1
|
Wang N, Scott TA, Kupz A, Shreenivas MM, Peres NG, Hocking DM, Yang C, Jebeli L, Beattie L, Groom JR, Pierce TP, Wakim LM, Bedoui S, Strugnell RA. Vaccine-induced inflammation and inflammatory monocytes promote CD4+ T cell-dependent immunity against murine salmonellosis. PLoS Pathog 2023; 19:e1011666. [PMID: 37733817 PMCID: PMC10547166 DOI: 10.1371/journal.ppat.1011666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/03/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Prior infection can generate protective immunity against subsequent infection, although the efficacy of such immunity can vary considerably. Live-attenuated vaccines (LAVs) are one of the most effective methods for mimicking this natural process, and analysis of their efficacy has proven instrumental in the identification of protective immune mechanisms. Here, we address the question of what makes a LAV efficacious by characterising immune responses to a LAV, termed TAS2010, which is highly protective (80-90%) against lethal murine salmonellosis, in comparison with a moderately protective (40-50%) LAV, BRD509. Mice vaccinated with TAS2010 developed immunity systemically and were protected against gut-associated virulent infection in a CD4+ T cell-dependent manner. TAS2010-vaccinated mice showed increased activation of Th1 responses compared with their BRD509-vaccinated counterparts, leading to increased Th1 memory populations in both lymphoid and non-lymphoid organs. The optimal development of Th1-driven immunity was closely correlated with the activation of CD11b+Ly6GnegLy6Chi inflammatory monocytes (IMs), the activation of which can be modulated proportionally by bacterial load in vivo. Upon vaccination with the LAV, IMs expressed T cell chemoattractant CXCL9 that attracted CD4+ T cells to the foci of infection, where IMs also served as a potent source of antigen presentation and Th1-promoting cytokine IL-12. The expression of MHC-II in IMs was rapidly upregulated following vaccination and then maintained at an elevated level in immune mice, suggesting IMs may have a role in sustained antigen stimulation. Our findings present a longitudinal analysis of CD4+ T cell development post-vaccination with an intracellular bacterial LAV, and highlight the benefit of inflammation in the development of Th1 immunity. Future studies focusing on the induction of IMs may reveal key strategies for improving vaccine-induced T cell immunity.
Collapse
Affiliation(s)
- Nancy Wang
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy A. Scott
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Andreas Kupz
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Meghanashree M. Shreenivas
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Newton G. Peres
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Dianna M. Hocking
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Chenying Yang
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Joanna R. Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas P. Pierce
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria, Australia
| | - Linda M. Wakim
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Richard A. Strugnell
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Sun XM, Yoshida A, Toutani F, Shimizu T, Oda T, Osatomi K. Cloning, DNA sequence, and expression of flagellins from high and low virulence strains of Edwardsiella tarda and their macrophage-stimulating activities. Microb Pathog 2023; 176:105993. [PMID: 36657690 DOI: 10.1016/j.micpath.2023.105993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Edwardsiella tarda is a causative pathogen of edwardsiellosis in fish. Our previous studies on high (NUF251) and low (NUF194) virulent strains of E. tarda demonstrated that NUF251 strain induced significantly higher levels of NO and TNF-α from fish and mouse macrophages than NUF194 strain. Subsequent studies suggested that a flagellin-like protein secreted from E. tarda might be a responsible factor for the macrophage-stimulating activities. To evaluate the activities of flagellins of E. tarda, in this study, the flagellin genes of NUF251 and NUF194 strains were isolated by PCR and cloned into pQE-30 and pCold I expression vectors, and then the recombinant flagellins of two strains were overexpressed in E. coli JM109 and pG-Tf/BL21, respectively. The molecular weight of the purified recombinant flagellins of NUF251 and NUF194 strains were estimated to be 45 kDa and 37 kDa, respectively on SDS-PAGE analysis. Referring the three-dimensional structure of Salmonella flagellin, which has been reported to have 4 domains (D0, D1, D2, and D3), high sequence homology between two flagellins of E. tarda was observed at conservative domain (D0 and D1) regions, whereas the sequences equivalent to D2 and D3 domains were different, and even equivalent to 57 amino acids were deleted in NUF194. Both recombinant flagellins induced NO production, mRNA expression level of inducible NO synthase (iNOS), and intercellular ROS production in mouse macrophage cell line RAW264.7 cells. Also, the secretion of TNF-α and its mRNA expression level were increased by treatment of both recombinant flagellins. These results indicate that the recombinant flagellins from different virulent E. tarda strains can stimulate macrophages with nearly equal levels as judged by the parameters tested, even though they are differences in the structure and molecular weight, suggesting that conservative D0 and D1 domains are sufficient structural elements for the recombinant flagellins to induce a certain level of macrophage-stimulation in vitro. Further studies are necessary focusing on the role of D2 and D3 domain regions of the recombinant flagellins as macrophage-stimulating agent as well as their influence on host immune system in vivo.
Collapse
Affiliation(s)
- Xiao-Mi Sun
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Asami Yoshida
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan; Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Fukutarou Toutani
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan; Fisheries and Ocean Technologies Center, Hiroshima Prefectural Technology Research Institute, 6-21-1 Hatami, Ondo, Kure, Hiroshima, 737-1207, Japan
| | - Takahiro Shimizu
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Tatsuya Oda
- Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Kiyoshi Osatomi
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan; Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
3
|
Vij S, Thakur R, Kumari L, Suri CR, Rishi P. Potential of a novel flagellin epitope as a broad-spectrum vaccine candidate against enteric fever. Microb Pathog 2023; 174:105936. [PMID: 36494021 DOI: 10.1016/j.micpath.2022.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Relentless emergence of antibiotic resistant Salmonella strains, coupled with the drawbacks associated with currently available vaccines against enteric fever, warrants an urgent need to look for new vaccine candidates. Out of the multiple virulence factors harbored by Salmonella, flagella are regarded as one of the most important targets of innate as well as adaptive immune response. Individual Salmonella serotypes alternate between expression of two different antigenic forms encoded by fliC and fljB genes, respectively thereby employing this as a strategy to escape the host immune response. In the present study, using various immunoinformatic approaches, a flagellin epitope, present in both antigenic forms of typhoidal Salmonellae has been targeted. Following B-cell epitope and B-cell derived T-cell epitope prediction and interaction studies with major histocompatibility complexes using molecular docking, a peptide epitope was selected. Further, it was screened for its presence in majority of typhoidal serovars along with other useful attributes, in silico. Thereafter, safety studies were performed with the synthesized peptide. Subsequently, immunization studies were carried out using S. Typhi as well as S. Paratyphi A induced murine peritonitis model. Active immunization with peptide-BSA conjugate resulted in 75% and 80% mice survival following lethal challenge with S. Typhi and S. Paratyphi A respectively, along with a significant IgG antibody titer, thereby highlighting its immunogenic potential. Reduced bacterial burden in vital organs along with improved histoarchitecture and cytokine levels further substantiated the protective efficacy of the proposed candidate. Passive immunization studies with the candidate verified the protective efficacy of the generated antibodies against lethal challenge of bacteria in mice. Given the endemic nature of enteric fever and the antigenic variability observed in Salmonella serotypes, present study highlights the importance of using a vaccine candidate, which, along with generating a strong immune response, also exhibits a broad coverage against both, S. Typhi as well as S. Paratyphi A strains.
Collapse
Affiliation(s)
- Shania Vij
- Department of Microbiology, Basic Medical Sciences, Block I, South Campus, Panjab University, Chandigarh, India
| | - Reena Thakur
- Department of Microbiology, Basic Medical Sciences, Block I, South Campus, Panjab University, Chandigarh, India
| | - Laxmi Kumari
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Praveen Rishi
- Department of Microbiology, Basic Medical Sciences, Block I, South Campus, Panjab University, Chandigarh, India.
| |
Collapse
|
4
|
Abstract
Despite the maintenance of YopP/J alleles throughout the human-pathogenic Yersinia lineage, the benefit of YopP/J-induced phagocyte death for Yersinia pathogenesis in animals is not obvious. To determine how the sequence divergence of YopP/J has impacted Yersinia virulence, we examined protein polymorphisms in this type III secreted effector protein across 17 Yersinia species and tested the consequences of polymorphism in a murine model of subacute systemic yersiniosis. Our evolutionary analysis revealed that codon 177 has been subjected to positive selection; the Yersinia enterocolitica residue had been altered from a leucine to a phenylalanine in nearly all Yersinia pseudotuberculosis and Yersinia pestis strains examined. Despite this change being minor, as both leucine and phenylalanine have hydrophobic side chains, reversion of YopJF177 to the ancestral YopJL177 variant yielded a Y. pseudotuberculosis strain with enhanced cytotoxicity toward macrophages, consistent with previous findings. Surprisingly, expression of YopJF177L in the mildly attenuated ksgA- background rendered the strain completely avirulent in mice. Consistent with this hypothesis that YopJ activity relates indirectly to Yersinia pathogenesis in vivo, ksgA- strains lacking functional YopJ failed to kill macrophages but actually regained virulence in animals. Also, treatment with the antiapoptosis drug suramin prevented YopJ-mediated macrophage cytotoxicity and enhanced Y. pseudotuberculosis virulence in vivo. Our results demonstrate that Yersinia-induced cell death is detrimental for bacterial pathogenesis in this animal model of illness and indicate that positive selection has driven YopJ/P and Yersinia evolution toward diminished cytotoxicity and increased virulence, respectively.
Collapse
|
5
|
CD4+ T cell immunity to Salmonella is transient in the circulation. PLoS Pathog 2021; 17:e1010004. [PMID: 34695149 PMCID: PMC8568161 DOI: 10.1371/journal.ppat.1010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 11/04/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
While Salmonella enterica is seen as an archetypal facultative intracellular bacterial pathogen where protection is mediated by CD4+ T cells, identifying circulating protective cells has proved very difficult, inhibiting steps to identify key antigen specificities. Exploiting a mouse model of vaccination, we show that the spleens of C57BL/6 mice vaccinated with live-attenuated Salmonella serovar Typhimurium (S. Typhimurium) strains carried a pool of IFN-γ+ CD4+ T cells that could adoptively transfer protection, but only transiently. Circulating Salmonella-reactive CD4+ T cells expressed the liver-homing chemokine receptor CXCR6, accumulated over time in the liver and assumed phenotypic characteristics associated with tissue-associated T cells. Liver memory CD4+ T cells showed TCR selection bias and their accumulation in the liver could be inhibited by blocking CXCL16. These data showed that the circulation of CD4+ T cells mediating immunity to Salmonella is limited to a brief window after which Salmonella-specific CD4+ T cells migrate to peripheral tissues. Our observations highlight the importance of triggering tissue-specific immunity against systemic infections. Helper T cells are essential for controlling infections by bacterial pathogens, such as Salmonella enterica var Typhimurium (S. Typhimurium). While it is well-established that this role is related to their provision of IFN-γ, when and where helper T cells elicit their protective function in vivo remains unresolved. We identified a protective helper T cell population in the circulation of mice early after inoculation with growth-attenuated S. Typhimurium strains; this population waned overtime. We observed that circulating helper T cell immunity can adoptively protect naïve recipient mice against lethal S. Typhimurium infection when harvested from a short time-window. In comparing helper T cell responses between spleen and liver in Salmonella-infected mice, we have observed a previously uncharacterized trafficking of helper T cells to the liver followed by the residence of S. Typhimurium-specific T cell memory in the organ. Taken together these findings identify that protective immunity to Salmonella infections is transient in the circulation and the liver as a preferential site of helper T memory cells.
