; this effect was not observed in infected groups of control mice not depleted of DC and AM. Depletion did not alter the microbial burden or total leukocyte recruitment in the lung. Mortality (in mice depleted of DC and AM) was associated with increased neutrophil and B-cell accumulation accompanied by histopathologic evidence of suppurative neutrophilic bronchopneumonia, cyst formation, and alveolar damage. Collectively, these data define an important role for DC and AM in regulating the initial innate immune response following pulmonary infection with C. neoformans. These findings provide important insight into the cellular mechanisms which coordinate early host defense against an invasive fungal pathogen in the lung.
Collapse
|
25
|
Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy. J Immunother 2009; 31:620-32. [PMID: 18600182 DOI: 10.1097/cji.0b013e31818213df] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The immune response to cancer is critically determined by the way in which tumor cells die. As necrotic, stress-associated death can be associated with activation of antitumor immunity, whole tumor cell antigen loading strategies for dendritic cell (DC)-based vaccination have commonly used freeze-thaw "necrotic" lysates as an immunogenic source of tumor-associated antigens. In this study, the effect of such lysates on the ability of DCs to mature in response to well-established maturation stimuli was examined, and methods to enhance lysate-induced DC activation explored. Freeze-thaw lysates were prepared from murine tumor cell lines and their effects on bone marrow-derived DC maturation and function examined. Unmodified freeze-thaw tumor cell lysates inhibited the toll-like receptor-induced maturation and function of bone marrow-derived DCs, preventing up-regulation of CD40, CD86, and major histocompatibility complex class II, and reducing secretion of inflammatory cytokines [interleukin (IL)-12 p70, tumor necrosis factor-alpha, and IL-6]. Although IL-10 secretion was increased by lysate-pulsed DCs, this was not responsible for the observed suppression of IL-12. Although activation of the nuclear factor-kappaB pathway remained intact, the kinase activity of phosphorylated p38 mitogen-activated protein kinase was inhibited in lysate-pulsed DCs. Lysate-induced DC suppression was partially reversed in vitro by induction of tumor cell stress before lysis, and only DCs loaded with stressed lysates afforded protection against tumor challenge in vivo. These data suggest that ex vivo freeze-thaw of tumor cells does not effectively mimic in vivo immunogenic necrosis, and advocates careful characterization and optimization of tumor cell-derived vaccine sources for cancer immunotherapy.
Collapse
|
26
|
Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy. JOURNAL OF IMMUNOTHERAPY (HAGERSTOWN, MD. : 1997) 2009. [PMID: 18600182 DOI: 10.1097/cji.0b013e31818213df00002371-200809000-00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The immune response to cancer is critically determined by the way in which tumor cells die. As necrotic, stress-associated death can be associated with activation of antitumor immunity, whole tumor cell antigen loading strategies for dendritic cell (DC)-based vaccination have commonly used freeze-thaw "necrotic" lysates as an immunogenic source of tumor-associated antigens. In this study, the effect of such lysates on the ability of DCs to mature in response to well-established maturation stimuli was examined, and methods to enhance lysate-induced DC activation explored. Freeze-thaw lysates were prepared from murine tumor cell lines and their effects on bone marrow-derived DC maturation and function examined. Unmodified freeze-thaw tumor cell lysates inhibited the toll-like receptor-induced maturation and function of bone marrow-derived DCs, preventing up-regulation of CD40, CD86, and major histocompatibility complex class II, and reducing secretion of inflammatory cytokines [interleukin (IL)-12 p70, tumor necrosis factor-alpha, and IL-6]. Although IL-10 secretion was increased by lysate-pulsed DCs, this was not responsible for the observed suppression of IL-12. Although activation of the nuclear factor-kappaB pathway remained intact, the kinase activity of phosphorylated p38 mitogen-activated protein kinase was inhibited in lysate-pulsed DCs. Lysate-induced DC suppression was partially reversed in vitro by induction of tumor cell stress before lysis, and only DCs loaded with stressed lysates afforded protection against tumor challenge in vivo. These data suggest that ex vivo freeze-thaw of tumor cells does not effectively mimic in vivo immunogenic necrosis, and advocates careful characterization and optimization of tumor cell-derived vaccine sources for cancer immunotherapy.
