1
|
Heim KP, Sullan RMA, Crowley PJ, El-Kirat-Chatel S, Beaussart A, Tang W, Besingi R, Dufrene YF, Brady LJ. Identification of a supramolecular functional architecture of Streptococcus mutans adhesin P1 on the bacterial cell surface. J Biol Chem 2015; 290:9002-19. [PMID: 25666624 DOI: 10.1074/jbc.m114.626663] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Indexed: 12/29/2022] Open
Abstract
P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer.
Collapse
Affiliation(s)
- Kyle P Heim
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| | - Ruby May A Sullan
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Paula J Crowley
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| | - Sofiane El-Kirat-Chatel
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Audrey Beaussart
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Wenxing Tang
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| | - Richard Besingi
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| | - Yves F Dufrene
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - L Jeannine Brady
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| |
Collapse
|
2
|
Heim KP, Crowley PJ, Brady LJ. An intramolecular interaction involving the N terminus of a streptococcal adhesin affects its conformation and adhesive function. J Biol Chem 2013; 288:13762-74. [PMID: 23539625 DOI: 10.1074/jbc.m113.459974] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND P1 is an adhesin on the surface of Streptococcus mutans. RESULTS Destroying the high affinity interaction between the N and C termini of S. mutans P1 creates a non-adherent phenotype. CONCLUSION The N terminus facilitates proper folding, function, and stability within recombinant P1. SIGNIFICANCE The relationship between folding, maturation, and cell surface assembly is critical to understanding the P1 mechanism of action. The adhesin P1 is localized on the surface of the oral pathogen Streptococcus mutans and facilitates an interaction with the glycoprotein complex salivary agglutinin that is comprised primarily of the scavenger receptor gp340. Recent crystal structures of P1 display an unusual structure in which the protein folds back upon itself to form an elongated hybrid helical stalk with a globular head at the apex and a globular C-terminal region at the base. The N terminus of P1 has not yet been characterized. In this report we describe the contribution of an interaction between the N-terminal and C-terminal portions of the protein that is required for proper function of P1 on the surface of S. mutans. Utilizing recombinant N-terminal and C-terminal fragments, we employed isothermal titration calorimetry and native gel electrophoresis to demonstrate that these fragments form a high affinity and stable complex in solution. Furthermore, circular dichroism and surface plasmon resonance measurements indicated that the N-terminal fragment contributes to the folding and increases the functionality of the C-terminal fragment in trans. Finally, we utilized circular dichroism, surface plasmon resonance, and differential scanning calorimetry to show that an N-terminal 106-amino acid segment within P1 contributes to the proper folding and function of the full-length recombinant molecule and increases the stability of its elongated hybrid helical stalk.
Collapse
Affiliation(s)
- Kyle P Heim
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
3
|
Palmer SR, Crowley PJ, Oli MW, Ruelf MA, Michalek SM, Brady LJ. YidC1 and YidC2 are functionally distinct proteins involved in protein secretion, biofilm formation and cariogenicity of Streptococcus mutans. MICROBIOLOGY-SGM 2012; 158:1702-1712. [PMID: 22504439 DOI: 10.1099/mic.0.059139-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cariogenic bacterium Streptococcus mutans has two paralogues of the YidC/Oxa1/Alb3 family of membrane protein insertases/chaperones. Disruption of yidC2 results in loss of genetic competence, decreased membrane-associated ATPase activity and stress sensitivity (acid, osmotic and oxidative). Elimination of yidC1 has less severe effects, with little observable effect on growth or stress sensitivity. To examine the respective roles of YidC1 and YidC2, a conditional expression system was developed allowing simultaneous elimination of both endogenous YidCs. The function of the YidC C-terminal tails was also investigated and a chimeric YidC1 protein appended with the C terminus of YidC2 enabled YidC1 to complement a ΔyidC2 mutant for stress tolerance, ATP hydrolysis activity and extracellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Elimination of yidC1 or yidC2 affected levels of extracellular proteins, including GtfB, GtfC and adhesin P1 (AgI/II, PAc), which were increased without YidC1 but decreased in the absence of YidC2. Both yidC1 and yidC2 were shown to contribute to S. mutans biofilm formation and to cariogenicity in a rat model. Collectively, these results provide evidence that YidC1 and YidC2 contribute to cell surface biogenesis and protein secretion in S. mutans and that differences in stress sensitivity between the ΔyidC1 and ΔyidC2 mutants stem from a functional difference in the C-termini of these two proteins.
