1
|
Carlson CJ, Getz WM, Kausrud KL, Cizauskas CA, Blackburn JK, Bustos Carrillo FA, Colwell R, Easterday WR, Ganz HH, Kamath PL, Økstad OA, Turner WC, Kolstø AB, Stenseth NC. Spores and soil from six sides: interdisciplinarity and the environmental biology of anthrax (Bacillus anthracis). Biol Rev Camb Philos Soc 2018; 93:1813-1831. [PMID: 29732670 DOI: 10.1111/brv.12420] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022]
Abstract
Environmentally transmitted diseases are comparatively poorly understood and managed, and their ecology is particularly understudied. Here we identify challenges of studying environmental transmission and persistence with a six-sided interdisciplinary review of the biology of anthrax (Bacillus anthracis). Anthrax is a zoonotic disease capable of maintaining infectious spore banks in soil for decades (or even potentially centuries), and the mechanisms of its environmental persistence have been the topic of significant research and controversy. Where anthrax is endemic, it plays an important ecological role, shaping the dynamics of entire herbivore communities. The complex eco-epidemiology of anthrax, and the mysterious biology of Bacillus anthracis during its environmental stage, have necessitated an interdisciplinary approach to pathogen research. Here, we illustrate different disciplinary perspectives through key advances made by researchers working in Etosha National Park, a long-term ecological research site in Namibia that has exemplified the complexities of the enzootic process of anthrax over decades of surveillance. In Etosha, the role of scavengers and alternative routes (waterborne transmission and flies) has proved unimportant relative to the long-term persistence of anthrax spores in soil and their infection of herbivore hosts. Carcass deposition facilitates green-ups of vegetation to attract herbivores, potentially facilitated by the role of anthrax spores in the rhizosphere. The underlying seasonal pattern of vegetation, and herbivores' immune and behavioural responses to anthrax risk, interact to produce regular 'anthrax seasons' that appear to be a stable feature of the Etosha ecosystem. Through the lens of microbiologists, geneticists, immunologists, ecologists, epidemiologists, and clinicians, we discuss how anthrax dynamics are shaped at the smallest scale by population genetics and interactions within the bacterial communities up to the broadest scales of ecosystem structure. We illustrate the benefits and challenges of this interdisciplinary approach to disease ecology, and suggest ways anthrax might offer insights into the biology of other important pathogens. Bacillus anthracis, and the more recently emerged Bacillus cereus biovar anthracis, share key features with other environmentally transmitted pathogens, including several zoonoses and panzootics of special interest for global health and conservation efforts. Understanding the dynamics of anthrax, and developing interdisciplinary research programs that explore environmental persistence, is a critical step forward for understanding these emerging threats.
Collapse
Affiliation(s)
- Colin J Carlson
- National Socio-Environmental Synthesis Center (SESYNC), University of Maryland, Annapolis, MD 21401, U.S.A.,Department of Biology, Georgetown University, Washington, DC 20057, U.S.A
| | - Wayne M Getz
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, U.S.A.,School of Mathematical Sciences, University of KwaZulu-Natal, PB X 54001, Durban 4000, South Africa
| | - Kyrre L Kausrud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316, Oslo, Norway
| | - Carrie A Cizauskas
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, U.S.A
| | - Jason K Blackburn
- Spatial Epidemiology & Ecology Research Lab, Department of Geography, University of Florida, Gainesville, FL 32611, U.S.A.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - Fausto A Bustos Carrillo
- Department of Epidemiology & Department of Biostatistics, School of Public Health, University of California, Berkeley, CA 94720-7360, U.S.A
| | - Rita Colwell
- CosmosID Inc., Rockville, MD 20850, U.S.A.,Center for Bioinformatics and Computational Biology, University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, U.S.A.,Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, U.S.A
| | - W Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316, Oslo, Norway
| | - Holly H Ganz
- UC Davis Genome Center, University of California, Davis, CA 95616, U.S.A
| | - Pauline L Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, U.S.A
| | - Ole A Økstad
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316, Oslo, Norway
| | - Wendy C Turner
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, U.S.A
| | - Anne-Brit Kolstø
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316, Oslo, Norway
| | - Nils C Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316, Oslo, Norway
| |
Collapse
|
2
|
Understanding the molecular differential recognition of muramyl peptide ligands by LRR domains of human NOD receptors. Biochem J 2017; 474:2691-2711. [DOI: 10.1042/bcj20170220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 12/28/2022]
Abstract
Human nucleotide-binding oligomerization domain proteins, hNOD1 and hNOD2, are host intracellular receptors with C-terminal leucine-rich repeat (LRR) domains, which recognize specific bacterial peptidoglycan (PG) fragments as their ligands. The specificity of this recognition is dependent on the third amino acid of the stem peptide of the PG ligand, which is usually meso-diaminopimelic acid (mesoDAP) or l-lysine (l-Lys). Since the LRR domains of hNOD receptors had been experimentally shown to confer the PG ligand-sensing specificity, we developed three-dimensional structures of hNOD1-LRR and the hNOD2-LRR to understand the mechanism of differential recognition of muramyl peptide ligands by hNOD receptors. The hNOD1-LRR and hNOD2-LRR receptor models exhibited right-handed curved solenoid shape. The hot-spot residues experimentally proved to be critical for ligand recognition were located in the concavity of the NOD-LRR and formed the recognition site. Our molecular docking analyses and molecular electrostatic potential mapping studies explain the activation of hNOD-LRRs, in response to effective molecular interactions of PG ligands at the recognition site; and conversely, the inability of certain PG ligands to activate hNOD-LRRs, by deviations from the recognition site. Based on molecular docking studies using PG ligands, we propose few residues — G825, D826 and N850 in hNOD1-LRR and L904, G905, W931, L932 and S933 in hNOD2-LRR, evolutionarily conserved across different host species, which may play a major role in ligand recognition. Thus, our integrated experimental and computational approach elucidates the molecular basis underlying the differential recognition of PG ligands by hNOD receptors.
