1
|
Bourg C, Hodille E, Ader F, Dumitrescu O, Genestet C. Impact of autologous serum on an in vitro granuloma model to study the dynamics of Mycobacterium tuberculosis infection. IJTLD OPEN 2025; 2:310-313. [PMID: 40365027 PMCID: PMC12068457 DOI: 10.5588/ijtldopen.24.0691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/07/2025] [Indexed: 05/15/2025]
Affiliation(s)
- C Bourg
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
| | - E Hodille
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
| | - F Ader
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Service des Maladies infectieuses et tropicales, Lyon, France
- Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Lyon, France
| | - O Dumitrescu
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
- Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Lyon, France
| | - C Genestet
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
| |
Collapse
|
2
|
Mobed A, Alivirdiloo V, Gholami S, Moshari A, Mousavizade A, Naderian R, Ghazi F. Nano-Medicine for Treatment of Tuberculosis, Promising Approaches Against Antimicrobial Resistance. Curr Microbiol 2024; 81:326. [PMID: 39182006 DOI: 10.1007/s00284-024-03853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients' well-being and quality of life. Tumor cells that survive treatment modalities can become chemotherapy resistant at the molecular level. Furthermore, negative effects on normal cells occur concurrently. Strategies that minimize the negative effects on normal cells while efficiently targeting infected cells are required. Nanotherapies, according to recent research, may be one option in this direction. The present study differs from previously published review studies as it concentrates on examining the most recently developed nanoparticles for anti-mycobacterial purposes. Such novel approaches have the potential to reduce harmful side effects and improve patients' health prognoses. Current paper provides a comprehensive analysis of recent advances in nanotherapy systems for the pulmonary delivery of anti-tuberculous drugs. In addition, to low-priced and convenient alternatives for pulmonary delivery, different types of NPs for oral and topical application were also deliberated and summarized in this review.
Collapse
Affiliation(s)
- Ahmad Mobed
- Department of Community Medicine, Faculty of Medicine, Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Vahid Alivirdiloo
- Medical Doctor Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Sarah Gholami
- Young Researchers and Ellie Club, Babol Branch. Islamic Azad University, Babol, Iran
| | | | | | - Ramtin Naderian
- Student Committee of Medical Education Development, Education Development Center, Semnan University of Medical Science, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Mobed A, Darvishi M, Kohansal F, Dehfooli FM, Alipourfard I, Tahavvori A, Ghazi F. Biosensors; nanomaterial-based methods in diagnosing of Mycobacterium tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 34:100412. [PMID: 38222862 PMCID: PMC10787265 DOI: 10.1016/j.jctube.2023.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Diagnosis of Mycobacterium tuberculosis (Mtb) before the progression of pulmonary infection can be very effective in its early treatment. The Mtb grows so slowly that it takes about 6-8 weeks to be diagnosed even using sensitive cell culture methods. The main opponent in tuberculosis (TB) and nontuberculous mycobacterial (NTM) epidemiology, like in all contagious diseases, is to pinpoint the source of infection and reveal its transmission and dispersion ways in the environment. It is crucial to be able to distinguish and monitor specific mycobacterium strains in order to do this. In food analysis, clinical diagnosis, environmental monitoring, and bioprocess, biosensing technologies have been improved to manage and detect Mtb. Biosensors are progressively being considered pioneering tools for point-of-care diagnostics in Mtb discoveries. In this review, we present an epitome of recent developments of biosensing technologies for M. tuberculosis detection, which are categorized on the basis of types of electrochemical, Fluorescent, Photo-thermal, Lateral Flow, Magneto-resistive, Laser, Plasmonic, and Optic biosensors.
Collapse
Affiliation(s)
- Ahmad Mobed
- Infectious and Tropical Diseases Research Center, Clinical Research Institute, Tabriz University of Medical Sciences, Iran
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Fereshteh Kohansal
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Iraj Alipourfard
- Institute of Medical Science and Technology, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Tahavvori
- Internal Department, Medical Faculty, Urmia University of Medical Sciences, Iran
| | - Farhood Ghazi
- Internal Department, Medical Faculty, Urmia University of Medical Sciences, Iran
| |
Collapse
|
4
|
Nakayama H, Hanafusa K, Yamaji T, Oshima E, Hotta T, Takamori K, Ogawa H, Iwabuchi K. Phylactic role of anti-lipoarabinomannan IgM directed against mannan core during mycobacterial infection in macrophages. Tuberculosis (Edinb) 2023; 143:102391. [PMID: 37574397 DOI: 10.1016/j.tube.2023.102391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
Mycobacteria enter host phagocytes, such as macrophages by binding to several receptors on phagocytes. Several mycobacterial species, including Mycobacterium tuberculosis have evolved systems to evade host bactericidal pathways. Lipoarabinomannan (LAM) is an essential mycobacterial molecule for both binding to phagocytes and escaping from bactericidal pathways. Integrin CD11b plays critical roles as a phagocytic receptor and contributes to host defense by mediating both nonopsonic and opsonic phagocytosis. However, the mechanisms by which CD11b-mediated phagocytosis associates with LAM and drives the phagocytic process of mycobacteria remain to be fully elucidated. We recently identified TMDU3 as anti-LAM IgM antibody against the mannan core of LAM. The present study investigated the roles of CD11b and TMDU3 in macrophage phagocytosis of mycobacteria and subsequent bactericidal lysosomal fusion to phagosomes. CD11b knockout cells generated by a CRISPR/Cas9 system showed significant attenuation of the ability to phagocytose non-opsonized mycobacteria and LAM-conjugated beads. Moreover, recombinant human CD11b protein was found to bind to LAM. TMDU3 markedly inhibited macrophage phagocytosis of non-opsonized mycobacteria. This antibody slightly increased the phagocytosis of mycobacteria under opsonized conditions, whereas it significantly enhanced CD11b-mediated bactericidal functions. Taken together, these results show a novel phylactic role of anti-LAM IgM during mycobacterial infection in macrophages.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan; Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan; Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan.
| | - Kei Hanafusa
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Eriko Oshima
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Tomomi Hotta
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan; Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan; Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan
| |
Collapse
|
5
|
Allué-Guardia A, Torrelles JB, Sigal A. Tuberculosis and COVID-19 in the elderly: factors driving a higher burden of disease. Front Immunol 2023; 14:1250198. [PMID: 37841265 PMCID: PMC10569613 DOI: 10.3389/fimmu.2023.1250198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) and SARS-CoV-2 are both infections that can lead to severe disease in the lower lung. However, these two infections are caused by very different pathogens (Mycobacterium vs. virus), they have different mechanisms of pathogenesis and immune response, and differ in how long the infection lasts. Despite the differences, SARS-CoV-2 and M.tb share a common feature, which is also frequently observed in other respiratory infections: the burden of disease in the elderly is greater. Here, we discuss possible reasons for the higher burden in older adults, including the effect of co-morbidities, deterioration of the lung environment, auto-immunity, and a reduced antibody response. While the answer is likely to be multifactorial, understanding the main drivers across different infections may allow us to design broader interventions that increase the health-span of older people.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- International Center for the Advancement of Research and Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Carabalí-Isajar ML, Rodríguez-Bejarano OH, Amado T, Patarroyo MA, Izquierdo MA, Lutz JR, Ocampo M. Clinical manifestations and immune response to tuberculosis. World J Microbiol Biotechnol 2023; 39:206. [PMID: 37221438 DOI: 10.1007/s11274-023-03636-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/29/2023] [Indexed: 05/25/2023]
Abstract
Tuberculosis is a far-reaching, high-impact disease. It is among the top ten causes of death worldwide caused by a single infectious agent; 1.6 million tuberculosis-related deaths were reported in 2021 and it has been estimated that a third of the world's population are carriers of the tuberculosis bacillus but do not develop active disease. Several authors have attributed this to hosts' differential immune response in which cellular and humoral components are involved, along with cytokines and chemokines. Ascertaining the relationship between TB development's clinical manifestations and an immune response should increase understanding of tuberculosis pathophysiological and immunological mechanisms and correlating such material with protection against Mycobacterium tuberculosis. Tuberculosis continues to be a major public health problem globally. Mortality rates have not decreased significantly; rather, they are increasing. This review has thus been aimed at deepening knowledge regarding tuberculosis by examining published material related to an immune response against Mycobacterium tuberculosis, mycobacterial evasion mechanisms regarding such response and the relationship between pulmonary and extrapulmonary clinical manifestations induced by this bacterium which are related to inflammation associated with tuberculosis dissemination through different routes.
Collapse
Grants
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- b PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá 111221, Colombia
- c Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Calle 222#55-37, Bogotá 111166, Colombia
- d Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
- e Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, Bogotá 111411. Colombia
- e Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, Bogotá 111411. Colombia
- f Universidad Distrital Francisco José de Caldas, Carrera 3#26A-40, Bogotá 110311, Colombia
Collapse
Affiliation(s)
- Mary Lilián Carabalí-Isajar
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
- Biomedical and Biological Sciences Programme, Universidad del Rosario, Carrera 24#63C-69, 111221, Bogotá, Colombia
| | | | - Tatiana Amado
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, 111321, Bogotá, Colombia
| | - María Alejandra Izquierdo
- Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, 111411, Bogotá, Colombia
| | - Juan Ricardo Lutz
- Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, 111411, Bogotá, Colombia.
| | - Marisol Ocampo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia.
- Universidad Distrital Francisco José de Caldas, Carrera 3#26A-40, 110311, Bogotá, Colombia.
| |
Collapse
|
7
|
Tang H, Hu X, Li L, Deng S, Jiang Y, Luo L, Cai R, Yang Y, Wu C, Gong X, Feng J. Complement regulatory proteins: Candidate biomarkers in differentiating tuberculosis pleural effusion. Front Immunol 2023; 14:1073884. [PMID: 36820087 PMCID: PMC9938761 DOI: 10.3389/fimmu.2023.1073884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/20/2023] [Indexed: 02/07/2023] Open
Abstract
Background and aims Complement activation is essential for tuberculosis pleural effusion. However, little is known about the value of complement regulatory protein (CD46, CD55, and CD59) in the differential diagnosis of tuberculosis. Materials and methods Ninety-nine patients with exudative pleural effusion admitted to Xiangya Hospital of Central South University from June 1, 2021to November 14, 2022 were enrolled. The expression levels of soluble CD46 (sCD46), soluble CD55 (sCD55), and soluble CD59 (sCD59) in pleural effusion were quantified by enzyme-linked immunosorbent assay, and the receiver operating characteristic (ROC) curves were plotted to evaluate the diagnostic and co-diagnostic values. Results The ADA level is higher in TPE patients than non-TPE patients. It is well-found that TPE patients had lower levels of sCD46, sCD55, and sCD59 compared with non-TPE patients. Moreover, the expression of sCD46, sCD55, and sCD59 in pleural effusion was negatively correlated with ADA. In addition, the diagnostic efficacy of sCD46, sCD55 and sCD59 was comparable to that of ADA, with 0.896, 0.857, 0.858 and 0.893, respectively. Furthermore, combine detection of sCD46, sCD55, sCD59 and ADA could improve the diagnostic accuracy. Conclusions Complement regulatory factors (CD46, CD55, and CD59) were validated by this project to be promising candidate biomarkers for the diagnosis of TPE with high accuracy. The combination of the CD46, CD55, and CD59 and ADA assay exist a better diagnostic value in TPE.