Collapse
|
27
|
Stenzel W, Müller U, Köhler G, Heppner FL, Blessing M, McKenzie ANJ, Brombacher F, Alber G. IL-4/IL-13-dependent alternative activation of macrophages but not microglial cells is associated with uncontrolled cerebral cryptococcosis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:486-96. [PMID: 19147811 DOI: 10.2353/ajpath.2009.080598] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both interleukin (IL)-4- and IL-13-dependent Th2-mediated immune mechanisms exacerbate murine Cryptococcus neoformans-induced bronchopulmonary disease. To study the roles of IL-4 and IL-13 in cerebral cryptococcosis, IL-4 receptor alpha-deficient (IL-4Ralpha(-/-)), IL-4-deficient (IL-4(-/-)), IL-13-deficient (IL-13(-/-)), IL-13 transgenic (IL-13(T/+)), and wild-type mice were infected intranasally. IL-13(T/+) mice displayed a higher fungal brain burden than wild-type mice, whereas the brain burdens of IL-4Ralpha(-/-), IL-4(-/-), and IL-13(-/-) mice were significantly lower as compared with wild-type mice. On infection, 68% of wild-type mice and 88% of IL-13-overexpressing IL-13(T/+) mice developed significant cerebral lesions. In contrast, only a few IL-4Ralpha(-/-), IL-4(-/-), and IL-13(-/-) mice had small lesions in their brains. Furthermore, IL-13(T/+) mice harbored large pseudocystic lesions in the central nervous system parenchyma, bordered by voluminous foamy alternatively activated macrophages (aaMphs) that contained intracellular cryptococci, without significant microglial activation. In wild-type mice, aaMphs tightly bordered pseudocystic lesions as well, and these mice, in addition, showed microglial cell activation. Interestingly, in resistant IL-4(-/-), IL-13(-/-), and IL-4Ralpha(-/-) mice, no aaMphs were discernible. Microglial cells of all mouse genotypes neither internalized cryptococci nor expressed markers of alternative activation, although they displayed similar IL-4Ralpha expression levels as macrophages. These data provide the first evidence of the development of aaMphs in a central nervous system infectious disease model, pointing to distinct roles of macrophages versus microglial cells in the central nervous system immune response against C. neoformans.
Collapse
Affiliation(s)
- Werner Stenzel
- Department of Neuropathology, Charité Universitätsmedizin,Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol 2008; 82:12312-24. [PMID: 18842737 DOI: 10.1128/jvi.00968-08] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hemorrhage is a severe manifestation of dengue disease. Virus strain and host immune response have been implicated as the risk factors for hemorrhage development. To delineate the complex interplay between the virus and the host, we established a dengue hemorrhage model in immune-competent mice. Mice inoculated intradermally with dengue virus develop hemorrhage within 3 days. In the present study, we showed by the presence of NS1 antigen and viral nuclei acid that dengue virus actively infects the endothelium at 12 h and 24 h after inoculation. Temporal studies showed that beginning at day 2, there was macrophage infiltration into the vicinity of the endothelium, increased tumor necrosis factor alpha (TNF-alpha) production, and endothelial cell apoptosis in the tissues. In the meantime, endothelial cells in the hemorrhage tissues expressed inducible nitric oxide synthase (iNOS) and nitrotyrosine. In vitro studies showed that primary mouse and human endothelial cells were productively infected by dengue virus. Infection by dengue virus induced endothelial cell production of reactive nitrogen and oxygen species and apoptotic cell death, which was greatly enhanced by TNF-alpha. N(G)-nitro-L-arginine methyl ester and N-acetyl cysteine reversed the effects of dengue virus and TNF-alpha on endothelial cells. Importantly, hemorrhage development and the severity of hemorrhage were greatly reduced in mice lacking iNOS or p47(phox) or treatment with oxidase inhibitor, pointing to the critical roles of reactive nitrogen and oxygen species in dengue hemorrhage.