Collapse
|
3
|
Bacterial peptidoglycan with amidated meso-diaminopimelic acid evades NOD1 recognition: an insight into NOD1 structure–recognition. Biochem J 2016; 473:4573-4592. [DOI: 10.1042/bcj20160817] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/04/2016] [Accepted: 10/14/2016] [Indexed: 12/16/2022]
Abstract
Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is an intracellular pattern recognition receptor that recognizes bacterial peptidoglycan (PG) containing meso-diaminopimelic acid (mesoDAP) and activates the innate immune system. Interestingly, a few pathogenic and commensal bacteria modify their PG stem peptide by amidation of mesoDAP (mesoDAPNH2). In the present study, NOD1 stimulation assays were performed using bacterial PG containing mesoDAP (PGDAP) and mesoDAPNH2 (PGDAPNH2) to understand the differences in their biomolecular recognition mechanism. PGDAP was effectively recognized, whereas PGDAPNH2 showed reduced recognition by the NOD1 receptor. Restimulation of the NOD1 receptor, which was initially stimulated with PGDAP using PGDAPNH2, did not show any further NOD1 activation levels than with PGDAP alone. But the NOD1 receptor initially stimulated with PGDAPNH2 responded effectively to restimulation with PGDAP. The biomolecular structure–recognition relationship of the ligand-sensing leucine-rich repeat (LRR) domain of human NOD1 (NOD1–LRR) with PGDAP and PGDAPNH2 was studied by different computational techniques to further understand the molecular basis of our experimental observations. The d-Glu–mesoDAP motif of GMTPDAP, which is the minimum essential motif for NOD1 activation, was found involved in specific interactions at the recognition site, but the interactions of the corresponding d-Glu–mesoDAP motif of PGDAPNH2 occur away from the recognition site of the NOD1 receptor. Hot-spot residues identified for effective PG recognition by NOD1–LRR include W820, G821, D826 and N850, which are evolutionarily conserved across different host species. These integrated results thus successfully provided the atomic level and biochemical insights on how PGs containing mesoDAPNH2 evade NOD1–LRR receptor recognition.
Collapse
|
4
|
Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence. PLoS Pathog 2016; 12:e1005678. [PMID: 27304426 PMCID: PMC4909234 DOI: 10.1371/journal.ppat.1005678] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/12/2016] [Indexed: 12/15/2022] Open
Abstract
Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications. We discovered an immune modulatory mechanism of Bacillus anthracis mediated by the spore surface protein BclA. We showed for the first time that BclA mediated the binding of complement factor H, a major negative regulator of complement, to the surface of spores. The binding led to the down-regulation of complement activities in vitro and in an animal model. Using mice deficient in complement components, we further showed that BclA promoted spore persistence in the mouse lungs and impaired antibody responses against spores in a complement-dependent manner. We further provided evidence suggesting a role of BclA in the development of protective immunity against lethal B. anthracis challenges. These findings draw attention to a previously understudied aspect of the complement system. They suggest that in addition to conferring resistance to complement-mediated killing and phagocytosis, complement inhibition by pathogens have long-term consequences with respect to persistent infections and development of protective immunity. Considering a growing list of microbial pathogens capable of modulating complement activities, our findings have broad implications.
Collapse
|
5
|
O'Neill S, Humphries D, Tse G, Marson LP, Dhaliwal K, Hughes J, Ross JA, Wigmore SJ, Harrison EM. Heat shock protein 90 inhibition abrogates TLR4-mediated NF-κB activity and reduces renal ischemia-reperfusion injury. Sci Rep 2015; 5:12958. [PMID: 26248657 PMCID: PMC4528191 DOI: 10.1038/srep12958] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/06/2015] [Indexed: 12/17/2022] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury. Toll-like receptor 4 (TLR4) mediates sterile inflammation following renal IRI. Heat shock protein 90 (Hsp90) inhibition is a potential strategy to reduce IRI, and AT13387 is a novel Hsp90 inhibitor with low toxicity. This study assessed if pre-treatment with AT13387 could reduce renal IRI and established if the mechanism of protection involved a reduction in inflammatory signalling. Mice were pre-treated with AT13387 prior to renal IRI. 24 h later, renal function was determined by serum creatinine, kidney damage by tubular necrosis score, renal TLR4 expression by PCR and inflammation by cytokine array. In vitro, human embryonic kidney cells were co-transfected to express TLR4 and a secreted alkaline phosphatase NF-κB reporter. Cells were pre-treated with AT13387 and exposed to endotoxin-free hyaluronan to stimulate sterile TLR4-specific NF-κB inflammatory activation. Following renal IRI, AT13387 significantly reduced serum creatinine, tubular necrosis, TLR4 expression and NF-κB-dependent chemokines. In vitro, AT13387-treatment resulted in breakdown of IκB kinase, which abolished TLR4-mediated NF-κB activation by hyaluronan. AT13387 is a new agent with translational potential that reduces renal IRI. The mechanism of protection may involve breakdown of IκB kinase and repression of TLR4-mediated NF-κB inflammatory activity.
