1
|
Wang Y, Nair ADS, Alhassan A, Jaworski DC, Liu H, Trinkl K, Hove P, Ganta CK, Burkhardt N, Munderloh UG, Ganta RR. Multiple Ehrlichia chaffeensis Genes Critical for Its Persistent Infection in a Vertebrate Host Are Identified by Random Mutagenesis Coupled with In Vivo Infection Assessment. Infect Immun 2020; 88:e00316-20. [PMID: 32747600 PMCID: PMC7504954 DOI: 10.1128/iai.00316-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Ehrlichia chaffeensis, a tick-transmitted obligate intracellular rickettsial agent, causes human monocytic ehrlichiosis. In recent reports, we described substantial advances in developing random and targeted gene disruption methods to investigate the functions of E. chaffeensis genes. We reported earlier that the Himar1 transposon-based random mutagenesis is a valuable tool in defining E. chaffeensis genes critical for its persistent growth in vivo in reservoir and incidental hosts. The method also aided in extending studies focused on vaccine development and immunity. Here, we describe the generation and mapping of 55 new mutations. To define the critical nature of the bacterial genes, infection experiments were carried out in the canine host with pools of mutant organisms. Infection evaluation in the physiologically relevant host by molecular assays and by xenodiagnoses allowed the identification of many proteins critical for the pathogen's persistent in vivo growth. Genes encoding proteins involved in biotin biosynthesis, protein synthesis and fatty acid biosynthesis, DNA repair, electron transfer, and a component of a multidrug resistance (MDR) efflux pump were concluded to be essential for the pathogen's in vivo growth. Three known immunodominant membrane proteins, i.e., two 28-kDa outer membrane proteins (P28/OMP) and a 120-kDa surface protein, were also recognized as necessary for the pathogen's obligate intracellular life cycle. The discovery of many E. chaffeensis proteins crucial for its continuous in vivo growth will serve as a major resource for investigations aimed at defining pathogenesis and developing novel therapeutics for this and related pathogens of the rickettsial family Anaplasmataceae.
Collapse
Affiliation(s)
- Ying Wang
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Arathy D S Nair
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Andy Alhassan
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, West Indies, Grenada
| | - Deborah C Jaworski
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Huitao Liu
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Kathleen Trinkl
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Paidashe Hove
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, West Indies, Grenada
| | - Charan K Ganta
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Nicole Burkhardt
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | - Ulrike G Munderloh
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | - Roman R Ganta
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
2
|
Abstract
Ehrlichia chaffeensis is an obligatory intracellular and cholesterol-dependent bacterium that has evolved special proteins and functions to proliferate inside leukocytes and cause disease. E. chaffeensis has a multigene family of major outer membrane proteins with porin activity and induces infectious entry using its entry-triggering protein to bind the human cell surface protein DNase X. During intracellular replication, three functional pairs of two-component systems are sequentially expressed to regulate metabolism, aggregation, and the development of stress-resistance traits for transmission. A type IV secretion effector of E. chaffeensis blocks mitochondrion-mediated host cell apoptosis. Several type I secretion proteins are secreted at the Ehrlichia-host interface. E. chaffeensis strains induce strikingly variable inflammation in mice. The central role of MyD88, but not Toll-like receptors, suggests that Ehrlichia species have unique inflammatory molecules. A recent report about transient targeted mutagenesis and random transposon mutagenesis suggests that stable targeted knockouts may become feasible in Ehrlichia.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
3
|
Thomas S, Thirumalapura NR, Crocquet-Valdes PA, Luxon BA, Walker DH. Structure-based vaccines provide protection in a mouse model of ehrlichiosis. PLoS One 2011; 6:e27981. [PMID: 22114733 PMCID: PMC3219711 DOI: 10.1371/journal.pone.0027981] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent advances in bioinformatics have made it possible to predict the B cell and T cell epitopes of antigenic proteins. This has led to design of peptide based vaccines that are more specific, safe, and easy to produce. The obligately intracellular gram negative bacteria Ehrlichia cause ehrlichioses in humans and animals. As yet there are no vaccines to protect against Ehrlichia infection. METHODOLOGY/PRINCIPAL FINDINGS We applied the principle of structural vaccinology to design peptides to the epitopes of Ehrlichia muris outer membrane P28-19 (OMP-1/P28) and Ehrlichia Heat shock protein 60 (Hsp60/GroEL) antigenic proteins. Both P28-19 and Ehrlichia Hsp60 peptides reacted with polyclonal antibodies against E. canis and E. chaffeensis and could be used as a diagnostic tool for ehrlichiosis. In addition, we demonstrated that mice vaccinated with Ehrlichia P28-19 and Hsp60 peptides and later challenged with E. muris were protected against the pathogen. CONCLUSIONS/SIGNIFICANCE Our results demonstrate the power of structural vaccines and could be a new strategy in the development of vaccines to provide protection against pathogenic microorganisms.