Collapse
Affiliation(s)
- Huan Tang
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Li
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanyuan Jiang
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lisha Luo
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runjin Cai
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yifei Yang
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chendong Wu
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxiao Gong
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juntao Feng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Im H, Kim T, Na S, Song IU, Kim SH, Oh YS, Oh J, Kim W. Low serum complement level is associated with higher mortality in tuberculous meningitis: a retrospective cohort study. ENCEPHALITIS 2023; 3:7-14. [PMID: 37469713 PMCID: PMC10295820 DOI: 10.47936/encephalitis.2022.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 07/21/2023] Open
Abstract
Purpose We evaluated the associations between serum complement levels and tuberculous meningitis (TBM), bacterial meningitis (BM), and viral meningitis (VM), as well as the association between serum complement levels and mortality in TBM. Methods Background information and blood/cerebrospinal fluid analysis results were collected from 2009 to 2019. Patients who had serum complement level data collected at admission and who were diagnosed with TBM (n = 97), BM (n = 31), or VM (n = 557) were enrolled. Results Initial serum complement levels were significantly lower in the TBM group than the VM group in both the total population and the propensity score-matched population. In the TBM and VM groups, compared to patients with initial highest-quartile C4 level, patients in the lowest quartile (C4 < 24.3 mg/dL) had significantly greater odds of TBM diagnosis (odds ratio, 2.2; 95% confidence interval, 1.0-4.5; p = 0.038). In the TBM group, patients with the lowest-quartile C3 level (<96.9 mg/dL) experienced a significantly higher 90-day mortality rate compared to other TBM patients (hazard ratio, 19.0; 95% confidence interval, 2.1-167.4.5; p = 0.008). Conclusion Both serum C3 and C4 levels were significantly lower in the TBM group than in the VM group. TBM patients with lower serum C3 level had a significantly higher mortality rate than those with higher C3 level.
Collapse
Affiliation(s)
- Hansol Im
- Department of Neurology, The Catholic University of Korea, Incheon St. Mary’s Hospital, Seoul, Korea
| | - Taewon Kim
- Department of Neurology, The Catholic University of Korea, Incheon St. Mary’s Hospital, Seoul, Korea
| | - Seunghee Na
- Department of Neurology, The Catholic University of Korea, Incheon St. Mary’s Hospital, Seoul, Korea
| | - In-Uk Song
- Department of Neurology, The Catholic University of Korea, Incheon St. Mary’s Hospital, Seoul, Korea
| | - Seong-Hoon Kim
- Department of Neurology, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Seoul, Korea
| | - Yoon-Sang Oh
- Department of Neurology, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Seoul, Korea
| | - Juhee Oh
- Department of Neurology, The Catholic University of Korea, St. Vincent’s Hospital, Seoul, Korea
| | - Woojun Kim
- Department of Neurology, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul, Korea
| |
Collapse
|
9
|
Du Y, Xin H, Cao X, Liu Z, He Y, Zhang B, Yan J, Wang D, Guan L, Shen F, Feng B, He Y, Liu J, Jin Q, Pan S, Zhang H, Gao L. Association Between Plasma Exosomes S100A9/C4BPA and Latent Tuberculosis Infection Treatment: Proteomic Analysis Based on a Randomized Controlled Study. Front Microbiol 2022; 13:934716. [PMID: 35935235 PMCID: PMC9355536 DOI: 10.3389/fmicb.2022.934716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIdentifying host plasma exosome proteins associated with host response to latent tuberculosis infection (LTBI) treatment might promote our understanding of tuberculosis (TB) pathogenesis and provide useful tools for implementing the precise intervention.MethodsBased on an open-label randomized controlled trial (RCT) aiming to evaluate the short-course regimens for LTBI treatment, plasma exosomes from pre- and post-LTBI treatment were retrospectively detected by label-free quantitative protein mass spectrometry and validated by a parallel reaction monitoring method for participants with changed or not changed infection testing results after LTBI treatment. Eligible participants for both screening and verification sets were randomly selected from the based-RCT in a 1:1 ratio by age and gender. Reversion was defined as a decrease in IFN-γ levels from >0.70 IU/ml prior to treatment to 0.20 IU/ml within 1 week of treatment. The predictive ability of the candidate proteins was evaluated by receiver operating characteristic (ROC) analysis.ResultsTotally, two sample sets for screening (n = 40) and validation (n = 60) were included. Each of them included an equal number of subjects with persistent positive or reversed QuantiFERON-TB Gold In-Tube (QFT) results after LTBI. A total of 2,321 exosome proteins were detected and 102 differentially expressed proteins were identified to be associated with QFT reversion. Proteins with high confidence and original values intact were selected to be further verified. Totally, 9 downregulated proteins met the criteria and were validated. After verification, C4BPA and S100A9 were confirmed to be still significantly downregulated (fold change <0.67, p < 0.05). The respective areas under the ROC curve were 0.73 (95% CI: 0.57–0.89) and 0.69 (95% CI: 0.52–0.86) for C4BPA and S100A9, with a combined value of 0.78 (95% CI: 0.63–0.93). The positive and negative predictive values for combined markers were 70.10% (95% CI: 50.22–86.30%) and 55.63% (95% CI: 29.17–61.00%).ConclusionOur findings suggest that downregulated C4BPA and S100A9 in plasma exosomes might be associated with a host positive response to LTBI treatment. Further studies are warranted to verify the findings and potential underlying mechanisms in varied populations with a larger sample size.
Collapse
Affiliation(s)
- Ying Du
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Henan Xin
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuefang Cao
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zisen Liu
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
| | - Yijun He
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Zhang
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
| | - Jiaoxia Yan
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
| | - Dakuan Wang
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
| | - Ling Guan
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Fei Shen
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Boxuan Feng
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongpeng He
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmin Liu
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Qi Jin
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shouguo Pan
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
- Shouguo Pan
| | - Haoran Zhang
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Haoran Zhang
| | - Lei Gao
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Lei Gao
| |
Collapse
|
10
|
Shah T, Shah Z, Yasmeen N, Baloch Z, Xia X. Pathogenesis of SARS-CoV-2 and Mycobacterium tuberculosis Coinfection. Front Immunol 2022; 13:909011. [PMID: 35784278 PMCID: PMC9246416 DOI: 10.3389/fimmu.2022.909011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, is an infectious disease that poses severe threats to global public health and significant economic losses. The COVID-19 global burden is rapidly increasing, with over 246.53 million COVID-19 cases and 49.97 million deaths reported in the WHO 2021 report. People with compromised immunity, such as tuberculosis (TB) patients, are highly exposed to severe COVID-19. Both COVID-19 and TB diseases spread primarily through respiratory droplets from an infected person to a healthy person, which may cause pneumonia and cytokine storms, leading to severe respiratory disorders. The COVID-19-TB coinfection could be fatal, exacerbating the current COVID-19 pandemic apart from cellular immune deficiency, coagulation activation, myocardial infarction, and other organ dysfunction. This study aimed to assess the pathogenesis of SARS-CoV-2-Mycobacterium tuberculosis coinfections. We provide a brief overview of COVID19-TB coinfection and discuss SARS-CoV-2 host cellular receptors and pathogenesis. In addition, we discuss M. tuberculosis host cellular receptors and pathogenesis. Moreover, we highlight the impact of SARS-CoV-2 on TB patients and the pathological pathways that connect SARS-CoV-2 and M. tuberculosis infection. Further, we discuss the impact of BCG vaccination on SARS-CoV-2 cases coinfected with M. tuberculosis, as well as the diagnostic challenges associated with the coinfection.
Collapse
Affiliation(s)
- Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zahir Shah
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Nafeesa Yasmeen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
11
|
Kremlitzka M, Colineau L, Nowacka AA, Mohlin FC, Wozniak K, Blom AM, King BC. Alternative translation and retrotranslocation of cytosolic C3 that detects cytoinvasive bacteria. Cell Mol Life Sci 2022; 79:291. [PMID: 35546365 PMCID: PMC9095555 DOI: 10.1007/s00018-022-04308-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/29/2022] [Accepted: 04/12/2022] [Indexed: 01/05/2023]
Abstract
Complement C3 was originally regarded as a serum effector protein, although recent data has emerged suggesting that intracellular C3 can also regulate basic cellular processes. Despite the growing interest in intracellular C3 functions, the mechanism behind its generation has not been demonstrated. In this study we show that C3 can be expressed from an alternative translational start site, resulting in C3 lacking the signal peptide, which is therefore translated in the cytosol. In contrast to the secreted form, alternatively translated cytosolic C3 is not glycosylated, is present mainly in a reduced state, and is turned over by the ubiquitin–proteasome system. C3 can also be retrotranslocated from the endoplasmic reticulum into the cytosol, structurally resembling secreted C3. Finally, we demonstrate that intracellular cytosolic C3 can opsonize invasive Staphylococcus aureus within epithelial cell, slowing vacuolar escape as well as impacting bacterial survival on subsequent exposure to phagocytes. Our work therefore reveals the existence and origin of intracellular, cytosolic C3, and demonstrates functions for cytosolic C3 in intracellular detection of cytoinvasive pathogens.
Collapse
Affiliation(s)
- Mariann Kremlitzka
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden.,Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Lucie Colineau
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Alicja A Nowacka
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Frida C Mohlin
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Katarzyna Wozniak
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden.
| | - Ben C King
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
12
|
Shantal CJN, Juan CC, Lizbeth BUS, Carlos HGJ, Estela GPB. Candida glabrata is a successful pathogen: an artist manipulating the immune response. Microbiol Res 2022; 260:127038. [DOI: 10.1016/j.micres.2022.127038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
|
13
|
Qiao X, Shao MM, Yi FS, Shi HZ. Complement Component C1q as an Emerging Biomarker for the Diagnosis of Tuberculous Pleural Effusion. Front Microbiol 2021; 12:765471. [PMID: 34790186 PMCID: PMC8591783 DOI: 10.3389/fmicb.2021.765471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objective: The accurate differential diagnosis of tuberculous pleural effusion (TPE) from other exudative pleural effusions is often challenging. We aimed to validate the accuracy of complement component C1q in pleural fluid (PF) in diagnosing TPE. Methods: The level of C1q protein in the PF from 49 patients with TPE and 61 patients with non-tuberculous pleural effusion (non-TPE) was quantified by enzyme-linked immunosorbent assay, and the diagnostic performance was assessed by receiver operating characteristic (ROC) curves based on the age and gender of the patients. Results: The statistics showed that C1q could accurately diagnose TPE. Regardless of age and gender, with a cutoff of 6,883.9 ng/mL, the area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of C1q for discriminating TPE were 0.898 (95% confidence interval: 0.825-0.947), 91.8 (80.4-97.7), 80.3 (68.2-89.4), 78.9 (69.2-86.2), and 92.5 (82.6-96.9), respectively. In subgroup analysis, the greatest diagnostic accuracy was achieved in the younger group (≤ 50 years of age) with an AUC of 0.981 (95% confidence interval: 0.899-0.999) at the cutoff of 6,098.0 ng/mL. The sensitivity, specificity, PLR, NLR, PPV, and NPV of C1q were 95.0 (83.1-99.4), 92.3 (64.0-99.8), 97.4 (85.2-99.6), and 85.7 (60.6-95.9), respectively. Conclusion: Complement component C1q protein was validated by this study to be a promising biomarker for diagnosing TPE with high diagnostic accuracy, especially among younger patients.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Respiratory and Critical Care Medicine, Clinical Center for Pleural Diseases, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ming-Ming Shao
- Department of Respiratory and Critical Care Medicine, Clinical Center for Pleural Diseases, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feng-Shuang Yi
- Department of Respiratory and Critical Care Medicine, Clinical Center for Pleural Diseases, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Clinical Center for Pleural Diseases, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Keating T, Lethbridge S, Allnutt JC, Hendon-Dunn CL, Thomas SR, Alderwick LJ, Taylor SC, Bacon J. Mycobacterium tuberculosis modifies cell wall carbohydrates during biofilm growth with a concomitant reduction in complement activation. ACTA ACUST UNITED AC 2021; 7:100065. [PMID: 34778603 PMCID: PMC8577165 DOI: 10.1016/j.tcsw.2021.100065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
The development of new vaccines for TB needs to be underpinned by an understanding of both the molecular and cellular mechanisms of host-pathogen interactions and how the immune response can be modulated to achieve protection from disease. Complement orchestrates many aspects of the innate and adaptive immune responses. However, little is known about the contribution of the complement pathways during TB disease, particularly with respect to mycobacterial phenotype. Extracellular communities (biofilms) of M. tuberculosis are found in the acellular rim of granulomas, during disease, and these are likely to be present in post-primary TB episodes, in necrotic lesions. Our study aimed to determine which mycobacterial cell wall components were altered during biofilm growth and how these cell wall alterations modified the complement response. We have shown that M. tuberculosis biofilms modified their cell wall carbohydrates and elicited reduced classical and lectin pathway activation. Consistent with this finding was the reduction of C3b/iC3b deposition on biofilm cell wall carbohydrate extracts. Here, we have highlighted the role of cell wall carbohydrate alterations during biofilm growth of M. tuberculosis and subsequent modulation of complement activation.