Collapse
Affiliation(s)
- Stephen O'Neill
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - Duncan Humphries
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - George Tse
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - Lorna P Marson
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - Kevin Dhaliwal
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - Jeremy Hughes
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - James A Ross
- MRC Centre for Regenerative Medicine, University of Edinburgh, Royal Infirmary of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SA
| | - Stephen J Wigmore
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - Ewen M Harrison
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| |
Collapse
|
6
|
The Poly-γ-d-Glutamic Acid Capsule Surrogate of the Bacillus anthracis Capsule Is a Novel Toll-Like Receptor 2 Agonist. Infect Immun 2015. [PMID: 26195551 DOI: 10.1128/iai.00888-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacillus anthracis is a pathogenic Gram-positive bacterium that causes a highly lethal infectious disease, anthrax. The poly-γ-d-glutamic acid (PGA) capsule is one of the major virulence factors of B. anthracis, along with exotoxins. PGA enables B. anthracis to escape phagocytosis and immune surveillance. Our previous study showed that PGA activates the human macrophage cell line THP-1 and human dendritic cells, resulting in the production of the proinflammatory cytokine interleukin-1β (IL-1β) (M. H. Cho et al., Infect Immun 78:387-392, 2010, http://dx.doi.org/10.1128/IAI.00956-09). Here, we investigated PGA-induced cytokine responses and related signaling pathways in mouse bone marrow-derived macrophages (BMDMs) using Bacillus licheniformis PGA as a surrogate for B. anthracis PGA. Upon exposure to PGA, BMDMs produced proinflammatory mediators, including tumor necrosis factor alpha (TNF-α), IL-6, IL-12p40, and monocyte chemoattractant protein 1 (MCP-1), in a concentration-dependent manner. PGA stimulated Toll-like receptor 2 (TLR2) but not TLR4 in Chinese hamster ovary cells expressing either TLR2 or TLR4. The ability of PGA to induce TNF-α and IL-6 was retained in TLR4(-/-) but not TLR2(-/-) BMDMs. Blocking experiments with specific neutralizing antibodies for TLR1, TLR6, and CD14 showed that TLR6 and CD14 also were necessary for PGA-induced inflammatory responses. Furthermore, PGA enhanced activation of mitogen-activated protein (MAP) kinases and nuclear factor-kappa B (NF-κB), which are responsible for expression of proinflammatory cytokines. Additionally, PGA-induced TNF-α production was abrogated not only in MyD88(-/-) BMDMs but also in BMDMs pretreated with inhibitors of MAP kinases and NF-κB. These results suggest that immune responses induced by PGA occur via TLR2, TLR6, CD14, and MyD88 through activation of MAP kinase and NF-κB pathways.
Collapse
|
7
|
Jeon JH, Kim YH, Choi MK, Kim KA, Lee HR, Jang J, Kim YR, Chun JH, Eo SK, Kim TS, Rhie GE. Bacillus anthracis genomic DNA enhances lethal toxin-induced cytotoxicity through TNF-α production. BMC Microbiol 2014; 14:300. [PMID: 25472474 PMCID: PMC4267052 DOI: 10.1186/s12866-014-0300-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/18/2014] [Indexed: 11/17/2022] Open
Abstract
Background Bacillus anthracis is the etiological agent of anthrax. Lethal toxin (LT) produced by B. anthracis is a well-known key virulence factor for anthrax because of its strong cytotoxic activity. However, little is known about the role of B. anthracis genomic DNA (BAG) in anthrax pathogenesis. Results We examined the effect of BAG on TNF-α production and LT-mediated cytotoxicity during B. anthracis spore infection in mouse macrophage cell lines (RAW264.7 cells and J774A.1) and BALB/c mice. Infection of RAW264.7 cells with B. anthracis spores induced TNF-α expression in a multiplicity of infection (MOI)-dependent manner, and this enhancement was attenuated by the toll-like receptor (TLR) 9 inhibitor oligodeoxynucleotide (ODN)2088. BAG led to TNF-α expression in a dose- and time-dependent manner when applied to RAW264.7 cells. TNF-α expression induced by BAG was reduced by either pretreatment with TLR9 inhibitors (ODN2088 and chloroquine (CQ)) or transfection with TLR9 siRNA. Furthermore, BAG-induced TNF-α production in TLR9+/+ macrophages was completely abrogated in TLR9−/− macrophages. BAG enhanced the phosphorylation of mitogen-activated protein kinases (MAPK), and BAG-induced TNF-α expression was attenuated by pretreatment with MAPK inhibitors. A reporter gene assay and confocal microscopy demonstrated that BAG increased NF-κB activation, which is responsible for TNF-α expression. Treatment with BAG alone showed no cytotoxic activity on the macrophage cell line J774A.1, whereas LT-mediated cytotoxicity was enhanced by treatment with BAG or TNF-α. Enhanced LT-induced lethality was also confirmed by BAG administration in mice. Furthermore, LT plus BAG-mediated lethality was significantly recovered by administration of Infliximab, an anti-TNF-α monoclonal antibody. Conclusions Our results suggest that B. anthracis DNA may contribute to anthrax pathogenesis by enhancing LT activity via TLR9-mediated TNF-α production. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0300-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Ho Jeon
- Division of High-risk Pathogen Research, Center for Infectious Diseases, National Institute of Health, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 361-951, Republic of Korea.
| | - Yeon Hee Kim
- Division of High-risk Pathogen Research, Center for Infectious Diseases, National Institute of Health, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 361-951, Republic of Korea. .,School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea.
| | - Min Kyung Choi
- Division of High-risk Pathogen Research, Center for Infectious Diseases, National Institute of Health, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 361-951, Republic of Korea.
| | - Kyung Ae Kim
- Division of High-risk Pathogen Research, Center for Infectious Diseases, National Institute of Health, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 361-951, Republic of Korea.
| | - Hae-Ri Lee
- Division of High-risk Pathogen Research, Center for Infectious Diseases, National Institute of Health, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 361-951, Republic of Korea.