Collapse
Affiliation(s)
- Sunil Thomas
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nagaraja R. Thirumalapura
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | - Bruce A. Luxon
- Institute of Human Infections and Immunity, Institute for Translational Science, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
4
|
Immunization with Ehrlichia P28 outer membrane proteins confers protection in a mouse model of ehrlichiosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:2018-25. [PMID: 22030371 DOI: 10.1128/cvi.05292-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The obligately intracellular bacterium Ehrlichia chaffeensis that resides in mononuclear phagocytes is the etiologic agent of human monocytotropic ehrlichiosis (HME). HME is an emerging and often life-threatening, tick-transmitted infectious disease in the United States. Effective primary immune responses against Ehrlichia infection involve generation of Ehrlichia-specific gamma interferon (IFN-γ)-producing CD4(+) T cells and cytotoxic CD8(+) T cells, activation of macrophages by IFN-γ, and production of Ehrlichia-specific antibodies of the Th1 isotype. Currently, there are no vaccines available against HME. We evaluated the ability of 28-kDa outer membrane proteins (P28-OMP-1) of the closely related Ehrlichia muris to stimulate long-term protective memory T and B cell responses and confer protection in mice. The spleens of mice vaccinated with E. muris P28-9, P28-12, P28-19, or a mixture of these three P28 proteins (P28s) using a DNA prime-protein boost regimen and challenged with E. muris had significantly lower bacterial loads than the spleens of mock-vaccinated mice. Mice immunized with P28-9, P28-12, P28-19, or the mixture induced Ehrlichia-specific CD4(+) Th1 cells. Interestingly, mice immunized with P28-14, orthologs of which in E. chaffeensis and E. canis are primarily expressed in tick cells, failed to lower the ehrlichial burden in the spleen. Immunization with the recombinant P28-19 protein alone also significantly decreased the bacterial load in the spleen and liver compared to those of the controls. Our study reports, for the first time, the protective roles of the Ehrlichia P28-9 and P28-12 proteins in addition to confirming previous reports of the protective ability of P28-19. Partial protection induced by immunization with P28-9, P28-12, and P28-19 against Ehrlichia was associated with the generation of Ehrlichia-specific cell-mediated and humoral immune responses.
Collapse
|
5
|
Lin M, Kikuchi T, Brewer HM, Norbeck AD, Rikihisa Y. Global proteomic analysis of two tick-borne emerging zoonotic agents: anaplasma phagocytophilum and ehrlichia chaffeensis. Front Microbiol 2011; 2:24. [PMID: 21687416 PMCID: PMC3109344 DOI: 10.3389/fmicb.2011.00024] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 01/31/2011] [Indexed: 11/29/2022] Open
Abstract
Anaplasma phagocytophilum and Ehrlichia chaffeensis are obligatory intracellular α-proteobacteria that infect human leukocytes and cause potentially fatal emerging zoonoses. In the present study, we determined global protein expression profiles of these bacteria cultured in the human promyelocytic leukemia cell line, HL-60. Mass spectrometric (MS) analyses identified a total of 1,212 A. phagocytophilum and 1,021 E. chaffeensis proteins, representing 89.3 and 92.3% of the predicted bacterial proteomes, respectively. Nearly all bacterial proteins (≥99%) with known functions were expressed, whereas only approximately 80% of “hypothetical” proteins were detected in infected human cells. Quantitative MS/MS analyses indicated that highly expressed proteins in both bacteria included chaperones, enzymes involved in biosynthesis and metabolism, and outer membrane proteins, such as A. phagocytophilum P44 and E. chaffeensis P28/OMP-1. Among 113 A. phagocytophilum p44 paralogous genes, 110 of them were expressed and 88 of them were encoded by pseudogenes. In addition, bacterial infection of HL-60 cells up-regulated the expression of human proteins involved mostly in cytoskeleton components, vesicular trafficking, cell signaling, and energy metabolism, but down-regulated some pattern recognition receptors involved in innate immunity. Our proteomics data represent a comprehensive analysis of A. phagocytophilum and E. chaffeensis proteomes, and provide a quantitative view of human host protein expression profiles regulated by bacterial infection. The availability of these proteomic data will provide new insights into biology and pathogenesis of these obligatory intracellular pathogens.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University Columbus, OH, USA
| | | | | | | | | |
Collapse
|
6
|
Molecular and cellular pathobiology of Ehrlichia infection: targets for new therapeutics and immunomodulation strategies. Expert Rev Mol Med 2011; 13:e3. [PMID: 21276277 DOI: 10.1017/s1462399410001730] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ehrlichia are small obligately intracellular bacteria in the order Rickettsiales that are transmitted by ticks and associated with emerging life-threatening human zoonoses. Vaccines are not available for human ehrlichiosis, and therapeutic options are limited to a single antibiotic class. New technologies for exploring host-pathogen interactions have yielded recent advances in understanding the molecular interactions between Ehrlichia and the eukaryotic host cell and identified new targets for therapeutic and vaccine development, including those that target pathogen virulence mechanisms or disrupt the processes associated with ehrlichial effector proteins. Animal models have also provided insight into immunopathological mechanisms that contribute significantly to understanding severe disease manifestations, which should lead to the development of immunomodulatory approaches for treating patients nearing or experiencing severe disease states. In this review, we discuss the recent advances in our understanding of molecular and cellular pathobiology and the immunobiology of Ehrlichia infection. We identify new molecular host-pathogen interactions that can be targets of new therapeutics, and discuss prospects for treating the immunological dysregulation during acute infection that leads to life-threatening complications.
