1
|
Wang X, Nyenhuis SB, Bernstein HD. The translocation assembly module (TAM) catalyzes the assembly of bacterial outer membrane proteins in vitro. Nat Commun 2024; 15:7246. [PMID: 39174534 PMCID: PMC11341756 DOI: 10.1038/s41467-024-51628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
The translocation and assembly module (TAM) has been proposed to play a crucial role in the assembly of a small subset of outer membrane proteins (OMPs) in Proteobacteria based on experiments conducted in vivo using tamA and tamB mutant strains and in vitro using biophysical methods. TAM consists of an OMP (TamA) and a periplasmic protein that is anchored to the inner membrane by a single α helix (TamB). Here we examine the function of the purified E. coli complex in vitro after reconstituting it into proteoliposomes. We find that TAM catalyzes the assembly of four model OMPs nearly as well as the β-barrel assembly machine (BAM), a universal heterooligomer that contains a TamA homolog (BamA) and that catalyzes the assembly of almost all E. coli OMPs. Consistent with previous results, both TamA and TamB are required for significant TAM activity. Our study provides direct evidence that TAM can function as an independent OMP insertase and describes a new method to gain insights into TAM function.
Collapse
Affiliation(s)
- Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah B Nyenhuis
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Wang X, Nyenhuis SB, Bernstein HD. The translocation assembly module (TAM) catalyzes the assembly of bacterial outer membrane proteins in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599893. [PMID: 39372782 PMCID: PMC11451606 DOI: 10.1101/2024.06.20.599893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The bacterial translocation assembly module (TAM) contains an outer membrane protein (OMP) (TamA) and an elongated periplasmic protein that is anchored to the inner membrane by a single α helix (TamB). TAM has been proposed to play a critical role in the assembly of a small subset of OMPs produced by Proteobacteria based on experiments conducted in vivo using tamA and/or tamB deletion or mutant strains and in vitro using biophysical methods. Recent genetic experiments, however, have strongly suggested that TAM promotes phospholipid homeostasis. To test the idea that TAM catalyzes OMP assembly directly, we examined the function of the purified E. coli complex in vitro after reconstituting it into proteoliposomes. Remarkably, we find that TAM catalyzes the assembly of four model OMPs nearly as well as the β-barrel assembly machinery (BAM), a universal heterooligomer that contains a TamA homolog (BamA) and that catalyzes the assembly of almost all E. coli OMPs. Consistent with previous results, both TamA and TamB are required for significant TAM activity. Our results provide strong evidence that although their peripheral subunits are unrelated, both BAM and TAM function as independent OMP insertases. Furthermore, our study describes a new method to gain insights into TAM function.
Collapse
Affiliation(s)
- Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Sarah B. Nyenhuis
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Harris D. Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
3
|
Chakkour M, Hammoud Z, Farhat S, El Roz A, Ezzeddine Z, Ghssein G. Overview of Proteus mirabilis pathogenicity and virulence. Insights into the role of metals. Front Microbiol 2024; 15:1383618. [PMID: 38646633 PMCID: PMC11026637 DOI: 10.3389/fmicb.2024.1383618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
Proteus mirabilis is a Gram-negative bacterium with exclusive molecular and biological features. It is a versatile pathogen acclaimed for its distinct urease production, swarming behavior, and rapid multicellular activity. Clinically, P. mirabilis is a frequent pathogen of the human urinary system where it causes urinary tract infections (UTIs) and catheter-associated urinary tract infections (CAUTIs). This review explores the epidemiology, risk factors, clinical manifestations, and treatment of P. mirabilis infections, emphasizing its association with UTIs. The bacterium's genome analysis revealed the presence of resistance genes against commonly used antibiotics, an antibiotic-resistant phenotype that poses a serious clinical challenge. Particularly, the emergence of extended-spectrum β-lactamases (ESBLs) and carbapenemases resistant P. mirabilis strains. On a molecular level, P. mirabilis possesses a wide array of virulence factors including the production of fimbriae, urease, hemolysins, metallophores, and biofilm formation. This review thoroughly tackles a substantial gap in understanding the role of metallophores in shaping the virulence factors of P. mirabilis virulence. Siderophores, iron metal chelating and transporting metallophores, particularly contribute to the complex pathogenic strategies, displaying a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Mohamed Chakkour
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Zeinab Hammoud
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Solay Farhat
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Ali El Roz
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde, Lebanon
| | - Zeinab Ezzeddine
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde, Lebanon
| | - Ghassan Ghssein
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde, Lebanon
| |
Collapse
|
4
|
Goh KJ, Stubenrauch CJ, Lithgow T. The TAM, a Translocation and Assembly Module for protein assembly and potential conduit for phospholipid transfer. EMBO Rep 2024; 25:1711-1720. [PMID: 38467907 PMCID: PMC11014939 DOI: 10.1038/s44319-024-00111-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The assembly of β-barrel proteins into the bacterial outer membrane is an essential process enabling the colonization of new environmental niches. The TAM was discovered as a module of the β-barrel protein assembly machinery; it is a heterodimeric complex composed of an outer membrane protein (TamA) bound to an inner membrane protein (TamB). The TAM spans the periplasm, providing a scaffold through the peptidoglycan layer and catalyzing the translocation and assembly of β-barrel proteins into the outer membrane. Recently, studies on another membrane protein (YhdP) have suggested that TamB might play a role in phospholipid transport to the outer membrane. Here we review and re-evaluate the literature covering the experimental studies on the TAM over the past decade, to reconcile what appear to be conflicting claims on the function of the TAM.
Collapse
Affiliation(s)
- Kwok Jian Goh
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher J Stubenrauch
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia.
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
5
|
Dickson K, Zhou J, Lehmann C. Lower Urinary Tract Inflammation and Infection: Key Microbiological and Immunological Aspects. J Clin Med 2024; 13:315. [PMID: 38256450 PMCID: PMC10816374 DOI: 10.3390/jcm13020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The urinary system, primarily responsible for the filtration of blood and waste, is affected by several infectious and inflammatory conditions. Focusing on the lower tract, this review outlines the physiological and immune landscape of the urethra and bladder, addressing key immunological and microbiological aspects of important infectious/inflammatory conditions. The conditions addressed include urethritis, interstitial cystitis/bladder pain syndrome, urinary tract infections, and urosepsis. Key aspects of each condition are addressed, including epidemiology, pathophysiology, and clinical considerations. Finally, therapeutic options are outlined, highlighting gaps in the knowledge and novel therapeutic approaches.
Collapse
Affiliation(s)
- Kayle Dickson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Juan Zhou
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Christian Lehmann
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
6
|
Brauer AL, Learman BS, Armbruster CE. Differential Contribution of Hydrogen Metabolism to Proteus mirabilis Fitness during Single-Species and Polymicrobial Catheterized Urinary Tract Infection. Pathogens 2023; 12:1377. [PMID: 38133262 PMCID: PMC10745698 DOI: 10.3390/pathogens12121377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Proteus mirabilis is a common uropathogen and a leading cause of catheter-associated urinary tract infections (CAUTIs), which are often polymicrobial. Through a genome-wide screen, we previously identified two [NiFe] hydrogenases as candidate fitness factors for P. mirabilis CAUTI: a Hyb-type Group 1c H2-uptake hydrogenase and a Hyf-type Group 4a H2-producing hydrogenase. In this study, we disrupted one gene of each system (hyfE and hybC) and also generated a double mutant to examine the contribution of flexible H2 metabolism to P. mirabilis growth and fitness in vitro and during experimental CAUTI. Since P. mirabilis is typically present as part of a polymicrobial community in the urinary tract, we also examined the impact of two common co-colonization partners, Providencia stuartii and Enterococcus faecalis, on the expression and contribution of each hydrogenase to fitness. Our data demonstrate that neither system alone is critical for P. mirabilis growth in vitro or fitness during experimental CAUTI. However, perturbation of flexible H2 metabolism in the ∆hybC∆hyfE double mutant decreased P. mirabilis fitness in vitro and during infection. The Hyf system alone contributed to the generation of proton motive force and swarming motility, but only during anaerobic conditions. Unexpectedly, both systems contributed to benzyl viologen reduction in TYET medium, and disruption of either system increased expression of the other. We further demonstrate that polymicrobial interactions with P. stuartii and E. faecalis alter the expression of Hyb and Hyf in vitro as well as the contribution of each system to P. mirabilis fitness during CAUTI.
Collapse
Affiliation(s)
| | | | - Chelsie E. Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14203, USA; (A.L.B.); (B.S.L.)
| |
Collapse
|
7
|
Pearson MM, Shea AE, Pahil S, Smith SN, Forsyth VS, Mobley HLT. Organ agar serves as physiologically relevant alternative for in vivo bacterial colonization. Infect Immun 2023; 91:e0035523. [PMID: 37850748 PMCID: PMC10652904 DOI: 10.1128/iai.00355-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Animal models for host-microbial interactions have proven valuable, yielding physiologically relevant data that may be otherwise difficult to obtain. Unfortunately, such models are lacking or nonexistent for many microbes. Here, we introduce organ agar, a straightforward method to enable the screening of large mutant libraries while avoiding physiological bottlenecks. We demonstrate that growth defects on organ agar were translatable to bacterial colonization deficiencies in a murine model. Specifically, we present a urinary tract infection agar model to interrogate an ordered library of Proteus mirabilis transposon mutants, with accurate prediction of bacterial genes critical for host colonization. Thus, we demonstrate the ability of ex vivo organ agar to reproduce in vivo deficiencies. Organ agar was also useful for identifying previously unknown links between biosynthetic genes and swarming motility. This work provides a readily adoptable technique that is economical and uses substantially fewer animals. We anticipate this method will be useful for a wide variety of microorganisms, both pathogenic and commensal, in a diverse range of model host species.
Collapse
Affiliation(s)
- Melanie M. Pearson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allyson E. Shea
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sapna Pahil
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Valerie S. Forsyth
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Scavone P, Iribarnegaray V, González MJ, Navarro N, Caneles-Huerta N, Jara-Wilde J, Härtel S, Zunino P. Role of Proteus mirabilis flagella in biofilm formation. Rev Argent Microbiol 2023; 55:226-234. [PMID: 37076397 DOI: 10.1016/j.ram.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/03/2022] [Accepted: 01/25/2023] [Indexed: 04/21/2023] Open
Abstract
Proteus mirabilis(P. mirabilis) is a common etiological agent of urinary tract infections, particularly those associated with catheterization. P. mirabilis efficiently forms biofilms on different surfaces and shows a multicellular behavior called 'swarming', mediated by flagella. To date, the role of flagella in P. mirabilis biofilm formation has been under debate. In this study, we assessed the role of P. mirabilis flagella in biofilm formation using an isogenic allelic replacement mutant unable to express flagellin. Different approaches were used, such as the evaluation of cell surface hydrophobicity, bacterial motility and migration across catheter sections, measurements of biofilm biomass and biofilm dynamics by immunofluorescence and confocal microscopy in static and flow models. Our findings indicate that P. mirabilis flagella play a role in biofilm formation, although their lack does not completely avoid biofilm generation. Our data suggest that impairment of flagellar function can contribute to biofilm prevention in the context of strategies focused on particular bacterial targets.