Collapse
|
6
|
Karamzadeh-Dehaghani A, Towhidi A, Zhandi M, Mojgani N, Fouladi-Nashta A. Combined effect of probiotics and specific immunoglobulin Y directed against Escherichia coli on growth performance, diarrhea incidence, and immune system in calves. Animal 2020; 15:100124. [PMID: 33573946 DOI: 10.1016/j.animal.2020.100124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) K99 is one of the major pathogens associated with calf diarrhea. The induction of passive immunity in animals by immunoglobulin Y and using probiotics are inexpensive alternatives to antibiotics for the prevention and treatment of a number of bacterial infections, including diarrhea. Hence, the aim of this research was to evaluate the impact of dietary probiotics and ETEC K99-specific egg yolk antibody supplements, alone and in combination with each other, on health and growth parameters, diarrhea incidence and immune stimulation in newborn Holstein calves. One hundred and twenty neonatal calves were allocated randomly into 4 dietary groups (n = 30 per group) received colostrum/milk without any additives (control group), or supplemented with egg yolk powder contained E. coli K99-specific antibody (Ab group; 1 g/day), a commercial probiotic, Hypro-calves (Pro group; 3 g/day), and their combination (Ab+Pro group), from day (d) 1 to d28 of age. Analyses of the growth parameters, feed efficiency, fecal score, and microbiota and immune function were carried out on d0, 14, 21, and 28 of the experiment. Calves in Ab or Ab+Pro group had higher (P < 0.05) average daily gain compared to control and Pro groups during 0-14d. Feed efficiency of calves in Ab and Ab+Pro groups was significantly higher than that in control group during the period of 0-14d; however, no significant differences were observed in 0-28d period. Diarrhea prevalence and fecal score in Ab+Pro group were lower than control group (P < 0.05). Calves in Ab+Pro group had the lowest number of fecal E. coli in comparison to other groups on d28 (P < 0.05). Feeding Ab+Pro supplement increased (P < 0.05) concentrations of blood IgA and serum CD4 compared to the control group. Likewise, calves in Pro group had higher CD4 levels as compared to the control calves (P < 0.05). Serum concentration of interferon-gamma in control group was lower than other groups (P < 0.05). Overall, these data suggest that feeding a combination of probiotic and specific antibody against ETEC to neonate Holstein calves enhances feed efficiency, boosts immunity, and reduces diarrhea prevalence.
Collapse
Affiliation(s)
- A Karamzadeh-Dehaghani
- Department of Animal Science, Campus of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - A Towhidi
- Department of Animal Science, Campus of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - M Zhandi
- Department of Animal Science, Campus of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - N Mojgani
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - A Fouladi-Nashta
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| |
Collapse
|
7
|
Trujillo E, Rosales-Mendoza S, Angulo C. A multi-epitope plant-made chimeric protein (LTBentero) targeting common enteric pathogens is immunogenic in mice. PLANT MOLECULAR BIOLOGY 2020; 102:159-169. [PMID: 31820286 PMCID: PMC7223238 DOI: 10.1007/s11103-019-00938-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE A plant-based multiepitopic protein (LTBentero) containing epitopes from ETEC, S. typhimurium, and V. parahaemolyticus was produced in plants cells and triggered systemic and intestinal humoral responses in immunized mice. Around 200 million people suffer gastroenteritis daily and more than 2 million people die annually in developing countries due to such pathologies. Vaccination is an alternative to control this global health issue, however new low-cost vaccines are needed to ensure proper vaccine coverage. In this context, plants are attractive hosts for the synthesis and delivery of subunit vaccines. Therefore, in this study a plant-made multiepitopic protein named LTBentero containing epitopes from antigens of enterotoxigenic E. coli, S. typhimurium, and V. parahaemolyticus was produced and found immunogenic in mice. The LTBentero protein was expressed in tobacco plants at up to 5.29 µg g-1 fresh leaf tissue and was deemed immunogenic when administered to BALB/c mice either orally or subcutaneously. The plant-made LTBentero antigen induced specific IgG (systemic) and IgA (mucosal) responses against LTB, ST, and LptD epitopes. In conclusion, multiepitopic LTBentero was functionally produced in plant cells, being capable to trigger systemic and intestinal humoral responses and thus it constitutes a promising oral immunogen candidate in the fight against enteric diseases.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S, Mexico
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, Mexico.
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S, Mexico.
- Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S, Mexico.
| |
Collapse
|
8
|
Cheong DE, Lee J, Choi HJ, Yoo SK, Lee DH, Kim GJ. Soluble overexpression of a flagellin derivative from Salmonella enterica using synonymous codon substitutions of 5′-coding region in Escherichia coli. Biotechnol Lett 2019; 41:1275-1282. [DOI: 10.1007/s10529-019-02733-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
|
9
|
Zhao X, Dai Q, Jia R, Zhu D, Liu M, Wang M, Chen S, Sun K, Yang Q, Wu Y, Cheng A. Two Novel Salmonella Bivalent Vaccines Confer Dual Protection against Two Salmonella Serovars in Mice. Front Cell Infect Microbiol 2017; 7:391. [PMID: 28929089 PMCID: PMC5591321 DOI: 10.3389/fcimb.2017.00391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/22/2017] [Indexed: 12/12/2022] Open
Abstract
Non-typhoidal Salmonella includes thousands of serovars that are leading causes of foodborne diarrheal illness worldwide. In this study, we constructed three bivalent vaccines for preventing both Salmonella Typhimurium and Salmonella Newport infections by using the aspartate semialdehyde dehydrogenase (Asd)-based balanced-lethal vector-host system. The constructed Asd+ plasmid pCZ11 carrying a subset of the Salmonella Newport O-antigen gene cluster including the wzx-wbaR-wbaL-wbaQ-wzy-wbaW-wbaZ genes was introduced into three Salmonella Typhimurium mutants: SLT19 (Δasd) with a smooth LPS phenotype, SLT20 (Δasd ΔrfbN) with a rough LPS phenotype, and SLT22 (Δasd ΔrfbN ΔpagL::T araC PBADrfbN) with a smooth LPS phenotype when grown with arabinose. Immunoblotting demonstrated that SLT19 harboring pCZ11 [termed SLT19 (pCZ11)] co-expressed the homologous and heterologous O-antigens; SLT20 (pCZ11) exclusively expressed the heterologous O-antigen; and when arabinose was available, SLT22 (pCZ11) expressed both types of O-antigens, while in the absence of arabinose, SLT22 (pCZ11) expressed only the heterologous O-antigen. Exclusive expression of the heterologous O-antigen in Salmonella Typhimurium decreased the swimming ability of the bacterium and its susceptibility to polymyxin B. Next, the crp gene was deleted from the three recombinant strains for attenuation purposes, generating the three bivalent vaccine strains SLT25 (pCZ11), SLT26 (pCZ11), and SLT27 (pCZ11), respectively. Groups of BALB/c mice (12 mice/group) were orally immunized with 109 CFU of each vaccine strain twice at an interval of 4 weeks. Compared with a mock immunization, immunization with all three vaccine strains induced significant serum IgG responses against both Salmonella Typhimurium and Salmonella Newport LPS. The bacterial loads in the mouse tissues were significantly lower in the three vaccine-strain-immunized groups than in the mock group after either Salmonella Typhimurium or Salmonella Newport lethal challenge. All of the mice in the three vaccine-immunized groups survived the lethal Salmonella Typhimurium challenge. In contrast, SLT26 (pCZ11) and SLT27 (pCZ11) conferred full protection against lethal Salmonella Newport challenge, but SLT25 (pCZ11) provided only 50% heterologous protection. Thus, we developed two novel Salmonella bivalent vaccines, SLT26 (pCZ11) and SLT27 (pCZ11), suggesting that the delivery of a heterologous O-antigen in attenuated Salmonella strains is a prospective approach for developing Salmonella vaccines with broad serovar coverage.
Collapse
Affiliation(s)
- Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Qinlong Dai
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kunfeng Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
10
|
Binder DC, Wainwright DA. The Boosting Potential of Bacteria in Cancer Immunotherapy. Trends Mol Med 2017; 23:580-582. [PMID: 28583420 DOI: 10.1016/j.molmed.2017.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/16/2017] [Indexed: 01/17/2023]
Abstract
Salmonella Typhimurium, engineered to express flagellin B, recently demonstrated unprecedented tumor control through a TLR-dependent mechanism. Here, we review new observations that support the potential of utilizing modified bacteria to enhance antitumor immunity. We also discuss the implications of these findings for clinical applications, including immune checkpoint blockade therapies.
Collapse
Affiliation(s)
- David C Binder
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Medicine-Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
Ahmad TA, Eweida AE, El-Sayed LH. T-cell epitope mapping for the design of powerful vaccines. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.vacrep.2016.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Li X, Yao Y, Wang X, Zhen Y, Thacker PA, Wang L, Shi M, Zhao J, Zong Y, Wang N, Xu Y. Chicken egg yolk antibodies (IgY) modulate the intestinal mucosal immune response in a mouse model of Salmonella typhimurium infection. Int Immunopharmacol 2016; 36:305-314. [PMID: 27214338 PMCID: PMC7106048 DOI: 10.1016/j.intimp.2016.04.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 02/03/2023]
Abstract
This study determined the effects of chicken egg yolk antibodies (IgY) on immune responses in the intestinal mucosal of mice infected with Salmonella typhimurium. Sixty, 28-day-old mice were divided into 4 groups and treated with streptomycin or sterile water for 2 days followed by 1 day without treatment. The control group was unchallenged whereas the mice in the other three groups were treated twice with 109 CFU mL− 1S. typhimurium. For the next 3 days, control mice continued to receive no treatment whereas the mice in the remaining three groups were orally administered with 20 mg mL− 1 of specific IgY, 20 mg mL− 1 of nonspecific IgY or PBS. S. typhimurium activated gut-associated lymphoid tissue, increasing the release of IFN-γ and TNF-α in the mucosa and increased the number of activated T-lymphocytes and cytotoxic T-γδ. Specific IgY attenuated the increase in IFN-γ and TNF-α and the decrease in IL-10. S. typhimurium induced mobilization of CD8+ and CD8+ TCRγδ T cells in the epithelium and CD4+ and CD8+ T cells in the lamina propria reflecting an inflammatory process that was attenuated by IgY. These results suggest that specific IgY modulates intestinal mucosal immune responses during a S. typhimurium infection. Specific IgY could effectively alleviate S. typhimurium-inflicted damage to the jejunum. Specific IgY attenuated an increase in the cytokines IFN-γ and TNF-α in the mucosa. IgY attenuated changes in lymphocyte numbers in Peyer's patches, epithelium and lamina propria. Specific IgY has an important immune-modulatory role on the intestinal mucosal immune response. Specific IgY limits the consequences of intestinal inflammation induced by S. typhimurium.