Collapse
|
7
|
O'Connor TP, Saucier JM, Daniluk D, Stillman BA, Krah R, Rikihisa Y, Xiong Q, Yabsley MJ, Adams DS, Diniz PPVP, Breitschwerdt EB, Gaunt SD, Chandrashekar R. Evaluation of peptide- and recombinant protein-based assays for detection of anti-Ehrlichia ewingii antibodies in experimentally and naturally infected dogs. [corrected]. Am J Vet Res 2010; 71:1195-200. [PMID: 20919906 DOI: 10.2460/ajvr.71.10.1195] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate microtiter-plate format ELISAs constructed by use of different diagnostic targets derived from the Ehrlichia ewingii p28 outer membrane protein for detection of E ewingii antibodies in experimentally and naturally infected dogs. SAMPLE POPULATION Serum samples from 87 kenneled dogs, 9 dogs experimentally infected with anti-E ewingii, and 180 potentially naturally exposed dogs from Missouri. PROCEDURES The capacities of the synthetic peptide and truncated recombinant protein to function as detection reagents in ELISAs were compared by use of PCR assay, western blot analysis, and a full-length recombinant protein ELISA. Diagnostic targets included an E ewingii synthetic peptide (EESP) and 2 recombinant proteins: a full-length E ewingii outer membrane protein (EEp28) and a truncated E ewingii outer membrane protein (EETp28) RESULTS A subset of Ehrlichia canis-positive samples cross-reacted in the EEp28 ELISA; none were reactive in the EESP and EETp28 ELISAs. The EESP- and EETp28-based ELISAs detected E ewingii seroconversion at approximately the same time after infection as the EEp28 ELISAs. In afield population, each of the ELISAs identified the same 35 samples as reactive and 27 samples as nonreactive. Anaplasma and E can is peptides used in a commercially available ELISA platform did not detect anti-E ewingii antibodies in experimentally infected dogs. CONCLUSIONS AND CLINICAL RELEVANCE The EESP and EETp28 ELISAs were suitable for specifically detecting anti-E ewingii antibodies in experimentally and naturally infected dogs.
Collapse
Affiliation(s)
- Thomas P O'Connor
- Department of Immunoassay R&D, IDEXX Laboratories Incorporated, 1 Indexx Dr, Westbrook, ME 04092, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nat Rev Microbiol 2010; 8:328-39. [PMID: 20372158 DOI: 10.1038/nrmicro2318] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anaplasma spp. and Ehrlichia spp. cause several emerging human infectious diseases. Anaplasma phagocytophilum and Ehrlichia chaffeensis are transmitted between mammals by blood-sucking ticks and replicate inside mammalian white blood cells and tick salivary-gland and midgut cells. Adaptation to a life in eukaryotic cells and transmission between hosts has been assisted by the deletion of many genes that are present in the genomes of free-living bacteria (including genes required for the biosynthesis of lipopolysaccharide and peptidoglycan), by the acquisition of a cholesterol uptake pathway and by the expansion of the repertoire of genes encoding the outer-membrane porins and type IV secretion system. Here, I review the specialized properties and other adaptations of these intracellular bacteria.