Collapse
|
29
|
Caza N, Taha R, Qi Y, Blaise G. The effects of surgery and anesthesia on memory and cognition. PROGRESS IN BRAIN RESEARCH 2008; 169:409-22. [PMID: 18394490 DOI: 10.1016/s0079-6123(07)00026-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
This chapter describes current findings from the research into postoperative cognitive dysfunction (POCD) following cardiac and non-cardiac surgery in older adults. The evidence suggests that a significant proportion of patients show POCD in the early weeks following surgery and anesthesia. Specific domains of cognition are affected, especially memory. Much less evidence supports the presence of POCD several months or years after surgery, suggesting that POCD may be transient. However, several methodological issues make it difficult to compare findings across studies. Increasing age is among the most consistently reported patient-related risk factor. Other factors more directly related to the surgery and anesthesia are likely to contribute to the pathogenesis of POCD, including inflammatory processes triggered by the surgical procedure. Animal studies have provided valuable findings otherwise not possible in human studies; these include a correlation between the inflammatory response in the hippocampus and the development of POCD in rodents.
Collapse
Affiliation(s)
- Nicole Caza
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, 4565 chemin Queen-Mary, Montréal, QC H3W 1W5, Canada.
| | | | | | | |
Collapse
|
30
|
Enhanced innate immune responsiveness to pulmonary Cryptococcus neoformans infection is associated with resistance to progressive infection. Infect Immun 2008; 76:4745-56. [PMID: 18678664 DOI: 10.1128/iai.00341-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genetically regulated mechanisms of host defense against Cryptococcus neoformans infection are not well understood. In this study, pulmonary infection with the moderately virulent C. neoformans strain 24067 was used to compare the host resistance phenotype of C57BL/6J with that of inbred mouse strain SJL/J. At 7 days or later after infection, C57BL/6J mice exhibited a significantly greater fungal burden in the lungs than SJL/J mice. Characterization of the pulmonary innate immune response at 3 h after cryptococcal infection revealed that resistant SJL/J mice exhibited significantly higher neutrophilia, with elevated levels of inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) and keratinocyte-derived chemokine (KC)/CXCL1 in the airways, as well as increased whole-lung mRNA expression of chemokines KC/CXCL1, MIP-1alpha/CCL3, MIP-1beta/CCL4, MIP-2/CXCL2, and MCP-1/CCL2 and cytokines interleukin 1beta (IL-1beta) and IL-1Ra. At 7 and 14 days after infection, SJL/J mice maintained significantly higher levels of TNF-alpha and KC/CXCL1 in the airways and exhibited a Th1 response characterized by elevated levels of lung gamma interferon (IFN-gamma) and IL-12/IL-23p40, while C57BL/6J mice exhibited Th2 immunity as defined by eosinophilia and IL-4 production. Alveolar and resident peritoneal macrophages from SJL/J mice also secreted significantly greater amounts of TNF-alpha and KC/CXCL1 following in vitro stimulation with C. neoformans. Intracellular signaling analysis demonstrated that TNF-alpha and KC/CXCL1 production was regulated by NF-kappaB and phosphatidylinositol 3 kinase in both strains; however, SJL/J macrophages exhibited heightened and prolonged activation in response to C. neoformans infection compared to that of C57BL/6J. Taken together, these data demonstrate that an enhanced innate immune response against pulmonary C. neoformans infection in SJL/J mice is associated with natural resistance to progressive infection.
Collapse
|
31
|
Abstract
São apresentados conceitos básicos sobre célula, código genético e síntese protéica, e sobre algumas técnicas de biologia molecular, tais como PCR, PCR-RFLP, seqüenciamento de DNA, RT-PCR e immunoblotting. São fornecidos protocolos de extração de nucleotídeos e de proteínas, como salting out no sangue periférico e métodos do fenol-clorofórmio e do trizol em tecidos. Seguem-se exemplos comentados da aplicação de técnicas de biologia molecular para o diagnóstico etiológico e pesquisa em dermatoses tropicais, com ênfase na leishmaniose tegumentar americana e hanseníase.
Collapse
|
32
|
Capilla J, Clemons KV, Stevens DA. Animal models: an important tool in mycology. Med Mycol 2007; 45:657-84. [PMID: 18027253 PMCID: PMC7107685 DOI: 10.1080/13693780701644140] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 08/22/2007] [Indexed: 10/29/2022] Open
Abstract
Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.