Collapse
Affiliation(s)
- Paola Scavone
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Victoria Iribarnegaray
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Department of Pathobiology, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - María José González
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Nicolás Navarro
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Nicole Caneles-Huerta
- Laboratory for Scientific Image Processing (SCIAN-Lab), Biomedical Neuroscience Institute (BNI), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jorge Jara-Wilde
- Laboratory for Scientific Image Processing (SCIAN-Lab), Biomedical Neuroscience Institute (BNI), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Steffen Härtel
- Laboratory for Scientific Image Processing (SCIAN-Lab), Biomedical Neuroscience Institute (BNI), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pablo Zunino
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
9
|
Doshi A, Shaw M, Tonea R, Moon S, Minyety R, Doshi A, Laine A, Guo J, Danino T. Engineered bacterial swarm patterns as spatial records of environmental inputs. Nat Chem Biol 2023; 19:878-886. [PMID: 37142806 DOI: 10.1038/s41589-023-01325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility-a highly coordinated and rapid movement of bacteria powered by flagella. Engineering swarming is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye swarm patterns, to 'write' external inputs into visible spatial records. Specifically, we engineer tunable expression of swarming-related genes that modify pattern features, and we develop quantitative approaches to decoding. Next, we develop a dual-input system that modulates two swarming-related genes simultaneously, and we separately show that growing colonies can record dynamic environmental changes. We decode the resulting multicondition patterns with deep classification and segmentation models. Finally, we engineer a strain that records the presence of aqueous copper. This work creates an approach for building macroscale bacterial recorders, expanding the framework for engineering emergent microbial behaviors.
Collapse
Affiliation(s)
- Anjali Doshi
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Marian Shaw
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Ruxandra Tonea
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Soonhee Moon
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Rosalía Minyety
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Anish Doshi
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Andrew Laine
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York City, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, USA.
- Data Science Institute, Columbia University, New York City, NY, USA.
| |
Collapse
|
10
|
Wang G, Qin J, Verderosa AD, Hor L, Santos-Martin C, Paxman JJ, Martin JL, Totsika M, Heras B. A Buried Water Network Modulates the Activity of the Escherichia coli Disulphide Catalyst DsbA. Antioxidants (Basel) 2023; 12:antiox12020380. [PMID: 36829940 PMCID: PMC9952396 DOI: 10.3390/antiox12020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The formation of disulphide bonds is an essential step in the folding of many proteins that enter the secretory pathway; therefore, it is not surprising that eukaryotic and prokaryotic organisms have dedicated enzymatic systems to catalyse this process. In bacteria, one such enzyme is disulphide bond-forming protein A (DsbA), a thioredoxin-like thiol oxidase that catalyses the oxidative folding of proteins required for virulence and fitness. A large body of work on DsbA proteins, particularly Escherichia coli DsbA (EcDsbA), has demonstrated the key role that the Cys30-XX-Cys33 catalytic motif and its unique redox properties play in the thiol oxidase activity of this enzyme. Using mutational and functional analyses, here we identify that a set of charged residues, which form an acidic groove on the non-catalytic face of the enzyme, further modulate the activity of EcDsbA. Our high-resolution structures indicate that these residues form a water-mediated proton wire that can transfer protons from the bulk solvent to the active site. Our results support the view that proton shuffling may facilitate the stabilisation of the buried Cys33 thiolate formed during the redox reaction and promote the correct direction of the EcDsbA-substrate thiol-disulphide exchange. Comparison with other proteins of the same class and proteins of the thioredoxin-superfamily in general suggest that a proton relay system appears to be a conserved catalytic feature among this widespread superfamily of proteins. Furthermore, this study also indicates that the acidic groove of DsbA could be a promising allosteric site to develop novel DsbA inhibitors as antibacterial therapeutics.
Collapse
Affiliation(s)
- Geqing Wang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: (G.W.); (B.H.)
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Anthony D. Verderosa
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Carlos Santos-Martin
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jennifer L. Martin
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: (G.W.); (B.H.)
| |
Collapse
|
11
|
Construction of an Ordered Transposon Library for Uropathogenic Proteus mirabilis HI4320. Microbiol Spectr 2022; 10:e0314222. [PMID: 36377916 PMCID: PMC9769666 DOI: 10.1128/spectrum.03142-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ordered transposon libraries are a valuable resource for many bacterial species, especially those with difficult methods for generating targeted genetic mutations. Here, we present the construction of an ordered transposon library for the bacterial urinary tract pathogen Proteus mirabilis strain HI4320. This library will facilitate future studies into P. mirabilis biology. For large experimental screens, it may be used to overcome bottleneck constraints and avoid biased outcomes resulting from gene length. For smaller studies, the library allows sidestepping the laborious construction of single targeted mutants. This library, containing 18,432 wells, was condensed into a smaller library containing 1,728 mutants. Each selected mutant had a single transposon insertion in an open reading frame, covering 45% of predicted genes encoded by P. mirabilis HI4320. This coverage was lower than expected and was due both to library wells with no mapped insertions and a surprisingly high proportion of mixed clones and multiple transposon insertion events. We offer recommendations for improving future library construction and suggestions for how to use this P. mirabilis library resource. IMPORTANCE Ordered libraries facilitate large genetic screens by guaranteeing high genomic coverage with a minimal number of mutants, and they can save time and effort by reducing the need to construct targeted mutations. This resource is now available for P. mirabilis, a common and complicating agent of catheter-associated urinary tract infection. We also present obstacles encountered during library construction with the goal to aid others who would like to construct ordered transposon libraries in other species.
Collapse
|
12
|
Li D, Liang W, Hu Q, Ren J, Xue F, Liu Q, Tang F. The effect of a spontaneous induction prophage, phi458, on biofilm formation and virulence in avian pathogenic Escherichia coli. Front Microbiol 2022; 13:1049341. [PMID: 36452923 PMCID: PMC9701743 DOI: 10.3389/fmicb.2022.1049341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2023] Open
Abstract
Prophage sequences are present in most bacterial genomes and account for up to 20% of its host genome. Integration of temperate phages may have an impact on the expression of host genes, while some prophages could turn into the lytic cycle and affect bacterial host biological characteristics. We investigated the role of spontaneous induction prophages in avian pathogenic Escherichia coli (APEC), which is the causative agent of avian colibacillosis in poultry, and considered a potential zoonotic bacterium related to the fact it serves as an armory of extraintestinal pathogenic E. coli. We found that APEC strain DE458 had a high spontaneous induction rate in vivo and in vitro. The released phage particles, phi458, were isolated, purified, and sequenced, and the deletion mutant, DE458Δphi458, was constructed and characterized. Biofilm formation of DE458Δphi458 was strongly decreased compared to that of the wild-type strain (p < 0.01). In addition, while the addition of DNase (100 μg/ml) did not affect prophage release but could digest eDNA, it significantly reduced the biofilm production of DE458 biofilm to a level close to that of DE458Δphi458. Compared to DE458, the adhesion and invasion abilities of DE458Δphi458 increased by approximately 6-20 times (p < 0.05). The virulence of DE458Δphi458 was enhanced by approximately 10-fold in chickens based on a 50% lethal dose. Furthermore, avian infection assays showed that the bacterial loads of DE458Δphi458 in the lung and liver were increased by 16.5- and 10-fold (p < 0.05), respectively, compared with those of the WT strain. The qRT-PCR revealed that deletion of phi458 led to upregulation of type I fimbriate-related gene fimH and curli-related gene csgC by 3- and 2.8-fold, respectively (p < 0.01). Our study revealed that phi458 promoted biofilm formation by spontaneously inducing and decreasing virulence by repressing virulence genes.
Collapse
Affiliation(s)
- Dezhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wei Liang
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Qingyue Hu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Brauer AL, Learman BS, Taddei SM, Deka N, Hunt BC, Armbruster CE. Preferential catabolism of l- vs d-serine by Proteus mirabilis contributes to pathogenesis and catheter-associated urinary tract infection. Mol Microbiol 2022; 118:125-144. [PMID: 35970717 PMCID: PMC9486832 DOI: 10.1111/mmi.14968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 11/29/2022]
Abstract
Proteus mirabilis is a common cause of urinary tract infection, especially in catheterized individuals. Amino acids are the predominant nutrient for bacteria during growth in urine, and our prior studies identified several amino acid import and catabolism genes as fitness factors for P. mirabilis catheter-associated urinary tract infection (CAUTI), particularly those for d- and l-serine. In this study, we sought to determine the hierarchy of amino acid utilization by P. mirabilis and to examine the relative importance of d- vs l-serine catabolism for critical steps in CAUTI development and progression. Herein, we show that P. mirabilis preferentially catabolizes l-serine during growth in human urine, followed by d-serine, threonine, tyrosine, glutamine, tryptophan, and phenylalanine. Independently disrupting catabolism of either d- or l-serine has minimal impact on in vitro phenotypes while completely disrupting both pathways decreases motility, biofilm formation, and fitness due to perturbation of membrane potential and cell wall biosynthesis. In a mouse model of CAUTI, loss of either serine catabolism system decreased fitness, but disrupting l-serine catabolism caused a greater fitness defect than disrupting d-serine catabolism. We, therefore, conclude that the hierarchical utilization of amino acids may be a critical component of P. mirabilis colonization and pathogenesis within the urinary tract.
Collapse
Affiliation(s)
- Aimee L. Brauer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Brian S. Learman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Steven M. Taddei
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Namrata Deka
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Benjamin C. Hunt
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Chelsie E. Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
14
|
Ridha Abbas Al-Fahham H, Raoof Kareem K. Molecular Study of Urease ureR Gene of Proteus mirabilis Isolated from Urinary Tract Infections, Najaf, Iraq. ARCHIVES OF RAZI INSTITUTE 2022; 77:1257-1260. [PMID: 36618312 PMCID: PMC9759237 DOI: 10.22092/ari.2022.357465.2042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 01/10/2023]
Abstract
Proteus mirabilis is considered one of the causative pathogens that leads to complicated urinary tract infection (UTI); moreover, it produces urease. Urease plays a key role as a virulence factor for P. mirabilis. UreR, a member of the AraC/XylS family of transcriptional regulators, positively activates the expression of the ure gene cluster in the presence of urea. Therefore, this study was designed to investigate the contribution of ureR to urease activity and virulence in urinary tract infections. A total of 74 clinical samples were collected from August to December 2020. The urine samples were taken from individuals with parasitic infections in their urinary tracts. After cultivating the samples on the MacConkey agar, the initial identification was performed based on traditional methods with the automated VITEK-2 compact method. Bacterial isolates were inoculated by stabbing and streaking into a slant of urease agar, which were then incubated at 37°C for 24-48 h. The polymerase chain reaction technique was used to detect the P. mirabilis ureR gene. The results of biochemical studies were utilized to confirm the identification of P. mirabilis isolates that had previously been made. All isolates had the same oxidase-negative, catalase-positive, oxidase-negative, and catalase-positive properties. They were motile, methyl red, and uric acid, catalase, citrate, and urease positive. The results of investigating the expression of the ureR gene in 15 isolates of P. mirabilis suggested that only 14 (93.3%) of the isolates produced ureR gene products using unique primers.
