1
|
Ma L, Jia XH, Gao Z, Zhou Y, Cheng YT, Li P, Jia TJ. The Chlamydia pneumoniae inclusion membrane protein Cpn0308 interacts with host protein ACBD3. J Bacteriol 2025; 207:e0027524. [PMID: 39723831 PMCID: PMC11784219 DOI: 10.1128/jb.00275-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024] Open
Abstract
Chlamydia pneumoniae is an obligate intracellular bacterium of eukaryotic cells characterized by a unique biphasic life cycle; its biosynthesis and replication must occur within a cytoplasmic vacuole or inclusion. Certain inclusion membrane proteins have been demonstrated to mediate the interactions between intra-inclusion chlamydial organisms and the host cell. It has been demonstrated previously that the C. pneumoniae-encoded Cpn0308 localizes to the inclusion membrane; however, its function remains unknown. In the current study, a yeast two-hybrid assay was conducted to screen Cpn0308 as a bait against a HeLa cell cDNA library, revealing its binding to the host protein acyl-coenzyme A binding domain-containing 3 (ACBD3). The interaction between Cpn0308 and ACBD3 was confirmed through co-immunoprecipitation and GST (Glutathione S-transferase) pull-down assays. The two proteins were also co-localized in HeLa cells co-expressing Cpn0308 and ACBD3, as well as in C. pneumoniae-infected cells, as observed under confocal fluorescence microscopy. Given that ACBD3 plays a crucial role in maintaining host cell lipid homeostasis and its Golgi dynamic domain is responsible for interacting with Cpn0308, we hypothesize that the Cpn0308-ACBD3 interaction may facilitate C. pneumoniae's acquisition of host lipids, thereby benefiting chlamydial survival. This study lays a foundation for further elucidating the mechanisms of Cpn0308-mediated C. pneumoniae pathogenesis.IMPORTANCEThe biosynthesis and replication of Chlamydia pneumoniae (Cpn) must occur within the cytoplasmic vacuoles or inclusions of host cells. Inclusion bodies play a crucial role in mediating the interactions between Cpn and host cells. Cpn0308 is localized to the inclusion membrane; however, its function is unknown. In this study, Cpn0308 was found to bind to host protein acyl-coenzyme A binding domain-containing 3 (ACBD3) through some standard approaches. Co-localization of the two proteins was observed in both original HeLa cells and Cpn-infected HeLa cells. ACBD3 plays a significant role in maintaining lipid homeostasis in host cells; we speculate that the Cpn0308-ACBD3 interaction may facilitate the acquisition of host lipids by C. pneumoniae, thereby enhancing chlamydial survival.
Collapse
Affiliation(s)
- Liang Ma
- Pathogen Biology and Immunology Research Institute, Hebei North University, Zhangjiakou, Hebei, China
- Key Laboratory of Clinical Laboratory Diagnostics, Hebei North University, Zhangjiakou, Hebei, China
- Handan Vocational College of Science and Technology, Han Dan, Hebei, China
| | - Xiao-hui Jia
- Pathogen Biology and Immunology Research Institute, Hebei North University, Zhangjiakou, Hebei, China
- Key Laboratory of Clinical Laboratory Diagnostics, Hebei North University, Zhangjiakou, Hebei, China
| | - Zhe Gao
- Pathogen Biology and Immunology Research Institute, Hebei North University, Zhangjiakou, Hebei, China
- Key Laboratory of Clinical Laboratory Diagnostics, Hebei North University, Zhangjiakou, Hebei, China
| | - Yan Zhou
- Pathogen Biology and Immunology Research Institute, Hebei North University, Zhangjiakou, Hebei, China
- Key Laboratory of Clinical Laboratory Diagnostics, Hebei North University, Zhangjiakou, Hebei, China
| | - Yong-ting Cheng
- Pathogen Biology and Immunology Research Institute, Hebei North University, Zhangjiakou, Hebei, China
- Key Laboratory of Clinical Laboratory Diagnostics, Hebei North University, Zhangjiakou, Hebei, China
| | - Ping Li
- Key Laboratory of Clinical Laboratory Diagnostics, Hebei North University, Zhangjiakou, Hebei, China
| | - Tian-jun Jia
- Pathogen Biology and Immunology Research Institute, Hebei North University, Zhangjiakou, Hebei, China
| |
Collapse
|
2
|
de Freitas LS, Queiroz MAF, Machado LFA, Vallinoto ACR, Ishak MDOG, Santos FDAA, Goulart LR, Ishak R. Bioprospecting by Phage Display of Mimetic Peptides of Chlamydia trachomatis for Use in Laboratory Diagnosis. Infect Drug Resist 2022; 15:4935-4945. [PMID: 36065279 PMCID: PMC9440705 DOI: 10.2147/idr.s369339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background Chlamydia trachomatis infection is a major public health problem and the most common sexually transmitted infection in the world. Although highly prevalent, 70% to 80% of cases are asymptomatic and undiagnosed. Purpose To overcome some limitations in terms of rapid diagnosis, phage display technology was used to bioprospect peptide mimetics of C. trachomatis immunoreactive and immunogenic antigens to be selected for the production of synthetic peptides. Methods Initially, IgG from 22 individuals with C. trachomatis and 30 negative controls was coupled to G protein magnetic beads. The phage display technique consisted of biopanning, genetic sequencing, bioinformatics analysis and phage ELISA. Results Clones G1, H5, C6 and H7 were selected for testing with individual samples positive and negative for C. trachomatis. Reactions were statistically significant (p < 0.05), with a sensitivity of 90.91, a specificity of 54.55, and AUC values >0.8. One-dimensional analysis with C. trachomatis components indicated that the G1 clone aligned with cell wall-associated hydrolase domain-containing protein, the H5 clone aligned with glycerol-3-phosphate acyltransferase PlsX protein, the C6 clone aligned with a transposase and inactivated derivatives, and the H7 clone aligned with GTP-binding protein. Molecular modeling and three-dimensional analysis indicated the best fit of the four clones with a protein known as chlamydial protease/proteasome-like activity factor (CPAF), an important virulence factor of the bacterium. Conclusion The peptides produced by phage display are related to the metabolic pathways of C. trachomatis, indicating that they can be used to understand the pathogenesis of the infection. Because of their high sensitivity and AUC values, the peptides present considerable potential for use in platforms for screening C. trachomatis infections.