Collapse
|
9
|
Baldo L, Desjardins CA, Russell JA, Stahlhut JK, Werren JH. Accelerated microevolution in an outer membrane protein (OMP) of the intracellular bacteria Wolbachia. BMC Evol Biol 2010; 10:48. [PMID: 20163713 PMCID: PMC2843615 DOI: 10.1186/1471-2148-10-48] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/17/2010] [Indexed: 11/16/2022] Open
Abstract
Background Outer membrane proteins (OMPs) of Gram-negative bacteria are key players in the biology of bacterial-host interactions. However, while considerable attention has been given to OMPs of vertebrate pathogens, relatively little is known about the role of these proteins in bacteria that primarily infect invertebrates. One such OMP is found in the intracellular bacteria Wolbachia, which are widespread symbionts of arthropods and filarial nematodes. Recent experimental studies have shown that the Wolbachia surface protein (WSP) can trigger host immune responses and control cell death programming in humans, suggesting a key role of WSP for establishment and persistence of the symbiosis in arthropods. Results Here we performed an analysis of 515 unique alleles found in 831 Wolbachia isolates, to investigate WSP structure, microevolution and population genetics. WSP shows an eight-strand transmembrane β-barrel structure with four extracellular loops containing hypervariable regions (HVRs). A clustering approach based upon patterns of HVR haplotype diversity was used to group similar WSP sequences and to estimate the relative contribution of mutation and recombination during early stages of protein divergence. Results indicate that although point mutations generate most of the new protein haplotypes, recombination is a predominant force triggering diversity since the very first steps of protein evolution, causing at least 50% of the total amino acid variation observed in recently diverged proteins. Analysis of synonymous variants indicates that individual WSP protein types are subject to a very rapid turnover and that HVRs can accommodate a virtually unlimited repertoire of peptides. Overall distribution of WSP across hosts supports a non-random association of WSP with the host genus, although extensive horizontal transfer has occurred also in recent times. Conclusions In OMPs of vertebrate pathogens, large recombination impact, positive selection, reduced structural and compositional constraints, and extensive lateral gene transfer are considered hallmarks of evolution in response to the adaptive immune system. However, Wolbachia do not infect vertebrates. Here we predict that the rapid turnover of WSP loop motifs could aid in evading or inhibiting the invertebrate innate immune response. Overall, these features identify WSP as a strong candidate for future studies of host-Wolbachia interactions that affect establishment and persistence of this widespread endosymbiosis.
Collapse
Affiliation(s)
- Laura Baldo
- Department of Biology, University of California, Riverside, CA, USA.
| | | | | | | | | |
Collapse
|
10
|
New insights into molecular Ehrlichia chaffeensis-host interactions. Microbes Infect 2010; 12:337-45. [PMID: 20116446 DOI: 10.1016/j.micinf.2010.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 12/24/2022]
Abstract
Ehrlichia chaffeensis is an obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes and survives by reprogramming the host cell. Here we review new information regarding the newly characterized effector molecules and the complex network of molecular host-pathogen interactions that the organism exploits enabling it to thrive and persist intracellularly.
Collapse
|
11
|
Diversity of Ehrlichia ruminantium major antigenic protein 1-2 in field isolates and infected sheep. Infect Immun 2009; 77:2304-10. [PMID: 19307215 DOI: 10.1128/iai.01409-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins expressed from the map1 multigene family of Ehrlichia ruminantium are strongly recognized by immune T and B cells from infected animals or from animals that were infected and have recovered from heartwater disease (although still remaining infected carriers). Analogous multigene clusters also encode the immunodominant outer membrane proteins (OMPs) in other ehrlichial species. Recombinant protein analogs of the expressed genes and DNA vaccines based on the multigene clusters have been shown to induce protective immunity, although this was less effective in heterologous challenge situations, where the challenge strain major antigenic protein 1 (MAP1) sequence differed from the vaccine strain MAP1. Recent data for several ehrlichial species show differential expression of the OMPs in mammalian versus tick cell cultures and dominant expression of individual family members in each type of culture system. However, many genes in the clusters appear to be complete and functional and to generate mRNA transcripts. Recent data also suggest that there may be a low level of protein expression from many members of the multigene family, despite primary high-level expression from an individual member. A continuing puzzle, therefore, is the biological roles of the different members of these OMP multigene families. Complete genome sequences are now available for two geographically divergent strains of E. ruminantium (Caribbean and South Africa strains). Comparison of these sequences revealed amino acid sequence diversity in MAP1 (89% identity), which is known to confer protection in a mouse model and to be the multigene family member primarily expressed in mammalian cells. Surprisingly, however, the greatest sequence diversity (79% identity) was in the less-studied map1-2 gene. We investigated here whether this map1-2 diversity was a general feature of E. ruminantium in different cultured African strains and in organisms from infected sheep. Comparison of MAP1-2s revealed amino acid identities of 75 to 100% (mean of 86%), compared to 84 to 100% (mean of 89%) for MAP1s. Interestingly, MAP1-2s varied independently of MAP1s such that E. ruminantium strains with similar MAP1s had diverse MAP1-2s and vice versa. Different MAP1-2s were found in individual infected sheep. Different regions of a protein may be subjected to different evolutionary forces because of recombination and/or selection, which results in those regions not agreeing with a phylogeny deduced from the whole molecule. This appears to be true for both MAP1 and MAP1-2, where statistical likelihood methods detect heterogeneous evolutionary rates for segments of both molecules. Sera from infected cattle recognized a MAP1-2 variable-region peptide in enzyme-linked immunosorbent assay, but less strongly and consistently than a MAP1 peptide (MAP1B). Heterologous protective immunity may depend on recognition of a complex set of varying OMP epitopes.