Collapse
Affiliation(s)
- H Ridha Abbas Al-Fahham
- Department of Medical Microbiology, Faculty of Pharmacy, Jabir Ibn Hayyan Medical University, Najaf, Iraq
| | - K Raoof Kareem
- Department of Medical Microbiology, Faculty of Pharmacy, Jabir Ibn Hayyan Medical University, Najaf, Iraq
| |
Collapse
|
15
|
Expression, purification and characterization of the suppressor of copper sensitivity (Scs) B membrane protein from Proteus mirabilis. Protein Expr Purif 2022; 193:106047. [PMID: 35026386 DOI: 10.1016/j.pep.2022.106047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/14/2021] [Accepted: 01/09/2022] [Indexed: 11/20/2022]
Abstract
Suppressor of copper sensitivity (Scs) proteins play a role in the bacterial response to copper stress in many Gram-negative bacteria, including in the human pathogen Proteus mirabilis. Recently, the ScsC protein from P. mirabilis (PmScsC) was characterized as a trimeric protein with isomerase activity that contributes to the ability of the bacterium to swarm in the presence of copper. The CXXC motif catalytic cysteines of PmScsC are maintained in their active reduced state by the action of its membrane-bound partner protein, the Proteus mirabilis ScsB (PmScsB). Thus, PmScsC and PmScsB form a redox relay in vivo. The predicted domain arrangement of PmScsB comprises a central transmembrane β-domain and two soluble, periplasmic domains, the N-terminal α-domain and C-terminal γ-domain. Here, we provide a procedure for the recombinant expression and purification of the full-length PmScsB protein. Using Lemo21(DE3) cells we expressed PmScsB and, after extraction and purification, we were able to achieve a yield of 3 mg of purified protein per 8L of bacterial culture. Furthermore, using two orthogonal methods - AMS labelling of free thiols and a scrambled RNase activity assay - PmScsB is shown to catalyze the reduction of PmScsC. Our results demonstrate that the PmScsC and PmScsB redox relay can be reconstituted in vitro using recombinant full-length PmScsB membrane protein. This finding provides a promising starting point for the in vitro biochemical and structural characterization of the P. mirabilis ScsC and ScsB interaction.
Collapse
|
16
|
Surveying a Swarm: Experimental Techniques to Establish and Examine Bacterial Collective Motion. Appl Environ Microbiol 2021; 88:e0185321. [PMID: 34878816 DOI: 10.1128/aem.01853-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The survival and successful spread of many bacterial species hinges on their mode of motility. One of the most distinct of these is swarming, a collective form of motility where a dense consortium of bacteria employ flagella to propel themselves across a solid surface. Surface environments pose unique challenges, derived from higher surface friction/tension and insufficient hydration. Bacteria have adapted by deploying an array of mechanisms to overcome these challenges. Beyond allowing bacteria to colonize new terrain in the absence of bulk liquid, swarming also bestows faster speeds and enhanced antibiotic resistance to the collective. These crucial attributes contribute to the dissemination, and in some cases pathogenicity, of an array of bacteria. This mini-review highlights; 1) aspects of swarming motility that differentiates it from other methods of bacterial locomotion. 2) Facilitatory mechanisms deployed by diverse bacteria to overcome different surface challenges. 3) The (often difficult) approaches required to cultivate genuine swarmers. 4) The methods available to observe and assess the various facets of this collective motion, as well as the features exhibited by the population as a whole.
Collapse
|
17
|
Iribarnegaray V, González MJ, Caetano AL, Platero R, Zunino P, Scavone P. Relevance of iron metabolic genes in biofilm and infection in uropathogenic Proteus mirabilis. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100060. [PMID: 34841350 PMCID: PMC8610330 DOI: 10.1016/j.crmicr.2021.100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/19/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
The microorganisms are found in the environment, forming sessile communities embedded in an extracellular matrix of their own production, called biofilm. These communities have a great relevance in the clinical context, since they are associated with infections caused by biofilm in medical implants, such as urinary catheters. The development of biofilms is a complex process where a great diversity of genes participate. The present work is based on the study of genes related to iron metabolism and its implication in the development of P. mirabilis biofilms and pathogenicity. For this study, two mutant strains defective in biofilm formation were selected, generated by the interruption of genes that encoded non-heme ferritin and TonB-dependent receptor. The mutations influence on the development of the biofilm was evaluated by different approaches. The complexity of the biofilm was analyzed using Confocal Laser Microscopy and image analysis. The mutants infectivity potential was assessed in two experimental mice models of urinary tract infection. The results obtained in the present work show us the role of the ferritin and a TonB-associated porin protein over the initial and later stages of biofilm development. Moreover, in the ascending UTI mouse model, both mutants failed to colonize the urinary tract. In CAUTI models, ferritin mutant damaged the bladder similarly to wild type but the Ton-B mutant was unable to generate infection in the urinary tract. The results obtained in the present work confirm the relevant role that iron metabolism genes have in P. mirabilis biofilm development and for infection in the urinary tract.
Collapse
Affiliation(s)
- V Iribarnegaray
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo CP 11600, Uruguay
- Department of Pathobiology, Facultad de Veterinaria, Universidad de la República, Alberto Lasplaces 1620, Montevideo, Uruguay
| | - MJ González
- Laboratory of Microbial Biofilms, Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo CP 11600, Uruguay
| | - AL Caetano
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo CP 11600, Uruguay
| | - R Platero
- Department of Biochemistry and Microbial Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo CP 11600, Uruguay
| | - P Zunino
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo CP 11600, Uruguay
| | - P Scavone
- Laboratory of Microbial Biofilms, Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo CP 11600, Uruguay
| |
Collapse
|
18
|
Santos-Martin C, Wang G, Subedi P, Hor L, Totsika M, Paxman JJ, Heras B. Structural bioinformatic analysis of DsbA proteins and their pathogenicity associated substrates. Comput Struct Biotechnol J 2021; 19:4725-4737. [PMID: 34504665 PMCID: PMC8405906 DOI: 10.1016/j.csbj.2021.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
The disulfide bond (DSB) forming system and in particular DsbA, is a key bacterial oxidative folding catalyst. Due to its role in promoting the correct assembly of a wide range of virulence factors required at different stages of the infection process, DsbA is a master virulence rheostat, making it an attractive target for the development of new virulence blockers. Although DSB systems have been extensively studied across different bacterial species, to date, little is known about how DsbA oxidoreductases are able to recognize and interact with such a wide range of substrates. This review summarizes the current knowledge on the DsbA enzymes, with special attention on their interaction with the partner oxidase DsbB and substrates associated with bacterial virulence. The structurally and functionally diverse set of bacterial proteins that rely on DsbA-mediated disulfide bond formation are summarized. Local sequence and secondary structure elements of these substrates are analyzed to identify common elements recognized by DsbA enzymes. This not only provides information on protein folding systems in bacteria but also offers tools for identifying new DsbA substrates and informs current efforts aimed at developing DsbA targeted anti-microbials.
Collapse
Affiliation(s)
- Carlos Santos-Martin
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Lilian Hor
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Jason John Paxman
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
19
|
Eckels EC, Chaudhuri D, Chakraborty S, Echelman DJ, Haldar S. DsbA is a redox-switchable mechanical chaperone. Chem Sci 2021; 12:11109-11120. [PMID: 34522308 PMCID: PMC8386657 DOI: 10.1039/d1sc03048e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/17/2021] [Indexed: 12/18/2022] Open
Abstract
DsbA is a ubiquitous bacterial oxidoreductase that associates with substrates during and after translocation, yet its involvement in protein folding and translocation remains an open question. Here we demonstrate a redox-controlled chaperone activity of DsbA, on both cysteine-containing and cysteine-free substrates, using magnetic tweezers-based single molecule force spectroscopy that enables independent measurements of oxidoreductase activity and chaperone behavior. Interestingly we found that this chaperone activity is tuned by the oxidation state of DsbA; oxidized DsbA is a strong promoter of folding, but the effect is weakened by the reduction of the catalytic CXXC motif. We further localize the chaperone binding site of DsbA using a seven-residue peptide which effectively blocks the chaperone activity. We found that the DsbA assisted folding of proteins in the periplasm generates enough mechanical work to decrease the ATP consumption needed for periplasmic translocation by up to 33%.
Collapse
Affiliation(s)
- Edward C Eckels
- Department of Biological Sciences, Columbia University New York NY 10027 USA
- Department of Internal Medicine, Columbia University Medical Center New York NY 10032 USA
| | - Deep Chaudhuri
- Department of Biological Sciences, Ashoka University Sonepat Haryana 131029 India
| | - Soham Chakraborty
- Department of Biological Sciences, Ashoka University Sonepat Haryana 131029 India
| | - Daniel J Echelman
- Department of Biological Sciences, Columbia University New York NY 10027 USA
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University Sonepat Haryana 131029 India
| |
Collapse
|
20
|
Durgadevi R, Abirami G, Swasthikka RP, Alexpandi R, Pandian SK, Ravi AV. Proteomic analysis deciphers the multi-targeting antivirulence activity of tannic acid in modulating the expression of MrpA, FlhD, UreR, HpmA and Nrp system in Proteus mirabilis. Int J Biol Macromol 2020; 165:1175-1186. [PMID: 33007322 DOI: 10.1016/j.ijbiomac.2020.09.233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/08/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022]
Abstract
In the present study, the multi-targeting antivirulence activity of tannic acid (TA) was explored against Proteus mirabilis through MS-based proteomic approach. The in vitro biofilm biomass quantification assay and microscopic analysis demonstrated the antibiofilm activity of TA against P. mirabilis in which, minimum biofilm inhibitory concentration (MBIC) of TA was found to be 200 μg/mL concentration. Moreover, the nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS) analysis revealed that TA (at MBIC) differentially regulated the proteins involved in fimbrial adhesion, flagellar motility, iron acquisition, Fe-S cluster assembly, heat shock response, virulence enzymes, and toxin secretion. Further, the transcriptomic analysis validated the outcomes of proteomic analysis in which, the expression level of virulence genes responsible for MR/P fimbrial adhesion (mrpA), flagellar transcriptional activation (flhD), biosynthesis of urease (ureR), hemolysin (hpmA), non-ribosomal peptide siderophore system (Nrp), oxidative stress responsible enzymes and fitness factors proteins were down-regulated in TA exposed P. mirabilis. These observations were also in correspondence with the in vitro bioassays. Thus, this study reports the feasibility of TA to act as a promising therapeutic agent against multifactorial P. mirabilis infections.