Collapse
Affiliation(s)
- Larissa Silva de Freitas
- Laboratory of Virology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil
- Correspondence: Maria Alice Freitas Queiroz, Laboratory of Virology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil, Tel +55 91 3201-7587, Email
| | | | | | | | - Fabiana de Almeida Araújo Santos
- Laboratory of Nanobiotechnology, Genetics and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Genetics and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ricardo Ishak
- Laboratory of Virology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
3
|
Chen H, Peng B, Yang C, Xie L, Zhong S, Sun Z, Li Z, Wang C, Liu X, Tang X, Zhong G, Lu C. The role of an enzymatically inactive CPAF mutant vaccination in Chlamydia muridarum genital tract infection. Microb Pathog 2021; 160:105137. [PMID: 34390765 DOI: 10.1016/j.micpath.2021.105137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Chlamydia trachomatis urogenital tract infection causes pelvic inflammatory disease and infertility, increases the risk of co-infection with HPV and HIV. Chlamydial vaccination is considered the most promising approach to prevent and control its infection. Among various chlamydial vaccine candidates, chlamydial protease-like activity factor (CPAF) have been reported to provide robust protective immunity against genital chlamydial infection in mice with reduced vaginal shedding and oviduct pathology. However, CPAF is a serine protease which has enzymatical activity to degrade a large number of substrates. In order to increase the safety of CPAF vaccine, in this study, we used a mutant CPAF that is deficient in enzymatical activity to determine whether proteolytic activity of CPAF affect its vaccine efficacy. The wild type or mutant CPAF immunization causes a significant lower chlamydial shedding from the vaginal and resolve the infection as early as day 20, compared to day 28 in adjuvant control mice. More important, reduced upper reproductive tract pathology were also observed in these two groups. The mutant or wild type CPAF immunization induced not only robust splenic IFN-γ and serum IgG2a but also sIgA secretion in the vaginal fluids. Furthermore, neutralization of chlamydia with immune sera did not provide protection against oviduct pathology. However, adoptive transfer of CD4+ splenocytes isolated from the mutant or wild type CPAF immunized mice resulted in a significant and comparable reduced oviduct pathology. Our results indicate mutant CPAF vaccination is as same efficacy as wild type, and the protection relies on CD4+ T cells, which will further promote the development of CPAF as clinical chlamydial vaccine.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Bo Peng
- Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Chunfen Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Lijuan Xie
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shufang Zhong
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhenjie Sun
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhongyu Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Chuan Wang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xiao Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xin Tang
- Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Guangming Zhong
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chunxue Lu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
4
|
Bugalhão JN, Mota LJ. The multiple functions of the numerous Chlamydia trachomatis secreted proteins: the tip of the iceberg. MICROBIAL CELL 2019; 6:414-449. [PMID: 31528632 PMCID: PMC6717882 DOI: 10.15698/mic2019.09.691] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chlamydia trachomatis serovars are obligate intracellular bacterial pathogens mainly causing ocular and urogenital infections that affect millions of people worldwide and which can lead to blindness or sterility. They reside and multiply intracellularly within a membrane-bound vacuolar compartment, known as inclusion, and are characterized by a developmental cycle involving two morphologically and physiologically distinct chlamydial forms. Completion of the developmental cycle involves the secretion of > 70 C. trachomatis proteins that function in the host cell cytoplasm and nucleus, in the inclusion membrane and lumen, and in the extracellular milieu. These proteins can, for example, interfere with the host cell cytoskeleton, vesicular and non-vesicular transport, metabolism, and immune signalling. Generally, this promotes C. trachomatis invasion into, and escape from, host cells, the acquisition of nutrients by the chlamydiae, and evasion of cell-autonomous, humoral and cellular innate immunity. Here, we present an in-depth review on the current knowledge and outstanding questions about these C. trachomatis secreted proteins.
Collapse
Affiliation(s)
- Joana N Bugalhão
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
5
|
Prusty BK, Chowdhury SR, Gulve N, Rudel T. Peptidase Inhibitor 15 (PI15) Regulates Chlamydial CPAF Activity. Front Cell Infect Microbiol 2018; 8:183. [PMID: 29900129 PMCID: PMC5989220 DOI: 10.3389/fcimb.2018.00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022] Open
Abstract
Obligate intracellular pathogenic Chlamydia trachomatis express several serine proteases whose roles in chlamydial development and pathogenicity are not completely understood. The chlamydial protease CPAF is expressed during the replicative phase of the chlamydial developmental cycle and is secreted into the lumen of the Chlamydia-containing vacuole called inclusion. How the secreted protease is activated in the inclusion lumen is currently not fully understood. We have identified human serine peptidase inhibitor PI15 as a potential host factor involved in the regulation of CPAF activation. Silencing expression as well as over expression of PI15 affected normal development of Chlamydia. PI15 was transported into the chlamydial inclusion lumen where it co-localized with CPAF aggregates. We show that PI15 binds to the CPAF zymogen and potentially induces CPAF protease activity at low concentrations. However, at high concentrations PI15 inhibits CPAF activity possibly by blocking its protease domain. Our findings shed light on a new aspect of chlamydial host co-evolution which involves the recruitment of host cell proteins into the inclusion to control the activation of bacterial proteases like CPAF that are important for the normal development of Chlamydia.
Collapse
Affiliation(s)
- Bhupesh K Prusty
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | | | - Nitish Gulve
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Thomas Rudel
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Zhong G, Brunham RC, de la Maza LM, Darville T, Deal C. National Institute of Allergy and Infectious Diseases workshop report: "Chlamydia vaccines: The way forward". Vaccine 2017; 37:7346-7354. [PMID: 29097007 DOI: 10.1016/j.vaccine.2017.10.075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/24/2017] [Indexed: 01/06/2023]
Abstract
Chlamydia trachomatis (Ct), an intracellular pathogen, is the most common bacterial sexually transmitted infection. In addition to acute cervicitis and urethritis, Ct can lead to serious sequelae of significant public health burden including pelvic inflammatory disease (PID) and infertility. Ct control efforts have not resulted in desired outcomes such as reduced incidence and reinfection, and this highlights the need for the development of an effective Ct vaccine. To this end, NIAID organized a workshop to consider the current status of Ct vaccine research and address critical questions in Ct vaccine design and clinical testing. Topics included the goal(s) of a vaccine and the feasibility of achieving these goals, animal models of infection including mouse and nonhuman primate (NHP) models, and correlates of protection to guide vaccine design. Decades of research have provided both whole cell-based and subunit vaccine candidates for development. At least one is currently in clinical development and efforts now need to be directed toward further development of the most attractive candidates. Overall, the discussions and presentations from the workshop highlighted optimism about the current status of Ct vaccine research and detailed the remaining gaps and questions needed to move vaccines forward.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Robert C Brunham
- Vaccine Research Laboratory, UBC Centre for Disease Control, University of British Columbia, Vancouver, BC V5Z 4R4, Canada
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-7509, USA
| | - Carolyn Deal
- Division of Microbiology and Infectious Diseases, NIAID, Bethesda, MD, USA
| |
Collapse
|
7
|
Yang Z, Tang L, Shao L, Zhang Y, Zhang T, Schenken R, Valdivia R, Zhong G. The Chlamydia-Secreted Protease CPAF Promotes Chlamydial Survival in the Mouse Lower Genital Tract. Infect Immun 2016; 84:2697-702. [PMID: 27382018 PMCID: PMC4995919 DOI: 10.1128/iai.00280-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022] Open
Abstract