| | - Jeyoun Jang
- Division of High-risk Pathogen Research, Center for Infectious Diseases, National Institute of Health, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 361-951, Republic of Korea.
| | - Yu-Ri Kim
- Division of High-risk Pathogen Research, Center for Infectious Diseases, National Institute of Health, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 361-951, Republic of Korea.
| | - Jeong-Hoon Chun
- Division of High-risk Pathogen Research, Center for Infectious Diseases, National Institute of Health, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 361-951, Republic of Korea.
| | - Seong Kug Eo
- College of Veterinary medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju, 561-765, Republic of Korea.
| | - Tae Sung Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea.
| | - Gi-Eun Rhie
- Division of High-risk Pathogen Research, Center for Infectious Diseases, National Institute of Health, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 361-951, Republic of Korea.
| |
Collapse
|
8
|
Multiple roles of Myd88 in the immune response to the plague F1-V vaccine and in protection against an aerosol challenge of Yersinia pestis CO92 in mice. J Immunol Res 2014; 2014:341820. [PMID: 24995344 PMCID: PMC4065692 DOI: 10.1155/2014/341820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/23/2014] [Accepted: 05/03/2014] [Indexed: 01/08/2023] Open
Abstract
The current candidate vaccine against Yersinia pestis infection consists of two subunit proteins: the capsule protein or F1 protein and the low calcium response V protein or V-antigen. Little is known of the recognition of the vaccine by the host's innate immune system and how it affects the acquired immune response to the vaccine. Thus, we vaccinated Toll-like receptor (Tlr) 2, 4, and 2/4-double deficient, as well as signal adaptor protein Myd88-deficient mice. We found that Tlr4 and Myd88 appeared to be required for an optimal immune response to the F1-V vaccine but not Tlr2 when compared to wild-type mice. However, there was a difference between the requirement for Tlr4 and MyD88 in vaccinated animals. When F1-V vaccinated Tlr4 mutant (lipopolysaccharide tolerant) and Myd88-deficient mice were challenged by aerosol with Y. pestis CO92, all but one Tlr4 mutant mice survived the challenge, but no vaccinated Myd88-deficient mice survived the challenge. Spleens from these latter nonsurviving mice showed that Y. pestis was not cleared from the infected mice. Our results suggest that MyD88 appears to be important for both an optimal immune response to F1-V and in protection against a lethal challenge of Y. pestis CO92 in F1-V vaccinated mice.
Collapse
|
9
|
Comparative analysis of Bacillus subtilis spores and monophosphoryl lipid A as adjuvants of protein-based mycobacterium tuberculosis-based vaccines: partial requirement for interleukin-17a for induction of protective immunity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:501-8. [PMID: 24477855 DOI: 10.1128/cvi.00622-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The development of adjuvants for vaccines has become an important area of research as the number of protein-based vaccines against infectious pathogens increases. Currently, there are a number of adjuvant-based Mycobacterium tuberculosis vaccines in clinical trials that have shown efficacy in animal models. Despite these novel adjuvants, there is still a need to design new and more versatile adjuvants that have minimal adverse side effects but produce robust long-lasting adaptive immune responses. To this end, we hypothesized that Bacillus subtilis spores may provide the appropriate innate signals that are required to generate such vaccine-mediated responses, which would be sufficient to reduce the mycobacterial burden after infection with M. tuberculosis. In addition, we compared the response generated by B. subtilis spores to that generated by monophosphoryl lipid A (MPL), which has been used extensively to test tuberculosis vaccines. The well-characterized, 6-kDa early secretory antigenic target of M. tuberculosis (ESAT-6; Rv3875) was used as a test antigen to determine the T cell activation potential of each adjuvant. Inoculated into mice, B. subtilis spores induced a strong proinflammatory response and Th1 immunity, similar to MPL; however, unlike MPL formulated with dimethyldioctadecylammonium (DDA) bromide, it failed to induce significant levels of interleukin-17A (IL-17A) and was unable to significantly reduce the mycobacterial burden after pulmonary infection with M. tuberculosis. Further analysis of the activity of MPL-DDA suggested that IL-17A was required for protective immunity. Taken together, the data emphasize the requirement for a network of cytokines that are essential for protective immunity.
Collapse
|
10
|
Bezerra da Silva RA, Nelson-Filho P, Lucisano MP, De Rossi A, de Queiroz AM, Bezerra da Silva LA. MyD88 knockout mice develop initial enlarged periapical lesions with increased numbers of neutrophils. Int Endod J 2013; 47:675-86. [DOI: 10.1111/iej.12204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/10/2013] [Indexed: 12/13/2022]
Affiliation(s)
- R. A. Bezerra da Silva
- Department of Pediatric Dentistry; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - P. Nelson-Filho
- Department of Pediatric Dentistry; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - M. P. Lucisano
- Department of Pediatric Dentistry; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - A. De Rossi
- Department of Pediatric Dentistry; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - A. M. de Queiroz
- Department of Pediatric Dentistry; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - L. A. Bezerra da Silva
- Department of Pediatric Dentistry; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| |
Collapse
|
11
|
Alaish SM, Smith AD, Timmons J, Greenspon J, Eyvazzadeh D, Murphy E, Shea-Donahue T, Cirimotich S, Mongodin E, Zhao A, Fasano A, Nataro JP, Cross AS. Gut microbiota, tight junction protein expression, intestinal resistance, bacterial translocation and mortality following cholestasis depend on the genetic background of the host. Gut Microbes 2013; 4:292-305. [PMID: 23652772 PMCID: PMC3744514 DOI: 10.4161/gmic.24706] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Failure of the intestinal barrier is a characteristic feature of cholestasis. We have previously observed higher mortality in C57BL/6J compared with A/J mice following common bile duct ligation (CBDL). We hypothesized the alteration in gut barrier function following cholestasis would vary by genetic background. Following one week of CBDL, jejunal TEER was significantly reduced in each ligated mouse compared with their sham counterparts; moreover, jejunal TEER was significantly lower in both sham and ligated C57BL/6J compared with sham and ligated A/J mice, respectively. Bacterial translocation to mesenteric lymph nodes was significantly increased in C57BL/6J mice vs. A/J mice. Four of 15 C57BL/6J mice were bacteremic; whereas, none of the 17 A/J mice were. Jejunal IFN-γ mRNA expression was significantly elevated in C57BL/6J compared with A/J mice. Western blot analysis demonstrated a significant decrease in occludin protein expression in C57BL/6J compared with A/J mice following both sham operation and CBDL. Only C57BL/6J mice demonstrated a marked decrease in ZO-1 protein expression following CBDL compared with shams. Pyrosequencing of the 16S rRNA gene in fecal samples showed a dysbiosis only in C57BL/6J mice following CBDL when compared with shams. This study provides evidence of strain differences in gut microbiota, tight junction protein expression, intestinal resistance and bacterial translocation which supports the notion of a genetic predisposition to exaggerated injury following cholestasis.