Collapse
Affiliation(s)
- Javier Capilla
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
33
|
Yadav MC, Burudi EME, Alirezaei M, Flynn CC, Watry DD, Lanigan CM, Fox HS. IFN-gamma-induced IDO and WRS expression in microglia is differentially regulated by IL-4. Glia 2007; 55:1385-96. [PMID: 17661345 PMCID: PMC2486430 DOI: 10.1002/glia.20544] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO), a tryptophan catabolizing enzyme, has been implicated in the pathogenesis of various neurological disorders. IDO expression is induced by IFN-gamma and leads to neurotoxicity by generating quinolinic acid. Additionally, it inhibits the immune response through both tryptophan depletion and generating other tryptophan catabolites. IL-4 and IL-13 have been shown to control IDO expression by antagonizing the effects of IFN-gamma in different cell types. Here, we investigated the effects of these cytokines on IDO expression in microglia. Interestingly, we observed that both IL-4 and IL-13 greatly enhanced IFN-gamma-induced IDO expression. However, tryptophanyl-tRNA synthetase (WRS), which is coinduced with IDO by IFN-gamma, is downregulated by IL-4 and IL-13. The effect of IL-4 and IL-13 was independent of STAT-6. Modulation of IDO but not WRS was eliminated by inhibition of protein phosphatase 2A (PP2A) activity. The phosphatidylinositol 3-kinase (PI3K) pathway further differentiated the regulation of these two enzymes, as inhibiting the PI3K pathway eliminated IFN-gamma induction of IDO, whereas such inhibition greatly enhanced WRS expression. These findings show discordance between modulations of expression of two distinct enzymes utilizing tryptophan as a common substrate, and raise the possibility of their involvement in regulating immune responses in various neurological disorders.
Collapse
Affiliation(s)
- Manisha C Yadav
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhou Q, Gault RA, Kozel TR, Murphy WJ. Protection from direct cerebral cryptococcus infection by interferon-gamma-dependent activation of microglial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:5753-61. [PMID: 17442959 DOI: 10.4049/jimmunol.178.9.5753] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The brain represents a significant barrier for protective immune responses in both infectious disease and cancer. We have recently demonstrated that immunotherapy with anti-CD40 and IL-2 can protect mice against disseminated Cryptococcus infection. We now applied this immunotherapy using a direct cerebral cryptococcosis model to study direct effects in the brain. Administration of anti-CD40 and IL-2 significantly prolonged the survival time of mice infected intracerebrally with Cryptococcus neoformans. The protection was correlated with activation of microglial cells indicated by the up-regulation of MHC II expression on brain CD45(low)CD11b(+) cells. CD4(+) T cells were not required for either the microglial cell activation or anticryptococcal efficacy induced by this immunotherapy. Experiments with IFN-gamma knockout mice and IFN-gammaR knockout mice demonstrated that IFN-gamma was critical for both microglial cell activation and the anticryptococcal efficacy induced by anti-CD40/IL-2. Interestingly, while peripheral IFN-gamma production and microglial cell activation were observed early after treatment, negligible IFN-gamma was detected locally in the brain. These studies indicate that immunotherapy using anti-CD40 and IL-2 can augment host immunity directly in the brain against C. neoformans infection and that IFN-gamma is essential for this effect.