Despite the extensive in vitro characterization of CPAF (chlamydial protease/proteasome-like activity factor), its role in chlamydial infection and pathogenesis remains unclear. We now report that a Chlamydia trachomatis strain deficient in expression of CPAF (L2-17) is no longer able to establish a successful infection in the mouse lower genital tract following an intravaginal inoculation. The L2-17 organisms were cleared from the mouse lower genital tract within a few days, while a CPAF-sufficient C. trachomatis strain (L2-5) survived in the lower genital tract for more than 3 weeks. However, both the L2-17 and L2-5 organisms maintained robust infection courses that lasted up to 4 weeks when they were directly delivered into the mouse upper genital tract. The CPAF-dependent chlamydial survival in the lower genital tract was confirmed in multiple strains of mice. Thus, we have demonstrated a critical role of CPAF in promoting C. trachomatis survival in the mouse lower genital tracts. It will be interesting to further investigate the mechanisms of the CPAF-dependent chlamydial pathogenicity.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lingli Tang
- Department of Clinic Diagnosis, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lili Shao
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yuyang Zhang
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Tianyuan Zhang
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Robert Schenken
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Raphael Valdivia
- Duke Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Guangming Zhong
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
8
|
Yang Z, Tang L, Zhou Z, Zhong G. Neutralizing antichlamydial activity of complement by chlamydia-secreted protease CPAF. Microbes Infect 2016; 18:669-674. [PMID: 27436813 DOI: 10.1016/j.micinf.2016.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 06/22/2016] [Accepted: 07/05/2016] [Indexed: 01/19/2023]
Abstract
Ascending infection by sexually transmitted Chlamydia trachomatis is required for chlamydial induction of tubal pathology. To achieve ascension, the C. trachomatis organisms may have to spread from cell to cell, which inevitably exposes the organisms to extracellular mucosal effectors such as complement factors that are known to possess strong antichlamydial activities. Here, we report that the chlamydia-secreted protease CPAF efficiently neutralized complement factor C3-dependent antichlamydial activity. The neutralization was dependent on the proteolytic activity of CPAF and correlated with the CPAF-mediated degradation of complement factor C3 and factor B. As a result, CPAF preferentially inhibited the alternative complement activation pathway. The significance and limitation of these observations were discussed.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Lingli Tang
- Department of Clinic Diagnosis, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Endocrinology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guangming Zhong
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
9
|
Characterization of CPAF critical residues and secretion during Chlamydia trachomatis infection. Infect Immun 2015; 83:2234-41. [PMID: 25776755 DOI: 10.1128/iai.00275-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/11/2015] [Indexed: 11/20/2022] Open
Abstract
CPAF (chlamydial protease-like activity factor), a Chlamydia serine protease, is activated via proximity-induced intermolecular dimerization that triggers processing and removal of an inhibitory peptide occupying the CPAF substrate-binding groove. An active CPAF is a homodimer of two identical intramolecular heterodimers, each consisting of 29-kDa N-terminal and 35-kDa C-terminal fragments. However, critical residues for CPAF intermolecular dimerization, catalytic activity, and processing were defined in cell-free systems. Complementation of a CPAF-deficient chlamydial organism with a plasmid-encoded CPAF has enabled us to characterize CPAF during infection. The transformants expressing CPAF mutated at intermolecular dimerization, catalytic, or cleavage residues still produced active CPAF, although at a lower efficiency, indicating that CPAF can tolerate more mutations inside Chlamydia-infected cells than in cell-free systems. Only by simultaneously mutating both intermolecular dimerization and catalytic residues was CPAF activation completely blocked during infection, both indicating the importance of the critical residues identified in the cell-free systems and exploring the limit of CPAF's tolerance for mutations in the intracellular environment. We further found that active CPAF was always detected in the host cell cytoplasm while nonactive CPAF was restricted to within the chlamydial inclusions, regardless of how the infected cell samples were treated. Thus, CPAF translocation into the host cell cytoplasm correlates with CPAF enzymatic activity and is not altered by sample treatment conditions. These observations have provided new evidence for CPAF activation and translocation, which should encourage continued investigation of CPAF in chlamydial pathogenesis.
Collapse
|
10
|
Tang L, Chen J, Zhou Z, Yu P, Yang Z, Zhong G. Chlamydia-secreted protease CPAF degrades host antimicrobial peptides. Microbes Infect 2015; 17:402-8. [PMID: 25752416 DOI: 10.1016/j.micinf.2015.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 12/15/2022]
Abstract
Chlamydia trachomatis infection in the lower genital tract, if untreated, can ascend to the upper genital tract, potentially leading to complications such as tubal factor infertility. The ascension involves cell-to-cell spreading, which may require C. trachomatis organisms to overcome mucosal extracellular effectors such as antimicrobial peptides. We found that among the 8 antimicrobial peptides tested, the cathelicidin LL-37 that is produced by both urogenital epithelial cells and the recruited neutrophils possessed a most potent antichlamydial activity. Interestingly, this antichlamydial activity was completely inhibited by CPAF, a C. trachomatis-secreted serine protease. The inhibition was dependent on CPAF's proteolytic activity. CPAF selectively degraded LL-37 and other antimicrobial peptides with an antichlamydial activity. CPAF is known to secrete into and accumulate in the infected host cell cytoplasm at the late stage of chlamydial intracellular growth and may be released to confront the extracellular antimicrobial peptides before the intra-inclusion organisms are exposed to extracellular environments during host cell lysis and chlamydial spreading. Thus, the finding that CPAF selectively targets host antimicrobial peptides that possess antichlamydial activities for proteolysis suggests that CPAF may contribute to C. trachomatis pathogenicity by aiding in ascending infection.
Collapse
Affiliation(s)
- Lingli Tang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Clinic Diagnosis, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianlin Chen
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Endocrinology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Yu
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhangsheng Yang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
11
|
Profiling antibody responses to infections by Chlamydia abortus enables identification of potential virulence factors and candidates for serodiagnosis. PLoS One 2013; 8:e80310. [PMID: 24260366 PMCID: PMC3829881 DOI: 10.1371/journal.pone.0080310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022] Open
Abstract
Enzootic abortion of ewes (EAE) due to infection with the obligate intracellular pathogen Chlamydia (C.) abortus is an important zoonosis leading to considerable economic loss to agriculture worldwide. The pathogen can be transmitted to humans and may lead to serious infection in pregnant women. Knowledge about epidemiology, clinical course and transmission to humans is hampered by the lack of reliable diagnostic tools. Immunoreactive proteins, which are expressed in infected animals and humans, may serve as novel candidates for diagnostic marker proteins and represent putative virulence factors. In order to broaden the spectrum of immunogenic C. abortus proteins we applied 2D immunoblot analysis and screening of an expression library using human and animal sera. We have identified 48 immunoreactive proteins representing potential diagnostic markers and also putative virulence factors, such as CAB080 (homologue of the “macrophage infectivity potentiator”, MIP), CAB167 (homologue of the “translocated actin recruitment protein”, TARP), CAB712 (homologue of the “chlamydial protease-like activity factor”, CPAF), CAB776 (homologue of the “Polymorphic membrane protein D”, PmpD), and the “hypothetical proteins” CAB063, CAB408 and CAB821, which are predicted to be type III secreted. We selected two putative virulence factors for further characterization, i.e. CAB080 (cMIP) and CAB063, and studied their expression profiles at transcript and protein levels. Analysis of the subcellular localization of both proteins throughout the developmental cycle revealed CAB063 being the first C. abortus protein shown to be translocated to the host cell nucleus.