Collapse
Affiliation(s)
- Samuel M. Alaish
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA,Correspondence to: Samuel M. Alaish,
| | - Alexis D. Smith
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA
| | - Jennifer Timmons
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA
| | - Jose Greenspon
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA
| | - Daniel Eyvazzadeh
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA
| | - Ebony Murphy
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA
| | - Terez Shea-Donahue
- Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| | - Shana Cirimotich
- Institute for Genome Sciences; University of Maryland School of Medicine; Baltimore, MD USA
| | - Emmanuel Mongodin
- Institute for Genome Sciences; University of Maryland School of Medicine; Baltimore, MD USA
| | - Aiping Zhao
- Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| | - Alessio Fasano
- Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA,Department of Pediatrics; University of Maryland School of Medicine; Baltimore, MD USA
| | - James P. Nataro
- Department of Pediatrics; University of Virginia School of Medicine; Charlottesville, VA USA
| | - Alan S Cross
- Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| |
Collapse
|
12
|
Jenkins SA, Xu Y. Characterization of Bacillus anthracis persistence in vivo. PLoS One 2013; 8:e66177. [PMID: 23750280 PMCID: PMC3672131 DOI: 10.1371/journal.pone.0066177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 05/07/2013] [Indexed: 02/07/2023] Open
Abstract
Pulmonary exposure to Bacillus anthracis spores initiates inhalational anthrax, a life-threatening infection. It is known that dormant spores can be recovered from the lungs of infected animals months after the initial spore exposure. Consequently, a 60-day course antibiotic treatment is recommended for exposed individuals. However, there has been little information regarding details or mechanisms of spore persistence in vivo. In this study, we investigated spore persistence in a mouse model. The results indicated that weeks after intranasal inoculation with B. anthracis spores, substantial amounts of spores could be recovered from the mouse lung. Moreover, spores of B. anthracis were significantly better at persisting in the lung than spores of a non-pathogenic Bacillus subtilis strain. The majority of B. anthracis spores in the lung were tightly associated with the lung tissue, as they could not be readily removed by lavage. Immunofluorescence staining of lung sections showed that spores associated with the alveolar and airway epithelium. Confocal analysis indicated that some of the spores were inside epithelial cells. This was further confirmed by differential immunofluorescence staining of lung cells harvested from the infected lungs, suggesting that association with lung epithelial cells may provide an advantage to spore persistence in the lung. There was no or very mild inflammation in the infected lungs. Furthermore, spores were present in the lung tissue as single spores rather than in clusters. We also showed that the anthrax toxins did not play a role in persistence. Together, the results suggest that B. anthracis spores have special properties that promote their persistence in the lung, and that there may be multiple mechanisms contributing to spore persistence.
Collapse
Affiliation(s)
- Sarah A. Jenkins
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Yi Xu
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
13
|
Kandadi MR, Frankel AE, Ren J. Toll-like receptor 4 knockout protects against anthrax lethal toxin-induced cardiac contractile dysfunction: role of autophagy. Br J Pharmacol 2013; 167:612-26. [PMID: 22612289 PMCID: PMC3449265 DOI: 10.1111/j.1476-5381.2012.02040.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Anthrax lethal toxin (LeTx) is known to induce circulatory shock and death, although the underlying mechanisms have not been elucidated. This study was designed to evaluate the role of toll-like receptor 4 (TLR4) in anthrax lethal toxin-induced cardiac contractile dysfunction. EXPERIMENTAL APPROACH Wild-type (WT) and TLR4 knockout (TLR⁻/⁻) mice were challenged with lethal toxin (2 µg·g⁻¹, i.p.), and cardiac function was assessed 18 h later using echocardiography and edge detection. Small interfering RNA (siRNA) was employed to knockdown TLR4 receptor or class III PI3K in H9C2 myoblasts. GFP-LC3 puncta was used to assess autophagosome formation. Western blot analysis was performed to evaluate autophagy (LC3, Becline-1, Agt5 and Agt7) and endoplasmic reticulum (ER) stress (BiP, eIF2α and calreticulin). KEY RESULTS In WT mice, lethal toxin exposure induced cardiac contractile dysfunction, as evidenced by reduced fractional shortening, peak shortening, maximal velocity of shortening/re-lengthening, prolonged re-lengthening duration and intracellular Ca²⁺ derangement. These effects were significantly attenuated or absent in the TLR4 knockout mice. In addition, lethal toxin elicited autophagy in the absence of change in ER stress. Knockdown of TLR4 or class III PI3 kinase using siRNA but not the autophagy inhibitor 3-methyladenine significantly attenuated or inhibited lethal toxin-induced autophagy in H9C2 cells. CONCLUSION AND IMPLICATIONS Our results suggest that TLR4 may be pivotal in mediating the lethal cardiac toxicity induced by anthrax possibly through induction of autophagy. These findings suggest that compounds that negatively modulate TLR4 signalling and autophagy could be used to treat anthrax infection-induced cardiovascular complications.