Collapse
Affiliation(s)
- Xiaoyu Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; Ministry of Education Center for Food Safety of Animal Origin, Dalian 116620, China
| | - Ying Yao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Xitao Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Yuhong Zhen
- Department of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Philip A Thacker
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatchewan S7N5A8, Canada
| | - Lili Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; Ministry of Education Center for Food Safety of Animal Origin, Dalian 116620, China
| | - Ming Shi
- College of Medical, Dalian University, Dalian 116622, China
| | - Junjun Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ying Zong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Ni Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Yongping Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; Ministry of Education Center for Food Safety of Animal Origin, Dalian 116620, China.
| |
Collapse
|
13
|
Ramachandran G, Tennant SM, Boyd MA, Wang JY, Tulapurkar ME, Pasetti MF, Levine MM, Simon R. Functional Activity of Antibodies Directed towards Flagellin Proteins of Non-Typhoidal Salmonella. PLoS One 2016; 11:e0151875. [PMID: 26998925 PMCID: PMC4801366 DOI: 10.1371/journal.pone.0151875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/04/2016] [Indexed: 11/23/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) serovars Typhimurium and Enteritidis are major causes of invasive bacterial infections in children under 5 years old in sub-Saharan Africa, with case fatality rates of ~20%. There are no licensed NTS vaccines for humans. Vaccines that induce antibodies against a Salmonella Typhi surface antigen, Vi polysaccharide, significantly protect humans against typhoid fever, establishing that immune responses to Salmonella surface antigens can be protective. Flagella proteins, abundant surface antigens in Salmonella serovars that cause human disease, are also powerful immunogens, but the functional capacity of elicited anti-flagellar antibodies and their role in facilitating bacterial clearance has been unclear. We examined the ability of anti-flagellar antibodies to mediate microbial killing by immune system components in-vitro and assessed their role in protecting mice against invasive Salmonella infection. Polyclonal (hyperimmune sera) and monoclonal antibodies raised against phase 1 flagellin proteins of S. Enteritidis and S. Typhimurium facilitated bacterial uptake and killing of the homologous serovar pathogen by phagocytes. Polyclonal anti-flagellar antibodies accompanied by complement also achieved direct bacterial killing. Serum bactericidal activity was restricted to Salmonella serovars expressing the same flagellin used as immunogen. Notably, individual anti-flagellin monoclonal antibodies with complement were not bactericidal, but this biological activity was restored when different monoclonal anti-flagellin antibodies were combined. Passive transfer immunization with a monoclonal IgG antibody specific for phase 1 flagellin from S. Typhimurium protected mice against lethal challenge with a representative African invasive S. Typhimurium strain. These findings have relevance for the use of flagellin proteins in NTS vaccines, and confirm the role of anti-flagellin antibodies as mediators of protective immunity.
Collapse
Affiliation(s)
- Girish Ramachandran
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sharon M. Tennant
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mary A. Boyd
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jin Y. Wang
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mohan E. Tulapurkar
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Division of Pulmonary and Critical Care, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Marcela F. Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Myron M. Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Raphael Simon
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Wang G, Shi B, Li T, Zuo T, Wang B, Si W, Xin J, Yang K, Shi X, Liu S, Liu H. Linear antigenic mapping of flagellin (FliC) from Salmonella enterica serovar Enteritidis with yeast surface expression system. Vet Microbiol 2016; 184:20-6. [PMID: 26854340 DOI: 10.1016/j.vetmic.2016.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/01/2015] [Accepted: 01/01/2016] [Indexed: 12/21/2022]
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne illness around the world and can have significant health implications in humans, poultry and other animals. Flagellin (FliC) is the primary component of bacterial flagella. It has been shown that the FliC of S. Enteritidis is a significant antigenic structure and can elicit strong humoral responses against S. Enteritidis infection in chickens. Here, we constructed a FliC antigen library using a yeast surface expression system. Yeast cells expressing FliC peptide antigens were labeled with chicken sera against S. Enteritidis and sorted using FACS. The analyses of FliC peptides revealed that the FliC linear antigenicity in chickens resided on three domains which were able to elicit strong humoral responses in vivo. Animal experiments further revealed that the antibodies elicited by these antigenic domains were able to significantly inhibit the invasion of S. Enteritidis into the liver and spleen of chickens. These findings will facilitate our better understanding of the humoral responses elicited by FliC in chickens upon infection by S. Enteritidis.
Collapse
Affiliation(s)
- Gaoling Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bingtian Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Teng Zuo
- Comprehensive AIDS Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Si
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiuqing Xin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kongbin Yang
- Neurosurgery Department of the First Affiliated Hospital, Harbin Medical University, China
| | - Xuanlin Shi
- Comprehensive AIDS Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Henggui Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
15
|
Abstract
The interaction betweenSalmonella and its host is complex and dynamic: the host mounts an immune defense against the pathogen, which in turn acts to reduce, evade, or exploit these responses to successfully colonize the host. Although the exact mechanisms mediating protective immunity are poorly understood, it is known that T cells are a critical component of immunity to Salmonella infection, and a robust T-cell response is required for both clearance of primary infection and resistance to subsequent challenge. B-cell functions, including but not limited to antibody production, are also required for generation of protective immunity. Additionally, interactions among host cells are essential. For example, antigen-presenting cells (including B cells) express cytokines that participate in CD4+ T cell activation and differentiation. Differentiated CD4+ T cells secrete cytokines that have both autocrine and paracrine functions, including recruitment and activation of phagocytes, and stimulation of B cell isotype class switching and affinity maturation. Multiple bacterium-directed mechanisms, including altered antigen expression and bioavailability and interference with antigen-presenting cell activation and function, combine to modify Salmonella's "pathogenic signature" in order to minimize its susceptibility to host immune surveillance. Therefore, a more complete understanding of adaptive immune responses may provide insights into pathogenic bacterial functions. Continued identification of adaptive immune targets will guide rational vaccine development, provide insights into host functions required to resist Salmonella infection, and correspondingly provide valuable reagents for defining the critical pathogenic capabilities of Salmonella that contribute to their success in causing acute and chronic infections.
Collapse
|
16
|
Marshall JM, Gunn JS. The O-Antigen Capsule of Salmonella enterica Serovar Typhimurium Facilitates Serum Resistance and Surface Expression of FliC. Infect Immun 2015; 83:3946-59. [PMID: 26195553 PMCID: PMC4567616 DOI: 10.1128/iai.00634-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/16/2015] [Indexed: 11/20/2022] Open
Abstract
Group IV polysaccharide capsules are common in enteric bacteria and have more recently been described in nontyphoidal Salmonella species. Such capsules are known as O-antigen (O-Ag) capsules, due to their high degree of similarity to the O-Ag of the lipopolysaccharide (LPSO-Ag). Capsular polysaccharides are known virulence factors of many bacterial pathogens, facilitating evasion of immune recognition and systemic dissemination within the host. Previous studies on the O-Ag capsule of salmonellae have focused primarily on its role in bacterial surface attachment and chronic infection; however, the potential effects of the O-Ag capsule on acute pathogenesis have yet to be investigated. While much of the in vivo innate immune resistance of Salmonella enterica serovar Typhimurium is attributed to the high-molecular-weight LPS, we hypothesized that the O-Ag capsule may enhance this resistance by diminishing surface expression of pathogen-associated molecular patterns, such as flagella, and increasing resistance to host immune molecules. To test this hypothesis, O-Ag capsule-deficient mutants were constructed, and the loss of O-Ag capsular surface expression was confirmed through microscopy and immunoblotting. Loss of O-Ag capsule production did not alter bacterial growth or production of LPS. Western blot analysis and confocal microscopy revealed that O-Ag capsule-deficient mutants demonstrate reduced resistance to killing by human serum. Furthermore, O-Ag capsule-deficient mutants produced exclusively phase I flagellin (FliC). Although O-Ag capsule-deficient mutants did not exhibit reduced virulence in a murine model of acute infection, in vitro results indicate that the O-Ag capsule may function to modify the antigenic nature of the bacterial surface, warranting additional investigation of a potential role of the structure in pathogenesis.
Collapse
Affiliation(s)
- Joanna M Marshall
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| | - John S Gunn
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
17
|
Nithichanon A, Rinchai D, Gori A, Lassaux P, Peri C, Conchillio-Solé O, Ferrer-Navarro M, Gourlay LJ, Nardini M, Vila J, Daura X, Colombo G, Bolognesi M, Lertmemonkolchai G. Sequence- and Structure-Based Immunoreactive Epitope Discovery for Burkholderia pseudomallei Flagellin. PLoS Negl Trop Dis 2015. [PMID: 26222657 PMCID: PMC4519301 DOI: 10.1371/journal.pntd.0003917] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative bacterium responsible for melioidosis, a serious and often fatal infectious disease that is poorly controlled by existing treatments. Due to its inherent resistance to the major antibiotic classes and its facultative intracellular pathogenicity, an effective vaccine would be extremely desirable, along with appropriate prevention and therapeutic management. One of the main subunit vaccine candidates is flagellin of Burkholderia pseudomallei (FliCBp). Here, we present the high resolution crystal structure of FliCBp and report the synthesis and characterization of three peptides predicted to be both B and T cell FliCBp epitopes, by both structure-based in silico methods, and sequence-based epitope prediction tools. All three epitopes were shown to be immunoreactive against human IgG antibodies and to elicit cytokine production from human peripheral blood mononuclear cells. Furthermore, two of the peptides (F51-69 and F270-288) were found to be dominant immunoreactive epitopes, and their antibodies enhanced the bactericidal activities of purified human neutrophils. The epitopes derived from this study may represent potential melioidosis vaccine components. Melioidosis is an infectious disease caused by Burkolderia pseudomallei that poses a major public health problem in Southeast Asia and northern Australia. This bacterium is difficult to treat due to its intrinsic resistance to antibiotics, poor diagnosis, and the lack of a licensed vaccine. Vaccine safety is a prime concern, therefore recombinant protein subunit and/or peptide vaccine components, may represent safer alternatives. In this context, we targeted one of the main subunit vaccine candidates tested to date, flagellin from B. pseudomallei (FliCBp) that comprises the flagellar filament that mediates bacterial motility. Based on the knowledge that activation of both cell-mediated and antibody-mediated responses must be addressed in a melioidosis vaccine, we identified B and T cell immunoreactive peptides from FliCBp, using both sequence-based and structure-based computational prediction programs, for further in vitro immunological testing. Our data confirm the accuracy of sequence-based epitope prediction tools, and two structure-based methods applied to the FliCBp crystal structure (here-described), in predicting both T- and B-cell epitopes. Moreover, we identified two epitope peptides with significant joint T-cell and B-cell activities for further development as melioidosis vaccine components.