Collapse
|
12
|
A Conrad T, Yang Z, Ojcius D, Zhong G. A path forward for the chlamydial virulence factor CPAF. Microbes Infect 2013; 15:1026-32. [PMID: 24141088 DOI: 10.1016/j.micinf.2013.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/26/2013] [Accepted: 09/02/2013] [Indexed: 12/14/2022]
Abstract
CPAF is a conserved and secreted protease from obligate intracellular bacteria of the order Chlamydiales. Recently, it was demonstrated that most of its host targets are an artifact of inaccurate methods. This review aims to summarize key features of CPAF and propose new approaches for evaluating its role in chlamydial pathogenesis.
Collapse
Affiliation(s)
- Turner A Conrad
- Department of Microbiology and Immunology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
13
|
Chen AL, Johnson KA, Lee JK, Sütterlin C, Tan M. CPAF: a Chlamydial protease in search of an authentic substrate. PLoS Pathog 2012; 8:e1002842. [PMID: 22876181 PMCID: PMC3410858 DOI: 10.1371/journal.ppat.1002842] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/22/2012] [Indexed: 01/13/2023] Open
Abstract
Bacteria in the genus Chlamydia are major human pathogens that cause an intracellular infection. A chlamydial protease, CPAF, has been proposed as an important virulence factor that cleaves or degrades at least 16 host proteins, thereby altering multiple cellular processes. We examined 11 published CPAF substrates and found that there was no detectable proteolysis when CPAF activity was inhibited during cell processing. We show that the reported proteolysis of these putative CPAF substrates was due to enzymatic activity in cell lysates rather than in intact cells. Nevertheless, Chlamydia-infected cells displayed Chlamydia-host interactions, such as Golgi reorganization, apoptosis resistance, and host cytoskeletal remodeling, that have been attributed to CPAF-dependent proteolysis of host proteins. Our findings suggest that other mechanisms may be responsible for these Chlamydia-host interactions, and raise concerns about all published CPAF substrates and the proposed roles of CPAF in chlamydial pathogenesis. Chlamydia are bacteria that invade eukaryotic host cells and live within a membrane-bound compartment called the chlamydial inclusion. Growth and survival of these important human and animal pathogens depends on extensive interactions with the host cell, which allow chlamydiae to acquire critical nutrients and to avoid host anti-microbial defenses. Chlamydiae are proposed to cause many of these host-pathogen interactions through the cleavage or degradation of host proteins by the chlamydial protease CPAF, which is secreted into the host cytoplasm. Here, we raise questions about the proposed roles of this virulence factor during infection, as well as its published substrates. We found that there was no detectable cleavage or degradation of 11 previously reported CPAF substrates in Chlamydia-infected cells and that CPAF-mediated proteolysis of these host proteins occurs during cell harvest and lysis. However, we still observed host-pathogen interactions previously attributed to CPAF proteolysis of these proteins, suggesting that Chlamydia is likely to cause these effects on the host cell through other mechanisms. Our findings call for a re-evaluation of all published CPAF substrates as well as the proposed roles of this protease in chlamydial pathogenesis.
Collapse
Affiliation(s)
- Allan L. Chen
- Department of Microbiology and Molecular Genetics, University of California at Irvine, Irvine, California, United States of America
| | - Kirsten A. Johnson
- Department of Microbiology and Molecular Genetics, University of California at Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, California, United States of America
| | - Jennifer K. Lee
- Department of Microbiology and Molecular Genetics, University of California at Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, California, United States of America
| | - Christine Sütterlin
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, California, United States of America
- * E-mail: (CS); (MT)
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California at Irvine, Irvine, California, United States of America
- Department of Medicine, University of California at Irvine, Irvine, California, United States of America
- * E-mail: (CS); (MT)
| |
Collapse
|
14
|
Li W, Murthy AK, Chaganty BKR, Guentzel MN, Seshu J, Chambers JP, Zhong G, Arulanandam BP. Immunization with dendritic cells pulsed ex vivo with recombinant chlamydial protease-like activity factor induces protective immunity against genital chlamydiamuridarum challenge. Front Immunol 2011; 2:73. [PMID: 22566862 PMCID: PMC3342055 DOI: 10.3389/fimmu.2011.00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/23/2011] [Indexed: 12/04/2022] Open
Abstract
We have shown that immunization with soluble recombinant chlamydial protease-like activity factor (rCPAF) and a T helper 1 type adjuvant can induce significantly enhanced bacterial clearance and protection against Chlamydia-induced pathological sequelae in the genital tract. In this study, we investigated the use of bone marrow derived dendritic cells (BMDCs) pulsed ex vivo with rCPAF + CpG in an adoptive subcutaneous immunization for the ability to induce protective immunity against genital chlamydial infection. We found that BMDCs pulsed with rCPAF + CpG efficiently up-regulated the expression of activation markers CD86, CD80, CD40, and major histocompatibility complex class II (MHC II), and secreted interleukin-12, but not IL-10 and IL-4. Mice adoptively immunized with rCPAF + CpG-pulsed BMDCs or UV-EB + CpG-pulsed BMDCs produced elevated levels of antigen-specific IFN-γ and enhanced IgG1 and IgG2a antibodies. Moreover, mice immunized with rCPAF + CpG-pulsed BMDCs or UV-EB + CpG-pulsed BMDCs exhibited significantly reduced genital Chlamydia shedding, accelerated resolution of infection, and reduced oviduct pathology when compared to infected mock-immunized animals. These results suggest that adoptive subcutaneous immunization with ex vivo rCPAF-pulsed BMDCs is an effective approach, comparable to that induced by UV-EB–BMDCs, for inducing robust anti-Chlamydia immunity.