Collapse
Affiliation(s)
- Thomas Keating
- TB Discovery Group, National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom.,School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Samuel Lethbridge
- TB Discovery Group, National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Jon C Allnutt
- TB Discovery Group, National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Charlotte L Hendon-Dunn
- TB Discovery Group, National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Stephen R Thomas
- Pathogen Immunology Group, National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Luke J Alderwick
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Stephen C Taylor
- Pathogen Immunology Group, National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Joanna Bacon
- TB Discovery Group, National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| |
Collapse
|
15
|
Kalra R, Tiwari D, Dkhar HK, Bhagyaraj E, Kumar R, Bhardwaj A, Gupta P. Host factors subverted by Mycobacterium tuberculosis: Potential targets for host directed therapy. Int Rev Immunol 2021; 42:43-70. [PMID: 34678117 DOI: 10.1080/08830185.2021.1990277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Despite new approaches in the diagnosis and treatment of tuberculosis (TB), it continues to be a major health burden. Several immunotherapies that potentiate the immune response have come up as adjuncts to drug therapies against drug resistant TB strains; however, there needs to be an urgent appraisal of host specific drug targets for improving their clinical management and to curtail disease progression. Presently, various host directed therapies (HDTs) exist (repurposed drugs, nutraceuticals, monoclonal antibodies and immunomodulatory agents), but these mostly address molecules that combat disease progression. AREAS COVERED The current review discusses major Mycobacterium tuberculosis (M. tuberculosis) survival paradigms inside the host and presents a plethora of host targets subverted by M. tuberculosis which can be further explored for future HDTs. The host factors unique to M. tuberculosis infection (in humans) have also been identified through an in-silico interaction mapping. EXPERT OPINION HDTs could become the next-generation adjunct therapies in order to counter antimicrobial resistance and virulence, as well as to reduce the duration of existing TB treatments. However, current scientific efforts are largely directed toward combatants rather than host molecules co-opted by M. tuberculosis for its survival. This might drive the immune system to a hyper-inflammatory condition; therefore, we emphasize that host factors subverted by M. tuberculosis, and their subsequent neutralization, must be considered for development of better HDTs.
Collapse
Affiliation(s)
- Rashi Kalra
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Drishti Tiwari
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Hedwin Kitdorlang Dkhar
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Ella Bhagyaraj
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Rakesh Kumar
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anshu Bhardwaj
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pawan Gupta
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
16
|
Mvubu NE, Chiliza TE. Exploring the Use of Medicinal Plants and Their Bioactive Derivatives as Alveolar NLRP3 Inflammasome Regulators during Mycobacterium tuberculosis Infection. Int J Mol Sci 2021; 22:ijms22179497. [PMID: 34502407 PMCID: PMC8431520 DOI: 10.3390/ijms22179497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a successful intracellular pathogen that is responsible for the highest mortality rate among diseases caused by bacterial infections. During early interaction with the host innate cells, M. tuberculosis cell surface antigens interact with Toll like receptor 4 (TLR4) to activate the nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) canonical, and non-canonical inflammasome pathways. NLRP3 inflammasome activation in the alveoli has been reported to contribute to the early inflammatory response that is needed for an effective anti-TB response through production of pro-inflammatory cytokines, including those of the Interleukin 1 (IL1) family. However, overstimulation of the alveolar NLRP3 inflammasomes can induce excessive inflammation that is pathological to the host. Several studies have explored the use of medicinal plants and/or their active derivatives to inhibit excessive stimulation of the inflammasomes and its associated factors, thus reducing immunopathological response in the host. This review describes the molecular mechanism of the NLRP3 inflammasome activation in the alveoli during M. tuberculosis infection. Furthermore, the mechanisms of inflammasome inhibition using medicinal plant and their derivatives will also be explored, thus offering a novel perspective on the alternative control strategies of M. tuberculosis-induced immunopathology.
Collapse
|
17
|
Han X, Su X, Li Z, Liu Y, Wang S, Zhu M, Zhang C, Yang F, Zhao J, Li X, Chen F, Han L. Complement receptor 3 mediates Aspergillus fumigatus internalization into alveolar epithelial cells with the increase of intracellular phosphatidic acid by activating FAK. Virulence 2021; 12:1980-1996. [PMID: 34338598 PMCID: PMC8331038 DOI: 10.1080/21505594.2021.1958042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Complement receptor 3 (CD11b/CD18) is an important receptor that mediates adhesion, phagocytosis and chemotaxis in various immunocytes. The conidia of the medically-important pathogenic fungus, Aspergillus fumigatus can be internalized into alveolar epithelial cells to disseminate its infection in immunocompromised host; however, the role of CR3 in this process is poorly understood. In the present study, we investigated the potential role of CR3 on A. fumigatus internalization into type II alveolar epithelial cells and its effect on host intracellular PA content induced by A. fumigatus. We found that CR3 is expressed in alveolar epithelial cells and that human serum and bronchoalveolar lavage fluid (BALF) could improve A. fumigatus conidial internalization into A549 type II alveolar epithelial cell line and mouse primary alveolar epithelial cells, which were significantly inhibited by the complement C3 quencher and CD11b-blocking antibody. Serum-opsonization of swollen conidia, but not resting conidia led to the increase of cellular phosphatidic acid (PA) in A549 cells during infection. Moreover, both conidial internalization and induced PA production were interfered by CD11b-blocking antibody and dependent on FAK activity, but not Syk in alveolar epithelial cells. Overall, our results revealed that CR3 is a critical modulator of Aspergillus fumigatus internalization into alveolar epithelial cells.
Collapse
Affiliation(s)
- Xuelin Han
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xueting Su
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Zhiqian Li
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Department of Laboratory Medicine & Blood Transfusion, the 907th Hospital, Fujian, Nanping, China
| | - Yanxi Liu
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shuo Wang
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Northwest Institute of Plateau Biology, Chinese Academy of Science, Qinghai, Xining, China
| | - Miao Zhu
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Changjian Zhang
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Central Laboratory of the sixth medical center of PLA general hospital, Beijing, China
| | - Fan Yang
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jingya Zhao
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xianping Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fangyan Chen
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Li Han
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
18
|
Anaphylatoxins orchestrate Th17 response via interactions between CD16+ monocytes and pleural mesothelial cells in tuberculous pleural effusion. PLoS Negl Trop Dis 2021; 15:e0009508. [PMID: 34237073 PMCID: PMC8291687 DOI: 10.1371/journal.pntd.0009508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 07/20/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
Abstract
The complement system is activated in tuberculous pleural effusion (TPE), with increased levels of the anaphylatoxins stimulating pleural mesothelial cells (PMCs) to secrete chemokines, which recruit nonclassical monocytes to the pleural cavity. The differentiation and recruitment of naive CD4+ T cells are induced by pleural cytokines and PMC-produced chemokines in TPE. However, it is unclear whether anaphylatoxins orchestrate CD4+ T cell response via interactions between PMCs and monocytes in TPE. In this study, CD16+ and CD16- monocytes isolated from TPE patients were cocultured with PMCs pretreated with anaphylatoxins. After removing the PMCs, the conditioned monocytes were cocultured with CD4+ T cells. The levels of the cytokines were measured in PMCs and monocyte subsets treated separately with anaphylatoxins. The costimulatory molecules were assessed in conditioned monocyte subsets. Furthermore, CD4+ T cell response was evaluated in different coculture systems. The results indicated that anaphylatoxins induced PMCs and CD16+ monocytes to secrete abundant cytokines capable of only inducing Th17 expansion, but Th1 was feeble. In addition, costimulatory molecules were more highly expressed in CD16+ than in CD16− monocytes isolated from TPE. The interactions between monocytes and PMCs enhanced the ability of PMCs and monocytes to produce cytokines and that of monocytes to express HLA-DR, CD40, CD80 and CD86, which synergistically induced Th17 expansion. In the above process, anaphylatoxins enhanced the interactions between monocytes and PMCs by increasing the level of the cytokines IL-1β, IL-6, IL-23 and upregulating the phenotype of CD40 and CD80 in CD16+ monocytes. Collectively, these data indicate that anaphylatoxins play a central role in orchestrating Th17 response mainly via interactions between CD16+ monocytes and PMCs in TPE. Tuberculous pleural effusion is characterized by intense chronic accumulations of fluid and lymphocyte cells and monocytes/macrophages in the pleural space. Complement mediators play important roles in providing protection against Mycobacterium tuberculosis. Our results demonstrated that Mycobacterium tuberculosis infection induced the amplification of complement activation in TPE. Complement activation produces anaphylatoxins that induce PMCs and CD16+ monocytes to secrete abundant cytokines capable of only inducing Th17 expansion, but Th1 was feeble. In addition, costimulatory molecules were more highly expressed in CD16+ than in CD16− monocytes isolated from TPE. The interactions between monocytes and PMCs enhanced the ability of PMCs and monocytes to produce cytokines and that of monocytes to express HLA-DR, CD40, CD80 and CD86, which synergistically induced Th17 expansion. In the above process, anaphylatoxins enhanced the interactions between monocytes and PMCs by increasing the level of the cytokines IL-1β, IL-6, IL-23 and upregulating the phenotype of CD40 and CD80 in CD16+ monocytes. In summary, these data highlighted the importance of anaphylatoxins and the innate immune system in eliciting pathogenic T cell responses in TPE and suggested that monocytes, especially the CD16+ subset, might be an efficient target for controlling inflammation.
Collapse
|
19
|
Mycobacterium tuberculosis Binds Human Serum Amyloid A, and the Interaction Modulates the Colonization of Human Macrophages and the Transcriptional Response of the Pathogen. Cells 2021; 10:cells10051264. [PMID: 34065319 PMCID: PMC8160739 DOI: 10.3390/cells10051264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
As a very successful pathogen with outstanding adaptive properties, Mycobacterium tuberculosis (Mtb) has developed a plethora of sophisticated mechanisms to subvert host defenses and effectively enter and replicate in the harmful environment inside professional phagocytes, namely, macrophages. Here, we demonstrated the binding interaction of Mtb with a major human acute phase protein, namely, serum amyloid A (SAA1), and identified AtpA (Rv1308), ABC (Rv2477c), EspB (Rv3881c), TB 18.6 (Rv2140c), and ThiC (Rv0423c) membrane proteins as mycobacterial effectors responsible for the pathogen-host protein interplay. SAA1-opsonization of Mtb prior to the infection of human macrophages favored bacterial entry into target phagocytes accompanied by a substantial increase in the load of intracellularly multiplying and surviving bacteria. Furthermore, binding of human SAA1 by Mtb resulted in the up- or downregulation of the transcriptional response of tubercle bacilli. The most substantial changes were related to the increased expression level of the genes of two operons encoding mycobacterial transporter systems, namely, mmpL5/mmpS5 (rv0676c), and rv1217c, rv1218c. Therefore, we postulate that during infection, Mtb-SAA1 binding promotes the infection of host macrophages by tubercle bacilli and modulates the functional response of the pathogen.