Collapse
Affiliation(s)
- Qing Zhou
- Division of Blood and Marrow Transplantation, Cancer Center and Department of Pediatrics, MMC 109, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
35
|
Zhou Q, Murphy WJ. Immune response and immunotherapy to Cryptococcus infections. Immunol Res 2007; 35:191-208. [PMID: 17172646 DOI: 10.1385/ir:35:3:191] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Cryptococcus neoformans is a ubiquitous fungus that can cause lifethreatening infections during immunosuppressive states such as acquired immunodeficiency syndrome (AIDS) and after bone marrow transplantation (BMT). Infected individuals normally succumb to meningitis and meningoencephalitis caused by dissemination of C. neoformans to the brain. In this review, we analyze the current understanding of the interaction between host immune response and C. neoformans as well as the current state of immunotherapeutic strategies for treating cryptococcosis.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
36
|
Dennis VA, Jefferson A, Singh SR, Ganapamo F, Philipp MT. Interleukin-10 anti-inflammatory response to Borrelia burgdorferi, the agent of Lyme disease: a possible role for suppressors of cytokine signaling 1 and 3. Infect Immun 2006; 74:5780-9. [PMID: 16988256 PMCID: PMC1594918 DOI: 10.1128/iai.00678-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It has been established that interleukin-10 (IL-10) inhibits inflammatory cytokines produced by macrophages in response to Borrelia burgdorferi or its lipoproteins. The mechanism by which IL-10 exerts this anti-inflammatory effect is still unknown. Recent findings indicate that suppressors of cytokine signaling (SOCS) proteins are induced by cytokines and Toll-like receptor (TLR)-mediated stimuli, and in turn they can down-regulate cytokine and TLR signaling in macrophages. Because it is known that SOCS are induced by IL-10 and that B. burgdorferi and its lipoproteins most likely interact via TLR2 or the heterodimers TLR2/1 and/or TLR2/6, we hypothesized that SOCS are induced by IL-10 and B. burgdorferi and its lipoproteins in macrophages and that SOCS may mediate the inhibition by IL-10 of concomitantly elicited cytokines. We report here that mouse J774 macrophages incubated with IL-10 and added B. burgdorferi spirochetes (freeze-thawed, live, or sonicated) or lipidated outer surface protein A (L-OspA) augmented their SOCS1/SOCS3 mRNA and protein expression, with SOCS3 being more abundant. Pam(3)Cys, a synthetic lipopeptide, also induced SOCS1/SOCS3 expression under these conditions, but unlipidated OspA was ineffective. Neither endogenous IL-10 nor the translation inhibitor cycloheximide blocked SOCS1/SOCS3 induction by B. burgdorferi and its lipoproteins, indicating that the expression of other genes is not required. This temporally correlated with the IL-10-mediated inhibition of the inflammatory cytokines IL-1beta, IL-6, IL-12p40, IL-18, and tumor necrosis factor alpha. Our data are evidence to suggest that expression of SOCS is part of the mechanism of IL-10-mediated inhibition of inflammatory cytokines elicited by B. burgdorferi and its lipoproteins.
Collapse
Affiliation(s)
- Vida A Dennis
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, 18703 Three Rivers Rd., Covington, LA 70433, USA.
| | | | | | | | | |
Collapse
|
37
|
Stevens DA, Brummer E, Clemons KV. Interferon- gamma as an antifungal. J Infect Dis 2006; 194 Suppl 1:S33-7. [PMID: 16921470 DOI: 10.1086/505357] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- David A Stevens
- Department of Medicine, Santa Clara Valley Medical Center and California Institute for Medical Research, San Jose, CA, 95128, USA.
| | | | | |
Collapse
|
38
|
Fukui O, Kinugasa Y, Fukuda A, Fukuda H, Tskitishvili E, Hayashi S, Song M, Kanagawa T, Hosono T, Shimoya K, Murata Y. Post-ischemic hypothermia reduced IL-18 expression and suppressed microglial activation in the immature brain. Brain Res 2006; 1121:35-45. [PMID: 17010950 DOI: 10.1016/j.brainres.2006.08.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 08/21/2006] [Accepted: 08/27/2006] [Indexed: 11/15/2022]
Abstract
Inflammation is an important factor for hypoxia-ischemia (HI) brain injury. Interleukin (IL)-18 is a proinflammatory cytokine which may be a contributor to injury in the immature brain after HI. To investigate the effects of post-HI hypothermia on IL-18 in the developing brain, 7-day-old rats were subjected to left carotid artery ligation followed by 8% oxygen for 60 min and divided into a hypothermia group (rectal temperature 32 degrees C for 24 h) and a normothermia group (36 degrees C for 24 h). The IL-18 mRNA was analyzed with real-time RT-PCR, and the protein level was analyzed by Western blot, and the location and source of IL-18 were assessed by immunohistochemistry. The significant increase of the IL-18 mRNA was observed in the ipsilateral hemispheres of the normothermia group at 24 h and 72 h after HI compared with controls, but the level in the ipsilateral hemispheres of the hypothermia group was significantly reduced at both time points, compared with the normothermia group, respectively. The IL-18 protein level in the ipsilateral hemispheres of the normothermia group significantly increased at 72 h after HI compared with controls, however, the protein level of the hypothermia group was significantly decreased, compared with the normothermia group. IL-18-positive cells were observed throughout the entire cortex, corpus callosum (CC) and striatum in the ipsilateral hemispheres of normothermia group at 72 h after HI, however, little positive cells were observed in the hypothermia group. Double labeling immunostaining found that most of the IL-18-positive cells were colocalized with lectin, which is a marker of microglia. The number of ameboid microglia (AM) in the normothermia group was significantly increased in cortex and CC, compared with the number in controls, but there were very few ramified microglia (RM) in these areas. In contrast, the number of AM in the hypothermia group was significantly decreased in cortex and CC, compared with the number in the normothermia group, and there were no significant differences in the number of AM and RM between the hypothermia group and controls. In conclusion, we found that IL-18 mRNA and the protein level were attenuated by post-HI hypothermia and that post-HI hypothermia may decrease microglia activation in the developing brain.