Collapse
Affiliation(s)
- Weidang Li
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio San Antonio, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Persistent Chlamydia trachomatis infection of HeLa cells mediates apoptosis resistance through a Chlamydia protease-like activity factor-independent mechanism and induces high mobility group box 1 release. Infect Immun 2011; 80:195-205. [PMID: 22025513 DOI: 10.1128/iai.05619-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intracellular persistence of Chlamydia trachomatis has been implicated in the development of chronic infection that can result in pelvic inflammatory disease and tubal sterility. By inhibition of host cell apoptosis, chlamydiae have evolved a strategy to maintain the intracellular environment for replication and persistence. Both antiapoptotic host cell-derived factors and the chlamydial protease-like activity factor (CPAF) are involved in Chlamydia-mediated apoptosis resistance. Here, we show that in HeLa cells infected with gamma interferon (IFN-γ)-induced persistent C. trachomatis serovar D, the expression of CPAF is downregulated, and proapoptotic protease substrates are not cleaved. Persistent infection protected HeLa cells from apoptosis when they were exposed to staurosporine. Small-interfering RNA-mediated inhibition of myeloid cell leukemia 1 (Mcl-1) protein upregulation sensitized persistently infected cells for apoptosis. The inhibitor of apoptosis protein 2 (IAP-2) seems not to be relevant in this context because IAP-2 protein was not induced in response to IFN-γ treatment. Although apoptosis was inhibited, persistent infection caused cell membrane disintegration, as measured by the increased release of cytokeratin 18 from HeLa cells. Moreover, persistently infected cells released significantly increased amounts of high mobility group box 1 (HMGB1) protein which represents a proinflammatory damage-associated pattern molecule. The data of this study suggest that cells infected with persistent C. trachomatis are protected from apoptosis independently of CPAF but may promote chronic inflammation through HMGB1 release.
Collapse
|
16
|
A Chlamydia trachomatis OmcB C-terminal fragment is released into the host cell cytoplasm and is immunogenic in humans. Infect Immun 2011; 79:2193-203. [PMID: 21422182 DOI: 10.1128/iai.00003-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Chlamydia trachomatis outer membrane complex protein B (OmcB) is an antigen with diagnostic and vaccine relevance. To further characterize OmcB, we generated antibodies against OmcB C-terminal (OmcBc) and N-terminal (OmcBn) fragments. Surprisingly, the anti-OmcBc antibody detected dominant signals in the host cell cytosol, while the anti-OmcBn antibody exclusively labeled intrainclusion signals in C. trachomatis-infected cells permeabilized with saponin. Western blot analyses revealed that OmcB was partially processed into OmcBc and OmcBn fragments. The processed OmcBc was released into host cell cytosol, while the OmcBn and remaining full-length OmcB were retained within the chlamydial inclusions. The organism-associated OmcB epitopes became detectable only after the C. trachomatis-infected cells were permeabilized with strong detergents such as SDS. However, the harsh permeabilization conditions also led to the leakage of the already secreted OmcBc and chlamydia-secreted protease (CPAF) out of the host cells. The OmcBc processing and release occurred in all biovars of C. trachomatis. Moreover, the released OmcBc but not the retained OmcBn was highly immunogenic in C. trachomatis-infected women, which is consistent with the concept that exposure of chlamydial proteins to host cell cytosol is accompanied by increased immunogenicity. These observations have provided important information for further exploring/optimizing OmcB as a target for the development of diagnosis methods and vaccines.
Collapse
|
17
|
Zhong G. Chlamydia trachomatis secretion of proteases for manipulating host signaling pathways. Front Microbiol 2011; 2:14. [PMID: 21687409 PMCID: PMC3109274 DOI: 10.3389/fmicb.2011.00014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 01/19/2011] [Indexed: 12/23/2022] Open
Abstract
The human pathogen Chlamydia trachomatis secretes numerous effectors into host cells in order to successfully establish and complete the intracellular growth cycle. Three C. trachomatis proteases [chlamydial proteasome/protease-like activity factor (CPAF), tail-specific protease (Tsp), and chlamydial high temperature requirement protein A (cHtrA)] have been localized in the cytosol of the infected cells either by direct immunofluorescence visualization or functional implication. Both CPAF and Tsp have been found to play important roles in C. trachomatis interactions with host cells although the cellular targets of cHtrA have not been identified. All three proteases contain a putative N-terminal signal sequence, suggesting that they may be secreted via a sec-dependent pathway. However, these proteases are also found in chlamydial organism-free vesicles in the lumen of the chlamydial inclusions before they are secreted into host cell cytosol, suggesting that these proteases may first be translocated into the periplasmic region via a sec-dependent pathway and then exported outside of the organisms via an outer membrane vesicles (OMVs) budding mechanism. The vesiculized proteases in the inclusion lumen can finally enter host cell cytosol via vesicle fusing with or passing through the inclusion membrane. Continuing identification and characterization of the C. trachomatis-secreted proteins (CtSPs) will not only promote our understanding of C. trachomatis pathogenic mechanisms but also allow us to gain novel insights into the OMV pathway, a well-known mechanism used by bacteria to export virulence factors although its mechanism remains elusive.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| |
Collapse
|
18
|
Characterization of Pgp3, a Chlamydia trachomatis plasmid-encoded immunodominant antigen. J Bacteriol 2010; 192:6017-24. [PMID: 20851898 DOI: 10.1128/jb.00847-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human antibody recognition of Chlamydia trachomatis plasmid-encoded Pgp3 protein is dependent on the native conformation of Pgp3. The structural basis for the conformation dependence and the function of Pgp3 remain unknown. Here, we report that Pgp3 trimerization is required for the recognition of Pgp3 by human antibodies. In a native polyacrylamide gel, Pgp3 purified from a bacterial expression system migrated as stable trimers that were dissociated into monomers only by treatment with urea or sodium dodecyl sulfate (SDS) but not nonionic detergents. Human antibodies recognized trimeric but not monomeric Pgp3, suggesting that Pgp3 is presented to the human immune system as trimers during C. trachomatis infection. The endogenous Pgp3 secreted into the chlamydial outer membrane complex or host cell cytosol is always trimerized. Intact Pgp3 trimers were eluted from the outer membrane complex by a combination of nonionic detergents with reducing agents but not by the presence of either alone. These observations have provided important information for further understanding the role of Pgp3 in chlamydial pathogenesis and potentially optimizing Pgp3 as a subunit vaccine candidate antigen.
Collapse
|
19
|
Chen D, Lei L, Lu C, Flores R, DeLisa MP, Roberts TC, Romesberg FE, Zhong G. Secretion of the chlamydial virulence factor CPAF requires the Sec-dependent pathway. MICROBIOLOGY-SGM 2010; 156:3031-3040. [PMID: 20522495 PMCID: PMC3068695 DOI: 10.1099/mic.0.040527-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The chlamydial protease/proteasome-like activity factor (CPAF) is secreted into the host cytosol to degrade various host factors that benefit chlamydial intracellular survival. Although the full-length CPAF is predicted to contain a putative signal peptide at its N terminus, the secretion pathway of CPAF is still unknown. Here, we have provided experimental evidence that the N-terminal sequence covering the M1–G31 region was cleaved from CPAF during chlamydial infection. The CPAF N-terminal sequence, when expressed in a phoA gene fusion construct, was able to direct the export of the mature PhoA protein across the inner membrane of wild-type Escherichia coli. However, E. coli mutants deficient in SecB failed to support the CPAF signal-peptide-directed secretion of PhoA. Since native PhoA secretion was known to be independent of SecB, this SecB dependence must be rendered by the CPAF leader peptide. Furthermore, lack of SecY function also blocked the CPAF signal-peptide-directed secretion of PhoA. Most importantly, CPAF secretion into the host cell cytosol during chlamydial infection was selectively inhibited by an inhibitor specifically targeting type I signal peptidase but not by a type III secretion-system-specific inhibitor. Together, these observations have demonstrated that the chlamydial virulence factor CPAF relies on Sec-dependent transport for crossing the chlamydial inner membrane, which has provided essential information for further delineating the pathways of CPAF action and understanding chlamydial pathogenic mechanisms.