Collapse
Affiliation(s)
- Sara R Palmer
- Department of Oral Biology, University of Florida, PO Box 100424, Gainesville, FL 32610-0424, USA
| | - Paula J Crowley
- Department of Oral Biology, University of Florida, PO Box 100424, Gainesville, FL 32610-0424, USA
| | - Monika W Oli
- Department of Oral Biology, University of Florida, PO Box 100424, Gainesville, FL 32610-0424, USA
| | - M Adam Ruelf
- Department of Oral Biology, University of Florida, PO Box 100424, Gainesville, FL 32610-0424, USA
| | - Suzanne M Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | - L Jeannine Brady
- Department of Oral Biology, University of Florida, PO Box 100424, Gainesville, FL 32610-0424, USA
| |
Collapse
|
4
|
Robinette RA, Oli MW, McArthur WP, Brady LJ. A therapeutic anti-Streptococcus mutans monoclonal antibody used in human passive protection trials influences the adaptive immune response. Vaccine 2011; 29:6292-300. [PMID: 21704107 PMCID: PMC3156276 DOI: 10.1016/j.vaccine.2011.06.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 11/28/2022]
Abstract
The adhesin known as Antigen I/II, P1 or PAc of the cariogenic dental pathogen Streptococcus mutans is a target of protective immunity and candidate vaccine antigen. Previously we demonstrated that immunization of mice with S. mutans complexed with anti-AgI/II monoclonal antibodies (MAbs) resulted in changes in the specificity, isotype and functionality of elicited anti-AgI/II antibodies in the serum of immunized mice compared to administration of bacteria alone. In the current study, an anti-AgI/II MAb reported in the literature to confer unexplained long term protection against S. mutans re-colonization following passive immunization in human clinical trials (MAb Guy's 13), and expressed in tobacco plants (MAb Guy's 13 plantibody), was evaluated for its potential immunomodulatory properties. Immunization of BALB/c mice with immune complexes of Guy's 13 plantibody bound to S. mutans whole cells resulted in a similar change in specificity, isotype, and functionality of elicited anti-AgI/II antibodies as had been observed for other immunomodulatory MAbs. This new information, coupled with the recently solved crystal structure of the adhesin, now provides a rational explanation and plausible mechanism of action of passively administered Guy's 13/Guy's 13 plantibody in human clinical trials, and how long-term prevention of S. mutans carriage well past the application period of the therapeutic antibody could have been achieved.
Collapse
Affiliation(s)
- Rebekah A. Robinette
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida 32611
| | - Monika W. Oli
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida 32611
| | - William P. McArthur
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida 32611
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida 32611
| |
Collapse
|
5
|
Engels-Deutsch M, Rizk S, Haïkel Y. Streptococcus mutans antigen I/II binds to α5β1 integrins via its A-domain and increases β1 integrins expression on periodontal ligament fibroblast cells. Arch Oral Biol 2011; 56:22-8. [DOI: 10.1016/j.archoralbio.2010.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/23/2010] [Accepted: 08/22/2010] [Indexed: 10/19/2022]
|
6
|
Brady LJ, Maddocks SE, Larson MR, Forsgren N, Persson K, Deivanayagam CC, Jenkinson HF. The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol 2010; 77:276-86. [PMID: 20497507 PMCID: PMC2909373 DOI: 10.1111/j.1365-2958.2010.07212.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans antigen I/II (AgI/II) protein was one of the first cell wall-anchored adhesins identified in Gram-positive bacteria. It mediates attachment of S. mutans to tooth surfaces and has been a focus for immunization studies against dental caries. The AgI/II family polypeptides recognize salivary glycoproteins, and are also involved in biofilm formation, platelet aggregation, tissue invasion and immune modulation. The genes encoding AgI/II family polypeptides are found among Streptococcus species indigenous to the human mouth, as well as in Streptococcus pyogenes, S. agalactiae and S. suis. Evidence of functionalities for different regions of the AgI/II proteins has emerged. A sequence motif within the C-terminal portion of Streptococcus gordonii SspB (AgI/II) is bound by Porphyromonas gingivalis, thus promoting oral colonization by this anaerobic pathogen. The significance of other epitopes is now clearer following resolution of regional crystal structures. A new picture emerges of the central V (variable) region, predicted to contain a carbohydrate-binding trench, being projected from the cell surface by a stalk formed by an unusual association between an N-terminal alpha-helix and a C-terminal polyproline helix. This presentation mode might be important in determining functional conformations of other Gram-positive surface proteins that have adhesin domains flanked by alpha-helical and proline-rich regions.