Collapse
Affiliation(s)
- Ravindran Durgadevi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - Gurusamy Abirami
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | | | - Rajaiah Alexpandi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | | | - Arumugam Veera Ravi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India.
| |
Collapse
|
21
|
Staphylococcus aureus Preferentially Liberates Inorganic Phosphate from Organophosphates in Environments where This Nutrient Is Limiting. J Bacteriol 2020; 202:JB.00264-20. [PMID: 32868400 DOI: 10.1128/jb.00264-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/27/2020] [Indexed: 11/20/2022] Open
Abstract
Phosphate is an essential nutrient that Staphylococcus aureus and other pathogens must acquire from the host during infection. While inorganic monophosphate (Pi) is the preferred source of this nutrient, bacteria can also obtain it from phosphate-containing organic molecules. The Pi-responsive regulator PhoPR is necessary for S. aureus to cause infection, suggesting that Pi is not freely available during infection and that this nutrient must be obtained from other sources. However, the organophosphates from which S. aureus can obtain phosphate are unknown. We evaluated the ability of 58 phosphorus-containing molecules to serve as phosphate sources for S. aureus Forty-six of these compounds, including phosphorylated amino acids, sugars, and nucleotides, supported growth. Among the organophosphate sources was glycerol-3-phosphate (G3P), which is commonly found in the mammalian host. Differing from the model organism Escherichia coli, S. aureus does not import G3P intact to obtain Pi Instead, S. aureus relies on the phosphatase PhoB to release Pi from G3P, which is subsequently imported by Pi transporters. To determine if this strategy is used by S. aureus to extract phosphate from other phosphate sources, we assessed the ability of PhoB- and Pi transporter-deficient strains to grow on the same library of phosphorus-containing molecules. Sixty percent of the substrates (28/46) relied on the PhoB/Pi transporter pathway, and an additional 10/46 (22%) were PhoB independent but still required Pi transport through the Pi transporters. Cumulatively, these results suggest that in Pi-limited environments, S. aureus preferentially generates Pi from organophosphates and then relies on Pi transporters to import this nutrient.IMPORTANCE For bacteria, the preferred form of the essential nutrient phosphate is inorganic monophosphate (Pi), but phosphate can also be extracted from a variety of phosphocompounds. Pathogens, including Staphylococcus aureus, experience Pi limitation within the host, suggesting that the use of alternative phosphate sources is important during infection. However, the alternative phosphate sources that can be used by S. aureus and others remain largely unexplored. We screened a library of phosphorus-containing compounds for the ability to support growth as a phosphate source. S. aureus could use a variety of phosphocompounds, including nucleotides, phosphosugars, and phosphoamino acids. Subsequent genetic analysis determined that a majority of these alternative phosphate sources are first processed extracellularly to liberate Pi, which is then imported through Pi transporters.
Collapse
|
22
|
Bushweller JH. Protein Disulfide Exchange by the Intramembrane Enzymes DsbB, DsbD, and CcdA. J Mol Biol 2020; 432:5091-5103. [PMID: 32305461 PMCID: PMC7485265 DOI: 10.1016/j.jmb.2020.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022]
Abstract
The formation of disulfide bonds in proteins is an essential process in both prokaryotes and eukaryotes. In gram-negative bacteria including Escherichia coli, the proteins DsbA and DsbB mediate the formation of disulfide bonds in the periplasm. DsbA acts as the periplasmic oxidant of periplasmic substrate proteins. DsbA is reoxidized by transfer of reducing equivalents to the 4 TM helix membrane protein DsbB, which transfers reducing equivalents to ubiquinone or menaquinone. Multiple structural studies of DsbB have provided detailed structural information on intermediates in the process of DsbB catalyzed oxidation of DsbA. These structures and the insights gained are described. In proteins with more than one pair of Cys residues, there is the potential for formation of non-native disulfide bonds, making it necessary for the cell to have a mechanism for the isomerization of such non-native disulfide bonds. In E. coli, this is mediated by the proteins DsbC and DsbD. DsbC reduces mis-formed disulfide bonds. The eight-TM-helix protein DsbD reduces DsbC and is itself reduced by cytoplasmic thioredoxin. DsbD also contributes reducing equivalents for the reduction of cytochrome c to facilitate heme attachment. The DsbD functional homolog CcdA is a six-TM-helix membrane protein that provides reducing equivalents for the reduction of cytochrome c. A recent structure determination of CcdA has provided critical insights into how reducing equivalents are transferred across the membrane that likely also provides understanding how this is achieved by DsbD as well. This structure and the insights gained are described.
Collapse
Affiliation(s)
- John H Bushweller
- Department of Molecular Physiology and Biological Physics, Department of Chemistry, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
23
|
Tn-Seq Analysis Identifies Genes Important for Yersinia pestis Adherence during Primary Pneumonic Plague. mSphere 2020; 5:5/4/e00715-20. [PMID: 32759339 PMCID: PMC7407073 DOI: 10.1128/msphere.00715-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Colonization of the lung by Yersinia pestis is a critical first step in establishing infection during primary pneumonic plague, a disease characterized by high lethality. However, the mechanisms by which Y. pestis adheres in the lung after inhalation remain elusive. Here, we used Tn-seq to identify Y. pestis genes important for adherence early during primary pneumonic plague. Our mutant enrichment strategy resulted in the identification of genes important for regulation and assembly of genes and proteins rather than adhesin genes themselves. These results reveal that there may be multiple Y. pestis adhesins or redundancy among adhesins. Identifying the adhesins regulated by the genes identified in our enrichment screen may reveal novel therapeutic targets for preventing Y. pestis adherence and the subsequent development of pneumonic plague. Following inhalation, Yersinia pestis rapidly colonizes the lung to establish infection during primary pneumonic plague. Although several adhesins have been identified in Yersinia spp., the factors mediating early Y. pestis adherence in the lung remain unknown. To identify genes important for Y. pestis adherence during primary pneumonic plague, we used transposon insertion sequencing (Tn-seq). Wild-type and capsule mutant (Δcaf1) Y. pestis transposon mutant libraries were serially passaged in vivo to enrich for nonadherent mutants in the lung using a mouse model of primary pneumonic plague. Sequencing of the passaged libraries revealed six mutants that were significantly enriched in both the wild-type and Δcaf1Y. pestis backgrounds. The enriched mutants had insertions in genes that encode transcriptional regulators, chaperones, an endoribonuclease, and YPO3903, a hypothetical protein. Using single-strain infections and a transcriptional analysis, we identified a significant role for YPO3903 in Y. pestis adherence in the lung and showed that YPO3903 regulated transcript levels of psaA, which encodes a fimbria previously implicated in Y. pestis adherence in vitro. Deletion of psaA had a minor effect on Y. pestis adherence in the lung, suggesting that YPO3903 regulates other adhesins in addition to psaA. By enriching for mutations in genes that regulate the expression or assembly of multiple genes or proteins, we obtained screen results indicating that there may be not just one dominant adhesin but rather several factors that contribute to early Y. pestis adherence during primary pneumonic plague. IMPORTANCE Colonization of the lung by Yersinia pestis is a critical first step in establishing infection during primary pneumonic plague, a disease characterized by high lethality. However, the mechanisms by which Y. pestis adheres in the lung after inhalation remain elusive. Here, we used Tn-seq to identify Y. pestis genes important for adherence early during primary pneumonic plague. Our mutant enrichment strategy resulted in the identification of genes important for regulation and assembly of genes and proteins rather than adhesin genes themselves. These results reveal that there may be multiple Y. pestis adhesins or redundancy among adhesins. Identifying the adhesins regulated by the genes identified in our enrichment screen may reveal novel therapeutic targets for preventing Y. pestis adherence and the subsequent development of pneumonic plague.
Collapse
|
24
|
Li MF, Jia BB, Sun YY, Sun L. The Translocation and Assembly Module (TAM) of Edwardsiella tarda Is Essential for Stress Resistance and Host Infection. Front Microbiol 2020; 11:1743. [PMID: 32793174 PMCID: PMC7393178 DOI: 10.3389/fmicb.2020.01743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/03/2020] [Indexed: 11/28/2022] Open
Abstract
Translocation and assembly module (TAM) is a protein channel known to mediate the secretion of virulence factors during pathogen infection. Edwardsiella tarda is a Gram-negative bacterium that is pathogenic to a wide range of farmed fish and other hosts including humans. In this study, we examined the function of the two components of the TAM, TamA and TamB, of E. tarda (named tamAEt and tamBEt, respectively). TamAEt was found to localize on the surface of E. tarda and be recognizable by TamAEt antibody. Compared to the wild type, the tamA and tamB knockouts, TX01ΔtamA and TX01ΔtamB, respectively, were significantly reduced in motility, flagella formation, invasion into host cells, intracellular replication, dissemination in host tissues, and inducing host mortality. The lost virulence capacities of TX01ΔtamA and TX01ΔtamB were restored by complementation with the tamAEt and tamBEt genes, respectively. Furthermore, TX01ΔtamA and TX01ΔtamB were significantly impaired in the ability to survive under low pH and oxidizing conditions, and were unable to maintain their internal pH balance and cellular structures in acidic environments, which led to increased susceptibility to lysozyme destruction. Taken together, these results indicate that TamAEt and TamBEt are essential for the virulence of E. tarda and required for E. tarda to survive under stress conditions.
Collapse
Affiliation(s)
- Mo-Fei Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bei-Bei Jia
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
25
|
Liu J, Bai Y, Fan TP, Zheng X, Cai Y. Unveiling the Multipath Biosynthesis Mechanism of 2-Phenylethanol in Proteus mirabilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7684-7690. [PMID: 32608230 DOI: 10.1021/acs.jafc.0c02918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Proteus mirabilis could convert l-phenylalanine into 2-phenylethanol (2-PE) via the Ehrlich pathway, the amino acid deaminase pathway, and the aromatic amino acid decarboxylase pathway. The aromatic amino acid decarboxylase pathway was proved for the first time in P. mirabilis. In this pathway, l-aromatic amino acid transferase demonstrated a unique catalytic property, transforming 2-penylethylamine into phenylacetaldehyde. Eleven enzymes were supposed to involve in 2-phenylethanol synthesis. The mRNA expression levels of 11 genes were assessed over time by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in vivo. As a result, the expression of 11 genes was significantly increased, suggesting that P. mirabilis could transform l-phenylalanine into 2-phenylethanol via three pathways under aerobic conditions; nine genes were significantly overexpressed, suggesting that P. mirabilis could synthesize 2-phenylethanol via the Ehrlich pathway under anaerobic conditions. This study reveals the multipath synthetic metabolism for 2-phenylethanol in P. mirabilis and will enrich the new ideas for natural (2-PE) synthesis.