Collapse
|
12
|
Ganta RR, Peddireddi L, Seo GM, Dedonder SE, Cheng C, Chapes SK. Molecular characterization of Ehrlichia interactions with tick cells and macrophages. FRONT BIOSCI-LANDMRK 2009; 14:3259-73. [PMID: 19273271 PMCID: PMC4392924 DOI: 10.2741/3449] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several tick-transmitted Anaplasmataceae family rickettsiales of the genera Ehrlichia and Anaplasma have been discovered in recent years. Some species are classified as pathogens causing emerging diseases with growing health concern for people. They include human monocytic ehrlichiosis, human granulocytic ewingii ehrlichiosis and human granulocytic anaplasmosis which are caused by Ehrlichia chaffeensis, E. ewingii and Anaplasma phagocytophilum, respectively. Despite the complex cellular environments and defense systems of arthropod and vertebrate hosts, rickettsials have evolved strategies to evade host clearance and persist in both vertebrate and tick host environments. For example, E. chaffeensis growing in vertebrate macrophages has distinct patterns of global host cell-specific protein expression and differs considerably in morphology compared with its growth in tick cells. Immunological studies suggest that host cell-specific differences in Ehrlichia gene expression aid the pathogen, extending its survival. Bacteria from tick cells persist longer when injected into mice compared with mammalian macrophage-grown bacteria, and the host response is also significantly different. This review presents the current understanding of tick-Ehrlichia interactions and implications for future.
Collapse
Affiliation(s)
- Roman Reddy Ganta
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Goddard J, Varela-Stokes AS. Role of the lone star tick, Amblyomma americanum (L.), in human and animal diseases. Vet Parasitol 2008; 160:1-12. [PMID: 19054615 DOI: 10.1016/j.vetpar.2008.10.089] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 10/20/2008] [Accepted: 10/21/2008] [Indexed: 11/17/2022]
Abstract
We reviewed scientific literature pertaining to known and putative disease agents associated with the lone star tick, Amblyomma americanum. Reports in the literature concerning the role of the lone star tick in the transmission of pathogens of human and animal diseases have sometimes been unclear and even contradictory. This overview has indicated that A. americanum is involved in the ecology of several disease agents of humans and other animals, and the role of this tick as a vector of these diseases ranges from incidental to significant. Probably the clearest relationship is that of Ehrlichia chaffeensis and A. americanum. Also, there is a definite association between A. americanum and tularemia, as well as between the lone star tick and Theileria cervi to white-tailed deer. Evidence of Babesia cervi (= odocoilei) being transmitted to deer by A. americanum is largely circumstantial at this time. The role of A. americanum in cases of southern tick-associated rash illness (STARI) is currently a subject of intensive investigations with important implications. The lone star tick has been historically reported to be a vector of Rocky Mountain spotted fever rickettsiae, but current opinions are to the contrary. Evidence incriminated A. americanum as the vector of Bullis fever in the 1940s, but the disease apparently has disappeared. Q fever virus has been found in unfed A. americanum, but the vector potential, if any, is poorly understood at this time. Typhus fever and toxoplasmosis have been studied in the lone star tick, and several non-pathogenic organisms have been recovered. Implications of these tick-disease relationships are discussed.
Collapse
Affiliation(s)
- Jerome Goddard
- Department of Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | | |
Collapse
|
14
|
Chapes SK, Ganta RR. Defining the immune response to Ehrlichia species using murine models. Vet Parasitol 2008; 158:344-59. [PMID: 19028013 DOI: 10.1016/j.vetpar.2008.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 09/06/2008] [Accepted: 09/09/2008] [Indexed: 01/01/2023]
Abstract
Pathogenic bacteria belonging to the family Anaplasmataceae include species of the genera Ehrlichia and Anaplasma. Ehrlichia chaffeensis, first known as the causative agent of human monocytic ehrlichiosis, also infects several vertebrate hosts including white-tailed deer, dogs, coyotes and goats. E. chaffeensis is transmitted from the bite of an infected hard tick, such as Amblyomma americanum. E. chaffeensis and other tick-transmitted pathogens have adapted to both the tick and vertebrate host cell environments. Although E. chaffeensis persists in both vertebrate and tick hosts for long periods of time, little is known about that process. Immunological studies will be valuable in assessing how the pathogen persists in nature in both vertebrate and invertebrate hosts. Understanding the host immune response to the pathogen originating from dual host backgrounds is also important to develop effective methods of diagnosis, control and treatment. In this paper, we provide our perspective of the current understanding of the immune response against E. chaffeensis in relation to other related Anaplasmataceae pathogens.