Collapse
Affiliation(s)
- L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville FL 32610, USA
| | - Sarah E. Maddocks
- School of Oral and Dental Sciences, University of Bristol, Bristol BS9 2RD, UK
| | - Matthew R. Larson
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nina Forsgren
- Department of Odontology, Umeå University, SE-901 87 Umeå, Sweden
| | - Karina Persson
- Department of Odontology, Umeå University, SE-901 87 Umeå, Sweden
| | - Champion C. Deivanayagam
- Center for Biophysical Sciences and Engineering, and Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Bristol BS9 2RD, UK
| |
Collapse
|
7
|
Tavares MB, Silva BM, Cavalcante RCM, Souza RD, Luiz WB, Paccez JD, Crowley PJ, Brady LJ, Ferreira LCS, Ferreira RCC. Induction of neutralizing antibodies in mice immunized with an amino-terminal polypeptide of Streptococcus mutans P1 protein produced by a recombinant Bacillus subtilis strain. ACTA ACUST UNITED AC 2010; 59:131-42. [PMID: 20402772 DOI: 10.1111/j.1574-695x.2010.00669.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oral pathogen Streptococcus mutans expresses a surface protein, P1, which interacts with the salivary pellicle on the tooth surface or with fluid-phase saliva, resulting in bacterial adhesion or aggregation, respectively. P1 is a target of protective immunity. Its N-terminal region has been associated with adhesion and aggregation functions and contains epitopes recognized by efficacious antibodies. In this study, we used Bacillus subtilis, a gram-positive expression host, to produce a recombinant N-terminal polypeptide of P1 (P1(39-512)) derived from the S. mutans strain UA159. Purified P1(39-512) reacted with an anti-full-length P1 antiserum as well as one raised against intact S. mutans cells, indicating preserved antigenicity. Immunization of mice with soluble and heat-denatured P1(39-512) induced antibodies that reacted specifically with native P1 on the surface of S. mutans cells. The anti-P1(39-512) antiserum was as effective at blocking saliva-mediated aggregation of S. mutans cells and better at blocking bacterial adhesion to saliva-coated plastic surfaces compared with the anti-full-length P1 antiserum. In addition, adsorption of the anti-P1 antiserum with P1(39-512) eliminated its ability to block the adhesion of S. mutans cells to abiotic surfaces. The present results indicate that P1(39-512), expressed and purified from a recombinant B. subtilis strain, maintains important immunological features of the native protein and represents an additional tool for the development of anticaries vaccines.