Collapse
Affiliation(s)
- Machender R Kandadi
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, College of Health Sciences, Laramie, WY, USA
| | | | | |
Collapse
|
14
|
Bacillus anthracis factors for phagosomal escape. Toxins (Basel) 2012; 4:536-53. [PMID: 22852067 PMCID: PMC3407891 DOI: 10.3390/toxins4070536] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 06/21/2012] [Accepted: 07/02/2012] [Indexed: 12/27/2022] Open
Abstract
The mechanism of phagosome escape by intracellular pathogens is an important step in the infectious cycle. During the establishment of anthrax, Bacillus anthracis undergoes a transient intracellular phase in which spores are engulfed by local phagocytes. Spores germinate inside phagosomes and grow to vegetative bacilli, which emerge from their resident intracellular compartments, replicate and eventually exit from the plasma membrane. During germination, B. anthracis secretes multiple factors that can help its resistance to the phagocytes. Here the possible role of B. anthracis toxins, phospholipases, antioxidant enzymes and capsules in the phagosomal escape and survival, is analyzed and compared with that of factors of other microbial pathogens involved in the same type of process.
Collapse
|
15
|
Okugawa S, Moayeri M, Pomerantsev AP, Sastalla I, Crown D, Gupta PK, Leppla SH. Lipoprotein biosynthesis by prolipoprotein diacylglyceryl transferase is required for efficient spore germination and full virulence of Bacillus anthracis. Mol Microbiol 2012; 83:96-109. [PMID: 22103323 PMCID: PMC3245379 DOI: 10.1111/j.1365-2958.2011.07915.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial lipoproteins play a crucial role in virulence in some gram-positive bacteria. However, the role of lipoprotein biosynthesis in Bacillus anthracis is unknown. We created a B. anthracis mutant strain altered in lipoproteins by deleting the lgt gene encoding the enzyme prolipoprotein diacylglyceryl transferase, which attaches the lipid anchor to prolipoproteins. (14)C-palmitate labelling confirmed that the mutant strain lacked lipoproteins, and hydrocarbon partitioning showed it to have decreased surface hydrophobicity. The anthrax toxin proteins were secreted from the mutant strain at nearly the same levels as from the wild-type strain. The TLR2-dependent TNF-α response of macrophages to heat-killed lgt mutant bacteria was reduced. Spores of the lgt mutant germinated inefficiently in vitro and in mouse skin. As a result, in a murine subcutaneous infection model, lgt mutant spores had markedly attenuated virulence. In contrast, vegetative cells of the lgt mutant were as virulent as those of the wild-type strain. Thus, lipoprotein biosynthesis in B. anthracis is required for full virulence in a murine infection model.
Collapse
Affiliation(s)
- Shu Okugawa
- Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Terra JK, France B, Cote CK, Jenkins A, Bozue JA, Welkos SL, Bhargava R, Ho CL, Mehrabian M, Pan C, Lusis AJ, Davis RC, LeVine SM, Bradley KA. Allelic variation on murine chromosome 11 modifies host inflammatory responses and resistance to Bacillus anthracis. PLoS Pathog 2011; 7:e1002469. [PMID: 22241984 PMCID: PMC3248472 DOI: 10.1371/journal.ppat.1002469] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/16/2011] [Indexed: 01/23/2023] Open
Abstract
Anthrax is a potentially fatal disease resulting from infection with Bacillus anthracis. The outcome of infection is influenced by pathogen-encoded virulence factors such as lethal toxin (LT), as well as by genetic variation within the host. To identify host genes controlling susceptibility to anthrax, a library of congenic mice consisting of strains with homozygous chromosomal segments from the LT-responsive CAST/Ei strain introgressed on a LT-resistant C57BL/6 (B6) background was screened for response to LT. Three congenic strains containing CAST/Ei regions of chromosome 11 were identified that displayed a rapid inflammatory response to LT similar to, but more severe than that driven by a LT-responsive allele of the inflammasome constituent NRLP1B. Importantly, increased response to LT in congenic mice correlated with greater resistance to infection by the Sterne strain of B. anthracis. The genomic region controlling the inflammatory response to LT was mapped to 66.36–74.67 Mb on chromosome 11, a region that encodes the LT-responsive CAST/Ei allele of Nlrp1b. However, known downstream effects of NLRP1B activation, including macrophage pyroptosis, cytokine release, and leukocyte infiltration could not fully explain the response to LT or the resistance to B. anthracis Sterne in congenic mice. Further, the exacerbated response in congenic mice is inherited in a recessive manner while the Nlrp1b-mediated response to LT is dominant. Finally, congenic mice displayed increased responsiveness in a model of sepsis compared with B6 mice. In total, these data suggest that allelic variation of one or more chromosome 11 genes in addition to Nlrp1b controls the severity of host response to multiple inflammatory stimuli and contributes to resistance to B. anthracis Sterne. Expression quantitative trait locus analysis revealed 25 genes within this region as high priority candidates for contributing to the host response to LT. We show that genetic variation within an 8.3 Mb region on mouse chromosome 11 controls host response to anthrax lethal toxin (LT) and resistance to infection by the Sterne strain of Bacillus anthracis. Specifically, congenic C57BL/6 mice in which this region of chromosome 11 is derived from a genetically divergent CAST/Ei strain presented with a rapid and strong innate immune response to LT and displayed increased survival following infection with Sterne spores. CAST/Ei chromosome 11 encodes a dominant LT-responsive allele of Nlrp1b that may partially account for the severe response to LT. However, the strength of this response was attenuated in mice with only one copy of chromosome 11 derived from CAST/Ei indicating the existence of a recessive modifier of the inflammatory response to LT. In addition, congenic mice displayed a pronounced immune response using an experimental model of sepsis, indicating that one or more genes within the chromosome 11 region control host response to multiple inflammatory stimuli. Analyzing the influence of allelic variation on gene expression identified 25 genes as candidates for controlling these responses. In summary, we report a genetic model to study inflammatory responses beneficial to the host during anthrax.