Collapse
Affiliation(s)
- Stephen K Chapes
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
15
|
Total, membrane, and immunogenic proteomes of macrophage- and tick cell-derived Ehrlichia chaffeensis evaluated by liquid chromatography-tandem mass spectrometry and MALDI-TOF methods. Infect Immun 2008; 76:4823-32. [PMID: 18710870 DOI: 10.1128/iai.00484-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis, a tick-transmitted rickettsial, is the causative agent of human monocytic ehrlichiosis. To examine protein expression patterns, we analyzed total, membrane, and immunogenic proteomes of E. chaffeensis originating from macrophage and tick cell cultures. Total proteins resolved by one-dimensional gel electrophoresis and subjected to liquid chromatography-electrospray ionization ion trap mass spectrometry allowed identification of 134 and 116 proteins from macrophage- and tick cell-derived E. chaffeensis, respectively. Because a majority of immunogenic proteins remained in the membrane fraction, individually picked total and immunogenic membrane proteins were also surveyed by liquid chromatography-tandem mass spectrometry and matrix-assisted laser desorption ionization-time of flight methods. The analysis aided the identification of 48 additional proteins. In all, 278 genes of the E. chaffeensis genome were verified as functional genes. They included genes for DNA and protein metabolism, energy metabolism and transport, membrane proteins, hypothetical proteins, and many novel proteins of unknown function. The data reported in this study suggest that the membrane of E. chaffeensis is very complex, having many expressed proteins. This study represents the first and the most comprehensive analysis of E. chaffeensis-expressed proteins. This also is the first study confirming the expression of nearly one-fourth of all predicted genes of the E. chaffeensis genome, validating that they are functionally active genes, and demonstrating that classic shotgun proteomic approaches are feasible for tick-transmitted intraphagosomal bacteria. The identity of novel expressed proteins reported in this study, including the large selection of membrane and immunogenic proteins, will be valuable in elucidating pathogenic mechanisms and developing effective prevention and control methods.
Collapse
|
16
|
Expression and porin activity of P28 and OMP-1F during intracellular Ehrlichia chaffeensis development. J Bacteriol 2008; 190:3597-605. [PMID: 18359808 DOI: 10.1128/jb.02017-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis, an obligatory intracellular gram-negative bacterium, must take up various nutrients and metabolic compounds because it lacks many genes involved in metabolism. Nutrient uptake by a gram-negative bacterium occurs primarily through pores or channels in the bacterial outer membrane. Here we demonstrate that isolated E. chaffeensis outer membranes have porin activities, as determined by a proteoliposome swelling assay. The activity was partially blocked by an antibody that recognizes the two most abundant outer membrane proteins, P28/OMP-19 and OMP-1F/OMP-18. Both proteins were predicted to have structural features characteristic of porins, including 12 transmembrane segments comprised of amphipathic and antiparallel beta-strands. The sodium dodecyl sulfate stability of the two proteins was consistent with a beta-barrel structure. Isolated native P28 and OMP-1F exhibited porin activities, with pore sizes similar to and larger than, respectively, that of OprF, which is the porin with the largest pore size known to date. E. chaffeensis experiences temperature changes during transmission by ticks. During the intracellular development of E. chaffeensis, both P28 and OMP-1F were expressed mostly in the mid-exponential growth phase at 37 degrees C and the late-exponential growth phase at 28 degrees C. The porin activity of proteoliposomes reconstituted with proteins from the outer membrane fractions derived from bacteria in the mid- and late-exponential growth phases at 28 degrees C and 37 degrees C correlated with the expression levels of P28 and OMP-1F. These results imply that P28 and OMP-1F function as porins with large pore sizes, suggesting that the differential expression of these two proteins might regulate nutrient uptake during intracellular E. chaffeensis development at both temperatures.