Collapse
Affiliation(s)
- Milene B Tavares
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Robinette RA, Oli MW, McArthur WP, Brady LJ. Beneficial immunomodulation by Streptococcus mutans anti-P1 monoclonal antibodies is Fc independent and correlates with increased exposure of a relevant target epitope. THE JOURNAL OF IMMUNOLOGY 2009; 183:4628-38. [PMID: 19752237 DOI: 10.4049/jimmunol.0803300] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We showed previously that deliberate immunization of BALB/c mice with immune complexes (IC) of the cariogenic bacterium Streptococcus mutans and mAbs against its surface adhesin P1 results in changes in the specificity and isotype of elicited anti-P1 Abs. Depending on the mAb, changes were beneficial, neutral, or detrimental, as measured by the ability of the serum from immunized mice to inhibit bacterial adherence to human salivary agglutinin by a BIAcore surface plasmon resonance assay. The current study further defined changes in the host response that result from immunization with IC containing beneficial mAbs, and evaluated mechanisms by which beneficial immunomodulation could occur in this system. Immunomodulatory effects varied depending upon genetic background, with differing results in C57BL/6 and BALB/c mice. Desirable effects following IC immunization were observed in the absence of activating FcRs in BALB/c Fcer1g transgenic mice. mAb F(ab')(2) mediated desirable changes similar to those observed using intact IgG. Sera from IC-immunized BALB/c mice that were better able to inhibit bacterial adherence demonstrated an increase in Abs able to compete with an adherence-inhibiting anti-P1 mAb, and binding of a beneficial immumomodulatory mAb to S. mutans increased exposure of that epitope. Consistent with a mechanism involving a mAb-mediated structural alteration of P1 on the cell surface, immunization with truncated P1 derivatives lacking segments that contribute to recognition by beneficial immunomodulatory mAbs resulted in an improvement in the ability of elicited serum Abs to inhibit bacterial adherence compared with immunization with the full-length protein.
Collapse
Affiliation(s)
- Rebekah A Robinette
- Department of Oral Biology, University of Florida College of Dentistry, P.O. Box 100424, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
9
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 445] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
10
|
Nakano K, Nomura R, Nemoto H, Lapirattanakul J, Taniguchi N, Grönroos L, Alaluusua S, Ooshima T. Protein antigen in serotype k Streptococcus mutans clinical isolates. J Dent Res 2008; 87:964-8. [PMID: 18809752 DOI: 10.1177/154405910808701001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Streptococcus mutans, a major pathogen of dental caries and infective endocarditis, is classified into serotypes c, e, f, and k, with serotype k strains recently reported to be frequently detected in persons with infective endocarditis. Thus, we hypothesized that common properties associated with infective endocarditis are present in those strains. Fifty-six oral S. mutans strains, including 11 serotype k strains, were analyzed. Western blotting analysis revealed expression of the 3 types of glucosyltransferases in all strains, while expression of the approximately 190-kDa cell-surface protein (PA) was absent in 12 strains, among which the prevalence of serotype k (7/12) was significantly high. Furthermore, cellular hydrophobicity and phagocytosis susceptibility were lower in the group of serotype k strains. These results indicate that the absence of PA expression, low cellular hydrophobicity, and phagocytosis susceptibility are common bacterial properties associated with serotype k strains, which may be associated with virulence for infective endocarditis.
Collapse
Affiliation(s)
- K Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Requirements for surface expression and function of adhesin P1 from Streptococcus mutans. Infect Immun 2008; 76:2456-68. [PMID: 18362133 DOI: 10.1128/iai.01315-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report, we define requirements for the successful translocation and functional maturation of the adhesin P1 of Streptococcus mutans. Conformational epitopes recognized by anti-P1 monoclonal antibodies (MAbs) were further characterized, thus facilitating the use of particular MAbs as tools to monitor the locations of various forms of the protein. We show that correct localization of P1 is dependent on structural features of the molecule itself, including a requisite A region-P region intramolecular interaction that occurs within the cell prior to secretion. P1 also was shown to be affected by several members of the protein-folding-secretion-turnover apparatus. It does not achieve a fully functional form in the absence of the trigger factor PPIase homolog RopA, and its translocation is delayed when DnaK levels are limited. In addition, dnaK message levels are differentially altered in the presence of P1 lacking the alanine-rich compared to the proline-rich repeat domains. Lastly, nonsecreted P1 lacking the P region accumulates within the cell in the absence of htrA, implying an intracellular HtrA protease function in the degradation and turnover of this particular internal-deletion polypeptide. However, the opposite effect is seen for full-length P1, suggesting a sensing mechanism and substrate-dependent alteration in HtrA's function and effect that is consistent with its known ability to switch between chaperone and protease, depending on environmental perturbations.