Collapse
Affiliation(s)
- Arnone Nithichanon
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Darawan Rinchai
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Patricia Lassaux
- Department of Biosciences, CIMAINA and CNR Institute of Biophysics, University of Milan, Milan, Italy
| | - Claudio Peri
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Oscar Conchillio-Solé
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mario Ferrer-Navarro
- Department of Clinical Microbiology, Hospital Clinic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Louise J. Gourlay
- Department of Biosciences, CIMAINA and CNR Institute of Biophysics, University of Milan, Milan, Italy
| | - Marco Nardini
- Department of Biosciences, CIMAINA and CNR Institute of Biophysics, University of Milan, Milan, Italy
| | - Jordi Vila
- Department of Clinical Microbiology, Hospital Clinic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Martino Bolognesi
- Department of Biosciences, CIMAINA and CNR Institute of Biophysics, University of Milan, Milan, Italy
| | - Ganjana Lertmemonkolchai
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
18
|
Abstract
Salmonella are a common source of food- or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of host immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T- and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection, but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens.
Collapse
Affiliation(s)
- Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
19
|
Torres AG, Gregory AE, Hatcher CL, Vinet-Oliphant H, Morici LA, Titball RW, Roy CJ. Protection of non-human primates against glanders with a gold nanoparticle glycoconjugate vaccine. Vaccine 2014; 33:686-92. [PMID: 25533326 DOI: 10.1016/j.vaccine.2014.11.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/21/2014] [Accepted: 11/28/2014] [Indexed: 11/16/2022]
Abstract
The Gram-negative Burkholderia mallei is a zoonotic pathogen and the causative agent of glanders disease. Because the bacteria maintain the potential to be used as a biothreat agent, vaccine strategies are required for human glanders prophylaxis. A rhesus macaque (Macaca mulatta) model of pneumonic (inhalational) glanders was established and the protective properties of a nanoparticle glycoconjugate vaccine composed of Burkholderia thailandensis LPS conjugated to FliC was evaluated. An aerosol challenge dose of ∼1×10(4) CFU B. mallei produced mortality in 50% of naïve animals (n=2/4), 2-3 days post-exposure. Although survival benefit was not observed by vaccination with a glycoconjugate glanders vaccine (p=0.42), serum LPS-specific IgG titers were significantly higher on day 80 in 3 vaccinated animals who survived compared with 3 vaccinated animals who died. Furthermore, B. mallei was isolated from multiple organs of both non-vaccinated survivors, but not from any organs of 3 vaccinated survivors at 30 days post-challenge. Taken together, this is the first time a candidate vaccine has been evaluated in a non-human primate aerosol model of glanders and represents the initial step for consideration in pre-clinical studies.
Collapse
Affiliation(s)
- Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Anthony E Gregory
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Devon, UK
| | - Christopher L Hatcher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Heather Vinet-Oliphant
- Division of Microbiology, Infectious Disease Aerobiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Lisa A Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Richard W Titball
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Devon, UK
| | - Chad J Roy
- Division of Microbiology, Infectious Disease Aerobiology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
20
|
Guadarrama C, Villaseñor T, Calva E. The Subtleties and Contrasts of the LeuO Regulator in Salmonella Typhi: Implications in the Immune Response. Front Immunol 2014; 5:581. [PMID: 25566242 PMCID: PMC4264507 DOI: 10.3389/fimmu.2014.00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/30/2014] [Indexed: 01/15/2023] Open
Abstract
Salmonella are facultative intracellular pathogens. Salmonella infection occurs mainly by expression of two Salmonella pathogenicity Islands (SPI-1 and SPI-2). SPI-1 encodes transcriptional factors that participate in the expression of virulence factors encoded in the island. However, there are transcriptional factors encoded outside the island that also participate in the expression of SPI-1-encoded genes. Upon infection, bacteria are capable of avoiding the host immune response with several strategies that involve several virulence factors under the control of transcriptional regulators. Interestingly, LeuO a transcriptional global regulator which is encoded outside of any SPI, is proposed to be part of a complex regulatory network that involves expression of several genes that help bacteria to survive stress conditions and, also, induces the expression of porins that have been shown to be immunogens and can thus be considered as antigenic candidates for acellular vaccines. Hence, the understanding of the LeuO regulon implies a role of bacterial genetic regulation in determining the host immune response.
Collapse
Affiliation(s)
- Carmen Guadarrama
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Mexico
| | - Tomás Villaseñor
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Mexico
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Mexico
| |
Collapse
|
21
|
Musson JA, Reynolds CJ, Rinchai D, Nithichanon A, Khaenam P, Favry E, Spink N, Chu KKY, De Soyza A, Bancroft GJ, Lertmemongkolchai G, Maillere B, Boyton RJ, Altmann DM, Robinson JH. CD4+ T cell epitopes of FliC conserved between strains of Burkholderia: implications for vaccines against melioidosis and cepacia complex in cystic fibrosis. THE JOURNAL OF IMMUNOLOGY 2014; 193:6041-9. [PMID: 25392525 DOI: 10.4049/jimmunol.1402273] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis characterized by pneumonia and fatal septicemia and prevalent in Southeast Asia. Related Burkholderia species are strong risk factors of mortality in cystic fibrosis (CF). The B. pseudomallei flagellar protein FliC is strongly seroreactive and vaccination protects challenged mice. We assessed B. pseudomallei FliC peptide binding affinity to multiple HLA class II alleles and then assessed CD4 T cell immunity in HLA class II transgenic mice and in seropositive individuals in Thailand. T cell hybridomas were generated to investigate cross-reactivity between B. pseudomallei and the related Burkholderia species associated with Cepacia Complex CF. B. pseudomallei FliC contained several peptide sequences with ability to bind multiple HLA class II alleles. Several peptides were shown to encompass strong CD4 T cell epitopes in B. pseudomallei-exposed individuals and in HLA transgenic mice. In particular, the p38 epitope is robustly recognized by CD4 T cells of seropositive donors across diverse HLA haplotypes. T cell hybridomas against an immunogenic B. pseudomallei FliC epitope also cross-reacted with orthologous FliC sequences from Burkholderia multivorans and Burkholderia cenocepacia, important pathogens in CF. Epitopes within FliC were accessible for processing and presentation from live or heat-killed bacteria, demonstrating that flagellin enters the HLA class II Ag presentation pathway during infection of macrophages with B. cenocepacia. Collectively, the data support the possibility of incorporating FliC T cell epitopes into vaccination programs targeting both at-risk individuals in B. pseudomallei endemic regions as well as CF patients.
Collapse
Affiliation(s)
- Julie A Musson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE2 4HH, United Kingdom
| | - Catherine J Reynolds
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College, London W12 0NN, United Kingdom
| | - Darawan Rinchai
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Arnone Nithichanon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Prasong Khaenam
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Emmanuel Favry
- Commiseriat à l'Energie Atomique, Insititut de Biologie et de Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), 91191 Gif Sur Yvette, France; and
| | - Natasha Spink
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Karen K Y Chu
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College, London W12 0NN, United Kingdom
| | - Anthony De Soyza
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE2 4HH, United Kingdom
| | - Gregory J Bancroft
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Ganjana Lertmemongkolchai
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Bernard Maillere
- Commiseriat à l'Energie Atomique, Insititut de Biologie et de Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), 91191 Gif Sur Yvette, France; and
| | - Rosemary J Boyton
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College, London W12 0NN, United Kingdom
| | - Daniel M Altmann
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College, London W12 0NN, United Kingdom
| | - John H Robinson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE2 4HH, United Kingdom;
| |
Collapse
|
22
|
A scalable method for biochemical purification of Salmonella flagellin. Protein Expr Purif 2014; 102:1-7. [PMID: 25050462 PMCID: PMC4175188 DOI: 10.1016/j.pep.2014.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 12/28/2022]
Abstract
Highly purified flagellins obtained from liquid bacterial fermentation supernatants. Purification accomplished in four process steps to clarify, bind, wash, polish. Ion-exchange membranes exhibit improved flagellin retention compared to resins. Purified flagellins retain epitope conformation, innate immune biological activity.
Flagellins are the main structural proteins of bacterial flagella and potent stimulators of innate and adaptive immunity in mammals. The flagellins of Salmonella are virulence factors and protective antigens, and form the basis of promising vaccines. Despite broad interest in flagellins as antigens and adjuvants in vaccine formulations, there have been few advances towards the development of scalable and economical purification methods for these proteins. We report here a simple and robust strategy to purify flagellin monomers from the supernatants of liquid growth culture. Phase 1 flagellins from Salmonella enterica serovars Typhimurium (i epitope) and Enteritidis (g,m epitopes) were purified directly from conditioned fermentation growth media using sequential cation- and anion-exchange chromatography coupled with a final tangential flow-filtration step. Conventional porous chromatography resin was markedly less efficient than membrane chromatography for flagellin purification. Recovery after each process step was robust, with endotoxin, nucleic acid and residual host–cell protein effectively removed. The final yield was 200–300 mg/L fermentation culture supernatant, with ∼45–50% overall recovery. A final pH 2 treatment step was instituted to ensure uniformity of flagellin in the monomeric form. Flagellins purified by this method were recognized by monoclonal anti-flagellin antibodies and maintained capacity to activate Toll-like Receptor 5. The process described is simple, readily scalable, uses standard bioprocess methods, and requires only a few steps to obtain highly purified material.
Collapse
|
23
|
Vaccination with a single CD4 T cell peptide epitope from a Salmonella type III-secreted effector protein provides protection against lethal infection. Infect Immun 2014; 82:2424-33. [PMID: 24686055 DOI: 10.1128/iai.00052-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Salmonella infections affect millions worldwide and remain a significant cause of morbidity and mortality. It is known from mouse studies that CD4 T cells are essential mediators of immunity against Salmonella infection, yet it is not clear whether targeting CD4 T cell responses directly with peptide vaccines against Salmonella can be effective in combating infection. Additionally, it is not known whether T cell responses elicited against Salmonella secreted effector proteins can provide protective immunity against infection. In this study, we investigated both of these possibilities using prime-boost immunization of susceptible mice with a single CD4 T cell peptide epitope from Salmonella secreted effector protein I (SseI), a component of the Salmonella type III secretion system. This immunization conferred significant protection against lethal oral infection, equivalent to that conferred by whole heat-killed Salmonella bacteria. Surprisingly, a well-characterized T cell epitope from the flagellar protein FliC afforded no protection compared to immunization with an irrelevant control peptide. The protective response appeared to be most associated with polyfunctional CD4 T cells raised against the SseI peptide, since no antibodies were produced against any of the peptides and very little CD8 T cell response was observed. Overall, this study demonstrates that eliciting CD4 T cell responses against components of the Salmonella type III secretion system can contribute to protection against infection and should be considered in the design of future Salmonella subunit vaccines.