Collapse
|
17
|
Identification of 19 polymorphic major outer membrane protein genes and their immunogenic peptides in Ehrlichia ewingii for use in a serodiagnostic assay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 15:402-11. [PMID: 18094116 DOI: 10.1128/cvi.00366-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ehrlichia ewingii, a tick-transmitted rickettsia previously known only as a canine pathogen, was recently recognized as a human pathogen. E. ewingii has yet to be cultivated, and there is no serologic test available to diagnose E. ewingii infection. Previously, a fragment (505 bp) of a single E. ewingii gene homologous to 1 of 22 genes encoding Ehrlichia chaffeensis immunodominant major outer membrane proteins 1 (OMP-1s)/P28s was identified. The purposes of the present study were to (i) determine the E. ewingii omp-1 gene family, (ii) determine each OMP-1-specific peptide, and (iii) analyze all OMP-1 synthesized peptides for antigenicity. Using nested touchdown PCR and a primer walking strategy, we found 19 omp-1 paralogs in E. ewingii. These genes are arranged in tandem downstream of tr1 and upstream of secA in a 24-kb genomic region. Predicted molecular masses of the 19 mature E. ewingii OMP-1s range from 25.1 to 31.3 kDa, with isoelectric points of 5.03 to 9.80. Based on comparative sequence analyses among OMP-1s from E. ewingii and three other Ehrlichia spp., each E. ewingii OMP-1 oligopeptide that was predicted to be antigenic, bacterial surface exposed, unique in comparison to the other E. ewingii OMP-1s, and distinct from those of other Ehrlichia spp. was synthesized for use in an enzyme-linked immunosorbent assay. Plasmas from experimentally E. ewingii-infected dogs reacted significantly with most of the OMP-1-specific peptides, indicating that multiple OMP-1s were expressed and immunogenic in infected dogs. The results support the utility of the tailored OMP-1 peptides as E. ewingii serologic test antigens.
Collapse
|
18
|
Nethery KA, Doyle CK, Zhang X, McBride JW. Ehrlichia canis gp200 contains dominant species-specific antibody epitopes in terminal acidic domains. Infect Immun 2007; 75:4900-8. [PMID: 17682040 PMCID: PMC2044547 DOI: 10.1128/iai.00041-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Species-specific antibody epitopes within several major immunoreactive protein orthologs of Ehrlichia species have recently been identified and molecularly characterized. In this study, dominant B-cell epitopes within the acidic (pI 5.35) ankyrin repeat-containing 200-kDa major immunoreactive protein (gp200) of Ehrlichia canis were defined. The E. canis gp200 gene (4,263 bp; 1,421 amino acids) was cloned and expressed as four (N-terminal, 1,107 bp; N-internal, 910 bp; C-internal, 1,000 bp; and C-terminal, 1,280 bp) overlapping recombinant proteins. The N-terminal, C-internal, and C-terminal polypeptides (369, 332, and 426 amino acids, respectively) were strongly recognized by antibody, and the major epitope(s) in these polypeptides was mapped to four polypeptide regions (40 to 70 amino acids). Smaller overlapping recombinant polypeptides (14 to 15 amino acids) spanning these regions identified five strongly immunoreactive species-specific epitopes that exhibited conformational dependence. The majority of the epitopes (four) were located in two strongly acidic (pI 4 to 4.9) domains in the distal N- and C-terminal regions of the protein flanking the centralized ankyrin domain-containing region. The amino acid content of the epitope-containing domains included a high proportion of strongly acidic amino acids (glutamate and aspartate), and these domains appear to have important biophysical properties that influence the antibody response to gp200.
Collapse
Affiliation(s)
- Kimberly A Nethery
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | | | |
Collapse
|
19
|
Bitsaktsis C, Nandi B, Racine R, MacNamara KC, Winslow G. T-Cell-independent humoral immunity is sufficient for protection against fatal intracellular ehrlichia infection. Infect Immun 2007; 75:4933-41. [PMID: 17664264 PMCID: PMC2044530 DOI: 10.1128/iai.00705-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although humoral immunity has been shown to contribute to host defense during intracellular bacterial infections, its role has generally been ancillary. Instead, CD4 T cells are often considered to play the dominant role in protective immunity via their production of type I cytokines. Our studies of highly pathogenic Ehrlichia bacteria isolated from Ixodes ovatus (IOE) reveal, however, that this paradigm is not always correct. Immunity to IOE infection can be induced by infection with a closely related weakly pathogenic ehrlichia, Ehrlichia muris. Type I cytokines (i.e., gamma interferon, tumor necrosis factor alpha, and interleukin-12) were not necessary for E. muris-induced immunity. In contrast, humoral immunity was essential, as shown by the fact that E. muris-infected B-cell-deficient mice were not protected from IOE challenge and because E. muris immunization was effective in CD4-, CD8-, and major histocompatibility complex (MHC) class II-deficient mice. Immunity was unlikely due to nonspecific inflammation, as prior infection with Listeria monocytogenes did not induce immunity to IOE. Antisera from both wild-type and MHC-II-deficient mice provided at least partial resistance to challenge infection, and protection could also be achieved following transfer of total, but not B-cell-depleted, splenocytes obtained from E. muris-immunized mice. The titers of class-switched antibodies in immunized CD4 T-cell- and MHC class II-deficient mice, although lower than those observed in immunized wild-type mice, were significant, indicating that E. muris can induce class switch recombination in the absence of classical T-cell-mediated help. These studies highlight a major protective role for classical T-cell-independent humoral immunity during an intracellular bacterial infection.