Collapse
|
12
|
Secretory Immunity Following Mutans Streptococcal Infection or Immunization. Curr Top Microbiol Immunol 2008; 319:131-56. [DOI: 10.1007/978-3-540-73900-5_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Isoda R, Robinette RA, Pinder TL, McArthur WP, Brady LJ. Basis of beneficial immunomodulation by monoclonal antibodies against Streptococcus mutans adhesin P1. ACTA ACUST UNITED AC 2007; 51:102-11. [PMID: 17614961 DOI: 10.1111/j.1574-695x.2007.00279.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously identified five monoclonal antibodies (MAbs) against Streptococcus mutans adhesin P1 that modulate the humoral response when bound to whole bacteria and immune complexes (ICs) are administered to BALB/c mice. The two MAbs that redirected the response towards increased efficacy recognize discontinuous epitopes involving pre-alanine-rich domain sequence; therefore, to evaluate whether epitope specificity contributes to a desirable outcome a further MAb with this characteristic was tested. A beneficial immune response was promoted. None of the three MAbs that promoted a beneficial response was opsonic, suggesting that increased uptake of ICs by phagocytes does not mediate the improvement of the IC-elicited antibodies to inhibit bacterial adherence. Finally, two of the six anti-P1 MAbs activated complement but did not partition according to desirable vs. nondesirable effects.
Collapse
Affiliation(s)
- Ryutaro Isoda
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
14
|
McArthur WP, Rhodin NR, Seifert TB, Oli MW, Robinette RA, Demuth DR, Brady LJ. Characterization of epitopes recognized by anti-Streptococcus mutans P1 monoclonal antibodies. ACTA ACUST UNITED AC 2007; 50:342-53. [PMID: 17535300 DOI: 10.1111/j.1574-695x.2007.00260.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sequences contributing to epitopes recognized by a panel of monoclonal antibodies (mAbs) against the Streptococcus mutans surface protein P1 were delineated by Western blot and enzyme-linked immunosorbent assay using a battery of deletion constructs and recombinant polypeptides. mAbs that recognize complex discontinuous epitopes reconstituted by combining the alanine-rich and proline-rich repeat domains and varying degrees of flanking sequence were identified as well as mAbs that bound epitopes contained within contiguous segments of P1. Cross-reactivity with SspA and SspB from Streptococcus gordonii is also reported. This information enables insight into the structure and function of a streptococcal adhesin and its correlates of protection and furthers our understanding of the immunomodulatory and bacterial-adherence inhibition activities of anti-P1 mAbs.
Collapse
Affiliation(s)
- William P McArthur
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Hijnen M, de Voer R, Mooi FR, Schepp R, Moret EE, van Gageldonk P, Smits G, Berbers GAM. The role of peptide loops of the Bordetella pertussis protein P.69 pertactin in antibody recognition. Vaccine 2007; 25:5902-14. [PMID: 17597264 DOI: 10.1016/j.vaccine.2007.05.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/28/2007] [Accepted: 05/13/2007] [Indexed: 01/03/2023]
Abstract
Bordetella pertussis, the etiological agent of whooping cough, is re-emerging in several countries with a traditionally high vaccine uptake. In these B. pertussis strains, polymorphisms were found in several proteins, including P.69 pertactin (P.69 Prn). P.69 Prn, an adhesin, contains two variable regions which are composed of repeats, one of which flanks the receptor binding site. Antibody titers against P.69 Prn correlate with protection and P.69 Prn is one of the components of acellular pertussis vaccines. Nevertheless, little is known about the structure and location of P.69 Prn epitopes. We used a three pronged approach to identify discontinuous epitopes that are recognized by mouse monoclonal antibodies, i.e. site-directed mutagenesis, deletion mapping and competition assays. Site-directed mutagenesis was focused on regions of P.69 Prn predicted to form loops according to the crystal structure. In this report we describe the location of several discontinuous epitopes that are also recognized by human antibodies. Our results reveal an important role of the N-terminus in immune recognition. We provide data for an indirect role of loops in immune evasion by masking of epitopes. We propose that the repeat regions have evolved to allow rapid antigenic variation to deflect the immune response from the functional domain of P.69 Prn. The results presented here provide a better understanding of the structure and function of variable loops and their role in the persistence of pathogens in immunologically primed populations.