Collapse
|
24
|
López-Yglesias AH, Zhao X, Quarles EK, Lai MA, VandenBos T, Strong RK, Smith KD. Flagellin induces antibody responses through a TLR5- and inflammasome-independent pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:1587-96. [PMID: 24442437 PMCID: PMC3925749 DOI: 10.4049/jimmunol.1301893] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flagellin is a potent immunogen that activates the innate immune system via TLR5 and Naip5/6, and generates strong T and B cell responses. The adaptor protein MyD88 is critical for signaling by TLR5, as well as IL-1Rs and IL-18Rs, major downstream mediators of the Naip5/6 Nlrc4-inflammasome. In this study, we define roles of known flagellin receptors and MyD88 in Ab responses generated toward flagellin. We used mice genetically deficient in flagellin recognition pathways to characterize innate immune components that regulate isotype-specific Ab responses. Using purified flagellin from Salmonella, we dissected the contribution of innate flagellin recognition pathways to promote Ab responses toward flagellin and coadministered OVA in C57BL/6 mice. We demonstrate IgG2c responses toward flagellin were TLR5 and inflammasome dependent; IgG1 was the dominant isotype and partially TLR5 and inflammasome dependent. Our data indicate a substantial flagellin-specific IgG1 response was induced through a TLR5-, inflammasome-, and MyD88-independent pathway. IgA anti-FliC responses were TLR5 and MyD88 dependent and caspase-1 independent. Unlike C57BL/6 mice, flagellin-immunized A/J mice induced codominant IgG1 and IgG2a responses. Furthermore, MyD88-independent, flagellin-induced Ab responses were even more pronounced in A/J MyD88(-/-) mice, and IgA anti-FliC responses were suppressed by MyD88. Flagellin also worked as an adjuvant toward coadministered OVA, but it only promoted IgG1 anti-OVA responses. Our results demonstrate that a novel pathway for flagellin recognition contributes to Ab production. Characterization of this pathway will be useful for understanding immunity to flagellin and the rationale design of flagellin-based vaccines.
Collapse
|
25
|
Atif SM, Uematsu S, Akira S, McSorley SJ. CD103-CD11b+ dendritic cells regulate the sensitivity of CD4 T-cell responses to bacterial flagellin. Mucosal Immunol 2014; 7:68-77. [PMID: 23632327 PMCID: PMC4032068 DOI: 10.1038/mi.2013.25] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 03/22/2013] [Indexed: 02/04/2023]
Abstract
Toll-like receptor 5 (TLR5) has been widely studied in an inflammatory context, but the effect of TLR5 on the adaptive response to bacterial flagellin has received considerably less attention. Here, we demonstrate that TLR5 expression by dendritic cells (DCs) allows a 1,000-fold enhancement of T-cell sensitivity to flagellin, and this enhancement did not require the expression of NLRC4 or Myd88. The effect of TLR5 on CD4 T-cell sensitivity was independent of the adjuvant effect of flagellin and TLR5 ligation did not alter the sensitivity of ovalbumin (OVA)-specific T cells to OVA. In the spleen, the exquisite T-cell sensitivity to flagellin was regulated by CD4-CD8α- DCs and was blocked by a monoclonal antibody to TLR5. In the mesenteric lymph nodes, flagellin-specific T-cell activation was regulated by a population of CD103-CD11b+ DCs. Thus, TLR5 expression by mucosal and systemic DC subsets controls the sensitivity of the adaptive immune response to flagellated pathogens.
Collapse
Affiliation(s)
- Shaikh M. Atif
- Center for Comparative Medicine, Department of Anatomy, Physiology, and Cell Biology, UC Davis, Davis, CA 95616.,Correspondence should be addressed to: Shaikh M. Atif, Tel: (530) 752 5032, Fax: (530) 752 7914 and Stephen McSorley, Tel: (530) 752 3414, Fax: (530) 752 7914,
| | - Satoshi Uematsu
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University Suita Osaka, 565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University Suita Osaka, 565-0871, Japan
| | - Stephen J. McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology, and Cell Biology, UC Davis, Davis, CA 95616.,Correspondence should be addressed to: Shaikh M. Atif, Tel: (530) 752 5032, Fax: (530) 752 7914 and Stephen McSorley, Tel: (530) 752 3414, Fax: (530) 752 7914,
| |
Collapse
|
26
|
Tarahomjoo S. Utilizing bacterial flagellins against infectious diseases and cancers. Antonie van Leeuwenhoek 2013; 105:275-88. [PMID: 24276957 DOI: 10.1007/s10482-013-0075-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/12/2013] [Indexed: 12/31/2022]
Abstract
The flagellum is the organelle providing motility to bacterial cells and its activity is coupled to the cellular chemotaxis machinery. The flagellar filament is the largest portion of the flagellum, which consists of repeating subunits of the protein flagellin. Receptors of the innate immune system including Toll like receptor 5, ICE protease activating factor, and neuronal apoptosis inhibitory protein 5 signal in response to bacterial flagellins. In addition to inducing innate immune responses, bacterial flagellins mediate the development of adaptive immune responses to both flagellins and coadministered antigens. Therefore, these proteins have intensively been investigated for the vaccine development and the immunotherapy. This review describes the utilization of bacterial flagellins for the construction of vaccines against infectious diseases and cancer immunotherapy. Furthermore, the key factors affecting the performance of these systems are highlighted.
Collapse
Affiliation(s)
- Shirin Tarahomjoo
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, 31975/148, Karaj, Iran,
| |
Collapse
|
27
|
Recombinant Salmonella enterica serovar Typhimurium as a vaccine vector for HIV-1 Gag. Viruses 2013; 5:2062-78. [PMID: 23989890 PMCID: PMC3798890 DOI: 10.3390/v5092062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/05/2013] [Accepted: 08/22/2013] [Indexed: 01/30/2023] Open
Abstract
The HIV/AIDS epidemic remains a global health problem, especially in Sub-Saharan Africa. An effective HIV-1 vaccine is therefore badly required to mitigate this ever-expanding problem. Since HIV-1 infects its host through the mucosal surface, a vaccine for the virus needs to trigger mucosal as well as systemic immune responses. Oral, attenuated recombinant Salmonella vaccines offer this potential of delivering HIV-1 antigens to both the mucosal and systemic compartments of the immune system. So far, a number of pre-clinical studies have been performed, in which HIV-1 Gag, a highly conserved viral antigen possessing both T- and B-cell epitopes, was successfully delivered by recombinant Salmonella vaccines and, in most cases, induced HIV-specific immune responses. In this review, the potential use of Salmonella enterica serovar Typhimurium as a live vaccine vector for HIV-1 Gag is explored.
Collapse
|
28
|
Gill N, Ferreira RBR, Antunes LCM, Willing BP, Sekirov I, Al-Zahrani F, Hartmann M, Finlay BB. Neutrophil elastase alters the murine gut microbiota resulting in enhanced Salmonella colonization. PLoS One 2012; 7:e49646. [PMID: 23155475 PMCID: PMC3498231 DOI: 10.1371/journal.pone.0049646] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/11/2012] [Indexed: 12/31/2022] Open
Abstract
The intestinal microbiota has been found to play a central role in the colonization of Salmonella enterica serovar Typhimurium in the gastrointestinal tract. In this study, we present a novel process through which Salmonella benefit from inflammatory induced changes in the microbiota in order to facilitate disease. We show that Salmonella infection in mice causes recruitment of neutrophils to the gut lumen, resulting in significant changes in the composition of the intestinal microbiota. This occurs through the production of the enzyme elastase by neutrophils. Administration of recombinant neutrophil elastase to infected animals under conditions that do not elicit neutrophil recruitment caused shifts in microbiota composition that favored Salmonella colonization, while inhibition of neutrophil elastase reduced colonization. This study reveals a new relationship between the microbiota and the host during infection.
Collapse
Affiliation(s)
- Navkiran Gill
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rosana B. R. Ferreira
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - L. Caetano M. Antunes
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin P. Willing
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Inna Sekirov
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fatimah Al-Zahrani
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Hartmann
- Molecular Ecology, Agroscope Reckenholz-Tänikon Research Station ART, Zurich, Switzerland
- Soil Sciences, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - B. Brett Finlay
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
29
|
Yang X, Thornburg T, Suo Z, Jun S, Robison A, Li J, Lim T, Cao L, Hoyt T, Avci R, Pascual DW. Flagella overexpression attenuates Salmonella pathogenesis. PLoS One 2012; 7:e46828. [PMID: 23056473 PMCID: PMC3463563 DOI: 10.1371/journal.pone.0046828] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022] Open
Abstract
Flagella are cell surface appendages involved in a number of bacterial behaviors, such as motility, biofilm formation, and chemotaxis. Despite these important functions, flagella can pose a liability to a bacterium when serving as potent immunogens resulting in the stimulation of the innate and adaptive immune systems. Previous work showing appendage overexpression, referred to as attenuating gene expression (AGE), was found to enfeeble wild-type Salmonella. Thus, this approach was adapted to discern whether flagella overexpression could induce similar attenuation. To test its feasibility, flagellar filament subunit FliC and flagellar regulon master regulator FlhDC were overexpressed in Salmonella enterica serovar Typhimurium wild-type strain H71. The results show that the expression of either FliC or FlhDC alone, and co-expression of the two, significantly attenuates Salmonella. The flagellated bacilli were unable to replicate within macrophages and thus were not lethal to mice. In-depth investigation suggests that flagellum-mediated AGE was due to the disruptive effects of flagella on the bacterial membrane, resulting in heightened susceptibilities to hydrogen peroxide and bile. Furthermore, flagellum-attenuated Salmonella elicited elevated immune responses to Salmonella presumably via FliC's adjuvant effect and conferred robust protection against wild-type Salmonella challenge.
Collapse
Affiliation(s)
- Xinghong Yang
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, Montana, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Maybeno M, Redeker A, Welten SPM, Peters B, Loughhead SM, Schoenberger SP, Sette A, Arens R. Polyfunctional CD4+ T cell responses to immunodominant epitopes correlate with disease activity of virulent Salmonella. PLoS One 2012; 7:e43481. [PMID: 22912884 PMCID: PMC3422266 DOI: 10.1371/journal.pone.0043481] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/20/2012] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovars are intracellular bacteria capable of causing typhoid fever and gastroenteritis of significant morbidity and mortality worldwide. Current prophylactic and therapeutic treatment is hampered by the emergence of multidrug-resistant (MDR) strains of Salmonella, and vaccines provide only temporal and partial protection in vaccinees. To develop more effective Salmonella vaccines, it is important to understand the development of protective adaptive immunity to virulent Salmonella. Here we report the identification of novel CD4(+) T cell peptide epitopes, which are conserved among Salmonella serovars. Immunization of Salmonella-infected mice with these peptide epitopes reduces the burden of Salmonella disease. Furthermore, we show that distinct polyfunctional (interferon-γ(+), tumor necrosis factor(+), and interleukin-2(+)) Salmonella-specific CD4(+) T cell responses develop with respect to magnitude and kinetics. Moreover, we found that CD4(+) T cell responses against immunodominant epitopes are predictive for active Salmonella disease. Collectively, these data could contribute to improved diagnosis of Salmonella-related diseases and rational design of Salmonella vaccines.