Collapse
|
20
|
García JI, Allué-Guardia A, Tampi RP, Restrepo BI, Torrelles JB. New Developments and Insights in the Improvement of Mycobacterium tuberculosis Vaccines and Diagnostics Within the End TB Strategy. CURR EPIDEMIOL REP 2021; 8:33-45. [PMID: 33842192 PMCID: PMC8024105 DOI: 10.1007/s40471-021-00269-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 10/26/2022]
Abstract
PURPOSE OF REVIEW The alignment of sustainable development goals (SDGs) with the End Tuberculosis (TB) strategy provides an integrated roadmap to implement key approaches towards TB elimination. This review summarizes current social challenges for TB control, and yet, recent developments in TB diagnosis and vaccines in the context of the End TB strategy and SDGs to transform global health. RECENT FINDINGS Advances in non-sputum based TB biomarkers and whole genome sequencing technologies could revolutionize TB diagnostics. Moreover, synergistic novel technologies such as mRNA vaccination, nanovaccines and promising TB vaccine models are key promising developments for TB prevention and control. SUMMARY The End TB strategy depends on novel developments in point-of-care TB diagnostics and effective vaccines. However, despite outstanding technological developments in these fields, TB elimination will be unlikely achieved if TB social determinants are not fully addressed. Indeed, the End TB strategy and SDGs emphasize the importance of implementing sustainable universal health coverage and social protection.
Collapse
Affiliation(s)
- Juan Ignacio García
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, 8715 W. Military Dr, San Antonio, TX 78227 USA
| | - Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, 8715 W. Military Dr, San Antonio, TX 78227 USA
| | - Radhika P. Tampi
- PhD Program in Health Policy, Harvard University, Cambridge, MA 02138 USA
| | - Blanca I. Restrepo
- University of Texas Health Science Center at Houston, School of Public Health, Brownsville, TX 78520 USA
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX 78539 USA
| | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, 8715 W. Military Dr, San Antonio, TX 78227 USA
| |
Collapse
|
21
|
Jagatia H, Tsolaki AG. The Role of Complement System and the Immune Response to Tuberculosis Infection. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:84. [PMID: 33498555 PMCID: PMC7909539 DOI: 10.3390/medicina57020084] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022]
Abstract
The complement system orchestrates a multi-faceted immune response to the invading pathogen, Mycobacterium tuberculosis. Macrophages engulf the mycobacterial bacilli through bacterial cell surface proteins or secrete proteins, which activate the complement pathway. The classical pathway is activated by C1q, which binds to antibody antigen complexes. While the alternative pathway is constitutively active and regulated by properdin, the direct interaction of properdin is capable of complement activation. The lectin-binding pathway is activated in response to bacterial cell surface carbohydrates such as mannose, fucose, and N-acetyl-d-glucosamine. All three pathways contribute to mounting an immune response for the clearance of mycobacteria. However, the bacilli can reside, persist, and evade clearance by the immune system once inside the macrophages using a number of mechanisms. The immune system can compartmentalise the infection into a granulomatous structure, which contains heterogenous sub-populations of M. tuberculosis. The granuloma consists of many types of immune cells, which aim to clear and contain the infection whilst sacrificing the affected host tissue. The full extent of the involvement of the complement system during infection with M. tuberculosis is not fully understood. Therefore, we reviewed the available literature on M. tuberculosis and other mycobacterial literature to understand the contribution of the complement system during infection.
Collapse
Affiliation(s)
- Heena Jagatia
- Department for Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK
| | - Anthony G. Tsolaki
- Department of Life Sciences, College of Health and Life Sciences, Brunel University of London, Uxbridge UB8 3PN, UK;
| |
Collapse
|
22
|
Bansal R, Khan MM, Dasari S, Verma I, Goodlett DR, Manes NP, Nita-Lazar A, Sharma SP, Kumar A, Singh N, Chakraborti A, Gupta V, Dogra MR, Ram J, Gupta A. Proteomic profile of vitreous in patients with tubercular uveitis. Tuberculosis (Edinb) 2021; 126:102036. [PMID: 33359883 PMCID: PMC11005023 DOI: 10.1016/j.tube.2020.102036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/31/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To elucidate disease-specific host protein profile in vitreous fluid of patients with intraocular inflammation due to tubercular uveitis (TBU). METHODS Vitreous samples from 13 patients with TBU (group A), 7 with non-TBU (group B) and 9 with no uveitis (group C) were analysed by shotgun proteomics using Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). Differentially expressed proteins (DEPs) were subjected to pathway analysis using WEB-based Gene SeT Analysis Toolkit software. RESULTS Compared to control groups (B + C combined), group A (TBU) displayed 32 (11 upregulated, 21 downregulated) DEPs, which revealed an upregulation of coagulation cascades, complement and classic pathways, and downregulation of metabolism of carbohydrates, gluconeogenesis, glucose metabolism and glycolysis/gluconeogenesis pathways. When compared to group B (non-TBU) alone, TBU displayed 58 DEPs (21 upregulated, 37 downregulated), with an upregulation of apoptosis, KRAS signaling, diabetes pathways, classic pathways, and downregulation of MTORC1 signaling, glycolysis/gluconeogenesis, and glucose metabolism. CONCLUSION This differential protein profile provides novel insights into the molecular mechanisms of TBU and a baseline to explore vitreous biomarkers to differentiate TBU from non-TBU, warranting future studies to identify and validate them as a diagnostic tool in TBU. The enriched pathways generate interesting hypotheses and drive further research.
Collapse
Affiliation(s)
- Reema Bansal
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Mohd M Khan
- University of Maryland, School of Medicine, Baltimore, MD, USA; Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
| | - Indu Verma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | | | - Nathan P Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Surya P Sharma
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Aman Kumar
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Nirbhai Singh
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Anuradha Chakraborti
- Department of Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Vishali Gupta
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - M R Dogra
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Jagat Ram
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Amod Gupta
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
23
|
Innate Immune Pattern Recognition Receptors of Mycobacterium tuberculosis: Nature and Consequences for Pathogenesis of Tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:179-215. [PMID: 34661896 DOI: 10.1007/978-3-030-67452-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Innate immunity against Mycobacterium tuberculosis is a critical early response to prevent the establishment of the infection. Despite recent advances in understanding the host-pathogen dialogue in the early stages of tuberculosis (TB), much has yet to be learnt. The nature and consequences of this dialogue ultimately determine the path of infection: namely, either early clearance of M. tuberculosis, or establishment of M. tuberculosis infection leading to active TB disease and/or latent TB infection. On the frontline in innate immunity are pattern recognition receptors (PRRs), with soluble factors (e.g. collectins and complement) and cell surface factors (e.g. Toll-like receptors and other C-type lectin receptors (Dectin 1/2, Nod-like receptors, DC-SIGN, Mincle, mannose receptor, and MCL) that play a central role in recognising M. tuberculosis and facilitating its clearance. However, in a 'double-edged sword' scenario, these factors can also be involved in enhancement of pathogenesis as well. Furthermore, innate immunity is also a critical bridge in establishing the subsequent adaptive immune response, which is also responsible for granuloma formation that cordons off M. tuberculosis infection, establishing latency and acting as a reservoir for bacterial persistence and dissemination of future disease. This chapter discusses the current understanding of pattern recognition of M. tuberculosis by innate immunity and the role this plays in the pathogenesis and protection against TB.
Collapse
|
24
|
Lausen M, Thomsen ME, Christiansen G, Karred N, Stensballe A, Bennike TB, Birkelund S. Analysis of complement deposition and processing on Chlamydia trachomatis. Med Microbiol Immunol 2020; 210:13-32. [PMID: 33206237 DOI: 10.1007/s00430-020-00695-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022]
Abstract
Chlamydia trachomatis (C. trachomatis) is the leading cause of sexually transmitted bacterial infections worldwide, with over 120 million annual cases. C. trachomatis infections are associated with severe reproductive complications in women such as extrauterine pregnancy and tubal infertility. The infections are often long lasting, associated with immunopathology, and fail to elicit protective immunity which makes recurrent infections common. The immunological mechanisms involved in C. trachomatis infections are only partially understood. Murine infection models suggest that the complement system plays a significant role in both protective immunity and immunopathology during primary Chlamydia infections. However, only limited structural and mechanistic evidence exists on complement-mediated immunity against C. trachomatis. To expand our current knowledge on this topic, we analyzed global complement deposition on C. trachomatis using comprehensive in-depth mass spectrometry-based proteomics. We show that factor B, properdin, and C4b bind to C. trachomatis demonstrating that C. trachomatis-induced complement activation proceeds through at least two activation pathways. Complement activation leads to cleavage and deposition of C3 and C5 activation products, causing initiation of the terminal complement pathway and deposition of C5b, C6, C7, C8, C9 on C. trachomatis. Interestingly, using immunoelectron microscopy, we show that C5b-9 deposition occurred sporadically and only in rare cases formed complete lytic terminal complexes, possibly caused by the presence of the negative regulators vitronectin and clusterin. Finally, cleavage analysis of C3 demonstrated that deposited C3b is degraded to the opsonins iC3b and C3dg and that this complement opsonization facilitates C. trachomatis binding to human B-cells.
Collapse
Affiliation(s)
- Mads Lausen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark.
| | - Mikkel Eggert Thomsen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Gunna Christiansen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark.,Department of Biomedicine, Aarhus University, Wilhelms Meyers Allé 4, 8000, Aarhus, Denmark
| | - Nichlas Karred
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Tue Bjerg Bennike
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| |
Collapse
|
25
|
Bennike TB, Fatou B, Angelidou A, Diray-Arce J, Falsafi R, Ford R, Gill EE, van Haren SD, Idoko OT, Lee AH, Ben-Othman R, Pomat WS, Shannon CP, Smolen KK, Tebbutt SJ, Ozonoff A, Richmond PC, van den Biggelaar AHJ, Hancock REW, Kampmann B, Kollmann TR, Levy O, Steen H. Preparing for Life: Plasma Proteome Changes and Immune System Development During the First Week of Human Life. Front Immunol 2020; 11:578505. [PMID: 33329546 PMCID: PMC7732455 DOI: 10.3389/fimmu.2020.578505] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/22/2020] [Indexed: 01/05/2023] Open
Abstract
Neonates have heightened susceptibility to infections. The biological mechanisms are incompletely understood but thought to be related to age-specific adaptations in immunity due to resource constraints during immune system development and growth. We present here an extended analysis of our proteomics study of peripheral blood-plasma from a study of healthy full-term newborns delivered vaginally, collected at the day of birth and on day of life (DOL) 1, 3, or 7, to cover the first week of life. The plasma proteome was characterized by LC-MS using our established 96-well plate format plasma proteomics platform. We found increasing acute phase proteins and a reduction of respective inhibitors on DOL1. Focusing on the complement system, we found increased plasma concentrations of all major components of the classical complement pathway and the membrane attack complex (MAC) from birth onward, except C7 which seems to have near adult levels at birth. In contrast, components of the lectin and alternative complement pathways mainly decreased. A comparison to whole blood messenger RNA (mRNA) levels enabled characterization of mRNA and protein levels in parallel, and for 23 of the 30 monitored complement proteins, the whole blood transcript information by itself was not reflective of the plasma protein levels or dynamics during the first week of life. Analysis of immunoglobulin (Ig) mRNA and protein levels revealed that IgM levels and synthesis increased, while the plasma concentrations of maternally transferred IgG1-4 decreased in accordance with their in vivo half-lives. The neonatal plasma ratio of IgG1 to IgG2-4 was increased compared to adult values, demonstrating a highly efficient IgG1 transplacental transfer process. Partial compensation for maternal IgG degradation was achieved by endogenous synthesis of the IgG1 subtype which increased with DOL. The findings were validated in a geographically distinct cohort, demonstrating a consistent developmental trajectory of the newborn's immune system over the first week of human life across continents. Our findings indicate that the classical complement pathway is central for newborn immunity and our approach to characterize the plasma proteome in parallel with the transcriptome will provide crucial insight in immune ontogeny and inform new approaches to prevent and treat diseases.