Collapse
Affiliation(s)
- Marcel Hijnen
- Laboratory for Vaccine Preventable Diseases, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Busscher HJ, van de Belt-Gritter B, Dijkstra RJB, Norde W, Petersen FC, Scheie AA, van der Mei HC. Intermolecular forces and enthalpies in the adhesion of Streptococcus mutans and an antigen I/II-deficient mutant to laminin films. J Bacteriol 2007; 189:2988-95. [PMID: 17277062 PMCID: PMC1855850 DOI: 10.1128/jb.01731-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 01/29/2007] [Indexed: 11/20/2022] Open
Abstract
The antigen I/II family of surface proteins is expressed by most oral streptococci, including Streptococcus mutans, and mediates specific adhesion to, among other things, salivary films and extracellular matrix proteins. In this study we showed that antigen I/II-deficient S. mutans isogenic mutant IB03987 was nearly unable to adhere to laminin films under flow conditions due to a lack of specific interactions (0.8 x 10(6) and 1.1 x 10(6) cells cm(-2) at pH 5.8 and 6.8, respectively) compared with parent strain LT11 (21.8 x 10(6) and 26.1 x 10(6) cells cm(-2)). The adhesion of both the parent and mutant strains was slightly greater at pH 6.8 than at pH 5.8. In addition, atomic force microscopy (AFM) experiments demonstrated that the parent strain experienced less repulsion when it approached a laminin film than the mutant experienced. Upon retraction, combined specific and nonspecific adhesion forces were stronger for the parent strain (up to -5.0 and -4.9 nN at pH 5.8 and 6.8, respectively) than for the mutant (up to -1.5 and -2.1 nN), which was able to interact only through nonspecific interactions. Enthalpy was released upon adsorption of laminin to the surface of the parent strain but not upon adsorption of laminin to the surface of IB03987. A comparison of the adhesion forces in AFM with the adhesion forces reported for specific ligand-receptor complexes resulted in the conclusion that the number of antigen I/II binding sites for laminin on S. mutans LT11 is on the order of 6 x 10(4) sites per organism and that the sites are probably arranged along exterior surface structures, as visualized here by immunoelectron microscopy.
Collapse
Affiliation(s)
- Henk J Busscher
- Department of Biomedical Engineering, University Medical Center Groningen and University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
17
|
Stafford GP, Hughes C. Salmonella typhimurium flhE, a conserved flagellar regulon gene required for swarming. MICROBIOLOGY (READING, ENGLAND) 2007; 153:541-547. [PMID: 17259626 PMCID: PMC2528295 DOI: 10.1099/mic.0.2006/002576-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The Salmonella typhimurium gene flhE is located at the end of a large flagellar locus in at least 10 peritrichously flagellated Gram-negative bacterial genera, but it shares no significant similarity with other genes. This study shows that flhE is transcribed as part of an flhBAE flagellar operon, under the control of the flagellar master regulator FlhD(2)C(2). Deletion of the chromosomal flhE gene did not affect swimming motility, but it abolished swarming motility across solid agar. Swarming was restored to the DeltaflhE mutant by the 130 aa putative envelope protein FlhE, but not by a truncated version lacking the N-terminal signal peptidase I recognition sequence. The DeltaflhE mutant was indistinguishable from the wild-type parent in number and distribution of flagella, secretion of flagellin subunits, and flagellar gene expression, and there were no obvious differences in cell-surface LPS and extracellular polysaccharide. The DeltaflhE mutant was able to swarm when non-ionic surfactant was included in agar medium, and it showed differences to the wild-type in binding calcofluor and Congo red dyes, and in biofilm production. The data show that the flhE gene is part of the flagella regulon but that it has no role in flagella biogenesis. It appears, nevertheless, to act at the cell envelope to influence flagella-dependent swarming.