Collapse
Affiliation(s)
- Matt Maybeno
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Anke Redeker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne P. M. Welten
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Scott M. Loughhead
- Laboratory of Cellular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Stephen P. Schoenberger
- Laboratory of Cellular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
31
|
Lee SJ, McLachlan JB, Kurtz JR, Fan D, Winter SE, Baumler AJ, Jenkins MK, McSorley SJ. Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development. PLoS Pathog 2012; 8:e1002499. [PMID: 22275869 PMCID: PMC3262010 DOI: 10.1371/journal.ppat.1002499] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 12/07/2011] [Indexed: 01/09/2023] Open
Abstract
Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS) effectors steadily accumulated until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation, and location of antigen-specific CD4 T cells in vivo.
Collapse
Affiliation(s)
- Seung-Joo Lee
- Center for Comparative Medicine, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - James B. McLachlan
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Microbiology & Immunology, Tulane University Health Science Center, New Orleans, Louisiana, United States of America
| | - Jonathan R. Kurtz
- Department of Microbiology & Immunology, Tulane University Health Science Center, New Orleans, Louisiana, United States of America
| | - Danhua Fan
- Department of Biostatistics and Informatics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sebastian E. Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Andreas J. Baumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Marc K. Jenkins
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Stephen J. McSorley
- Center for Comparative Medicine, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
32
|
Salmonella enterica serovar enteritidis core O polysaccharide conjugated to H:g,m flagellin as a candidate vaccine for protection against invasive infection with S. enteritidis. Infect Immun 2011; 79:4240-9. [PMID: 21807909 DOI: 10.1128/iai.05484-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontyphoidal Salmonella enterica serovars Enteritidis and Typhimurium are a common cause of gastroenteritis but also cause invasive infections and enteric fever in certain hosts (young children in sub-Saharan Africa, the elderly, and immunocompromised individuals). Salmonella O polysaccharides (OPS) and flagellar proteins are virulence factors and protective antigens. The surface polysaccharides of Salmonella are poorly immunogenic and do not confer immunologic memory, limitations overcome by covalently attaching them to carrier proteins. We conjugated core polysaccharide-OPS (COPS) of Salmonella Enteritidis lipopolysaccharide (LPS) to flagellin protein from the homologous strain. COPS and flagellin were purified from a genetically attenuated (ΔguaBA) "reagent strain" (derived from an isolate from a patient with clinical bacteremia) engineered for increased flagellin production (ΔclpPX). Conjugates were constructed by linking flagellin monomers or polymers at random COPS hydroxyls with various polysaccharide/protein ratios by 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) or at the 3-deoxy-d-manno-octulosonic acid (KDO) terminus by thioether chemistry. Mice immunized on days 0, 28, and 56 with COPS-flagellin conjugates mounted higher anti-LPS IgG levels than mice receiving unconjugated COPS and exhibited high antiflagellin IgG; anti-LPS and antiflagellin IgG levels increased following booster doses. Antibodies generated by COPS-flagellin conjugates mediated opsonophagocytosis of S. Enteritidis cells into mouse macrophages. Mice immunized with flagellin alone, COPS-CRM₁₉₇, or COPS-flagellin conjugates were significantly protected from lethal challenge with wild-type S. Enteritidis (80 to 100% vaccine efficacy).
Collapse
|
33
|
Abstract
Salmonella enterica is a genetically broad species harboring isolates that display considerable antigenic heterogeneity and significant differences in virulence potential. Salmonella generally exhibit an invasive potential and they can survive for extended periods within cells of the immune system. They cause acute or chronic infections that can be local (e.g. gastroenteritis) or systemic (e.g. typhoid). In vivo Salmonella infections are complex with multiple arms of the immune system being engaged. Both humoral and cellular responses can be detected and characterized, but full protective immunity is not always induced, even following natural infection. The murine model has proven to be a fertile ground for exploring immune mechanisms and observations in the mouse have often, although not always, correlated with those in other infectable species, including humans. Host genetic studies have identified a number of mammalian genes that are central to controlling infection, operating both in innate and acquired immune pathways. Vaccines, both oral and parenteral, are available or under development, and these have been used with some success to explore immunity in both model systems and clinically in humans.
Collapse
Affiliation(s)
- Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK.
| | | | | | | |
Collapse
|
34
|
Simon R, Tennant SM, Galen JE, Levine MM. Mouse models to assess the efficacy of non-typhoidal Salmonella vaccines: revisiting the role of host innate susceptibility and routes of challenge. Vaccine 2011; 29:5094-106. [PMID: 21616112 DOI: 10.1016/j.vaccine.2011.05.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/22/2011] [Accepted: 05/09/2011] [Indexed: 01/24/2023]
Abstract
Non-typhoidal Salmonella enterica (NTS) serovars Typhimurium and Enteritidis are important causes of bacterial gastroenteritis in the USA and worldwide. In sub-Saharan Africa these two serovars are emerging as agents associated with lethal invasive disease (e.g., bacteremia, meningitis). The development of NTS vaccines, based on mucosally administered live attenuated strains and parenteral non-living antigens, could diminish the NTS disease burden globally. Mouse models of S. Typhimurium and S. Enteritidis invasive disease can accelerate the development of NTS vaccines. Live attenuated NTS vaccines elicit both cellular and humoral immunity in mice and their efficacy is well established. In contrast, non-living vaccines that primarily elicit humoral immunity have demonstrated variable efficacy. An analysis of the reported studies with non-living vaccines against S. Typhimurium and S. Enteritidis reveals that efficacy is influenced by two important independent variables: (1) the innate susceptibility to NTS infection that differs dramatically between commonly used mouse strains and (2) the virulence of the NTS strain used for challenge. Protection by non-living vaccines has generally been seen only in host-pathogen interactions where a sub-lethal infection results, such as challenging resistant mice with either highly virulent or weakly virulent strains or susceptible mice with weakly virulent strains. The immunologic basis of this discrepancy and the implications for human NTS vaccine development are reviewed herein.
Collapse
Affiliation(s)
- Raphael Simon
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | | | | | | |
Collapse
|
35
|
Bobat S, Flores-Langarica A, Hitchcock J, Marshall JL, Kingsley RA, Goodall M, Gil-Cruz C, Serre K, Leyton DL, Letran SE, Gaspal F, Chester R, Chamberlain JL, Dougan G, López-Macías C, Henderson IR, Alexander J, MacLennan ICM, Cunningham AF. Soluble flagellin, FliC, induces an Ag-specific Th2 response, yet promotes T-bet-regulated Th1 clearance of Salmonella typhimurium infection. Eur J Immunol 2011; 41:1606-18. [PMID: 21469112 DOI: 10.1002/eji.201041089] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/28/2011] [Accepted: 03/17/2011] [Indexed: 11/06/2022]
Abstract
Clearance of disseminated Salmonella infection requires bacterial-specific Th1 cells and IFN-γ production, and Th1-promoting vaccines are likely to help control these infections. Consequently, vaccine design has focused on developing Th1-polarizing adjuvants or Ag that naturally induce Th1 responses. In this study, we show that, in mice, immunization with soluble, recombinant FliC protein flagellin (sFliC) induces Th2 responses as evidenced by Ag-specific GATA-3, IL-4 mRNA, and protein induction in CD62L(lo) CD4(+) T cells without associated IFN-γ production. Despite these Th2 features, sFliC immunization can enhance the development of protective Th1 immunity during subsequent Salmonella infection in an Ab-independent, T-cell-dependent manner. Salmonella infection in sFliC-immunized mice resulted in augmented Th1 responses, with greater bacterial clearance and increased numbers of IFN-γ-producing CD4(+) T cells, despite the early induction of Th2 features to sFliC. The augmented Th1 immunity after sFliC immunization was regulated by T-bet although T-bet is dispensable for primary responses to sFliC. These findings show that there can be flexibility in T-cell responses to some subunit vaccines. These vaccines may induce Th2-type immunity during primary immunization yet promote Th1-dependent responses during later infection. This suggests that designing Th1-inducing subunit vaccines may not always be necessary since this can occur naturally during subsequent infection.
Collapse
Affiliation(s)
- Saeeda Bobat
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen C, Dow C, Wang P, Sidney J, Read A, Harmsen A, Samuel JE, Peters B. Identification of CD4+ T cell epitopes in C. burnetii antigens targeted by antibody responses. PLoS One 2011; 6:e17712. [PMID: 21423609 PMCID: PMC3057979 DOI: 10.1371/journal.pone.0017712] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 02/11/2011] [Indexed: 02/02/2023] Open
Abstract
Coxiella burnetii is an obligate intracellular Gram-negative bacterium that causes acute Q fever and chronic infections in humans. A killed, whole cell vaccine is efficacious, but vaccination can result in severe local or systemic adverse reactions. Although T cell responses are considered pivotal for vaccine derived protective immunity, the epitope targets of CD4+ T cell responses in C. burnetii vaccination have not been elucidated. Since mapping CD4+ epitopes in a genome with over 2,000 ORFs is resource intensive, we focused on 7 antigens that were known to be targeted by antibody responses. 117 candidate peptides were selected from these antigens based on bioinformatics predictions of binding to the murine MHC class II molecule H-2 IAb. We screened these peptides for recognition by IFN-γ producing CD4+ T cell in phase I C. burnetii whole cell vaccine (PI-WCV) vaccinated C57BL/6 mice and identified 8 distinct epitopes from four different proteins. The identified epitope targets account for 8% of the total vaccination induced IFN-γ producing CD4+ T cells. Given that less than 0.4% of the antigens contained in C. burnetii were screened, this suggests that prioritizing antigens targeted by antibody responses is an efficient strategy to identify at least a subset of CD4+ targets in large pathogens. Finally, we examined the nature of linkage between CD4+ T cell and antibody responses in PI-WCV vaccinated mice. We found a surprisingly non-uniform pattern in the help provided by epitope specific CD4+ T cells for antibody production, which can be specific for the epitope source antigen as well as non-specific. This suggests that a complete map of CD4+ response targets in PI-WCV vaccinated mice will likely include antigens against which no antibody responses are made.