Collapse
Affiliation(s)
- Jinbin Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shanxi 710069, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1T, U.K
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shanxi 710069, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
26
|
Partridge JD, Harshey RM. Investigating Flagella-Driven Motility in Escherichia coli by Applying Three Established Techniques in a Series. J Vis Exp 2020. [PMID: 32449734 DOI: 10.3791/61364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Motility is crucial to the survival and success of many bacterial species. Many methodologies exist to exploit motility to understand signaling pathways, to elucidate the function and assembly of flagellar parts, and to examine and understand patterns of movement. Here we demonstrate a combination of three of these methodologies. Motility in soft agar is the oldest, offering a strong selection for isolating gain-of-function suppressor mutations in motility-impaired strains, where motility is restored through a second mutation. The cell-tethering technique, first employed to demonstrate the rotary nature of the flagellar motor, can be used to assess the impact of signaling effectors on the motor speed and its ability to switch rotational direction. The "border-crossing" assay is more recent, where swimming bacteria can be primed to transition into moving collectively as a swarm. In combination, these protocols represent a systematic and powerful approach to identifying components of the motility machinery, and to characterizing their role in different facets of swimming and swarming. They can be easily adapted to study motility in other bacterial species.
Collapse
Affiliation(s)
| | - Rasika M Harshey
- Department of Molecular Biosciences, The University of Texas at Austin;
| |
Collapse
|
27
|
Hussein EI, Al-Batayneh K, Masadeh MM, Dahadhah FW, Al Zoubi MS, Aljabali AA, Alzoubi KH. Assessment of Pathogenic Potential, Virulent Genes Profile, and Antibiotic Susceptibility of Proteus mirabilis from Urinary Tract Infection. Int J Microbiol 2020; 2020:1231807. [PMID: 32089693 PMCID: PMC7029293 DOI: 10.1155/2020/1231807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 11/17/2022] Open
Abstract
Proteus mirabilis is the third most common bacterium that can cause complicated UTI, especially in catheterized patients. Urovirulence genes of P. mirabilis strains are poorly identified among UTI patients. The aims of the present study were to determine the prevalence of the uropathogenic P. mirabilis strains isolated from UTI patients by the detection of several P. mirabilis virulence genes and to characterize the antibiotic susceptibility profile of P. mirabilis isolates. P. mirabilis isolates were collected from urine specimens of patients suffering from UTI. Virulence genes in P. mirabilis, namely, hpmA, hpmB, rsbA, luxS, ureC1, hlyA, rpoA, atfA, atfC, mrpA, and pm1 were detected in the isolates via PCR detection method. All P. mirabilis virulence genes were detected in more than 90% of the isolates except hlyA gene, which was detected in only 23.8% of the isolates. The rate of susceptibility for ceftriaxone was 96.8%, followed by norfloxacin (82.5%), gentamicin (71.4%), ciprofloxacin (69.8%), cephalexin (52.4%), nalidixic acid (42.9%), sulfamethoxazole (39.7%), ampicillin (36.5%), and nitrofurantoin (3.2%). Significant associations (P < 0.05) were detected between antimicrobial susceptibility of each of the following antibiotics and the presence virulence genes. Cephalexin antimicrobial susceptibility was significantly associated with the presence each of ureC1 and atfC. Sulfamethoxazole antimicrobial susceptibility was significantly associated with the presence atfA. Ceftriaxone antimicrobial susceptibility was significantly associated with the presence each of hpmA, ureC1, rpoA, atfC, mrpA, and pm1. Nitrofurantoin antimicrobial susceptibility was significantly associated with the presence each of hpmA, ureC1, rpoA, atfA, atfC, mrpA, and pm1. In conclusion, an association between the presence of urovirulence genes of P. mirabilis and increasing P. mirabilis resistance to antimicrobials has been demonstrated.
Collapse
Affiliation(s)
- Emad I. Hussein
- Department of Biological Sciences, Yarmouk University, Irbid 21163, Jordan
- Department of Food Science and Human Nutrition, A'Sharqiyah University, Ibra, Oman
| | - Khalid Al-Batayneh
- Department of Biological Sciences, Yarmouk University, Irbid 21163, Jordan
| | - Majed M. Masadeh
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Fatina W. Dahadhah
- Department of Biological Sciences, Yarmouk University, Irbid 21163, Jordan
| | - Mazhar Salim Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Alaa A. Aljabali
- Department of Pharmaceutical Sciences, Yarmouk University, Irbid 21163, Jordan
| | - Karem H. Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
28
|
Elbastawesy MAI, El-Shaier YAMM, Ramadan M, Brown AB, Aly AA, Abuo-Rahma GEDA. Identification and molecular modeling of new quinolin-2-one thiosemicarbazide scaffold with antimicrobial urease inhibitory activity. Mol Divers 2020; 25:13-27. [PMID: 31916112 DOI: 10.1007/s11030-019-10021-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/29/2019] [Indexed: 01/03/2023]
Abstract
A new series of 6-substituted quinolin-2-one thiosemicarbazides 6a-j has been synthesized. The structure of the target compounds was proved by different spectroscopic and elemental analyses. All the designed final compounds were evaluated for their in vitro activity against the urease-producing R. mucilaginosa and Proteus mirabilis bacteria as fungal and bacterial pathogens, respectively. Moreover, all compounds were in vitro tested as potential urease inhibitors using the cup-plate diffusion method. Compounds 6a and 6b were the most active with (IC50 = 0.58 ± 0.15 and 0.43 ± 0.09 µM), respectively, in comparison with lead compound I (IC50 = 1.13 ± 0.00 µM). Also, the designed compounds were docked into urease proteins (ID: 3LA4 and ID: 4UBP) using Open Eye® software to understand correctly about ligand-receptor interactions. The docking results revealed that the designed compounds can interact with the active site of the enzyme through multiple strong hydrogen bonds. Moreover, rapid overlay of chemical structures' analysis was described to understand the 3D QSAR of synthesized compounds as urease inhibitors. The results emphasize the importance of polar thiosemicarbazide directly linked to 6-substituted quinolone moieties as promising antimicrobial urease inhibitors.
Collapse
Affiliation(s)
- Mohammed A I Elbastawesy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Yaseen A M M El-Shaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat-City, Menufia, Egypt
| | - Mohamed Ramadan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Alan B Brown
- Chemistry Department, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Ashraf A Aly
- Department of Chemistry, Faculty of Science, Minia University, El-Minia, 61519, Egypt.
| | | |
Collapse
|
29
|
Learman BS, Brauer AL, Eaton KA, Armbruster CE. A Rare Opportunist, Morganella morganii, Decreases Severity of Polymicrobial Catheter-Associated Urinary Tract Infection. Infect Immun 2019; 88:e00691-19. [PMID: 31611275 PMCID: PMC6921659 DOI: 10.1128/iai.00691-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) are common hospital-acquired infections and frequently polymicrobial, which complicates effective treatment. However, few studies experimentally address the consequences of polymicrobial interactions within the urinary tract, and the clinical significance of polymicrobial bacteriuria is not fully understood. Proteus mirabilis is one of the most common causes of monomicrobial and polymicrobial CAUTI and frequently cocolonizes with Enterococcus faecalis, Escherichia coli, Providencia stuartii, and Morganella morganiiP. mirabilis infections are particularly challenging due to its potent urease enzyme, which facilitates formation of struvite crystals, catheter encrustation, blockage, and formation of urinary stones. We previously determined that interactions between P. mirabilis and other uropathogens can enhance P. mirabilis urease activity, resulting in greater disease severity during experimental polymicrobial infection. Our present work reveals that M. morganii acts on P. mirabilis in a contact-independent manner to decrease urease activity. Furthermore, M. morganii actively prevents urease enhancement by E. faecalis, P. stuartii, and E. coli Importantly, these interactions translate to modulation of disease severity during experimental CAUTI, predominantly through a urease-dependent mechanism. Thus, products secreted by multiple bacterial species in the milieu of the catheterized urinary tract can directly impact prognosis.
Collapse
Affiliation(s)
- Brian S Learman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Aimee L Brauer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Kathryn A Eaton
- Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Chelsie E Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
30
|
The Fragment-Based Development of a Benzofuran Hit as a New Class of Escherichia coli DsbA Inhibitors. Molecules 2019; 24:molecules24203756. [PMID: 31635355 PMCID: PMC6832960 DOI: 10.3390/molecules24203756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 11/17/2022] Open
Abstract
A fragment-based drug discovery approach was taken to target the thiol-disulfide oxidoreductase enzyme DsbA from Escherichia coli (EcDsbA). This enzyme is critical for the correct folding of virulence factors in many pathogenic Gram-negative bacteria, and small molecule inhibitors can potentially be developed as anti-virulence compounds. Biophysical screening of a library of fragments identified several classes of fragments with affinity to EcDsbA. One hit with high mM affinity, 2-(6-bromobenzofuran-3-yl)acetic acid (6), was chemically elaborated at several positions around the scaffold. X-ray crystal structures of the elaborated analogues showed binding in the hydrophobic binding groove adjacent to the catalytic disulfide bond of EcDsbA. Binding affinity was calculated based on NMR studies and compounds 25 and 28 were identified as the highest affinity binders with dissociation constants (KD) of 326 ± 25 and 341 ± 57 µM respectively. This work suggests the potential to develop benzofuran fragments into a novel class of EcDsbA inhibitors.
Collapse
|
31
|
Bacterial Swarming Reduces Proteus mirabilis and Vibrio parahaemolyticus Cell Stiffness and Increases β-Lactam Susceptibility. mBio 2019; 10:mBio.00210-19. [PMID: 31594808 PMCID: PMC6786863 DOI: 10.1128/mbio.00210-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis and Vibrio parahaemolyticus are bacteria that infect humans. To adapt to environmental changes, these bacteria alter their cell morphology and move collectively to access new sources of nutrients in a process referred to as “swarming.” We found that changes in the composition and thickness of the peptidoglycan layer of the cell wall make swarmer cells of P. mirabilis and V. parahaemolyticus more flexible (i.e., reduce cell stiffness) and that they become more sensitive to osmotic pressure and cell wall-targeting antibiotics (e.g., β-lactams). These results highlight the importance of assessing the extracellular environment in determining antibiotic doses and the use of β-lactam antibiotics for treating infections caused by swarmer cells of P. mirabilis and V. parahaemolyticus. Swarmer cells of the Gram-negative uropathogenic bacteria Proteus mirabilis and Vibrio parahaemolyticus become long (>10 to 100 μm) and multinucleate during their growth and motility on polymer surfaces. We demonstrated that the increasing cell length is accompanied by a large increase in flexibility. Using a microfluidic assay to measure single-cell mechanics, we identified large differences in the swarmer cell stiffness (bending rigidity) of P. mirabilis (5.5 × 10−22 N m2) and V. parahaemolyticus (1.0 × 10−22 N m2) compared to vegetative cells (1.4 × 10−20 N m2 and 2.2 × 10−22 N m2, respectively). The reduction in bending rigidity (∼2-fold to ∼26-fold) was accompanied by a decrease in the average polysaccharide strand length of the peptidoglycan layer of the cell wall from 28 to 30 disaccharides to 19 to 22 disaccharides. Atomic force microscopy revealed a reduction in P. mirabilis peptidoglycan thickness from 1.5 nm (vegetative cells) to 1.0 nm (swarmer cells), and electron cryotomography indicated changes in swarmer cell wall morphology. P. mirabilis and V. parahaemolyticus swarmer cells became increasingly sensitive to osmotic pressure and susceptible to cell wall-modifying antibiotics (compared to vegetative cells)—they were ∼30% more likely to die after 3 h of treatment with MICs of the β-lactams cephalexin and penicillin G. The adaptive cost of “swarming” was offset by the increase in cell susceptibility to physical and chemical changes in their environment, thereby suggesting the development of new chemotherapies for bacteria that leverage swarming for the colonization of hosts and for survival.