Collapse
Affiliation(s)
- Jill K Terra
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Novosad BD, Astley RA, Callegan MC. Role of Toll-like receptor (TLR) 2 in experimental Bacillus cereus endophthalmitis. PLoS One 2011; 6:e28619. [PMID: 22163046 PMCID: PMC3232239 DOI: 10.1371/journal.pone.0028619] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/11/2011] [Indexed: 12/24/2022] Open
Abstract
Bacillus cereus causes a uniquely rapid and blinding intraocular infection, endophthalmitis. B. cereus replicates in the eye, synthesizes numerous toxins, and incites explosive intraocular inflammation. The mechanisms involved in the rapid and explosive intraocular immune response have not been addressed. Because Toll-like receptors (TLRs) are integral to the initial recognition of organisms during infection, we hypothesized that the uniquely explosive immune response observed during B. cereus endophthalmitis is directly influenced by the presence of TLR2, a known gram-positive pathogen recognition receptor. To address this hypothesis, we compared the courses of experimental B. cereus endophthalmitis in wild type C57BL/6J mice to that of age-matched homozygous TLR2(-/-) mice. Output parameters included analysis of bacterial growth, inflammatory cell (PMN) infiltration, cytokine/chemokine kinetics, retinal function testing, and histology, with N≥4 eyes/assay/time point/mouse strain. B. cereus grew at similar rates to10(8) CFU/eye by 12 h, regardless of the mouse strain. Retinal function was preserved to a greater degree in infected TLR2(-/-) eyes compared to that of infected wild type eyes, but infected eyes of both mouse strains lost significant function. Retinal architecture was preserved in infected TLR2(-/-) eyes, with limited retinal and vitreal cellular infiltration compared to that of infected wild type eyes. Ocular myeloperoxidase activities corroborated these results. In general, TNFα, IFNγ, IL6, and KC were detected in greater concentrations in infected wild type eyes than in infected TLR2(-/-) eyes. The absence of TLR2 resulted in decreased intraocular proinflammatory cytokine/chemokine levels and altered recruitment of inflammatory cells into the eye, resulting in less intraocular inflammation and preservation of retinal architecture, and a slightly greater degree of retinal function. These results demonstrate TLR2 is an important component of the initial ocular response to B. cereus endophthalmitis.
Collapse
Affiliation(s)
- Billy D. Novosad
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Roger A. Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Michelle C. Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Dean A. McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
18
|
Chitlaru T, Altboum Z, Reuveny S, Shafferman A. Progress and novel strategies in vaccine development and treatment of anthrax. Immunol Rev 2011; 239:221-36. [PMID: 21198675 DOI: 10.1111/j.1600-065x.2010.00969.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lethal anthrax disease is caused by spores of the gram-positive Bacillus anthracis, a member of the cereus group of bacilli. Although the disease is very rare in the Western world, development of anthrax countermeasures gains increasing attention due to the potential use of B. anthracis spores as a bio-terror weapon. Protective antigen (PA), the non-toxic subunit of the bacterial secreted exotoxin, fulfills the role of recognizing a specific receptor and mediating the entry of the toxin into the host target cells. PA elicits a protective immune response and represents the basis for all current anthrax vaccines. Anti-PA neutralizing antibodies are useful correlates for protection and for vaccine efficacy evaluation. Post exposure anti-toxemic and anti-bacteremic prophylactic treatment of anthrax requires prolonged antibiotic administration. Shorter efficient postexposure treatments may require active or passive immunization, in addition to antibiotics. Although anthrax is acknowledged as a toxinogenic disease, additional factors, other than the bacterial toxin, may be involved in the virulence of B. anthracis and may be needed for the long-lasting protection conferred by PA immunization. The search for such novel factors is the focus of several high throughput genomic and proteomic studies that are already leading to identification of novel targets for therapeutics, for vaccine candidates, as well as biomarkers for detection and diagnosis.
Collapse
Affiliation(s)
- Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | | | | |
Collapse
|
19
|
MyD88-dependent signaling protects against anthrax lethal toxin-induced impairment of intestinal barrier function. Infect Immun 2010; 79:118-24. [PMID: 20974827 DOI: 10.1128/iai.00963-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
MyD88-deficient mice were previously shown to have increased susceptibility to Bacillus anthracis infection relative to wild-type animals. To determine the mechanism by which MyD88 protects against B. anthracis infection, knockout mice were challenged with nonencapsulated, toxigenic B. anthracis or with anthrax toxins. MyD88-deficient mice had increased susceptibility to B. anthracis and anthrax lethal toxin but not to edema toxin. Lethal toxin alone induced marked multifocal intestinal ulcers in the knockout animals, compromising the intestinal epithelial barrier. The resulting enteric bacterial leakage in the knockout animals led to peritonitis and septicemia. Focal ulcers and erosion were also found in MyD88-heterozygous control mice but with far lower incidence and severity. B. anthracis infection also induced a similar enteric bacterial septicemia in MyD88-deficient mice but not in heterozygous controls. We show that lethal toxin and B. anthracis challenge induce bacteremia as a result of intestinal damage in MyD88-deficient mice. These results suggest that loss of the intestinal epithelial barrier and enteric bacterial septicemia may contribute to sensitizing MyD88-deficient mice to B. anthracis and that MyD88 plays a protective role against lethal toxin-induced impairment of intestinal barrier.