Collapse
Affiliation(s)
- Tue Bjerg Bennike
- Department of Pathology, Boston Children’s Hospital, Boston, MA, United States
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Benoit Fatou
- Department of Pathology, Boston Children’s Hospital, Boston, MA, United States
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Asimenia Angelidou
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Reza Falsafi
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Rebecca Ford
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Erin E. Gill
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Simon D. van Haren
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Olubukola T. Idoko
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Amy H. Lee
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Rym Ben-Othman
- Department of Pediatrics, University of British Columbia, and BC Children’s Hospital, Vancouver, BC, Canada
| | - William S. Pomat
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | | | - Kinga K. Smolen
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Scott J. Tebbutt
- PROOF Centre of Excellence, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Al Ozonoff
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | | | | | - Robert E. W. Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tobias R. Kollmann
- Department of Pediatrics, University of British Columbia, and BC Children’s Hospital, Vancouver, BC, Canada
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT & Harvard, Cambridge, MA, United States
| | - Hanno Steen
- Department of Pathology, Boston Children’s Hospital, Boston, MA, United States
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Chauhan P, Dandapat J, Sarkar A, Saha B. March of Mycobacterium: miRNAs intercept host cell CD40 signalling. Clin Transl Immunology 2020; 9:e1179. [PMID: 33072321 PMCID: PMC7541823 DOI: 10.1002/cti2.1179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
The disease tuberculosis is fatal if untreated. It is caused by the acid-fast bacilli Mycobacterium tuberculosis. Mycobacterium resides and replicates within the alveolar macrophages, causing inflammation and granuloma, wherein macrophage-T cell interactions enhance the inflammation-causing pulmonary caseous lesions. The first interactions between Mycobacterium and the receptors on macrophages decide the fate of Mycobacterium because of phagolysosomal impairments and the expression of several miRNAs, which may regulate CD40 expression on macrophages. While the altered phagolysosomal functions impede antigen presentation to the T cell-expressed antigen receptor, the interactions between the macrophage-expressed CD40 and the T cell-expressed CD40-ligand (CD40L or CD154) provide signals to T cells and Mycobacterium-infected macrophages. These two functions significantly influence the resolution or persistence of Mycobacterium infection. CD40 controls T-cell polarisation and host-protective immunity by eliciting interleukin-12p40, nitric oxide, reactive oxygen species and IFN-γ production. Indeed, CD40-deficient mice succumb to low-dose aerosol infection with Mycobacterium because of deficient interleukin (IL)-12 production leading to impaired IFN-γ-secreting T-cell response. In contrast, despite generating fewer granulomas, the CD40L-deficient mice developed anti-mycobacterial T-cell responses to the levels observed in the wild-type mice. These host-protective responses are significantly subdued by the Mycobacterium-infected macrophage produced TGF-β and IL-10, which promote pro-mycobacterial T-cell responses. The CD40-CD40L-induced counteractive immune responses against Mycobacterium thus present a conundrum that we explain here with a reconciliatory hypothesis. Experimental validation of the hypothesis will provide a rationale for designing anti-tubercular immunotherapy.
Collapse
Affiliation(s)
| | | | - Arup Sarkar
- Trident Academy of Creative TechnologyBhubaneswarIndia
| | - Bhaskar Saha
- National Centre for Cell Science (NCCS)PuneIndia
- Trident Academy of Creative TechnologyBhubaneswarIndia
| |
Collapse
|
27
|
Beltran CGG, Heunis T, Gallant J, Venter R, du Plessis N, Loxton AG, Trost M, Winter J, Malherbe ST, Kana BD, Walzl G. Investigating Non-sterilizing Cure in TB Patients at the End of Successful Anti-TB Therapy. Front Cell Infect Microbiol 2020; 10:443. [PMID: 32984071 PMCID: PMC7477326 DOI: 10.3389/fcimb.2020.00443] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/20/2020] [Indexed: 01/04/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is extremely recalcitrant to antimicrobial chemotherapy requiring 6 months to treat drug-sensitive tuberculosis (TB). Despite this, 4-10% of cured patients will develop recurrent disease within 12 months after completing therapy. Reasons for relapse in cured TB patients remains speculative, attributed to both pathogen and host factors. Populations of dormant bacilli are hypothesized to cause relapse in initially cured TB patients however, development of tests to convincingly demonstrate their presence at the end of anti-TB treatment has been challenging. Previous studies have indicated the utility of culture filtrate supplemented media (CFSM) to detect differentially culturable tubercle bacilli (DCTB). Here, we show that 3/22 of clinically cured patients retained DCTB in induced sputum and bronchoalveolar lavage fluid (BALF), with one DCTB positive patient relapsing within the first year of completing therapy. We also show a correlation of DCTB status with "unresolved" end of treatment FDG PET-CT imaging. Additionally, 19 end of treatment induced sputum samples from patients not undergoing bronchoscopy were assessed for DCTB, identifying a further relapse case with DCTB. We further show that induced sputum is a less reliable source for the DCTB assay at the end of treatment, limiting the utility of this assay in a clinical setting. We next investigated the host proteome at the site of disease (BALF) using multiplexed proteomic analysis and compared these to active TB cases to identify host-specific factors indicative of cure. Distinct signatures stratified active from cured TB patients into distinct groups, with a DCTB positive, subsequently relapsing, end of treatment patient showing a proteomic signature closer to active TB disease than cure. This exploratory study offers evidence of live Mtb, undetectable with conventional culture methods, at the end of clinically successful treatment and putative host protein biomarkers of active disease and cure. These findings have implications for the assessment of true sterilizing cure in TB patients and opens new avenues for targeted approaches to monitor treatment response.
Collapse
Affiliation(s)
- Caroline G. G. Beltran
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tiaan Heunis
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - James Gallant
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Section Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rouxjeane Venter
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nelita du Plessis
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G. Loxton
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Matthias Trost
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jill Winter
- Catalysis Foundation for Health, San Ramon, CA, United States
| | - Stephanus T. Malherbe
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Bavesh D. Kana
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, CAPRISA, Durban, South Africa
| | - Gerhard Walzl
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
28
|
Opsonophagocytosis of Chlamydia pneumoniae by Human Monocytes and Neutrophils. Infect Immun 2020; 88:IAI.00087-20. [PMID: 32284372 DOI: 10.1128/iai.00087-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 01/08/2023] Open
Abstract
The human respiratory tract pathogen Chlamydia pneumoniae, which causes mild to severe infections, has been associated with the development of chronic inflammatory diseases. To understand the biology of C. pneumoniae infections, several studies have investigated the interaction between C. pneumoniae and professional phagocytes. However, these studies have been conducted under nonopsonizing conditions, making the role of opsonization in C. pneumoniae infections elusive. Thus, we analyzed complement and antibody opsonization of C. pneumoniae and evaluated how opsonization affects chlamydial infectivity and phagocytosis in human monocytes and neutrophils. We demonstrated that IgG antibodies and activation products of complement C3 and C4 are deposited on the surface of C. pneumoniae elementary bodies when incubated in human serum. Complement activation limits C. pneumoniae infectivity in vitro and has the potential to induce bacterial lysis by the formation of the membrane attack complex. Coculture of C. pneumoniae and freshly isolated human leukocytes showed that complement opsonization is superior to IgG opsonization for efficient opsonophagocytosis of C. pneumoniae in monocytes and neutrophils. Neutrophil-mediated phagocytosis of C. pneumoniae was crucially dependent on opsonization, while monocytes retained minor phagocytic potential under nonopsonizing conditions. Complement opsonization significantly enhanced the intracellular neutralization of C. pneumoniae in peripheral blood mononuclear cells and neutrophils and almost abrogated the infectious potential of C. pneumoniae In conclusion, we demonstrated that complements limit C. pneumoniae infection in vitro by interfering with C. pneumoniae entry into permissive cells by direct complement-induced lysis and by tagging bacteria for efficient phagocytosis in both monocytes and neutrophils.
Collapse
|
29
|
Bruiners N, Schurz H, Daya M, Salie M, van Helden PD, Kinnear CJ, Hoal EG, Möller M, Gey van Pittius NC. A regulatory variant in the C1Q gene cluster is associated with tuberculosis susceptibility and C1qA plasma levels in a South African population. Immunogenetics 2020; 72:305-314. [PMID: 32556499 DOI: 10.1007/s00251-020-01167-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
Several genetic studies have implicated genes that encode for components of the innate immune response in tuberculosis (TB) susceptibility. The complement system is an early player in the innate immune response and provides the host with initial protection by promoting phagocytosis of apoptotic or necrotic cells. The C1q molecule is the first component of the classical pathway that leads to the activation of complement by binding to immune complexes and is encoded by the C1Q gene cluster. We investigated variants in this region to determine its association with TB susceptibility. Five single nucleotide polymorphisms (SNPs) (rs12033074, rs631090, rs172378, rs587585, and rs665691) were genotyped using TaqMan® SNP assays in 456 TB cases and 448 healthy controls and analysed by logistic regression models. The rs587585 variant showed a significant additive allelic association where the minor G allele was found more frequently in TB cases than in controls in both the discovery (p = 0.023; OR = 1.30; 95% CI, 1.04-1.64) and validation cohort (p = 0.038; OR = 1.31; 95% CI, 1.22-1.40). In addition, we detected increased C1qA expression when comparing cases and controls (p = 0.037) and linked this to a dosage effect of the G allele, which increased C1qA expression in TB cases. This is the first study to report the association of C1Q gene polymorphisms with progression to tuberculosis.
Collapse
Affiliation(s)
- Natalie Bruiners
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Haiko Schurz
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michelle Daya
- Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Muneeb Salie
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Paul D van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig J Kinnear
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nicolaas C Gey van Pittius
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
30
|
Luo L, Li X, Hu X, Hu C, Tang W, Deng S, Feng J. Anaphylatoxins Enhance Recruitment of Nonclassical Monocytes via Chemokines Produced by Pleural Mesothelial Cells in Tuberculous Pleural Effusion. Am J Respir Cell Mol Biol 2019; 60:454-464. [PMID: 30422670 DOI: 10.1165/rcmb.2018-0075oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In the present study, we sought to elucidate the mechanisms by which monocytes migrate into the pleural space in the presence of anaphylatoxins in tuberculous pleural effusion (TPE). Monocytes in both pleural effusion and blood were counted, and their phenotypic characteristics were analyzed. Activation of the complement system was detected in TPE. The effects of Mpt64 and anaphylatoxins on the production of chemokines in pleural mesothelial cells (PMCs) were measured. The chemoattractant activity of chemokines produced by PMCs for monocytes was observed. Levels of CD14+CD16+ monocytes were significantly higher in TPE than in blood. Three pathways of the complement system were activated in TPE. C3a-C3aR1, C5a-C5aR1, CCL2-CCR2, CCL7-CCR2, and CX3CL1-CX3CR1 were coexpressed in PMCs and monocytes isolated from TPE. Moreover, we initially found that Mpt64 stimulated the expression of C3a and C5a in PMCs. C3a and C5a not only induced CCL2, CCL7, and CX3CL1 expression in PMCs but also stimulated production of IL-1β, IL-17, and IL-27 in monocytes. C3a and C5a stimulated PMCs to secrete CCL2, CCL7, and CX3CL1, which recruited CD14+CD16+ monocytes to the pleural cavity. As a result, the infiltration of CD14+CD16+ monocytes engaged in the pathogenesis of TPE by excessive production of inflammatory cytokines.