Collapse
Affiliation(s)
- Ding Chen
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Lei Lei
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Chunxue Lu
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Rhonda Flores
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Matthew P DeLisa
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tucker C Roberts
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
20
|
Chen D, Lei L, Flores R, Huang Z, Wu Z, Chai J, Zhong G. Autoprocessing and self-activation of the secreted protease CPAF in Chlamydia-infected cells. Microb Pathog 2010; 49:164-73. [PMID: 20510344 DOI: 10.1016/j.micpath.2010.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/14/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
The Chlamydia-secreted protease/proteasome-like activity factor (CPAF) is synthesized as a proenzyme (proCPAF) and requires processing for proteolytic activity. Recent structural studies have further demonstrated that CPAF is a serine protease that can undergo autoprocessing and self-activation in a concentration-dependent manner in vitro. However, it is not known how CPAF is processed and activated during chlamydial infection. In the current study, we used a mutant CPAF designated as CPAF(E558A) that is deficient in processing by itself as a substrate to search for putative CPAF activation factor(s) in Chlamydia-infected cells. CPAF(E558A) was processed by the lysates made from Chlamydia-infected cells and the processing activity correlated with the presence of endogenous active CPAF in the fractionated lysate samples. CPAF produced in the Chlamydia-infected cells is required for processing the mutant CPAF(E558A) since the processing activity was removed by depletion with anti-CPAF but not control antibodies. Furthermore, a purified and activated wild type CPAF alone was sufficient for processing CPAF(E558A) and no other chlamydial proteases are required. Finally, fusion tag-induced oligomerization can lead to autoprocessing and self-activation of the wild type CPAF in mammalian cells. These observations together have demonstrated that CPAF undergoes autoprocessing and self-activation during chlamydial infection.
Collapse
Affiliation(s)
- Ding Chen
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Role of high-mobility group box 1 protein and poly(ADP-ribose) polymerase 1 degradation in Chlamydia trachomatis-induced cytopathicity. Infect Immun 2010; 78:3288-97. [PMID: 20421386 DOI: 10.1128/iai.01404-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As intracellular bacteria, chlamydiae block the apoptotic pathways of their host cells. However, the infection of epithelial cells causes the loss of cell membrane integrity and can result in nonapoptotic death. Normally, cells undergoing necrosis release high-mobility group box 1 protein (HMGB1) that acts as an important proinflammatory mediator. Here, we show that in Chlamydia trachomatis-infected HeLa cells HMGB1 is not translocated from the nucleus to the cytosol and not released from injured cells in increased amounts. At 48 h after infection, degradation of HMGB1 was observed. In infected cells, poly(ADP-ribose) polymerase 1 (PARP-1), a DNA repair enzyme that also regulates HMGB1 translocation, was found to be cleaved into fragments that correspond to a necrosis like pattern of PARP-1 degradation. Cell-free cleavage assays and immunoprecipitation using purified proteolytic fractions from infected cells demonstrated that the chlamydial-protease-like activity factor (CPAF) is responsible for the cleavage of both HMGB1 and PARP-1. Proteolytic cleavage of PARP-1 was accompanied by a significant decrease in the enzymatic activity in a time-dependent manner. The loss of PARP-1 function obviously affects the viability of Chlamydia-infected cells because silencing of PARP-1 in uninfected HeLa cells with specific small interfering RNA results in increased cell membrane permeability. Our findings suggest that the Chlamydia-specific protease CPAF interferes with necrotic cell death pathways. By the degradation of HMGB1 and PARP-1, the pathogen may have evolved a strategy to reduce the inflammatory response to membrane-damaged cells in vivo.
Collapse
|
22
|
Biological characterization of Chlamydia trachomatis plasticity zone MACPF domain family protein CT153. Infect Immun 2010; 78:2691-9. [PMID: 20351143 DOI: 10.1128/iai.01455-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis strains are obligate intracellular human pathogens that share near genomic synteny but have distinct infection and disease organotropisms. The genetic basis for differences in the pathogen-host relationship among chlamydial strains is linked to a variable region of chlamydial genomes, termed the plasticity zone (PZ). Two groups of PZ-encoded proteins, the membrane attack complex/perforin (MACPF) domain protein (CT153) and members of the phospholipase D-like (PLD) family, are related to proteins that modify membranes and lipids, but the functions of CT153 and the PZ PLDs (pzPLDs) are unknown. Here, we show that full-length CT153 (p91) was present in the elementary bodies (EBs) of 15 C. trachomatis reference strains. CT153 underwent a rapid infection-dependent proteolytic cleavage into polypeptides of 57 and 41 kDa that was independent of de novo chlamydial protein synthesis. Following productive infection, p91 was expressed during the mid-developmental cycle and was similarly processed into p57 and p41 fragments. Infected-cell fractionation studies showed that insoluble fractions contained p91, p57, and p41, whereas only p91 was found in the soluble fraction, indicating that unprocessed CT153 may be secreted. Finally, CT153 localized to a distinct population of reticulate bodies, some of which were in contact with the inclusion membrane.
Collapse
|
23
|
Chaganty BKR, Murthy AK, Evani SJ, Li W, Guentzel MN, Chambers JP, Zhong G, Arulanandam BP. Heat denatured enzymatically inactive recombinant chlamydial protease-like activity factor induces robust protective immunity against genital chlamydial challenge. Vaccine 2010; 28:2323-9. [PMID: 20056182 DOI: 10.1016/j.vaccine.2009.12.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/10/2009] [Accepted: 12/23/2009] [Indexed: 01/18/2023]
Abstract
We have shown previously that vaccination with recombinant chlamydial protease-like activity factor (rCPAF) plus interleukin-12 as an adjuvant induces robust protective immunity against primary genital Chlamydia muridarum challenge in mice. Since CPAF is a protease, we compared the effects of enzymatically active and inactive (heat denatured) rCPAF to determine whether proteolytic activity is expendable for the induction of protective immunity against chlamydial challenge. Active, but not inactive, rCPAF immunization induced high levels of anti-active CPAF antibody, whereas both induced robust splenic CPAF-specific IFN-gamma production. Vaccination with active or inactive rCPAF induced enhanced vaginal chlamydial clearance as early as day 6 with complete resolution of infection by day 18, compared to day 30 in mock-vaccinated and challenged animals. Importantly, significant and comparable reductions in oviduct pathology were observed in active and inactive rCPAF-vaccinated mice compared to mock-vaccinated animals. Thus, rCPAF induced anti-chlamydial immunity is largely independent of enzymatic activity and secondary or higher order protein conformation.