Collapse
Affiliation(s)
- Chen Chen
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Courtney Dow
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California, United States of America
| | - Peng Wang
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California, United States of America
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California, United States of America
| | - Amanda Read
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Allen Harmsen
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - James E. Samuel
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Letran SE, Lee SJ, Atif SM, Uematsu S, Akira S, McSorley SJ. TLR5 functions as an endocytic receptor to enhance flagellin-specific adaptive immunity. Eur J Immunol 2010; 41:29-38. [PMID: 21182074 DOI: 10.1002/eji.201040717] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/06/2010] [Accepted: 10/13/2010] [Indexed: 01/12/2023]
Abstract
Innate immune activation via TLR induces dendritic cell maturation and secretion of inflammatory mediators, generating favorable conditions for naïve T-cell activation. Here, we demonstrate a previously unknown function for TLR5, namely that it enhances MHC class-II presentation of flagellin epitopes to CD4(+) T cells and is required for induction of robust flagellin-specific adaptive immune responses. Flagellin-specific CD4(+) T cells expanded poorly in TLR5-deficient mice immunized with flagellin, a deficiency that persisted even when additional TLR agonists were provided. Flagellin-specific IgG responses were similarly depressed in the absence of TLR5. In marked contrast, TLR5-deficient mice developed robust flagellin-specific T-cell responses when immunized with processed flagellin peptide. Surprisingly, the adaptor molecule Myd88 was not required for robust CD4(+) T-cell responses to flagellin, indicating that TLR5 enhances flagellin-specific CD4(+) T-cell responses in the absence of conventional TLR signaling. A requirement for TLR5 in generating flagellin-specific CD4(+) T-cell activation was also observed when using an in vitro dendritic cell culture system. Together, these data uncover an Myd88-independent function for dendritic cell TLR5 in enhancing the presentation of peptides to flagellin-specific CD4(+) T cells.
Collapse
Affiliation(s)
- Shirdi E Letran
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, McGuire Translational Research Facility, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
38
|
Dissection and localization of the immunostimulating domain of Edwardsiella tarda FliC. Vaccine 2010; 28:5635-40. [DOI: 10.1016/j.vaccine.2010.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 05/29/2010] [Accepted: 06/04/2010] [Indexed: 11/23/2022]
|
39
|
Flagellated but not hyperfimbriated Salmonella enterica serovar Typhimurium attaches to and forms biofilms on cholesterol-coated surfaces. J Bacteriol 2010; 192:2981-90. [PMID: 20118264 DOI: 10.1128/jb.01620-09] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The asymptomatic, chronic carrier state of Salmonella enterica serovar Typhi occurs in the bile-rich gallbladder and is frequently associated with the presence of cholesterol gallstones. We have previously demonstrated that salmonellae form biofilms on human gallstones and cholesterol-coated surfaces in vitro and that bile-induced biofilm formation on cholesterol gallstones promotes gallbladder colonization and maintenance of the carrier state. Random transposon mutants of S. enterica serovar Typhimurium were screened for impaired adherence to and biofilm formation on cholesterol-coated Eppendorf tubes but not on glass and plastic surfaces. We identified 49 mutants with this phenotype. The results indicate that genes involved in flagellum biosynthesis and structure primarily mediated attachment to cholesterol. Subsequent analysis suggested that the presence of the flagellar filament enhanced binding and biofilm formation in the presence of bile, while flagellar motility and expression of type 1 fimbriae were unimportant. Purified Salmonella flagellar proteins used in a modified enzyme-linked immunosorbent assay (ELISA) showed that FliC was the critical subunit mediating binding to cholesterol. These studies provide a better understanding of early events during biofilm development, specifically how salmonellae bind to cholesterol, and suggest a target for therapies that may alleviate biofilm formation on cholesterol gallstones and the chronic carrier state.
Collapse
|
40
|
Sanders CJ, Franchi L, Yarovinsky F, Uematsu S, Akira S, Núñez G, Gewirtz AT. Induction of adaptive immunity by flagellin does not require robust activation of innate immunity. Eur J Immunol 2009; 39:359-71. [PMID: 19152336 DOI: 10.1002/eji.200838804] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ability of TLR agonists to promote adaptive immune responses is attributed to their ability to robustly activate innate immunity. However, it has been observed that, for adjuvants in actual use in research and vaccination, TLR signaling is dispensable for generating humoral immunity. Here, we examined the role of TLR5 and MyD88 in promoting innate and humoral immunity to flagellin using a prime/boost immunization regimen. We observed that eliminating TLR5 greatly reduced flagellin-induced cytokine production, except for IL-18, and ablated DC maturation but did not significantly impact flagellin's ability to promote humoral immunity. Elimination of MyD88, which will ablate signaling through TLR and IL-1beta/IL-18 generated by Nod-like receptors, reduced, but did not eliminate flagellin's promotion of humoral immunity. In contrast, loss of the innate immune receptor for profilin-like protein (PLP), TLR11, greatly reduced the ability of PLP to elicit humoral immunity. Together, these results indicate that, firstly, the degree of innate immune activation induced by TLR agonists may be in great excess of that needed to promote humoral immunity and, secondly, there is considerable redundancy in mechanisms that promote the humoral immune response upon innate immune recognition of flagellin. Thus, it should be possible to design innate immune activators that are highly effective vaccine adjuvants yet avoid the adverse events associated with systemic TLR activation.
Collapse
|
41
|
Abstract
Over the last decade, significant advances have been made in the methodology for studying immune responses in vivo. It is now possible to follow almost every aspect of pathogen-specific immunity using in vivo models that incorporate physiological infectious doses and natural routes of infection. This new ability to study immunity in a relevant physiological context will greatly expand our understanding of the dynamic interplay between host and pathogen. Visualizing the resolution of primary infection and the development of long-term immunological memory should also aid the development of new vaccines and therapeutics for infectious diseases. In this review, we will describe the application of in vivo visualization technology to Salmonella infection, describe our current understanding of Salmonella-specific immunity, and discuss some unanswered questions that remain in this model.
Collapse
Affiliation(s)
- James J. Moon
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN, 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455
| | - Stephen J. McSorley
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455
- Center for Infectious Diseases & Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, MN, 55455
| |
Collapse
|
42
|
Jones-Carson J, Laughlin J, Hamad MA, Stewart AL, Voskuil MI, Vázquez-Torres A. Inactivation of [Fe-S] metalloproteins mediates nitric oxide-dependent killing of Burkholderia mallei. PLoS One 2008; 3:e1976. [PMID: 18398486 PMCID: PMC2276317 DOI: 10.1371/journal.pone.0001976] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 03/07/2008] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Much remains to be known about the mechanisms by which O(2)-dependent host defenses mediate broad antimicrobial activity. METHODOLOGY/PRINCIPAL FINDINGS We show herein that reactive nitrogen species (RNS) generated by inducible nitric oxide (NO) synthase (iNOS) account for the anti-Burkholderia mallei activity of IFNgamma-primed macrophages. Inducible NOS-mediated intracellular killing may represent direct bactericidal activity, because B. mallei showed an exquisite sensitivity to NO generated chemically. Exposure of B. mallei to sublethal concentrations of NO upregulated transcription of [Fe-S] cluster repair genes, while damaging the enzymatic activity of the [Fe-S] protein aconitase. To test whether [Fe-S] clusters are critical targets for RNS-dependent killing of B. mallei, a mutation was constructed in the NO-induced, [Fe-S] cluster repair regulator iscR. Not only was the iscR mutant hypersusceptible to iNOS-mediated killing, but its aconitase pool was readily oxidized by NO donors as compared to wild-type controls. Although killed by authentic H(2)O(2), which also oxidizes [Fe-S] clusters, B. mallei appear to be resilient to NADPH oxidase-mediated cytotoxicity. The poor respiratory burst elicited by this bacterium likely explains why the NADPH oxidase is nonessential to the killing of B. mallei while it is still confined within phagosomes. CONCLUSIONS/SIGNIFICANCE Collectively, these findings have revealed a disparate role for NADPH oxidase and iNOS in the innate macrophage response against the strict aerobe B. mallei. To the best of our knowledge, this is the first instance in which disruption of [Fe-S] clusters is demonstrated as cause of the bactericidal activity of NO congeners.
Collapse
Affiliation(s)
- Jessica Jones-Carson
- Department of Microbiology, University of Colorado Health Sciences Center, Aurora, Colorado, United States of America
- Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, United States of America
| | - James Laughlin
- Department of Microbiology, University of Colorado Health Sciences Center, Aurora, Colorado, United States of America
| | - Mohammed A. Hamad
- Department of Microbiology, University of Colorado Health Sciences Center, Aurora, Colorado, United States of America
| | - Amanda L. Stewart
- Department of Microbiology, University of Colorado Health Sciences Center, Aurora, Colorado, United States of America
| | - Martin I. Voskuil
- Department of Microbiology, University of Colorado Health Sciences Center, Aurora, Colorado, United States of America
| | - Andrés Vázquez-Torres
- Department of Microbiology, University of Colorado Health Sciences Center, Aurora, Colorado, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Grassl GA, Valdez Y, Bergstrom KSB, Vallance BA, Finlay BB. Chronic enteric salmonella infection in mice leads to severe and persistent intestinal fibrosis. Gastroenterology 2008; 134:768-80. [PMID: 18325390 DOI: 10.1053/j.gastro.2007.12.043] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 11/29/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Intestinal fibrosis and stricture formation are serious complications of Crohn's disease, often requiring surgical intervention. Unfortunately, the mechanisms underlying intestinal fibrosis development are poorly understood, in part because of the lack of relevant animal models. Here, we present a novel murine model of severe and persistent intestinal fibrosis caused by chronic bacterial-induced colitis. METHODS Mice were treated with streptomycin 24 hours prior to oral infection with Salmonella enterica serovar Typhimurium. Tissues were analyzed for bacterial colonization and inflammation, and fibrosis was assessed by Masson's trichrome staining and collagen quantification. Expression of the profibrotic cytokines transforming growth factor-beta1, connective tissue growth factor and insulin-like growth factor-I was determined, and the cell types present in fibrotic tissues were assessed by immunohistochemistry. RESULTS Infection led to chronic Salmonella colonization of the cecum and colon followed by edema, mucosal ulcerations, and severe transmural inflammation. This pathology was accompanied by significantly elevated expression of transforming growth factor-beta1, connective tissue growth factor, and insulin-like growth factor-I along with extensive type I collagen deposition in the cecal mucosa, submucosa, and muscularis mucosa of infected mice. Fibrosis was evident by 7 days postinfection, peaking at day 21 and still present at day 70. The fibrotic regions were found to be rich in fibroblasts and myofibroblasts. CONCLUSIONS These data demonstrate that chronic Salmonella infection of the murine gastrointestinal tract leads to severe tissue fibrosis. Because this model is highly reproducible and easy to perform, it provides great potential for investigating both host and bacterial contributions to intestinal fibrosis.