Collapse
Affiliation(s)
- Lisha Luo
- 1 Department of Respiratory and Critical Care Medicine, Key Site of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; and
| | - Xiaozhao Li
- 2 Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyue Hu
- 1 Department of Respiratory and Critical Care Medicine, Key Site of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; and
| | - Chengping Hu
- 1 Department of Respiratory and Critical Care Medicine, Key Site of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; and
| | - Wei Tang
- 1 Department of Respiratory and Critical Care Medicine, Key Site of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; and
| | - Shuanglinzi Deng
- 1 Department of Respiratory and Critical Care Medicine, Key Site of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; and
| | - Juntao Feng
- 1 Department of Respiratory and Critical Care Medicine, Key Site of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; and
| |
Collapse
|
31
|
Lafuse WP, Rajaram MVS, Wu Q, Moliva JI, Torrelles JB, Turner J, Schlesinger LS. Identification of an Increased Alveolar Macrophage Subpopulation in Old Mice That Displays Unique Inflammatory Characteristics and Is Permissive to Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2252-2264. [PMID: 31511357 DOI: 10.4049/jimmunol.1900495] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Abstract
The elderly population is more susceptible to pulmonary infections, including tuberculosis. In this article, we characterize the impact of aging on the phenotype of mouse alveolar macrophages (AMs) and their response to Mycobacterium tuberculosis. Uninfected AMs were isolated from bronchoalveolar lavage of young (3 mo) and old (18 mo) C57BL/6 mice. AMs from old mice expressed higher mRNA levels of CCL2, IFN-β, IL-10, IL-12p40, TNF-α, and MIF than young mice, and old mice contained higher levels of CCL2, IL-1β, IFN-β, and MIF in their alveolar lining fluid. We identified two distinct AM subpopulations, a major CD11c+ CD11b- population and a minor CD11c+ CD11b+ population; the latter was significantly increased in old mice (4-fold). Expression of CD206, TLR2, CD16/CD32, MHC class II, and CD86 was higher in CD11c+ CD11b+ AMs, and these cells expressed monocytic markers Ly6C, CX3CR1, and CD115, suggesting monocytic origin. Sorted CD11c+ CD11b+ AMs from old mice expressed higher mRNA levels of CCL2, IL-1β, and IL-6, whereas CD11c+ CD11b- AMs expressed higher mRNA levels of immune-regulatory cytokines IFN-β and IL-10. CD11c+ CD11b+ AMs phagocytosed significantly more M. tuberculosis, which expressed higher RNA levels of genes required for M. tuberculosis survival. Our studies identify two distinct AM populations in old mice: a resident population and an increased CD11c+ CD11b+ AM subpopulation expressing monocytic markers, a unique inflammatory signature, and enhanced M. tuberculosis phagocytosis and survival when compared with resident CD11c+ CD11b- AMs, which are more immune regulatory in nature.
Collapse
Affiliation(s)
- William P Lafuse
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and
| | - Qian Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and
| | - Juan I Moliva
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Joanne Turner
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| |
Collapse
|
32
|
Dheda K, Lenders L, Srivastava S, Magombedze G, Wainwright H, Raj P, Bush SJ, Pollara G, Steyn R, Davids M, Pooran A, Pennel T, Linegar A, McNerney R, Moodley L, Pasipanodya JG, Turner CT, Noursadeghi M, Warren RM, Wakeland E, Gumbo T. Spatial Network Mapping of Pulmonary Multidrug-Resistant Tuberculosis Cavities Using RNA Sequencing. Am J Respir Crit Care Med 2019; 200:370-380. [PMID: 30694692 PMCID: PMC6680310 DOI: 10.1164/rccm.201807-1361oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/24/2019] [Indexed: 01/09/2023] Open
Abstract
Rationale: There is poor understanding about protective immunity and the pathogenesis of cavitation in patients with tuberculosis.Objectives: To map pathophysiological pathways at anatomically distinct positions within the human tuberculosis cavity.Methods: Biopsies were obtained from eight predetermined locations within lung cavities of patients with multidrug-resistant tuberculosis undergoing therapeutic surgical resection (n = 14) and healthy lung tissue from control subjects without tuberculosis (n = 10). RNA sequencing, immunohistochemistry, and bacterial load determination were performed at each cavity position. Differentially expressed genes were normalized to control subjects without tuberculosis, and ontologically mapped to identify a spatially compartmentalized pathophysiological map of the cavity. In silico perturbation using a novel distance-dependent dynamical sink model was used to investigate interactions between immune networks and bacterial burden, and to integrate these identified pathways.Measurements and Main Results: The median (range) lung cavity volume on positron emission tomography/computed tomography scans was 50 cm3 (15-389 cm3). RNA sequence reads (31% splice variants) mapped to 19,049 annotated human genes. Multiple proinflammatory pathways were upregulated in the cavity wall, whereas a downregulation "sink" in the central caseum-fluid interface characterized 53% of pathways including neuroendocrine signaling, calcium signaling, triggering receptor expressed on myeloid cells-1, reactive oxygen and nitrogen species production, retinoic acid-mediated apoptosis, and RIG-I-like receptor signaling. The mathematical model demonstrated that neuroendocrine, protein kinase C-θ, and triggering receptor expressed on myeloid cells-1 pathways, and macrophage and neutrophil numbers, had the highest correlation with bacterial burden (r > 0.6), whereas T-helper effector systems did not.Conclusions: These data provide novel insights into host immunity to Mycobacterium tuberculosis-related cavitation. The pathways defined may serve as useful targets for the design of host-directed therapies, and transmission prevention interventions.
Collapse
Affiliation(s)
- Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute and South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Laura Lenders
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute and South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gesham Magombedze
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | | | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stephen J. Bush
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Gabriele Pollara
- Division of Infection and Immunity, University College London, London, United Kingdom; and
| | | | - Malika Davids
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute and South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Anil Pooran
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute and South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Timothy Pennel
- Chris Barnard Division of Cardiothoracic Surgery, Department of Surgery, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Anthony Linegar
- Chris Barnard Division of Cardiothoracic Surgery, Department of Surgery, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ruth McNerney
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute and South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Loven Moodley
- Chris Barnard Division of Cardiothoracic Surgery, Department of Surgery, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Jotam G. Pasipanodya
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Carolin T. Turner
- Division of Infection and Immunity, University College London, London, United Kingdom; and
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom; and
| | - Robin M. Warren
- South African Medical Research Council Centre for Tuberculosis Research/Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Edward Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tawanda Gumbo
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute and South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
33
|
Moliva JI, Duncan MA, Olmo-Fontánez A, Akhter A, Arnett E, Scordo JM, Ault R, Sasindran SJ, Azad AK, Montoya MJ, Reinhold-Larsson N, Rajaram MVS, Merrit RE, Lafuse WP, Zhang L, Wang SH, Beamer G, Wang Y, Proud K, Maselli DJ, Peters J, Weintraub ST, Turner J, Schlesinger LS, Torrelles JB. The Lung Mucosa Environment in the Elderly Increases Host Susceptibility to Mycobacterium tuberculosis Infection. J Infect Dis 2019; 220:514-523. [PMID: 30923818 PMCID: PMC6603975 DOI: 10.1093/infdis/jiz138] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
As we age, there is an increased risk for the development of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infection. Few studies consider that age-associated changes in the alveolar lining fluid (ALF) may increase susceptibility by altering soluble mediators of innate immunity. We assessed the impact of adult or elderly human ALF during Mtb infection in vitro and in vivo. We identified amplification of pro-oxidative and proinflammatory pathways in elderly ALF and decreased binding capability of surfactant-associated surfactant protein A (SP-A) and surfactant protein D (SP-D) to Mtb. Human macrophages infected with elderly ALF-exposed Mtb had reduced control and fewer phagosome-lysosome fusion events, which was reversed when elderly ALF was replenished with functional SP-A/SP-D. In vivo, exposure to elderly ALF exacerbated Mtb infection in young mice. Our studies demonstrate how the pulmonary environment changes as we age and suggest that Mtb may benefit from declining host defenses in the lung mucosa of the elderly.
Collapse
Affiliation(s)
| | - Michael A Duncan
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | | | | | | | | | - Russell Ault
- Texas Biomedical Research Institute, San Antonio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | - Smitha J Sasindran
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | - Abul K Azad
- Texas Biomedical Research Institute, San Antonio
| | | | | | | | | | - William P Lafuse
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | - Liwen Zhang
- Campus Chemical Instrument Center, The Ohio State University, Columbus
| | - Shu-Hua Wang
- Department of Internal Medicine, The Ohio State University, Columbus
| | - Gillian Beamer
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio
| | - Kevin Proud
- Division of Pulmonary and Critical Care Medicine, School of Medicine
| | | | - Jay Peters
- Division of Pulmonary and Critical Care Medicine, School of Medicine
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio
| | - Joanne Turner
- Texas Biomedical Research Institute, San Antonio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | - Larry S Schlesinger
- Texas Biomedical Research Institute, San Antonio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | - Jordi B Torrelles
- Texas Biomedical Research Institute, San Antonio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| |
Collapse
|
34
|
The human lung mucosa drives differential Mycobacterium tuberculosis infection outcome in the alveolar epithelium. Mucosal Immunol 2019; 12:795-804. [PMID: 30846830 PMCID: PMC6462240 DOI: 10.1038/s41385-019-0156-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023]
Abstract
Mycobacterium tuberculosis (M.tb) is deposited into the alveolus where it first encounters the alveolar lining fluid (ALF) prior contacts host cells. We demonstrated that M.tb-exposure to human ALF alters its cell surface, driving better M.tb infection control by professional phagocytes. Contrary to these findings, our results with non-professional phagocytes alveolar epithelial cells (ATs) define two distinct subsets of human ALFs; where M.tb exposure to Low (L)-ALF or High(H)-ALF results in low or high intracellular bacterial growth rates in ATs, respectively. H-ALF exposed-M.tb growth within ATs was independent of M.tb-uptake, M.tb-trafficking, and M.tb-infection induced cytotoxicity; however, it was associated with enhanced bacterial replication within LAMP-1+/ABCA1+ compartments. H-ALF exposed-M.tb infection of ATs decreased AT immune mediator production, decreased AT surface adhesion expression, and downregulated macrophage inflammatory responses. Composition analysis of H-ALF vs. L-ALF showed H-ALF with higher protein tyrosine nitration and less functional ALF-innate proteins important in M.tb pathogenesis. Replenishment of H-ALF with functional ALF-innate proteins reversed the H-ALF-M.tb growth rate to the levels observed for L-ALF-M.tb. These results indicate that dysfunctionality of innate proteins in the H-ALF phenotype promotes M.tb replication within ATs, while limiting inflammation and phagocyte activation, thus potentiating ATs as a reservoir for M.tb replication and survival.