Collapse
|
32
|
Methods for Transposon Mutagenesis in Proteus mirabilis. Methods Mol Biol 2019. [PMID: 31197711 DOI: 10.1007/978-1-4939-9570-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Several methods for transposon mutagenesis have been employed for use in P. mirabilis. The first method involves the use of mini-Tn5 derivatives, which are delivered by conjugation of a suicide plasmid containing this transposon, followed by transposition into the chromosome. A second method is the use of preformed transposon/transposase complexes (transposomes), which are introduced into P. mirabilis cells by electroporation. Each of these methods will be discussed along with the advantages and disadvantages of each.
Collapse
|
33
|
Hernandez H, Erives VH, Martinez LR. Coccidioidomycosis: Epidemiology, Fungal Pathogenesis, and Therapeutic Development. CURRENT TROPICAL MEDICINE REPORTS 2019; 6:132-144. [PMID: 34367879 DOI: 10.1007/s40475-019-00184-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purpose of Review Coccidioidomycosis can result from the inhalation of infectious spores of Coccidioides species (spp.) immitis or posadasii. Clinical manifestations range from mild flu-like disease to severe disseminated infection that can require life-long therapy. Burden of this mycosis is high in the southwest region of the USA where it is well characterized, and in many areas of Mexico and Latin America where it is inadequately characterized. Here, we provide historical data and current knowledge on Coccidioides spp. pathogenesis as well as recent progress in therapeutic and vaccine development against coccidioidomycosis. Recent Findings The virulence mechanisms of Coccidioides spp. are largely unknown; however, production and regulation of a spherule glycoprotein, ammonium production, and melanization have all been proposed as integral factors in Coccidioides spp.' pathogenesis. Therapeutic options are limited and not 100% effective, but individualized treatment with triazoles or amphotericin B over the course of pulmonary or disseminated infection can be effective in resolution of coccidioidomycosis. Human immunization has not been achieved but efforts are ongoing. Summary Advances in therapeutic and vaccine development are imperative for the prevention and treatment of coccidioidomycosis, especially for those individuals at risk either living or traveling to or from endemic areas.
Collapse
Affiliation(s)
- Hazael Hernandez
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Ave., Bioscience Research Building, Room 2.170, El Paso, TX 79968-9991, USA
| | - Victor H Erives
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Ave., Bioscience Research Building, Room 2.170, El Paso, TX 79968-9991, USA
| | - Luis R Martinez
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Ave., Bioscience Research Building, Room 2.170, El Paso, TX 79968-9991, USA
| |
Collapse
|
34
|
Leibiger K, Schweers JM, Schütz M. Biogenesis and function of the autotransporter adhesins YadA, intimin and invasin. Int J Med Microbiol 2019; 309:331-337. [PMID: 31176600 DOI: 10.1016/j.ijmm.2019.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/06/2019] [Accepted: 05/31/2019] [Indexed: 01/15/2023] Open
Abstract
Bacteria often express numerous virulence factors. These virulence factors make them successful pathogens, by e.g. mediating attachment to host cells and thereby facilitating persistence or invasion, or by contributing to the evasion of the host immune system to allow proliferation and spread within the host and in the environment. The site of first contact of Gram negative bacteria with the host is the bacterial outer membrane (OM). Consisting of an asymmetrical lipid bilayer with phospholipids forming the inner, and lipopolysaccharides forming the outer leaflet, the OM harbors numerous integral membrane proteins that are almost exclusively β-barrel proteins. One distinct family of OM β-barrel proteins strongly linked to bacterial virulence are the autotransporter (AT) proteins. During the last years huge progress has been made to better understand the mechanisms underlying the insertion of AT proteins into the OM and also AT function for interaction with the host. This review shortly summarizes our current knowledge about outer membrane protein (OMP) and more specifically AT biogenesis and function. We focused on the AT proteins that we haved studied in most detail: i.e. the Yersinia adhesin A (YadA) and invasin of Yersinia enterocolitica (Ye) as well as its homolog intimin (Int) expressed by enteropathogenic Escherichia coli. In addition, this review provides a short outlook about how we could possibly use this knowledge to fight infection.
Collapse
Affiliation(s)
- Karolin Leibiger
- Institut für Medizinische Mikrobiologie und Hygiene, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Jonas Malte Schweers
- Institut für Medizinische Mikrobiologie und Hygiene, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Monika Schütz
- Institut für Medizinische Mikrobiologie und Hygiene, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany.
| |
Collapse
|
35
|
Klebsiella and Providencia emerge as lone survivors following long-term starvation of oral microbiota. Proc Natl Acad Sci U S A 2019; 116:8499-8504. [PMID: 30975748 PMCID: PMC6486781 DOI: 10.1073/pnas.1820594116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well-understood that many bacteria have evolved to survive catastrophic events using a variety of mechanisms, which include expression of stress-response genes, quiescence, necrotrophy, and metabolic advantages obtained through mutation. However, the dynamics of individuals leveraging these abilities to gain a competitive advantage in an ecologically complex setting remain unstudied. In this study, we observed the saliva microbiome throughout the ecological perturbation of long-term starvation, allowing only the species best equipped to access and use the limited resources to survive. During the first several days, the community underwent a death phase that resulted in a ∼50-100-fold reduction in the number of viable cells. Interestingly, after this death phase, only three species, Klebsiella pneumoniae, Klebsiella oxytoca, and Providencia alcalifaciens, all members of the family Enterobacteriaceae, appeared to be transcriptionally active and recoverable. Klebsiella are significant human pathogens, frequently resistant to multiple antibiotics, and recently, ectopic colonization of the gut by oral Klebsiella was documented to induce dysbiosis and inflammation. MetaOmics analyses provided several leads for further investigation regarding the ecological success of the Enterobacteriaceae. The isolates accumulated single nucleotide polymorphisms in known growth advantage in stationary phase alleles and produced natural products closely resembling antimicrobial cyclic depsipeptides. The results presented in this study suggest that pathogenic Enterobacteriaceae persist much longer than their more benign neighbors in the salivary microbiome when faced with starvation. This is particularly significant, given that hospital surfaces contaminated with oral fluids, especially sinks and drains, are well-established sources of outbreaks of drug-resistant Enterobacteriaceae.
Collapse
|
36
|
Armbruster CE, Forsyth VS, Johnson AO, Smith SN, White AN, Brauer AL, Learman BS, Zhao L, Wu W, Anderson MT, Bachman MA, Mobley HLT. Twin arginine translocation, ammonia incorporation, and polyamine biosynthesis are crucial for Proteus mirabilis fitness during bloodstream infection. PLoS Pathog 2019; 15:e1007653. [PMID: 31009518 PMCID: PMC6497324 DOI: 10.1371/journal.ppat.1007653] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/02/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
The Gram-negative bacterium Proteus mirabilis is a common cause of catheter-associated urinary tract infections (CAUTI), which can progress to secondary bacteremia. While numerous studies have investigated experimental infection with P. mirabilis in the urinary tract, little is known about pathogenesis in the bloodstream. This study identifies the genes that are important for survival in the bloodstream using a whole-genome transposon insertion-site sequencing (Tn-Seq) approach. A library of 50,000 transposon mutants was utilized to assess the relative contribution of each non-essential gene in the P. mirabilis HI4320 genome to fitness in the livers and spleens of mice at 24 hours following tail vein inoculation compared to growth in RPMI, heat-inactivated (HI) naïve serum, and HI acute phase serum. 138 genes were identified as ex vivo fitness factors in serum, which were primarily involved in amino acid transport and metabolism, and 143 genes were identified as infection-specific in vivo fitness factors for both spleen and liver colonization. Infection-specific fitness factors included genes involved in twin arginine translocation, ammonia incorporation, and polyamine biosynthesis. Mutants in sixteen genes were constructed to validate both the ex vivo and in vivo results of the transposon screen, and 12/16 (75%) exhibited the predicted phenotype. Our studies indicate a role for the twin arginine translocation (tatAC) system in motility, translocation of potential virulence factors, and fitness within the bloodstream. We also demonstrate the interplay between two nitrogen assimilation pathways in the bloodstream, providing evidence that the GS-GOGAT system may be preferentially utilized. Furthermore, we show that a dual-function arginine decarboxylase (speA) is important for fitness within the bloodstream due to its role in putrescine biosynthesis rather than its contribution to maintenance of membrane potential. This study therefore provides insight into pathways needed for fitness within the bloodstream, which may guide strategies to reduce bacteremia-associated mortality.
Collapse
Affiliation(s)
- Chelsie E. Armbruster
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Valerie S. Forsyth
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Alexandra O. Johnson
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Sara N. Smith
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Ashley N. White
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Aimee L. Brauer
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Brian S. Learman
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Lili Zhao
- Department of Biostatistics; University of Michigan School of Public Health; Ann Arbor, MI, United States of America
| | - Weisheng Wu
- Department of Computational Medicine & Bioinformatics; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Mark T. Anderson
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Michael A. Bachman
- Department of Pathology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| |
Collapse
|
37
|
Huang L, Zuo Y, Jiang Q, Su Y, Qin Y, Xu X, Zhao L, Yan Q. A metabolomic investigation into the temperature-dependent virulence of Pseudomonas plecoglossicida from large yellow croaker (Pseudosciaena crocea). JOURNAL OF FISH DISEASES 2019; 42:431-446. [PMID: 30659613 DOI: 10.1111/jfd.12957] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Pseudomonas plecoglossicida is associated with multiple fish diseases, and temperature is one of the most important environmental factors related to its outbreak. To elucidate the influence of temperature variation on the pathogen, the global metabolomics of P. plecoglossicida (NZBD9) were analysed at the virulent (18°C) and avirulent (12°C and 28°C) temperatures. The result showed that the levels of Phosphoric acid, Tyrosine, Spermidine and Sucrose were significantly reduced,while Itaconic acid, Glucaric acid and Isomaltose were increased in P. plecoglossicida at 18°C. These metabolic adjustments assist P. plecoglossicida to survive in adverse environments, proliferate in the host, colonize and resist host immune clearance during the initial steps of infection. The results suggested that L321_03626 and L321_18122 genes played a key role in the regulation of these metabolic adaptions and thus regulated P. plecoglossicida virulence at virulent temperature, which was proved by further gene silencing and artificial infection. The present study, for the first time, determines the P. plecoglossicida metabolomic responses to temperature variation, which is helpful to explore its pathogenic mechanism and provides reference for disease control.