Collapse
Affiliation(s)
- Graham P Stafford
- Cambridge University Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Colin Hughes
- Cambridge University Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
18
|
Zhang S, Green NM, Sitkiewicz I, Lefebvre RB, Musser JM. Identification and characterization of an antigen I/II family protein produced by group A Streptococcus. Infect Immun 2006; 74:4200-13. [PMID: 16790795 PMCID: PMC1489706 DOI: 10.1128/iai.00493-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Group A Streptococcus (GAS) is a gram-positive human bacterial pathogen that causes infections ranging in severity from pharyngitis to life-threatening invasive disease, such as necrotizing fasciitis. Serotype M28 strains are consistently isolated from invasive infections, particularly puerperal sepsis, a severe infection that occurs during or after childbirth. We recently sequenced the genome of a serotype M28 GAS strain and discovered a novel 37.4-kb foreign genetic element designated region of difference 2 (RD2). RD2 is similar in gene content and organization to genomic islands found in group B streptococci (GBS), the major cause of neonatal infections. RD2 encodes seven proteins with conventional gram-positive secretion signal sequences, six of which have not been characterized. Herein, we report that one of these six proteins (M28_Spy1325; Spy1325) is a member of the antigen I/II family of cell surface-anchored molecules produced by oral streptococci. PCR and DNA sequence analysis found that Spy1325 is very well conserved in GAS strains of distinct M protein serotypes. As assessed by real-time TaqMan quantitative PCR, the Spy1325 gene was expressed in vitro, and Spy1325 protein was present in culture supernatants and on the GAS cell surface. Western immunoblotting and enzyme-linked immunosorbent assays indicated that Spy1325 was produced by GAS in infected mice and humans. Importantly, the immunization of mice with recombinant Spy1325 fragments conferred protection against GAS-mediated mortality. Similar to other antigen I/II proteins, recombinant Spy1325 bound purified human salivary agglutinin glycoprotein. Spy1325 may represent a shared virulence factor among GAS, GBS, and oral streptococci.
Collapse
Affiliation(s)
- Shizhen Zhang
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, The Methodist Hospital, B154, 6565 Fannin St., Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
19
|
Nobbs AH, Shearer BH, Drobni M, Jepson MA, Jenkinson HF. Adherence and internalization of Streptococcus gordonii by epithelial cells involves beta1 integrin recognition by SspA and SspB (antigen I/II family) polypeptides. Cell Microbiol 2006; 9:65-83. [PMID: 16879454 DOI: 10.1111/j.1462-5822.2006.00768.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptococcus gordonii is a commensal bacterium that colonizes the hard and soft tissues present in the human mouth and nasopharynx. The cell wall-anchored polypeptides SspA and SspB expressed by S. gordonii mediate a wide range of interactions with host proteins and other bacteria. In this article we have determined the role of SspA and SspB proteins, which are members of the streptococcal antigen I/II (AgI/II) adhesin family, in S. gordonii adherence and internalization by epithelial cells. Wild-type S. gordonii DL1 expressing AgI/II polypeptides attached to and was internalized by HEp-2 cells, whereas an isogenic AgI/II- mutant was reduced in adherence and was not internalized. Association of S. gordonii DL1 with HEp-2 cells triggered protein tyrosine phosphorylation but no significant actin rearrangement. By contrast, Streptococcus pyogenes A40 showed 50-fold higher levels of internalization and this was associated with actin polymerization and interleukin-8 upregulation. Adherence and internalization of S. gordonii by HEp-2 cells involved beta1 integrin recognition but was not fibronectin-dependent. Recombinant SspA and SspB polypeptides bound to purified human alpha5beta1 integrin through sequences present within the NAV (N-terminal) region of AgI/II polypeptide. AgI/II polypeptides blocked interactions of S. gordonii and S. pyogenes with HEp-2 cells, and S. gordonii DL1 cells expressing AgI/II proteins inhibited adherence and internalization of S. pyogenes by HEp-2 cells. Conversely, S. gordonii AgI/II- mutant cells did not inhibit internalization of S. pyogenes. The results suggest that AgI/II proteins not only promote integrin-mediated internalization of oral commensal streptococci by host cells, but also potentially influence susceptibility of host tissues to more pathogenic bacteria.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, UK