Collapse
Affiliation(s)
- On Fukui
- Department of Obstetrics and Gynecology, Osaka University School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Missall TA, Pusateri ME, Donlin MJ, Chambers KT, Corbett JA, Lodge JK. Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: implications for virulence. EUKARYOTIC CELL 2006; 5:518-29. [PMID: 16524907 PMCID: PMC1398057 DOI: 10.1128/ec.5.3.518-529.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ability of the fungal pathogen Cryptococcus neoformans to evade the mammalian innate immune response and cause disease is partially due to its ability to respond to and survive nitrosative stress. In this study, we use proteomic and genomic approaches to elucidate the response of C. neoformans to nitric oxide stress. This nitrosative stress response involves both transcriptional, translational, and posttranslational regulation. Proteomic and genomic analyses reveal changes in expression of stress response genes. In addition, genes involved in cell wall organization, respiration, signal transduction, transport, transcriptional control, and metabolism show altered expression under nitrosative conditions. Posttranslational modifications of transaldolase (Tal1), aconitase (Aco1), and the thiol peroxidase, Tsa1, are regulated during nitrosative stress. One stress-related protein up-regulated in the presence of nitric oxide stress is glutathione reductase (Glr1). To further investigate its functional role during nitrosative stress, a deletion mutant was generated. We show that this glr1Delta mutant is sensitive to nitrosative stress and macrophage killing in addition to being avirulent in mice. These studies define the response to nitrosative stress in this important fungal pathogen.
Collapse
Affiliation(s)
- Tricia A Missall
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
40
|
Zucker KE, Kamberi P, Sobel RA, Cloud G, Meli DN, Clemons KV, Stevens DA, Williams PL, Leib SL. Temporal expression of inflammatory mediators in brain basilar artery vasculitis and cerebrospinal fluid of rabbits with coccidioidal meningitis. Clin Exp Immunol 2006; 143:458-66. [PMID: 16487245 PMCID: PMC1809608 DOI: 10.1111/j.1365-2249.2006.03011.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2005] [Indexed: 11/29/2022] Open
Abstract
Strokes due to transmural vasculitis associated with coccidioidal meningitis result in significant morbidity and mortality. The immunological and inflammatory processes responsible are poorly understood. To determine the inflammatory mediators, i.e. cytokines, chemokines, iNOS, matrix metalloproteinase-9 (MMP-9), that possibly contribute to vasculitis, temporal mRNA expression in brain basilar artery samples and MMP-9 protein in the CSF of male NZW rabbits infected intracisternally with 6.5 x 10(4) arthroconidia of Coccidioides immitis were assessed. Five infected and 3 sham-injected rabbits at each time point were euthanized 4, 9, 14 and 20 days post infection. All infected rabbits had neurological abnormalities and severe vasculitis in the basilar arteries on days 9-20. In basilar arteries of infected animals versus controls, mRNAs encoding for IL-6, iNOS, IFN-gamma, IL-2, MCP-1, IL-1beta, IL-10, TNF-alpha, CCR-1, MMP-9, TGF-beta, as well as MMP-9 protein in CSF, were found to be significantly up-regulated. Thus, this study identified inflammatory mediators associated with CNS vasculitis and meningitis due to C. immitis infection. Assessment of the individual contribution of each mediator to vasculitis may offer novel approaches to the treatment of coccidioidal CNS infection. This study also provides unique methodology for immunology studies in a rabbit model.