Collapse
Affiliation(s)
- Bharat K R Chaganty
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
A secreted chlamydial protease designated CPAF (Chlamydial Protease/proteasome-like Activity Factor) degrades host proteins, enabling Chlamydia to evade host defenses and replicate. The mechanistic details of CPAF action, however, remain obscure. We used a computational approach to search the protein databank for structures that are compatible with the CPAF amino acid sequence. The results reveal that CPAF possesses a fold similar to that of the catalytic domains of the tricorn protease from Thermoplasma acidophilum,and that CPAF residues H105, S499, and E558 are structurally analogous to the tricorn protease catalytic triad residues H746, S965, and D1023. Substitution of these putative CPAF catalytic residues blocked CPAF from degrading substrates in vitro, while the wild type and a noncatalytic control mutant of CPAF remained cleavage-competent. Substrate cleavage is also correlated with processing of CPAF into N-terminal (CPAFn) and C-terminal (CPAFc) fragments, suggesting that these putative catalytic residues may also be required for CPAF maturation.
Collapse
|
25
|
Huang Z, Feng Y, Chen D, Wu X, Huang S, Wang X, Xiao X, Li W, Huang N, Gu L, Zhong G, Chai J. Structural basis for activation and inhibition of the secreted chlamydia protease CPAF. Cell Host Microbe 2009; 4:529-42. [PMID: 19064254 DOI: 10.1016/j.chom.2008.10.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/05/2008] [Accepted: 10/17/2008] [Indexed: 11/27/2022]
Abstract
The obligate intracellular pathogen Chlamydia trachomatis is the most common cause of sexually transmitted bacterial disease. It secretes a protease known as chlamydial protease/proteasome-like activity factor (CPAF) that degrades many host molecules and plays a major role in Chlamydia pathogenesis. Here, we show that mature CPAF is a homodimer of the catalytic domains, each of which comprises two distinct subunits. Dormancy of the CPAF zymogen is maintained by an internal inhibitory segment that binds the CPAF active site and blocks its homodimerization. CPAF activation is initiated by trans-autocatalytic cleavage, which induces homodimerization and conformational changes that assemble the catalytic triad. This assembly leads to two autocatalytic cleavages and removal of the inhibitory segment, enabling full CPAF activity. CPAF is covalently bound and inhibited by the proteasome inhibitor lactacystin. These results reveal the activation mechanism of the CPAF serine protease and suggest new opportunities for anti-Chlamydia drug development.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Savijoki K, Alvesalo J, Vuorela P, Leinonen M, Kalkkinen N. Proteomic analysis ofChlamydia pneumoniae-infected HL cells reveals extensive degradation of cytoskeletal proteins. ACTA ACUST UNITED AC 2008; 54:375-84. [DOI: 10.1111/j.1574-695x.2008.00488.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Chlamydia trachomatis polymorphic membrane protein D is an oligomeric autotransporter with a higher-order structure. Infect Immun 2008; 77:508-16. [PMID: 19001072 DOI: 10.1128/iai.01173-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chlamydia trachomatis is a globally important obligate intracellular bacterial pathogen that is a leading cause of sexually transmitted disease and blinding trachoma. Effective control of these diseases will likely require a preventative vaccine. C. trachomatis polymorphic membrane protein D (PmpD) is an attractive vaccine candidate as it is conserved among C. trachomatis strains and is a target of broadly cross-reactive neutralizing antibodies. We show here that immunoaffinity-purified native PmpD exists as an oligomer with a distinct 23-nm flower-like structure. Two-dimensional blue native-sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses showed that the oligomers were composed of full-length PmpD (p155) and two proteolytically processed fragments, the p73 passenger domain (PD) and the p82 translocator domain. We also show that PmpD undergoes an infection-dependent proteolytic processing step late in the growth cycle that yields a soluble extended PD (p111) that was processed into a p73 PD and a novel p30 fragment. Interestingly, soluble PmpD peptides possess putative eukaryote-interacting functional motifs, implying potential secondary functions within or distal to infected cells. Collectively, our findings show that PmpD exists as two distinct forms, a surface-associated oligomer exhibiting a higher-order flower-like structure and a soluble form restricted to infected cells. We hypothesize that PmpD is a multifunctional virulence factor important in chlamydial pathogenesis and could represent novel vaccine or drug targets for the control of human chlamydial infections.
Collapse
|
28
|
Paschen SA, Christian JG, Vier J, Schmidt F, Walch A, Ojcius DM, Häcker G. Cytopathicity of Chlamydia is largely reproduced by expression of a single chlamydial protease. ACTA ACUST UNITED AC 2008; 182:117-27. [PMID: 18625845 PMCID: PMC2447887 DOI: 10.1083/jcb.200804023] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chlamydiae replicate in a vacuole within epithelial cells and commonly induce cell damage and a deleterious inflammatory response of unknown molecular pathogenesis. The chlamydial protease-like activity factor (CPAF) translocates from the vacuole to the cytosol, where it cleaves several cellular proteins. CPAF is synthesized as an inactive precursor that is processed and activated during infection. Here, we show that CPAF can be activated in uninfected cells by experimentally induced oligomerization, reminiscent of the activation mode of initiator caspases. CPAF activity induces proteolysis of cellular substrates including two novel targets, cyclin B1 and PARP, and indirectly results in the processing of pro-apoptotic BH3-only proteins. CPAF activation induces striking morphological changes in the cell and, later, cell death. Biochemical and ultrastructural analysis of the cell death pathway identify the mechanism of cell death as nonapoptotic. Active CPAF in uninfected human cells thus mimics many features of chlamydial infection, implicating CPAF as a major factor of chlamydial pathogenicity, Chlamydia-associated cell damage, and inflammation.
Collapse
Affiliation(s)
- Stefan A Paschen
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, D-81675 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Interactions between CdsD, CdsQ, and CdsL, three putative Chlamydophila pneumoniae type III secretion proteins. J Bacteriol 2008; 190:2972-80. [PMID: 18281400 DOI: 10.1128/jb.01997-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydophila pneumoniae is a gram-negative obligate intracellular bacterial pathogen that causes pneumonia and bronchitis and may contribute to atherosclerosis. The developmental cycle of C. pneumoniae includes a morphological transition from an infectious extracellular elementary body (EB) to a noninfectious intracellular reticulate body (RB) that divides by binary fission. The C. pneumoniae genome encodes a type III secretion (T3S) apparatus that may be used to infect eukaryotic cells and to evade the host immune response. In the present study, Cpn0712 (CdsD), Cpn0704 (CdsQ), and Cpn0826 (CdsL), three C. pneumoniae genes encoding yersiniae T3S YscD, YscQ, and YscL homologs, respectively, were cloned and expressed as histidine- and glutathione S-transferase (GST)-tagged proteins in Escherichia coli. Purified recombinant proteins were used to raise hyper-immune polyclonal antiserum and were used in GST pull-down and copurification assays to identify protein-protein interactions. CdsD was detected in both EB and RB lysates by Western blot analyses, and immunofluorescent staining demonstrated the presence of CdsD within inclusions. Triton X-114 solubilization and phase separation of chlamydial EB proteins indicated that CdsD partitions with cytoplasmic proteins, suggesting it is not an integral membrane protein. GST pull-down assays indicated that recombinant CdsD interacts with CdsQ and CdsL, and copurification assays with chlamydial lysates confirmed that native CdsD interacts with CdsQ and CdsL. To the best of our knowledge, this is the first report demonstrating interactions between YscD, YscQ, and YscL homologs of bacterial T3S systems. These novel protein interactions may play important roles in the assembly or function of the chlamydial T3S apparatus.