| | | | | | | | | |
Collapse
|
20
|
Oli MW, Rhodin N, McArthur WP, Brady LJ. Redirecting the humoral immune response against Streptococcus mutans antigen P1 with monoclonal antibodies. Infect Immun 2004; 72:6951-60. [PMID: 15557617 PMCID: PMC529146 DOI: 10.1128/iai.72.12.6951-6960.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adhesin P1 of Streptococcus mutans has been studied as an anticaries vaccine antigen. An anti-P1 monoclonal antibody (MAb) bound to S. mutans prior to mucosal immunization of mice was shown previously to alter the amount, specificity, isotype, and biological activity of anti-P1 antibodies. The present study was undertaken to screen this and four additional anti-P1 MAbs for immunomodulatory activity when complexed with S. mutans and administered by a systemic route and to evaluate sera from immunized mice for the ability to inhibit adherence of S. mutans to immobilized human salivary agglutinin. All five MAbs tested influenced murine anti-P1 serum antibody responses in terms of subclass distribution and/or specificity. The effects varied depending on which MAb was used and its coating concentration. Two MAbs promoted a more effective, and two others a less effective, adherence inhibition response. An inverse relationship was observed between the ability of the MAbs themselves to inhibit adherence and the ability of antibodies elicited following immunization with immune complexes to inhibit adherence. Statistically significant correlations were demonstrated between the levels of anti-P1 serum immunoglobulin G2a (IgG2a) and IgG2b, but not of IgG1 or IgG3, and the ability of sera from immunized animals to inhibit bacterial adherence. These results indicate that multiple anti-P1 MAbs can mediate changes in the immune response and that certain alterations are potentially more biologically relevant than others. Immunomodulation by anti-P1 MAbs represents a useful strategy to improve the beneficial immune response against S. mutans.
Collapse
Affiliation(s)
- Monika W Oli
- Department of Oral Biology, P.O. Box 100424, Health Science Center, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | |
Collapse
|
21
|
Bumbaca D, Littlejohn JE, Nayakanti H, Rigden DJ, Galperin MY, Jedrzejas MJ. Sequence Analysis and Characterization of a Novel Fibronectin-Binding Repeat Domain from the Surface ofStreptococcus pneumoniae. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2004; 8:341-56. [PMID: 15703481 DOI: 10.1089/omi.2004.8.341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Streptococcus pneumoniae open reading frame SP0082 encodes a surface protein that contains four copies of a novel conserved repeat domain that bears no significant sequence similarity to proteins of known function. Homologous sequences from other streptococci contain two to six of these repeats, designated the SSURE (streptococcal surface repeat) domain. To investigate the functional role(s) of this domain, the third SSURE repeat of SP0082 sequence has been expressed in Escherichia coli, purified to homogeneity and characterized by biochemical and immunological methods. The expressed protein fragment was found to bind to fibronectin, but not to collagen or submaxillary mucin. Anti-SSURE antibodies recognized the corresponding protein on the surface of pneumococcal cells. These data identify S. pneumoniae SP0082 protein and its homologs in other streptococci as fibronectin-binding surface adhesins. The SSURE domain is likely to contain a novel protein fold, which was tentatively modeled using ab initio modeling methods.
Collapse
Affiliation(s)
- Daniela Bumbaca
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | | | | | | | | | | |
Collapse
|