Collapse
Affiliation(s)
- K E Zucker
- Dept. of Laboratory Medicine (SC-12), Children's Hospital Central California, 9300 Valley Children's Place, Madera, CA 93638-8762, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Capilla J, Maffei CML, Clemons KV, Sobel RA, Stevens DA. Experimental systemic infection withCryptococcus neoformansvar.grubiiandCryptococcusgattiiin normal and immunodeficient mice. Med Mycol 2006; 44:601-10. [PMID: 17071553 DOI: 10.1080/13693780600810040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Cryptococcus neoformans (Cn) var. grubii or Cryptococcus neoformans var. neoformans infection is usually associated with immunocompromised hosts, whereas Cryptococcusgattii more frequently causes disease in immunocompetent hosts. We examined the effects of immunodeficiency and glucocorticoid-induced immunosuppression on systemic murine infection induced by i.v. inoculation with these pathogens. SCID and immunocompetent BALB/c and C57BL/6 mice were infected with <or=107 yeast of Cn var. grubii or C. gattii; immunosuppressed BALB/c mice were infected with <or=106 yeast. Mortality was inoculum size-dependent in each model system, for both organisms. Following infection with 106 CFU of either Cn var. grubii or C. gattii immunocompetent BALB/c mice survived longer than immunosuppressed mice (P<0.0001 in both cases); no differences were found using lower inocula. SCID mice infected with Cn var. grubii or C. gattii died sooner than BALB/c mice (P<0.0013, all comparisons). Unexpectedly, BALB/c mice infected with C. gattii developed external lesions. Immunocompetent mice developed rectal prolapse more frequently whereas immunosuppressed mice developed more frequent skin lesions, predominantly on the tail. The fungal burden was especially high in rectum, skin and lung tissues. Histologic examination showed extensive infection of the rectum and skin and pneumonitis. Determination of CFU from various organs of immunocompetent BALB/c mice infected i.v. with 105 CFU of C. gattii or Cn var. grubii showed significant temporal increase of burdens of Cn var. grubii in brain and liver (P<0.003); other organs showed decreasing fungal burden. C.gattii was recovered only from liver and lungs, no CFU were detected in the other organs. As opposed to epidemiologic observations, our results demonstrate no predilection by C. gattii for infection of immunocompetent over immunosuppressed hosts; immunosuppression increased the risk of severe cryptococcosis by both varieties, especially at high inocula. This is the first report of C. gattii inducing experimental cutaneous and intestinal mucosal infection; Cn var. grubii did not affect these tissues, indicating differences in tissue tropism of these pathogens.
Collapse
Affiliation(s)
- Javier Capilla
- California Institute for Medical Research, San Jose, California, USA
| | | | | | | | | |
Collapse
|
42
|
Gao L, Taha R, Gauvin D, Othmen LB, Wang Y, Blaise G. Postoperative Cognitive Dysfunction After Cardiac Surgery. Chest 2005; 128:3664-70. [PMID: 16304328 DOI: 10.1378/chest.128.5.3664] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Prolonged postoperative cognitive dysfunction (POCD) is reported to occur frequently after cardiac surgery. However, it is rarely assessed in routine clinical practice and receives little attention. Although the cerebral consequences of cardiopulmonary bypass have been measured clinically, insights into the resulting molecular and pathologic events within the brain have only begun to be investigated. POCD is likely to impair quality of life and constitutes a large burden on society when elderly patients prematurely lose their independence. Numerous studies have reported that neurocognitive deficit is associated with heightened mortality, increased length of hospital stay, and discharge to a nursing home. This is linked with a tremendous demand for health-care resources. Because of the magnitude of the clinical problem, serious consideration must be directed toward understanding its etiology and the development of neuroprotective strategies. Clearly identifying the mechanisms of POCD is challenging. The purpose of this review is to discuss recent developments in our understanding of the pathophysiologic mechanisms, prevention, and treatments that have been designed to ameliorate brain dysfunction after cardiac surgery.