Collapse
|
35
|
Mehmood A, Kouser L, Kaur A, Holmskov U, Al-Ahdal MN, Sim RB, Kishore U, Tsolaki AG. Complement Dependent and Independent Interaction Between Bovine Conglutinin and Mycobacterium bovis BCG: Implications in Bovine Tuberculosis. Front Immunol 2019; 9:3159. [PMID: 30804949 PMCID: PMC6370948 DOI: 10.3389/fimmu.2018.03159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022] Open
Abstract
Bovine conglutinin, the first animal collectin to be discovered, is structurally very similar to Surfactant Protein D (SP-D). SP-D is known to interact with Mycobacterium tuberculosis, and the closely-related M. bovis, the causative agent of bovine tuberculosis. We speculated that due to the overall similarities between conglutinin and SP-D, conglutinin is likely to have a protective influence in bovine tuberculosis. We set out to investigate the role of conglutinin in host-pathogen interaction during mycobacterial infection. We show here that a recombinant truncated form of conglutinin (rfBC), composed of the neck and C-type lectin domains, binds specifically and in a dose-dependent manner to the model organism Mycobacterium bovis BCG. rfBC showed a significant direct bacteriostatic effect on the growth of M. bovis BCG in culture. In addition, rfBC inhibited the uptake of M. bovis BCG by THP-1 macrophages (human monocyte lineage cell line) and suppressed the subsequent pro-inflammatory response. Conglutinin is well-known as a binder of the complement activation product, iC3b. rfBC was also able to inhibit the uptake of complement-coated M. bovis BCG by THP-1 macrophages, whilst modulating the pro-inflammatory response. It is likely that rfBC inhibits the phagocytosis of mycobacteria by two distinct mechanisms: firstly, rfBC interferes with mannose receptor-mediated uptake by masking lipoarabinomannan (LAM) on the mycobacterial surface. Secondly, since conglutinin binds iC3b, it can interfere with complement receptor-mediated uptake via CR3 and CR4, by masking interactions with iC3b deposited on the mycobacterial surface. rfBC was also able to modulate the downstream pro-inflammatory response in THP-1 cells, which is important for mobilizing the adaptive immune response, facilitating containment of mycobacterial infection. In conclusion, we show that conglutinin possesses complement-dependent and complement-independent anti-mycobacterial activities, interfering with both known mechanisms of mycobacterial uptake by macrophages. As mycobacteria are specialized intracellular pathogens, conglutinin may inhibit M. bovis and M. tuberculosis from establishing an intracellular niche within macrophages, and thus, negatively affect the long-term survival of the pathogen in the host.
Collapse
Affiliation(s)
- Arshad Mehmood
- Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Lubna Kouser
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Anuvinder Kaur
- Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Uffe Holmskov
- Department of Cancer and Inflammation, University of Southern Denmark, Odense, Denmark
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Robert B Sim
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Uday Kishore
- Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Anthony G Tsolaki
- Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
36
|
BoseDasgupta S, Pieters J. Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis. Semin Immunopathol 2018; 40:577-591. [PMID: 30306257 DOI: 10.1007/s00281-018-0710-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
Macrophages, being the cornerstone of the immune system, have adapted the ancient nutrient acquisition mechanism of phagocytosis to engulf various infectious organisms thereby helping to orchestrate an appropriate host response. Phagocytosis refers to the process of internalization and degradation of particulate material, damaged and senescent cells and microorganisms by specialized cells, after which the vesicle containing the ingested particle, the phagosome, matures into acidic phagolysosomes upon fusion with hydrolytic enzyme-containing lysosomes. The destructive power of the macrophage is further exacerbated through the induction of macrophage activation upon a variety of inflammatory stimuli. Despite being the end-point for many phagocytosed microbes, the macrophage can also serve as an intracellular survival niche for a number of intracellular microorganisms. One microbe that is particularly successful at surviving within macrophages is the pathogen Mycobacterium tuberculosis, which can efficiently manipulate the macrophage at several levels, including modulation of the phagocytic pathway as well as interfering with a number of immune activation pathways that normally would lead to eradication of the internalized bacilli. M. tuberculosis excels at circumventing destruction within macrophages, thus establishing itself successfully for prolonged times within the macrophage. In this contribution, we describe a number of general features of macrophages in the context of their function to clear an infection, and highlight the strategies employed by M. tuberculosis to counter macrophage attack. Interestingly, research on the evasion tactics employed by M. tuberculosis within macrophages not only helps to design strategies to curb tuberculosis, but also allows a better understanding of host cell biology.
Collapse
Affiliation(s)
- Somdeb BoseDasgupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Jean Pieters
- Department of Biochemistry, Biozentrum, University of Basel, 50-70 Klingelbergstrasse, 4056, Basel, Switzerland.
| |
Collapse
|
37
|
López V, Risalde MA, Contreras M, Mateos-Hernández L, Vicente J, Gortázar C, de la Fuente J. Heat-inactivated Mycobacterium bovis protects zebrafish against mycobacteriosis. JOURNAL OF FISH DISEASES 2018; 41:1515-1528. [PMID: 29956837 DOI: 10.1111/jfd.12847] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Control of mycobacterial infection constitutes a priority for human and animal health worldwide. However, effective vaccines are needed for the control of human and animal tuberculosis (TB). Adult zebrafish have become a useful model for studying the pathophysiology of mycobacterial infection and for the development of novel interventions for TB control and prevention. Recently, parenteral and oral immunization with the heat-inactivated Mycobacterium bovis vaccine (M. bovis IV) protected wild boar against TB. The objectives of this study were to provide additional support for the role of M. bovis IV in TB control using the zebrafish model and to conduct the first trial with this vaccine for the control of fish mycobacteriosis. The results showed that M. bovis IV protected zebrafish against mycobacteriosis caused by low and high infection doses of Mycobacterium marinum and provided evidence suggesting that the protective mechanism elicited by M. bovis IV in zebrafish as in other species is based on the activation of the innate immune response through the C3 pathway, with a role for the regulatory protein Akr2 in this process. These results encourage the use of M. bovis IV for TB control in different species.
Collapse
Affiliation(s)
- Vladimir López
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - María Angeles Risalde
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - Marinela Contreras
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - Lourdes Mateos-Hernández
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - Joaquin Vicente
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - Christian Gortázar
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - José de la Fuente
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
38
|
O'Brien MA, McMichael MA, Le Boedec K. 25-Hydroxyvitamin D concentrations in dogs with naturally acquired blastomycosis. J Vet Intern Med 2018; 32:1684-1691. [PMID: 30079575 PMCID: PMC6189387 DOI: 10.1111/jvim.15255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 01/04/2023] Open
Abstract
Background Hypovitaminosis D is common in humans with tuberculosis, and adequate serum 25‐hydroxyvitamin D [25(OH)D] concentrations may improve response to therapy. The pathomechanism of Blastomyces dermatitidis is similar to that of Mycobacterium tuberculosis, but the 25(OH)D status of dogs with blastomycosis has not been investigated. Objectives To determine if dogs with blastomycosis have lower 25(OH)D concentrations compared with healthy controls and to explore the prognostic value of 25(OH)D concentrations in blastomycosis. Animals 35 control dogs (16 client‐owned, healthy dogs and 19 healthy, random‐source hound mixes) and 22 dogs with blastomycosis. Methods Prospective study. Serum concentrations of 25(OH)D, parathyroid hormone (PTH), ionized calcium were measured, and biochemistry and hematology profiles were performed. The 25‐hydroxyvitamin D concentrations were compared between groups, and factors associated with 25(OH)D variation were investigated in dogs with blastomycosis. Dogs with blastomycosis were followed for up to 5 years after discharge and factors associated with survival were investigated. Results Dogs with blastomycosis had significantly lower concentrations of 25(OH)D and PTH and higher concentrations of ionized calcium than did control dogs. In dogs with blastomycosis, 25(OH)D concentrations were independently associated with neutrophil count, pCO2, and with bone and skin involvement. The 25‐hydroxyvitamin D concentration was not associated with survival in dogs with blastomycosis, whereas lactate concentrations; bone, skin, and lymph node involvement; number of affected sites; and, presence of respiratory signs were associated with survival. Conclusions and Clinical Importance Dogs with blastomycosis had lower 25(OH)D concentrations than did healthy controls. Despite no impact on survival, investigating the effect of 25(OH)D supplementation on recovery is warranted.
Collapse
Affiliation(s)
- M A O'Brien
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - M A McMichael
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - K Le Boedec
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| |
Collapse
|
39
|
Al-Mozaini MA, Tsolaki AG, Abdul-Aziz M, Abozaid SM, Al-Ahdal MN, Pathan AA, Murugaiah V, Makarov EM, Kaur A, Sim RB, Kishore U, Kouser L. Human Properdin Modulates Macrophage: Mycobacterium bovis BCG Interaction via Thrombospondin Repeats 4 and 5. Front Immunol 2018; 9:533. [PMID: 29867915 PMCID: PMC5951972 DOI: 10.3389/fimmu.2018.00533] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/01/2018] [Indexed: 02/01/2023] Open
Abstract
Mycobacterium tuberculosis can proficiently enter macrophages and diminish complement activation on its cell surface. Within macrophages, the mycobacterium can suppress macrophage apoptosis and survive within the intracellular environment. Previously, we have shown that complement regulatory proteins such as factor H may interfere with pathogen–macrophage interactions during tuberculosis infection. In this study, we show that Mycobacterium bovis BCG binds properdin, an upregulator of the complement alternative pathway. TSR4+5, a recombinant form of thrombospondin repeats 4 and 5 of human properdin expressed in tandem, which is an inhibitor of the alternative pathway, was also able to bind to M. bovis BCG. Properdin and TSR4+5 were found to inhibit uptake of M. bovis BCG by THP-1 macrophage cells in a dose-dependent manner. Quantitative real-time PCR revealed elevated pro-inflammatory responses (TNF-α, IL-1β, and IL-6) in the presence of properdin or TSR4+5, which gradually decreased over 6 h. Correspondingly, anti-inflammatory responses (IL-10 and TGF-β) showed suppressed levels of expression in the presence of properdin, which gradually increased over 6 h. Multiplex cytokine array analysis also revealed that properdin and TSR4+5 significantly enhanced the pro-inflammatory response (TNF-α, IL-1β, and IL-1α) at 24 h, which declined at 48 h, whereas the anti-inflammatory response (IL-10) was suppressed. Our results suggest that properdin may interfere with mycobacterial entry into macrophages via TSR4 and TSR5, particularly during the initial stages of infection, thus affecting the extracellular survival of the pathogen. This study offers novel insights into the non-complement related functions of properdin during host–pathogen interactions in tuberculosis.
Collapse
Affiliation(s)
- Maha Ahmed Al-Mozaini
- College of Health and Life Sciences, Brunel University London, London, United Kingdom.,Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Anthony G Tsolaki
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Munirah Abdul-Aziz
- College of Health and Life Sciences, Brunel University London, London, United Kingdom.,Department of Biochemistry, Oxford University, Oxford, United Kingdom
| | - Suhair M Abozaid
- College of Health and Life Sciences, Brunel University London, London, United Kingdom.,Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ansar A Pathan
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Valarmathy Murugaiah
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Evgeny M Makarov
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Anuvinder Kaur
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Robert B Sim
- Department of Biochemistry, Oxford University, Oxford, United Kingdom
| | - Uday Kishore
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Lubna Kouser
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
40
|
Piergallini TJ, Turner J. Tuberculosis in the elderly: Why inflammation matters. Exp Gerontol 2018; 105:32-39. [PMID: 29287772 PMCID: PMC5967410 DOI: 10.1016/j.exger.2017.12.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
Abstract
Growing old is associated with an increase in the basal inflammatory state of an individual and susceptibility to many diseases, including infectious diseases. Evidence is growing to support the concept that inflammation and disease susceptibility in the elderly is linked. Our studies focus on the infectious disease tuberculosis (TB), which is caused by Mycobacterium tuberculosis (M.tb), a pathogen that infects approximately one fourth of the world's population. Aging is a major risk factor for developing TB, and inflammation has been strongly implicated. In this review we will discuss the relationship between inflammation in the lung and susceptibility to develop and succumb to TB in old age. Further understanding of the relationship between inflammation, age, and M.tb will lead to informed decisions about TB prevention and treatment strategies that are uniquely designed for the elderly.