Collapse
Affiliation(s)
- Guntram A Grassl
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
44
|
Alaniz RC, Deatherage BL, Lara JC, Cookson BT. Membrane Vesicles Are Immunogenic Facsimiles ofSalmonella typhimuriumThat Potently Activate Dendritic Cells, Prime B and T Cell Responses, and Stimulate Protective Immunity In Vivo. THE JOURNAL OF IMMUNOLOGY 2007; 179:7692-701. [DOI: 10.4049/jimmunol.179.11.7692] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Sofi MH, Bhatnagar A, Sapra S, Mahmood A, Majumdar S. Immunoregulatory role of intestinal surfactant-like particles during Salmonella typhimurium infection. Int J Biol Sci 2007; 3:446-54. [PMID: 18026566 PMCID: PMC2078610 DOI: 10.7150/ijbs.3.446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Accepted: 11/01/2007] [Indexed: 01/22/2023] Open
Abstract
Surfactants like particles (SLP) are secreted by Intestinal epithelium. These particles have the ability to lower surface tension of intestinal epithelial cells and contain small amounts of surfactant specific proteins A, B, and D. In the intestinal lumen they are known to function as lubricants and/or as a vehicle to deliver digestive enzymes to the luminal fluid. These particles have been found to have the ability in binding of uropathogenic E.coli. But their immunological function is not known. The present study was designed to assess the role of the SLP in the regulation of immune response during Salmonella (S) typhimurium infection using a rat an enteric model. The animals were divided in four different groups including control (PBS), rats fed fat diet (corn oil), rats fed fat diet followed with S. typhimurium infection and rats with S. typhimurium infection alone. The Peyer's patches (PP), intraepithelial (IE) and lamina propria (LP) mononuclear cells were isolated from the above-mentioned groups. These mononuclear cells were then incubated in presence of S. typhimurium lysate alone, SLP alone and S. typhimurium lysate and SLP together. T cell markers CD4 and CD8, cytokines mainly pro-inflammatory ones including IFN-γ, TNF-α, IL-12 etc were studied under such conditions. In addition histological studies were also carried out under these conditions. We report in this study that SLP plays an important role in modulating the cytokine level during infection. The pro-inflammatory cytokines were found significantly reduced in SLP induced diet along with the infection group compared to the infection group alone. Histopathological studies revealed the breakdown of duodenal villi after infection while only broadening of villi was observed in rats given corn oil induced SLP along with infection. These results suggested an important immuno-modulatory role for SLP during Salmonella infection.
Collapse
Affiliation(s)
- M Hanief Sofi
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education, Research (PGIMER), Chandigarh, India.
| | | | | | | | | |
Collapse
|
46
|
van Vliet SJ, den Dunnen J, Gringhuis SI, Geijtenbeek TB, van Kooyk Y. Innate signaling and regulation of Dendritic cell immunity. Curr Opin Immunol 2007; 19:435-40. [PMID: 17629469 DOI: 10.1016/j.coi.2007.05.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/23/2007] [Accepted: 05/30/2007] [Indexed: 02/05/2023]
Abstract
Dendritic cells are crucial in pathogen recognition and induction of specific immune responses to eliminate pathogens from the infected host. Host recognition of invading microorganisms relies on evolutionarily conserved, germline-encoded pattern-recognition receptors (PRRs) that are expressed by DCs. The best-characterized PRR family comprises the Toll-like receptors (TLRs) that recognize bacteria or viruses. In addition to TLRs, intracellular Nod-like receptors and the membrane-associated C-type lectins (CLRs) function as PRRs. Many of these innate receptors also have an important function in natural host homeostatic responses, such as the maintenance of gut homeostasis. Clearly, more indications are hinting at a fine-tuning of immune responses by a concerted action of these PRRs on the recognition of pathogen components and the consequent signalling events that are created. It is becoming increasingly clear that these PRRs can initiate specific signalling events that modulate the production of inflammatory cytokines, phagocytosis, intracellular routing of antigen, release of oxidative species and DC maturation and the subsequent development of adaptive immunity. Notably, members within one family of PRRs can trigger opposite signalling features, indicating that the ultimate outcome of pathogen-induced immune responses depends on the pathogen signature and the collective PRRs involved.
Collapse
Affiliation(s)
- Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Simon R, Samuel CE. Activation of NF-kappaB-dependent gene expression by Salmonella flagellins FliC and FljB. Biochem Biophys Res Commun 2007; 355:280-5. [PMID: 17292856 PMCID: PMC1861835 DOI: 10.1016/j.bbrc.2007.01.148] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 01/25/2007] [Indexed: 12/13/2022]
Abstract
Bacterial flagellin is recognized by Toll-like receptor (TLR5) and activates NF-kappaB which leads to the induction of proinflammatory gene expression. Salmonella expresses two flagellin proteins, FliC and FljB. We purified FliC and FljB and examined the ability of the Salmonella flagellins to activate the NF-kappaB transcription factor in human embryonic kidney cells. We found that FliC and FljB as purified proteins possessed a comparable specific activity for activation of NF-kappaB-dependent gene expression in HEK293 cells. We also determined the ability of UV-inactivated bacteria, both wild-type and fliC and fljB mutant strains, to activate NF-kappaB. Wild-type fliC(+)/fljB(+)Salmonella and the fliC(+)/fljB(-) mutant strain were robust activators, whereas the fliC(-)/fljB(+) and flhC(-) mutant strains were very poor activators. The NF-kappaB activation capacity of bacterial strains correlated with their flagellin expression level. Finally, Salmonella cell wall-associated polymeric flagellin displayed greatly reduced ability to activate NF-kappaB compared to purified monomeric flagellin.
Collapse
Affiliation(s)
| | - Charles E. Samuel
- Corresponding Author: C.E. Samuel, Telephone: 805-893-3097, FAX: 805-893-5780, E-mail:
| |
Collapse
|
48
|
Golding GR, Olson AB, Doublet B, Cloeckaert A, Christianson S, Graham MR, Mulvey MR. The effect of the Salmonella genomic island 1 on in vitro global gene expression in Salmonella enterica serovar Typhimurium LT2. Microbes Infect 2007; 9:21-7. [PMID: 17194608 DOI: 10.1016/j.micinf.2006.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 09/01/2006] [Accepted: 10/03/2006] [Indexed: 10/23/2022]
Abstract
A Salmonella genomic island 1 (SGI1) isogenic strain pair was constructed using Salmonella enterica serovar Typhimurium LT2 (ST LT2). Real-time quantitative reverse transcriptase PCR revealed detectable mRNA transcripts for all 44 putative ORFs encoded within the SGI1. The highest levels of transcripts observed in SGI1 encoded ORFs were found in genes conferring antibiotic resistance to ampicillin, streptomycin/spectinomycin, and sulphonamides. Abundant mRNA transcripts, relative to gapA, were also noted for one putative regulatory ORF and seven ORFs of unknown function encoded within SGI1, whose products could represent factors contributing to increases in virulence and/or fitness of the organism. DNA microarray analysis revealed the differential expression of known factors that contribute to virulence in many pathogens. Twenty-two chromosomal genes were significantly upregulated in ST LT2 harboring SGI1, which included increased expression of iron and sialic acid utilization genes. Decreased expression was noted for 15 genes in ST LT2 harboring SGI1, including genes involved in chemotaxis and motility. This is the first report examining gene expression within the SGI1, as well as its potential effect on global gene expression, and sets the foundation for future studies involving the effect of SGI1 in other Salmonella spp.
Collapse
Affiliation(s)
- George R Golding
- National Microbiology Laboratory, 1015 Arlington Ave., Winnipeg, Manitoba, Canada, R3E 3R2
| | | | | | | | | | | | | |
Collapse
|
49
|
Alaniz RC, Cummings LA, Bergman MA, Rassoulian-Barrett SL, Cookson BT. Salmonella typhimurium coordinately regulates FliC location and reduces dendritic cell activation and antigen presentation to CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:3983-93. [PMID: 16951361 DOI: 10.4049/jimmunol.177.6.3983] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During infection, Salmonella transitions from an extracellular-phase (STEX, growth outside host cells) to an intracellular-phase (STIN, growth inside host cells): changes in gene expression mediate survival in the phagosome and modifies LPS and outer membrane protein expression, including altered production of FliC, an Ag recognized by immune CD4+ T cells. Previously, we demonstrated that systemic STIN bacteria repress FliC below the activation threshold of FliC-specific T cells. In this study, we tested the hypothesis that changes in FliC compartmentalization and bacterial responses triggered during the transition from STEX to STIN combine to reduce the ability of APCs to present FliC to CD4+ T cells. Approximately 50% of the Salmonella-specific CD4+ T cells from Salmonella-immune mice were FliC specific and produced IFN-gamma, demonstrating the potent immunogenicity of FliC. FliC expressed by STEX bacteria was efficiently presented by splenic APCs to FliC-specific CD4+ T cells in vitro. However, STIN bacteria, except when lysed, expressed FliC within a protected intracellular compartment and evaded stimulation of FliC-specific T cells. The combination of STIN-mediated responses that reduced FliC bioavailability were overcome by dendritic cells (DCs), which presented intracellular FliC within heat-killed bacteria; however, this ability was abrogated by live bacterial infection. Furthermore, STIN bacteria, unlike STEX, limited DC activation as measured by increased MHC class II, CD86, TNF-alpha, and IL-12 expression. These data indicate that STIN bacteria restrict FliC bioavailability by Ag compartmentalization, and together with STIN bacterial responses, limit DC maturation and cytokine production. Together, these mechanisms may restrain DC-mediated activation of FliC-specific CD4+ T cells.
Collapse
Affiliation(s)
- Robert C Alaniz
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
50
|
Sanders CJ, Yu Y, Moore DA, Williams IR, Gewirtz AT. Humoral immune response to flagellin requires T cells and activation of innate immunity. THE JOURNAL OF IMMUNOLOGY 2006; 177:2810-8. [PMID: 16920916 DOI: 10.4049/jimmunol.177.5.2810] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacterial flagellin, the primary structural component of flagella, is a dominant target of humoral immunity upon infection by enteric pathogens and in Crohn's disease. To better understand how such responses may be regulated, we sought to define, in mice, basic mechanisms that regulate generation of flagellin-specific Igs. We observed that, in response to i.p. injection with flagellin, generation of flagellin-specific Ig required activation of innate immunity in that these responses were ablated in MyD88-deficient mice and that flagellin from Helicobacter pylori, which is known not to activate TLR5, also did not elicit Abs. Mice lacking alphabeta T cells (TCRbeta(null)) were completely deficient in their ability to make flagellin Abs in various contexts indicating that, in contrast to common belief, generation of flagellin-specific Ig is absolutely T cell dependent. In contrast to Ab responses to whole flagella (H serotyping), responses to flagellin monomers displayed only moderate serospecificity. Whereas neither oral nor rectal administration of flagellin elicited a strong serum Ab response, induction of colitis with dextran sodium sulfate resulted in a MyD88-dependent serum Ab response to endogenous flagellin, suggesting that, in an inflammatory milieu, TLR signaling promotes acquisition of Abs to intestinal flagellin. Thus, acquisition of a humoral immune response to flagellin requires activation of innate immunity, is T cell dependent, and can originate from flagellin in the intestinal tract in inflammatory conditions in the intestine.
Collapse
|