Collapse
Affiliation(s)
- Lan Gao
- Laboratory of Anesthesia, Department of Anesthesia and Research Centre, Centre Hospitalier de l'University de Montreal, Hospital Notre-Dame, QC, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Missall TA, Lodge JK, McEwen JE. Mechanisms of resistance to oxidative and nitrosative stress: implications for fungal survival in mammalian hosts. EUKARYOTIC CELL 2005; 3:835-46. [PMID: 15302816 PMCID: PMC500878 DOI: 10.1128/ec.3.4.835-846.2004] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Tricia A Missall
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA
| | | | | |
Collapse
|
44
|
Felderhoff-Mueser U, Schmidt OI, Oberholzer A, Bührer C, Stahel PF. IL-18: a key player in neuroinflammation and neurodegeneration? Trends Neurosci 2005; 28:487-93. [PMID: 16023742 DOI: 10.1016/j.tins.2005.06.008] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 06/08/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
Interleukin (IL)-18 is a potent inflammatory cytokine of the IL-1 family. It is synthesized as an inactive precursor (pro-IL-18), which is cleaved into its functionally active form by caspase-1. Resident cells of the CNS express IL-18 and caspase-1 constitutively, thus providing a local IL-18-dependent immune response. Recent studies have highlighted a crucial role for IL-18 in mediating neuroinflammation and neurodegeneration in the CNS under pathological conditions, such as bacterial and viral infection, autoimmune demyelinating disease, and hypoxic-ischemic, hyperoxic and traumatic brain injuries. This review provides a synopsis of the current knowledge of IL-18-dependent mechanisms of action during acute neurodegeneration in immature and adult brains.
Collapse
Affiliation(s)
- Ursula Felderhoff-Mueser
- Department of Neonatology, Campus Virchow Klinikum, Charité University Medical School, 13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
45
|
Nooney L, Matthews RC, Burnie JP. Evaluation of Mycograb®, amphotericin B, caspofungin, and fluconazole in combination against Cryptococcus neoformans by checkerboard and time-kill methodologies. Diagn Microbiol Infect Dis 2005; 51:19-29. [PMID: 15629225 DOI: 10.1016/j.diagmicrobio.2004.08.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 08/31/2004] [Indexed: 11/29/2022]
Abstract
This article reported the identification of heat shock protein 90 (hsp90) homologues by immunoblot in Cryptococcus neoformans. Mycograb, a genetically recombinant antibody against hsp90, was evaluated against 8 clinical isolates and the National External Quality Assessment Service for Microbiology strain of C. neoformans alone and in combination with amphotericin B, caspofungin, and fluconazole by checkerboard assay. At the end point of an optically clear well, the minimum inhibitory concentration (MIC) 0's ranged from 256 to 1024 microg/mL for Mycograb, from 0.5 to 1 microg/mL for amphotericin B, and from 16 to 32 microg/mL for caspofungin. The combination of Mycograb and amphotericin B produced a fractional inhibitory concentration index from 0.27 to 0.56, indicating a mainly synergistic effect, whereas for caspofungin, it varied from 0.5 to 2. At an end point of > or =50% inhibition, the MIC-2s varied from 16 to 128 microg/mL for Mycograb and from 0.125 to 16 microg/mL for fluconazole. The fractional inhibitory concentration index classified the combination as indifferent for 5 isolates, additive for 3 more isolates, and synergistic in a single isolate. Time-kill analysis on 2 isolates (F/7844 and F/10156), which had synergistic and additive results with amphotericin B, respectively, on checkerboard was performed with 4-16 microg/mL of Mycograb, 2-8 microg/mL of fluconazole, and 0.0625-2 microg/mL of amphotericin B. This demonstrated an increasingly static effect with augmenting concentrations of fluconazole and an initial static effect with amphotericin B at lower concentrations, which became fungicidal as the level of drug increased. The addition of either 4 or 8 microg/mL of Mycograb to 0.5 microg/mL of amphotericin B with C. neoformans F/7844 changed a static effect to a fungicidal effect at 8 h with an increased killing of 1.2 logs at 48 h. With C. neoformans F/10156, the addition of 16 microg/mL of Mycograb to 0.25 microg/mL of amphotericin B produced a difference in killing from 1 logarithm after 4 h to 1.5 logarithms after 48 h. These data suggest that the combination of amphotericin B and Mycograb would be worth exploring in the treatment of infection due to C. neoformans.
Collapse
Affiliation(s)
- Lucy Nooney
- NeuTec Pharma plc, Manchester Royal Infirmary, Manchester M13 9WL, UK
| | | | | |
Collapse
|