Collapse
Affiliation(s)
- Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yanfei Zuo
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingling Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
38
|
d-Serine Degradation by Proteus mirabilis Contributes to Fitness during Single-Species and Polymicrobial Catheter-Associated Urinary Tract Infection. mSphere 2019; 4:4/1/e00020-19. [PMID: 30814316 PMCID: PMC6393727 DOI: 10.1128/msphere.00020-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Urinary tract infections are among the most common health care-associated infections worldwide, the majority of which involve a urinary catheter (CAUTI). Our recent investigation of CAUTIs in nursing home residents identified Proteus mirabilis, Enterococcus species, and Escherichia coli as the three most common organisms. These infections are also often polymicrobial, and we identified Morganella morganii, Enterococcus species, and Providencia stuartii as being more prevalent during polymicrobial CAUTI than single-species infection. Our research therefore focuses on identifying “core” fitness factors that are highly conserved in P. mirabilis and that contribute to infection regardless of the presence of these other organisms. In this study, we determined that the ability to degrade d-serine, the most abundant d-amino acid in urine and serum, strongly contributes to P. mirabilis fitness within the urinary tract, even when competing for nutrients with another organism. d-Serine uptake and degradation therefore represent potential targets for disruption of P. mirabilis infections. Proteus mirabilis is a common cause of catheter-associated urinary tract infection (CAUTI) and secondary bacteremia, which are frequently polymicrobial. We previously utilized transposon insertion-site sequencing (Tn-Seq) to identify novel fitness factors for colonization of the catheterized urinary tract during single-species and polymicrobial infection, revealing numerous metabolic pathways that may contribute to P. mirabilis fitness regardless of the presence of other cocolonizing organisms. One such “core” fitness factor was d-serine utilization. In this study, we generated isogenic mutants in d-serine dehydratase (dsdA), d-serine permease (dsdX), and the divergently transcribed activator of the operon (dsdC) to characterize d-serine utilization in P. mirabilis and explore the contribution of this pathway to fitness during single-species and polymicrobial infection. P. mirabilis was capable of utilizing either d- or l-serine as a sole carbon or nitrogen source, and dsdA, dsdX, and dsdC were each specifically required for d-serine degradation. This capability was highly conserved among P. mirabilis isolates, although not universal among uropathogens: Escherichia coli and Morganella morganii utilized d-serine, while Providencia stuartii and Enterococcus faecalis did not. d-Serine utilization did not contribute to P. mirabilis growth in urine ex vivo during a 6-h time course but significantly contributed to fitness during single-species and polymicrobial CAUTI during a 96-h time course, regardless of d-serine utilization by the coinfecting isolate. d-Serine utilization also contributed to secondary bacteremia during CAUTI as well as survival in a direct bacteremia model. Thus, we propose d-serine utilization as a core fitness factor in P. mirabilis and a possible target for disruption of infection. IMPORTANCE Urinary tract infections are among the most common health care-associated infections worldwide, the majority of which involve a urinary catheter (CAUTI). Our recent investigation of CAUTIs in nursing home residents identified Proteus mirabilis, Enterococcus species, and Escherichia coli as the three most common organisms. These infections are also often polymicrobial, and we identified Morganella morganii, Enterococcus species, and Providencia stuartii as being more prevalent during polymicrobial CAUTI than single-species infection. Our research therefore focuses on identifying “core” fitness factors that are highly conserved in P. mirabilis and that contribute to infection regardless of the presence of these other organisms. In this study, we determined that the ability to degrade d-serine, the most abundant d-amino acid in urine and serum, strongly contributes to P. mirabilis fitness within the urinary tract, even when competing for nutrients with another organism. d-Serine uptake and degradation therefore represent potential targets for disruption of P. mirabilis infections.
Collapse
|
39
|
Stubenrauch CJ, Lithgow T. The TAM: A Translocation and Assembly Module of the β-Barrel Assembly Machinery in Bacterial Outer Membranes. EcoSal Plus 2019; 8. [PMID: 30816086 PMCID: PMC11573294 DOI: 10.1128/ecosalplus.esp-0036-2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Indexed: 04/08/2023]
Abstract
Assembly of proteins into the outer membrane is an essential process in the cell biology of bacteria. The integration of β-barrel proteins into the outer membrane is mediated by a system referred to as the β-barrel assembly machinery (BAM) that includes two related proteins: BamA in the BAM complex and TamA in the TAM (translocation and assembly module). Here we review what is known about the TAM in terms of its function and the structural architecture of its two subunits, TamA and TamB. By linking the energy transduction possibilities in the inner membrane to TamA in the outer membrane, the TAM provides additional capability to the β-barrel assembly machinery. Conservation of the TAM across evolutionary boundaries, and the presence of hybrid BAM/TAM complexes in some bacterial lineages, adds insight to our growing understanding of how bacterial outer membranes are built.
Collapse
Affiliation(s)
- Christopher J Stubenrauch
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Trevor Lithgow
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton 3800, Australia
| |
Collapse
|
40
|
Taylor VL, Fitzpatrick AD, Islam Z, Maxwell KL. The Diverse Impacts of Phage Morons on Bacterial Fitness and Virulence. Adv Virus Res 2019; 103:1-31. [PMID: 30635074 DOI: 10.1016/bs.aivir.2018.08.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The viruses that infect bacteria, known as phages, are the most abundant biological entity on earth. They play critical roles in controlling bacterial populations through phage-mediated killing, as well as through formation of bacterial lysogens. In this form, the survival of the phage depends on the survival of the bacterial host in which it resides. Thus, it is advantageous for phages to encode genes that contribute to bacterial fitness and expand the environmental niche. In many cases, these fitness factors also make the bacteria better able to survive in human infections and are thereby considered pathogenesis or virulence factors. The genes that encode these fitness factors, known as "morons," have been shown to increase bacterial fitness through a wide range of mechanisms and play important roles in bacterial diseases. This review outlines the benefits provided by phage morons in various aspects of bacterial life, including phage and antibiotic resistance, motility, adhesion and quorum sensing.
Collapse
Affiliation(s)
| | | | - Zafrin Islam
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
41
|
Abstract
The opportunistic pathogen Proteus mirabilis engages in visually dramatic and dynamic social behaviors. Populations of P. mirabilis can rapidly occupy surfaces, such as high-percentage agar and latex, through a collective surface-based motility termed swarming. When in these surface-occupying swarm colonies, P. mirabilis can distinguish between clonal siblings (self) and foreign P. mirabilis strains (nonself). This ability can be assessed by at least two standard methods: boundary formation, aka a Dienes line, and territorial exclusion. Here we describe methods for quantitative analysis of swarm colony expansion, of boundary formation, and of territorial exclusion. These assays can be employed to assess several aspects of P. mirabilis sociality including collective swarm motility, competition, and self versus nonself recognition.
Collapse
Affiliation(s)
- Kristin Little
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Karine A Gibbs
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
42
|
The correlation of crystalline and elemental composition of urinary stones with a history of bacterial infections: TXRF, XRPD and PCR-DGGE studies. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 48:111-118. [PMID: 30483831 PMCID: PMC6330562 DOI: 10.1007/s00249-018-1338-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
The aim of this study was to analyze the correlation between past bacterial infections and the type and chemical composition of urinary stones experienced by human patients. Bacteria have been recognized to contribute to urinary stones; however, the role of uropathogens in the development of specific stones has not been extensively investigated. The detection of past bacterial infection (eleven different bacterial species) in urinary stones from 83 patients was made on a DNA level using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) and correlated with the chemical composition of urinary stones measured using X-ray powder diffraction (XPRD) technique and their elemental composition by total reflection X-ray fluorescence (TXRF). In this study, two scenarios of urinary stones formation mediated by Proteus sp. or Escherichia coli are presented. The first one is associated with Proteus spp. which dominated in 84% of infectious urinary stones and is strongly correlated with struvite and calcium phosphate, in whose matrix additionally strontium, phosphorus, potassium, nickel and zinc are detected. The formation of these stones is closely correlated with urease activity. The second scenario for urinary stone mineralization is associated with E. coli identified in weddellite stones, in which matrix iron was detected. In conclusion, the statistical correlations of bacterial infections with crystalline and elemental composition showed that in mixed bacterial infections, one scenario dominated and excluded the second one.
Collapse
|
43
|
Yazdi M, Bouzari M, Ghaemi EA. Genomic analyses of a novel bacteriophage (VB_PmiS-Isfahan) within Siphoviridae family infecting Proteus mirabilis. Genomics 2018; 111:1283-1291. [PMID: 30149052 DOI: 10.1016/j.ygeno.2018.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
Abstract
Proteus mirabilis is one of the most common causes of complicated urinary tract infections (UTI), especially in catheter-associated UTIs. The increased resistance to antibiotics, among P. mirabilis isolates has led us to search for alternative antibacterial agents. In this study, genome of a lytic Proteus phage VB_PmiS-Isfahan, isolated from wastewater, and active against planktonic and biofilms of P. mirabilis, isolated from UTI, was analyzed. Accordingly, the genome was sequenced and its similarity to other phages was assessed by the Mauve and EasyFig softwares. "One Click" was used for phylogenetic tree construction. The complete genome of VB_PmiS-Isfahan was 54,836 bp, dsDNA with a G+C content of 36.09%. Nighty-one open reading frames (ORFs) was deduced, among them, 23 were considered as functional genes, based on the homology to the previously characterized proteins. The BLASTn of VB_PmiS-Isfahan showed low similarity to complete genome of Salmonella phages VB_SenS_Sasha, 9NA, and VB_SenS-Sergei. A comparison of Nucleic acid and amino acid sequence, and phylogenetic analyses indicated that the phage is novel, significantly differs, and is distant from other genera, within Siphoviridae family. No virulence-associated and antibiotic resistance genes were detected. Thus, VB_PmiS-Isfahan phage is suggested as a potential novel candidate for the treatment of diseases, caused by P. mirabilis.