Collapse
Affiliation(s)
- Constantine Bitsaktsis
- Wadsworth Center, New York State Department of Health, PO Box 22002, Albany, New York 12201-2002, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
The surface proteins of Ehrlichia chaffeensis provide an important interface for pathogen-host interactions. To investigate the surface proteins of E. chaffeensis, membrane-impermeable, cleavable Sulfo-NHS-SS-Biotin was used to label intact bacteria. The biotinylated bacterial surface proteins were isolated by streptavidin-agarose affinity purification. The affinity-captured proteins were separated by electrophoresis, and five relatively abundant protein bands containing immunoreactive proteins were subjected to capillary-liquid chromatography-nanospray tandem mass spectrometry analysis. Nineteen out of 22 OMP-1/P28 family proteins, including P28 (which previously was shown to be surface exposed), were detected in E. chaffeensis cultured in human monocytic leukemia THP-1 cells. For the first time, with the exception of P28 and P28-1, 17 OMP-1/P28 family proteins were demonstrated to be expressed at the protein level. The surface exposure of OMP-1A and OMP-1N was verified by immunofluorescence microscopy. OMP-1B was undetectable either by surface biotinylation or by Western blotting of the whole bacterial lysate, suggesting that it is not expressed by E. chaffeensis cultured in THP-1 cells. Additional E. chaffeensis surface proteins detected were OMP85, hypothetical protein ECH_0525 (here named Esp73), immunodominant surface protein gp47, and 11 other proteins. The identification of E. chaffeensis surface-exposed proteins provides novel insights into the E. chaffeensis surface and lays the foundation for rational studies on pathogen-host interactions and vaccine development.
Collapse
Affiliation(s)
- Yan Ge
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Discusses recent developments in the study of immunity and host defense against the monocytic ehrlichiae in 2003 and 2004. The review does not address anaplasmoses, as the anaplasmae were recently re-classified into the genus Anaplasma, and are distinct in cell tropism from the ehrlichiae. RECENT FINDINGS The features of the immune responses against these emerging Gram-negative obligate intracellular pathogens are only beginning to be understood. Important advances in our ability to study host defense include the development of new experimental mouse models. Recent studies have defined possible mechanisms of innate immune subversion in human monocytes, as well as roles for lymphocyte subsets and type I cytokines during mouse infection. Other studies in the mouse suggest that cytokine production by CD8 T cells may contribute to immunopathology. New data also support a role for humoral immunity during host defense against these intracellular pathogens. SUMMARY The use of new animal models will facilitate research of the mechanisms of innate, adaptive, and pathological immune responses, and will enhance our understanding of human immunity to the ehrlichiae as well as to other pathogenic intracellular bacteria.
Collapse
Affiliation(s)
- Gary M Winslow
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, USA.
| | | |
Collapse
|
22
|
Singu V, Liu H, Cheng C, Ganta RR. Ehrlichia chaffeensis expresses macrophage- and tick cell-specific 28-kilodalton outer membrane proteins. Infect Immun 2005; 73:79-87. [PMID: 15618143 PMCID: PMC538988 DOI: 10.1128/iai.73.1.79-87.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis, a tick-transmitted rickettsial agent, causes human monocyte/macrophage-tropic ehrlichiosis. In this study, proteomic approaches were used to demonstrate host cell-specific antigenic expression by E. chaffeensis. The differentially expressed antigens include those from the 28-kDa outer membrane protein (p28-Omp) multigene locus. The proteins expressed in infected macrophages are the products of p28-Omp19 and p28-Omp20 genes, whereas in tick cells, the protein expressed is the p28-Omp14 gene product. The differentially expressed proteins are posttranslationally modified by phosphorylation and glycosylation to generate multiple expressed forms. Host cell-specific protein expression is not influenced by growth temperatures and is reversible. Host cell-specific protein expression coupled with posttranslational modifications may be a hallmark for the pathogen's adaptation to a dual-host life cycle and its persistence.
Collapse
Affiliation(s)
- Vijayakrishna Singu
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave., Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|