Collapse
Affiliation(s)
- Tucker J Piergallini
- Texas Biomedical Research Institute, San Antonio, TX 78227, United States; College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Joanne Turner
- Texas Biomedical Research Institute, San Antonio, TX 78227, United States.
| |
Collapse
|
41
|
Gharun K, Senges J, Seidl M, Lösslein A, Kolter J, Lohrmann F, Fliegauf M, Elgizouli M, Alber M, Vavra M, Schachtrup K, Illert AL, Gilleron M, Kirschning CJ, Triantafyllopoulou A, Henneke P. Mycobacteria exploit nitric oxide-induced transformation of macrophages into permissive giant cells. EMBO Rep 2017; 18:2144-2159. [PMID: 29097394 DOI: 10.15252/embr.201744121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/23/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
Immunity to mycobacteria involves the formation of granulomas, characterized by a unique macrophage (MΦ) species, so-called multinucleated giant cells (MGC). It remains unresolved whether MGC are beneficial to the host, that is, by prevention of bacterial spread, or whether they promote mycobacterial persistence. Here, we show that the prototypical antimycobacterial molecule nitric oxide (NO), which is produced by MGC in excessive amounts, is a double-edged sword. Next to its antibacterial capacity, NO propagates the transformation of MΦ into MGC, which are relatively permissive for mycobacterial persistence. The mechanism underlying MGC formation involves NO-induced DNA damage and impairment of p53 function. Moreover, MGC have an unsurpassed potential to engulf mycobacteria-infected apoptotic cells, which adds a further burden to their antimycobacterial capacity. Accordingly, mycobacteria take paradoxical advantage of antimicrobial cellular efforts by driving effector MΦ into a permissive MGC state.
Collapse
Affiliation(s)
- Kourosh Gharun
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Senges
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pathology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Lösslein
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Kolter
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Florens Lohrmann
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School for Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manfred Fliegauf
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Magdeldin Elgizouli
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Martina Vavra
- Division of Infectious Diseases, Department of Internal Medicine 2, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kristina Schachtrup
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna L Illert
- Department of Medicine I, Medical Center, University of Freiburg, Faculty of Medicine University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carsten J Kirschning
- Institute of Medical Microbiology, Medical Center, University Duisburg-Essen, Essen, Germany
| | - Antigoni Triantafyllopoulou
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany .,Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
42
|
Torrelles JB, Schlesinger LS. Integrating Lung Physiology, Immunology, and Tuberculosis. Trends Microbiol 2017; 25:688-697. [PMID: 28366292 PMCID: PMC5522344 DOI: 10.1016/j.tim.2017.03.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 11/17/2022]
Abstract
Lungs are directly exposed to the air, have enormous surface area, and enable gas exchange in air-breathing animals. They are constantly 'attacked' by microbes from both outside and inside and thus possess a unique, highly regulated local immune defense system which efficiently allows for microbial clearance while minimizing damaging inflammatory responses. As a prototypic host-adapted airborne pathogen, Mycobacterium tuberculosis traverses the lung and has several 'interaction points' (IPs) which it must overcome to cause infection. These interactions are critical, not only from a pathogenesis perspective but also in considering the effectiveness of therapies and vaccines in the lungs. Here we discuss emerging views on immunologic interactions occurring in the lungs for M. tuberculosis and their impact on infection and persistence.
Collapse
Affiliation(s)
- Jordi B Torrelles
- Department of Microbial Infection and Immunity, College of Medicine, and the Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, College of Medicine, and the Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
43
|
Abstract
Tuberculosis remains one of the greatest threats to human health. The causative bacterium, Mycobacterium tuberculosis, is acquired by the respiratory route. It is exquisitely adapted to humans and is a prototypic intracellular pathogen of macrophages, with alveolar macrophages being the primary conduit of infection and disease. However, M. tuberculosis bacilli interact with and are affected by several soluble and cellular components of the innate immune system which dictate the outcome of primary infection, most commonly a latently infected healthy human host, in whom the bacteria are held in check by the host immune response within the confines of tissue granuloma, the host histopathologic hallmark. Such individuals can develop active TB later in life with impairment in the immune system. In contrast, in a minority of infected individuals, the early host immune response fails to control bacterial growth, and progressive granulomatous disease develops, facilitating spread of the bacilli via infectious aerosols. The molecular details of the M. tuberculosis-host innate immune system interaction continue to be elucidated, particularly those occurring within the lung. However, it is clear that a number of complex processes are involved at the different stages of infection that may benefit either the bacterium or the host. In this article, we describe a contemporary view of the molecular events underlying the interaction between M. tuberculosis and a variety of cellular and soluble components and processes of the innate immune system.
Collapse
|
44
|
Robinson RT, Huppler AR. The Goldilocks model of immune symbiosis with Mycobacteria and Candida colonizers. Cytokine 2017; 97:49-65. [PMID: 28570933 DOI: 10.1016/j.cyto.2017.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
Abstract
Mycobacteria and Candida species include significant human pathogens that can cause localized or disseminated infections. Although these organisms may appear to have little in common, several shared pathways of immune recognition and response are important for both control and infection-related pathology. In this article, we compare and contrast the innate and adaptive components of the immune system that pertain to these infections in humans and animal models. We also explore a relatively new concept in the mycobacterial field: biological commensalism. Similar to the well-established model of Candida infection, Mycobacteria species colonize their human hosts in equilibrium with the immune response. Perturbations in the immune response permit the progression to pathologic disease at the expense of the host. Understanding the immune factors required to maintain commensalism may aid with the development of diagnostic and treatment strategies for both categories of pathogens.
Collapse
Affiliation(s)
- Richard T Robinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Anna R Huppler
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Children's Hospital and Health System, Children's Research Institute, Milwaukee, WI, USA.
| |
Collapse
|
45
|
Zheng X, Av-Gay Y. System for Efficacy and Cytotoxicity Screening of Inhibitors Targeting Intracellular Mycobacterium tuberculosis. J Vis Exp 2017. [PMID: 28448028 DOI: 10.3791/55273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a leading cause of morbidity and mortality worldwide. With the increased spread of multi drug-resistant TB (MDR-TB), there is a real urgency to develop new therapeutic strategies against M. tuberculosis infections. Traditionally, compounds are evaluated based on their antibacterial activity under in vitro growth conditions in broth; however, results are often misleading for intracellular pathogens like M. tuberculosis since in-broth phenotypic screening conditions are significantly different from the actual disease conditions within the human body. Screening for inhibitors that work inside macrophages has been traditionally difficult due to the complexity, variability in infection, and slow replication rate of M. tuberculosis. In this study, we report a new approach to rapidly assess the effectiveness of compounds on the viability of M. tuberculosis in a macrophage infection model. Using a combination of a cytotoxicity assay and an in-broth M. tuberculosis viability assay, we were able to create a screening system that generates a comprehensive analysis of compounds of interest. This system is capable of producing quantitative data at a low cost that is within reach of most labs and yet is highly scalable to fit large industrial settings.
Collapse
Affiliation(s)
- Xingji Zheng
- Department of Medicine, University of British Columbia;
| | - Yossef Av-Gay
- Department of Medicine, University of British Columbia
| |
Collapse
|
46
|
Highly Multiplexed Proteomic Analysis of Quantiferon Supernatants To Identify Biomarkers of Latent Tuberculosis Infection. J Clin Microbiol 2016; 55:391-402. [PMID: 27852671 PMCID: PMC5277508 DOI: 10.1128/jcm.01646-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/10/2016] [Indexed: 01/16/2023] Open
Abstract
The tests for diagnosing latent tuberculosis infection (LTBI) are limited by a poor predictive value for identifying people at the highest risk for progressing to active tuberculosis (TB) and have various sensitivities and specificities in different populations. Identifying a more robust signature for LTBI is important for TB prevention and elimination. A pilot study was conducted with samples from immigrants to the United States that were screened for LTBI by the three commercially approved tests, namely, the tuberculin skin test (TST), the Quantiferon-TB Gold in-tube (QFT-GIT), and the T-SPOT.TB (T-SPOT). QFT-GIT supernatants from 13 people with concordant positive results and 26 people with concordant negative results were analyzed via the highly multiplexed SOMAscan proteomic assay. The proteins in the stimulated supernatants that distinguished LTBI from controls included interleukin-2 (IL-2), monocyte chemotactic protein 2 (MCP-2), interferon gamma inducible protein-10 (IP-10), interferon gamma (IFN-γ), tumor necrosis factor superfamily member 14 (TNFSF14, also known as LIGHT), monokine induced by gamma interferon (MIG), and granzyme B (P <0.00001). In addition, antigen stimulation increased the expression of heparin-binding EGF-like growth factor (HB-EGF) and activin AB in LTBI samples. In nil tubes, LIGHT was the most significant marker (P <0.0001) and was elevated in LTBI subjects. Other prominent markers in nonstimulated QFT-GIT supernatants were the complement-3 components C3b, iC3b, and C3d, which were upregulated in LTBI and markedly decreased upon stimulation. We found known and novel proteins that warrant further studies for developing improved tests for LTBI, for predicting progression to active disease, and for discriminating LTBI from active TB.
Collapse
|
47
|
Complement factor H interferes with Mycobacterium bovis BCG entry into macrophages and modulates the pro-inflammatory cytokine response. Immunobiology 2016; 221:944-52. [DOI: 10.1016/j.imbio.2016.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 01/31/2023]
|
48
|
C-type lectin receptors in tuberculosis: what we know. Med Microbiol Immunol 2016; 205:513-535. [DOI: 10.1007/s00430-016-0470-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022]
|
49
|
Pandit A. Tuberculosis: A basic discourse. APOLLO MEDICINE 2016. [DOI: 10.1016/j.apme.2015.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
50
|
Chen T, Blanc C, Eder AZ, Prados-Rosales R, Souza ACO, Kim RS, Glatman-Freedman A, Joe M, Bai Y, Lowary TL, Tanner R, Brennan MJ, Fletcher HA, McShane H, Casadevall A, Achkar JM. Association of Human Antibodies to Arabinomannan With Enhanced Mycobacterial Opsonophagocytosis and Intracellular Growth Reduction. J Infect Dis 2016; 214:300-10. [PMID: 27056953 PMCID: PMC4918826 DOI: 10.1093/infdis/jiw141] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/30/2016] [Indexed: 01/02/2023] Open
Abstract
Background. The relevance of antibodies (Abs) in the defense against Mycobacterium tuberculosis infection remains uncertain. We investigated the role of Abs to the mycobacterial capsular polysaccharide arabinomannan (AM) and its oligosaccharide (OS) fragments in humans. Methods. Sera obtained from 29 healthy adults before and after primary or secondary bacillus Calmette-Guerin (BCG) vaccination were assessed for Ab responses to AM via enzyme-linked immunosorbent assays, and to AM OS epitopes via novel glycan microarrays. Effects of prevaccination and postvaccination sera on BCG phagocytosis and intracellular survival were assessed in human macrophages. Results. Immunoglobulin G (IgG) responses to AM increased significantly 4–8 weeks after vaccination (P < .01), and sera were able to opsonize BCG and M. tuberculosis grown in both the absence and the presence of detergent. Phagocytosis and intracellular growth inhibition were significantly enhanced when BCG was opsonized with postvaccination sera (P < .01), and these enhancements correlated significantly with IgG titers to AM (P < .05), particularly with reactivity to 3 AM OS epitopes (P < .05). Furthermore, increased phagolysosomal fusion was observed with postvaccination sera. Conclusions. Our results provide further evidence for a role of Ab-mediated immunity to tuberculosis and suggest that IgG to AM, especially to some of its OS epitopes, could contribute to the defense against mycobacterial infection in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Ryung S Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
| | - Aharona Glatman-Freedman
- Department of Pediatrics Department of Family and Community Medicine, New York Medical College, Valhalla, New York Infectious Diseases Unit, Israel Center for Disease Control, Israel Ministry of Health, Tel Hashomer
| | - Maju Joe
- Alberta Glycomics Centre Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Yu Bai
- Alberta Glycomics Centre Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Rachel Tanner
- Jenner Institute, University of Oxford, United Kingdom
| | | | | | - Helen McShane
- Jenner Institute, University of Oxford, United Kingdom
| | - Arturo Casadevall
- Department of Medicine Department of Microbiology and Immunology Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|