Collapse
Affiliation(s)
- Mahsa Yazdi
- Department of Biology, Faculty of Sciences, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Majid Bouzari
- Department of Biology, Faculty of Sciences, University of Isfahan, 81746-73441 Isfahan, Iran.
| | - Ezzat Allah Ghaemi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, 4934174515 Gorgan, Iran.
| |
Collapse
|
44
|
Swarmer Cell Development of the Bacterium Proteus mirabilis Requires the Conserved Enterobacterial Common Antigen Biosynthesis Gene rffG. J Bacteriol 2018; 200:JB.00230-18. [PMID: 29967121 DOI: 10.1128/jb.00230-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/27/2018] [Indexed: 01/01/2023] Open
Abstract
Individual cells of the bacterium Proteus mirabilis can elongate up to 40-fold on surfaces before engaging in a cooperative surface-based motility termed swarming. How cells regulate this dramatic morphological remodeling remains an open question. In this paper, we move forward the understanding of this regulation by demonstrating that P. mirabilis requires the gene rffG for swarmer cell elongation and subsequent swarm motility. The rffG gene encodes a protein homologous to the dTDP-glucose 4,6-dehydratase protein of Escherichia coli, which contributes to enterobacterial common antigen biosynthesis. Here, we characterize the rffG gene in P. mirabilis, demonstrating that it is required for the production of large lipopolysaccharide-linked moieties necessary for wild-type cell envelope integrity. We show that the absence of the rffG gene induces several stress response pathways, including those controlled by the transcriptional regulators RpoS, CaiF, and RcsB. We further show that in rffG-deficient cells, the suppression of the Rcs phosphorelay, via loss of RcsB, is sufficient to induce cell elongation and swarm motility. However, the loss of RcsB does not rescue cell envelope integrity defects and instead results in abnormally shaped cells, including cells producing more than two poles. We conclude that an RcsB-mediated response acts to suppress the emergence of shape defects in cell envelope-compromised cells, suggesting an additional role for RcsB in maintaining cell morphology under stress conditions. We further propose that the composition of the cell envelope acts as a checkpoint before cells initiate swarmer cell elongation and motility.IMPORTANCEProteus mirabilis swarm motility has been implicated in pathogenesis. We have found that cells deploy multiple uncharacterized strategies to handle cell envelope stress beyond the Rcs phosphorelay when attempting to engage in swarm motility. While RcsB is known to directly inhibit the master transcriptional regulator for swarming, we have shown an additional role for RcsB in protecting cell morphology. These data support a growing appreciation that the Rcs phosphorelay is a multifunctional regulator of cell morphology in addition to its role in microbial stress responses. These data also strengthen the paradigm that outer membrane composition is a crucial checkpoint for modulating entry into swarm motility. Furthermore, the rffG-dependent moieties provide a novel attractive target for potential antimicrobials.
Collapse
|
45
|
Osman KM, Kappell AD, Orabi A, Al-Maary KS, Mubarak AS, Dawoud TM, Hemeg HA, Moussa IMI, Hessain AM, Yousef HMY, Hristova KR. Poultry and beef meat as potential seedbeds for antimicrobial resistant enterotoxigenic Bacillus species: a materializing epidemiological and potential severe health hazard. Sci Rep 2018; 8:11600. [PMID: 30072706 PMCID: PMC6072766 DOI: 10.1038/s41598-018-29932-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/18/2018] [Indexed: 12/17/2022] Open
Abstract
Although Bacillus cereus is of particular concern in food safety and public health, the role of other Bacillus species was overlooked. Therefore, we investigated the presence of eight enterotoxigenic genes, a hemolytic gene and phenotypic antibiotic resistance profiles of Bacillus species in retail meat samples. From 255 samples, 124 Bacillus isolates were recovered, 27 belonged to B. cereus and 97 were non-B. cereus species. Interestingly, the non-B. cereus isolates carried the virulence genes and exhibited phenotypic virulence characteristics as the B. cereus. However, correlation matrix analysis revealed the B. cereus group positively correlates with the presence of the genes hblA, hblC, and plc, and the detection of hemolysis (p < 0.05), while the other Bacillus sp. groups are negatively correlated. Tests for antimicrobial resistance against ten antibiotics revealed extensive drug and multi-drug resistant isolates. Statistical analyses didn't support a correlation of antibiotic resistance to tested virulence factors suggesting independence of these phenotypic markers and virulence genes. Of special interest was the isolation of Paenibacillus alvei and Geobacillus stearothermophilus from the imported meat samples being the first recorded. The isolation of non-B. cereus species carrying enterotoxigenic genes in meat within Egypt, suggests their impact on food safety and public health and should therefore not be minimised, posing an area that requires further research.
Collapse
Affiliation(s)
- Kamelia M Osman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Anthony D Kappell
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI, USA
| | - Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khalid S Al-Maary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayman S Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hassan A Hemeg
- Department of Clinical Laboratory sciences, college of Applied Medical sciences, Taibah University, Taibah, Saudi Arabia
| | - Ihab M I Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashgan M Hessain
- Department of Health Science, College of Applied Studies and Community Service, King Saud University, Riyadh, Saudi Arabia
| | - Hend M Y Yousef
- Central Administration of Preventive Medicine, General Organization for Veterinary Service, Giza, Egypt.
| | | |
Collapse
|
46
|
Yazdi M, Bouzari M, Ghaemi E. Isolation and Characterization of a Lytic Bacteriophage (vB_PmiS-TH) and Its Application in Combination with Ampicillin against Planktonic and Biofilm Forms of Proteus mirabilis Isolated from Urinary Tract Infection. J Mol Microbiol Biotechnol 2018; 28:37-46. [DOI: 10.1159/000487137] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/22/2018] [Indexed: 11/19/2022] Open
Abstract
<i>Proteus mirabilis</i> is one of the most common causes of urinary tract infection (UTI), particularly in patients undergoing long-term catheterization. Phage vB_PmiS-TH was isolated from wastewater with high lytic activity against <i>P. mirabilis</i> (TH) isolated from UTI. The phage had rapid adsorption, a large burst size (∼260 PFU per infected cell), and high stability at a wide range of temperatures and pH values. As analyzed by transmission electron microscopy, phage vB_PmiS-TH had an icosahedral head of ∼87 × 62 nm with a noncontractile tail about 137 nm in length and 11 nm in width. It belongs to the family <i>Siphoviridae</i>. Combination of the phage vB_PmiS-TH with ampicillin had a higher removal activity against planktonic cells of <i>P. mirabilis</i> (TH) than the phage or the antibiotic alone. Combination of the phage at a multiplicity of infection of 100 with a high dose of ampicillin (246 µg/mL) showed the highest biofilm removal activity after 24 h. This study demonstrates that using a combination of phage and antibiotic could be significantly more effective against planktonic and biofilm forms of <i>P. mirabilis</i> (TH).
Collapse
|
47
|
Ranava D, Caumont-Sarcos A, Albenne C, Ieva R. Bacterial machineries for the assembly of membrane-embedded β-barrel proteins. FEMS Microbiol Lett 2018; 365:4961134. [DOI: 10.1093/femsle/fny087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- David Ranava
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Anne Caumont-Sarcos
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Cécile Albenne
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
48
|
Landeta C, Boyd D, Beckwith J. Disulfide bond formation in prokaryotes. Nat Microbiol 2018; 3:270-280. [PMID: 29463925 DOI: 10.1038/s41564-017-0106-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/21/2017] [Indexed: 12/25/2022]
Abstract
Interest in protein disulfide bond formation has recently increased because of the prominent role of disulfide bonds in bacterial virulence and survival. The first discovered pathway that introduces disulfide bonds into cell envelope proteins consists of Escherichia coli enzymes DsbA and DsbB. Since its discovery, variations on the DsbAB pathway have been found in bacteria and archaea, probably reflecting specific requirements for survival in their ecological niches. One variation found amongst Actinobacteria and Cyanobacteria is the replacement of DsbB by a homologue of human vitamin K epoxide reductase. Many Gram-positive bacteria express enzymes involved in disulfide bond formation that are similar, but non-homologous, to DsbAB. While bacterial pathways promote disulfide bond formation in the bacterial cell envelope, some archaeal extremophiles express proteins with disulfide bonds both in the cytoplasm and in the extra-cytoplasmic space, possibly to stabilize proteins in the face of extreme conditions, such as growth at high temperatures. Here, we summarize the diversity of disulfide-bond-catalysing systems across prokaryotic lineages, discuss examples for understanding the biological basis of such systems, and present perspectives on how such systems are enabling advances in biomedical engineering and drug development.
Collapse
Affiliation(s)
- Cristina Landeta
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Dana Boyd
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Jon Beckwith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Armbruster CE, Mobley HLT, Pearson MM. Pathogenesis of Proteus mirabilis Infection. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0009-2017. [PMID: 29424333 PMCID: PMC5880328 DOI: 10.1128/ecosalplus.esp-0009-2017] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 01/10/2023]
Abstract
Proteus mirabilis, a Gram-negative rod-shaped bacterium most noted for its swarming motility and urease activity, frequently causes catheter-associated urinary tract infections (CAUTIs) that are often polymicrobial. These infections may be accompanied by urolithiasis, the development of bladder or kidney stones due to alkalinization of urine from urease-catalyzed urea hydrolysis. Adherence of the bacterium to epithelial and catheter surfaces is mediated by 17 different fimbriae, most notably MR/P fimbriae. Repressors of motility are often encoded by these fimbrial operons. Motility is mediated by flagella encoded on a single contiguous 54-kb chromosomal sequence. On agar plates, P. mirabilis undergoes a morphological conversion to a filamentous swarmer cell expressing hundreds of flagella. When swarms from different strains meet, a line of demarcation, a "Dienes line," develops due to the killing action of each strain's type VI secretion system. During infection, histological damage is caused by cytotoxins including hemolysin and a variety of proteases, some autotransported. The pathogenesis of infection, including assessment of individual genes or global screens for virulence or fitness factors has been assessed in murine models of ascending urinary tract infections or CAUTIs using both single-species and polymicrobial models. Global gene expression studies performed in culture and in the murine model have revealed the unique metabolism of this bacterium. Vaccines, using MR/P fimbria and its adhesin, MrpH, have been shown to be efficacious in the murine model. A comprehensive review of factors associated with urinary tract infection is presented, encompassing both historical perspectives and current advances.
Collapse
Affiliation(s)
- Chelsie E Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14263
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Melanie M Pearson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
50
|
Acquisition of the Phosphate Transporter NptA Enhances Staphylococcus aureus Pathogenesis by Improving Phosphate Uptake in Divergent Environments. Infect Immun 2017; 86:IAI.00631-17. [PMID: 29084897 DOI: 10.1128/iai.00631-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/24/2017] [Indexed: 12/28/2022] Open
Abstract
During infection, pathogens must obtain all inorganic nutrients, such as phosphate, from the host. Despite the essentiality of phosphate for all forms of life, how Staphylococcus aureus obtains this nutrient during infection is unknown. Differing from Escherichia coli, the paradigm for bacterial phosphate acquisition, which has two inorganic phosphate (Pi) importers, genomic analysis suggested that S. aureus possesses three distinct Pi transporters: PstSCAB, PitA, and NptA. While pitA and nptA are expressed in phosphate-replete media, expression of all three transporters is induced by phosphate limitation. The loss of a single transporter did not affect S. aureus However, disruption of any two systems significantly reduced Pi accumulation and growth in divergent environments. These findings indicate that PstSCAB, PitA, and NptA have overlapping but nonredundant functions, thus expanding the environments in which S. aureus can successfully obtain Pi Consistent with this idea, in a systemic mouse model of disease, loss of any one transporter did not decrease staphylococcal virulence. However, loss of NptA in conjunction with either PstSCAB or PitA significantly reduced the ability of S. aureus to cause infection. These observations suggest that Pi acquisition via NptA is particularly important for the pathogenesis of S. aureus While our analysis suggests that NptA homologs are widely distributed among bacteria, closely related less pathogenic staphylococcal species do not possess this importer. Altogether, these observations indicate that Pi uptake by S. aureus differs from established models and that acquisition of a third transporter enhances the ability of the bacterium to cause infection.
Collapse
|