Collapse
|
30
|
Pirbhai M, Dong F, Zhong Y, Pan KZ, Zhong G. The Secreted Protease Factor CPAF Is Responsible for Degrading Pro-apoptotic BH3-only Proteins in Chlamydia trachomatis-infected Cells. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Pirbhai M, Dong F, Zhong Y, Pan KZ, Zhong G. The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells. J Biol Chem 2006; 281:31495-501. [PMID: 16940052 DOI: 10.1074/jbc.m602796200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chlamydia trachomatis has evolved a profound anti-apoptotic activity that may aid in chlamydial evasion of host defense. The C. trachomatis anti-apoptotic activity has been correlated with blockade of mitochondrial cytochrome c release, inhibition of Bax and Bak activation, and degradation of BH3-only proteins. This study presents evidence that a chlamydia-secreted protease factor designated CPAF is both necessary and sufficient for degrading the BH3-only proteins. When the C. trachomatis-infected cell cytosolic extracts were fractionated by column chromatography, both the CPAF protein and activity elution peaks overlapped with the BH3-only protein degradation activity peak. Depletion of CPAF with a CPAF-specific antibody removed the BH3-only protein degradation activity from the infected cell cytosolic extracts, whereas depletion with control antibodies failed to do so. Notably, recombinant CPAF expressed in bacteria was able to degrade the BH3-only proteins, whereas CPAF mutants similarly prepared from bacteria failed to do so. Finally, bacterium-expressed CPAF also degraded the human BH3-only protein Pumaalpha purified from bacteria. These results demonstrate that CPAF contributes to the chlamydial anti-apoptotic activity by degrading the pro-apoptotic BH3-only Bcl-2 subfamily members.
Collapse
Affiliation(s)
- Mustak Pirbhai
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
32
|
Sharma J, Zhong Y, Dong F, Piper JM, Wang G, Zhong G. Profiling of human antibody responses to Chlamydia trachomatis urogenital tract infection using microplates arrayed with 156 chlamydial fusion proteins. Infect Immun 2006; 74:1490-9. [PMID: 16495519 PMCID: PMC1418620 DOI: 10.1128/iai.74.3.1490-1499.2006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The available chlamydial genome sequences have made it possible to comprehensively analyze host responses to all chlamydial proteins, which is essential for further understanding of chlamydial pathogenesis and development of effective chlamydial vaccines. Microplates arrayed with 156 Chlamydia trachomatis fusion proteins were used to evaluate antibody responses in women urogenitally infected with C. trachomatis. Based on both the antibody recognition frequency and titer, seven chlamydial antigens encoded by open reading frames (ORFs) CT089, CT147, CT226, CT681, CT694, CT795, and CT858, respectively, were identified as relatively immunodominant; six of these are encoded by hypothetical ORFs. Antibody binding to these chlamydial fusion proteins was blocked by C. trachomatis-infected but not by normal HeLa cell lysates or irrelevant bacterial lysates. These results have revealed novel immune-reactive chlamydial antigens, not only indicating that the hypothetical ORF-encoded proteins are expressed during chlamydial infection in humans but also providing the proof of principle that the fusion protein-based approach can be used to profile human immune responses to chlamydial infection at the whole-genome scale.
Collapse
Affiliation(s)
- Jyotika Sharma
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
33
|
Sharma J, Dong F, Pirbhai M, Zhong G. Inhibition of proteolytic activity of a chlamydial proteasome/protease-like activity factor by antibodies from humans infected with Chlamydia trachomatis. Infect Immun 2005; 73:4414-9. [PMID: 15972540 PMCID: PMC1168553 DOI: 10.1128/iai.73.7.4414-4419.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that individuals infected with Chlamydia trachomatis can develop a robust antibody response to a chlamydia-secreted protein (designated chlamydial proteasome/protease-like activity factor [CPAF]). We now report that sera collected from these infected individuals neutralized the proteolytic activity of CPAF. Depletion of the serum sample with CPAF proteins to remove the CPAF-specific antibodies effectively blocked the neutralization, whereas similar depletion with the HSP60 proteins failed to do so. We further demonstrated that the CPAF central region covering residues 200 to 338 was predominantly recognized by the human neutralization antibodies. The significance of the CPAF neutralization antibodies generated in chlamydia-infected individuals is discussed.
Collapse
Affiliation(s)
- Jyotika Sharma
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
34
|
Dong F, Zhong Y, Arulanandam B, Zhong G. Production of a proteolytically active protein, chlamydial protease/proteasome-like activity factor, by five different Chlamydia species. Infect Immun 2005; 73:1868-72. [PMID: 15731091 PMCID: PMC1064953 DOI: 10.1128/iai.73.3.1868-1872.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously identified a chlamydial protein, chlamydial protease/proteasome-like activity factor (CPAF), for degrading host transcription factors in cells infected with the human chlamydial species Chlamydia trachomatis or Chlamydia pneumoniae. We now report that functional CPAF was also produced during infection with the species Chlamydia muridarum, Chlamydia psittaci, and Chlamydia caviae, which primarily infect nonhuman hosts.
Collapse
Affiliation(s)
- Feng Dong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
35
|
Sharma J, Bosnic AM, Piper JM, Zhong G. Human antibody responses to a Chlamydia-secreted protease factor. Infect Immun 2004; 72:7164-71. [PMID: 15557641 PMCID: PMC529132 DOI: 10.1128/iai.72.12.7164-7171.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously identified a chlamydia-secreted protein (designated chlamydial proteasome/protease-like activity factor, or CPAF) in the cytosol of chlamydia-infected cells. Although CPAF is known to degrade host transcription factors required for major histocompatibility complex antigen expression in cultured cells, it is not clear whether CPAF is produced and maintains similar functions in humans infected with chlamydial organisms. We now report that CPAF does not preexist in chlamydial organisms and that CPAF synthesis requires live organism replication in cultured cells. Mice inoculated with live, but not mice inoculated with dead, chlamydial organisms produced a strong antibody response to CPAF, correlating CPAF-specific antibody production with CPAF synthesis in animals. Sera from women diagnosed with Chlamydia trachomatis cervicitis displayed higher levels of antibodies to CPAF than to either chlamydial major outer membrane protein or heat shock protein 60, suggesting that CPAF is both produced and immunogenic during human chlamydial infection.
Collapse
Affiliation(s)
- Jyotika Sharma
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|