Collapse
|
20
|
CD14-Mac-1 interactions in Bacillus anthracis spore internalization by macrophages. Proc Natl Acad Sci U S A 2009; 106:13957-62. [PMID: 19666536 DOI: 10.1073/pnas.0902392106] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anthrax, a potentially lethal disease of animals and humans, is caused by the Gram-positive spore-forming bacterium Bacillus anthracis. The outermost exosporium layer of B. anthracis spores contains an external hair-like nap formed by the glycoprotein BclA. Recognition of BclA by the integrin Mac-1 promotes spore uptake by professional phagocytes, resulting in the carriage of spores to sites of spore germination and bacterial growth in distant lymphoid organs. We show that CD14 binds to rhamnose residues of BclA and acts as a coreceptor for spore binding by Mac-1. In this process, CD14 induces signals involving TLR2 and PI3k that promote inside-out activation of Mac-1, thereby enhancing spore internalization by macrophages. As observed with mice lacking Mac-1, CD14(-/-) mice are also more resistant than wild-type mice to infection by B. anthracis spores. Additionally, after B. anthracis spore challenge of CD14(-/-) mice, interference with the CD14-mediated signaling pathways results in increased mortality. Our results show that the binding and uptake of B. anthracis spores by phagocytic cells is a dynamic process and involves multiple receptors and signaling pathways.
Collapse
|
21
|
Nod1/Nod2-mediated recognition plays a critical role in induction of adaptive immunity to anthrax after aerosol exposure. Infect Immun 2009; 77:4529-37. [PMID: 19620350 DOI: 10.1128/iai.00563-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptors and Nod-like receptors (NLR) play an important role in sensing invading microorganisms for pathogen clearance and eliciting adaptive immunity for protection against rechallenge. Nod1 and Nod2, members of the NLR family, are capable of detecting bacterial peptidoglycan motifs in the host cytosol for triggering proinflammatory cytokine production. In the current study, we sought to determine if Nod1/Nod2 are involved in sensing Bacillus anthracis infection and eliciting protective immune responses. Using mice deficient in both Nod1 and Nod2 proteins, we showed that Nod1/Nod2 are involved in detecting B. anthracis for production of tumor necrosis factor alpha, interleukin-1 alpha (IL-1 alpha), IL-1 beta, CCL5, IL-6, and KC. Proinflammatory responses were higher when cells were exposed to viable spores than when they were exposed to irradiated spores, indicating that recognition of vegetative bacilli through Nod1/Nod2 is significant. We also identify a critical role for Nod1/Nod2 in priming responses after B. anthracis aerosol exposure, as mice deficient in Nod1/Nod2 were impaired in their ability to mount an anamnestic antibody response and were more susceptible to secondary lethal challenge than wild-type mice.
Collapse
|
22
|
Weiss S, Levy H, Fisher M, Kobiler D, Altboum Z. Involvement of TLR2 in innate response to Bacillus anthracis infection. Innate Immun 2009; 15:43-51. [DOI: 10.1177/1753425908100379] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The involvement of TLR2 receptor in the innate response to infection with Bacillus anthracis was investigated. We studied the response to virulent or attenuated Vollum strains in either in vitro assays using macrophage cultures, or in an in vivo model comparing the sensitivity of Syrian hamster cells (expressing normal TLR2) to Chinese hamster cells (lacking functional TLR2) to infection by the various B. anthracis strains. Phagocytosis experiments with murine cell cultures or primary macrophages from both hamster strains, using virulent or attenuated Tox+Cap -, Tox-Cap+ or Tox-Cap- spores indicated that the secretion of TNF-α was induced by all the bacterial spores and purified spore antigens. In contrast, capsular antigens induce secretion of TNF-α only by Syrian hamster macrophages indicating the involvement of a functional TLR2 in macrophage activation. Challenge experiments with both hamster strains by intranasal spore inoculation, indicated that, while both strains are equally sensitive to infection with the virulent strain, the Chinese hamster demonstrated a higher sensitivity to infection with the toxinogenic or encapsulated strains. In conclusion, our findings imply that TLR2 has an important role in the attempt of the innate immunity to control B. anthracis infection, although TNF-α secretion was found to be mediated by both TLR2-dependent and TLR2-independent pathways.
Collapse
Affiliation(s)
- Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel,
| | - Haim Levy
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Morly Fisher
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - David Kobiler
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Zeev Altboum
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
23
|
Antimicrobial effects of interferon-inducible CXC chemokines against Bacillus anthracis spores and bacilli. Infect Immun 2009; 77:1664-78. [PMID: 19179419 DOI: 10.1128/iai.01208-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Based on previous studies showing that host chemokines exert antimicrobial activities against bacteria, we sought to determine whether the interferon-inducible Glu-Leu-Arg-negative CXC chemokines CXCL9, CXCL10, and CXCL11 exhibit antimicrobial activities against Bacillus anthracis. In vitro analysis demonstrated that all three CXC chemokines exerted direct antimicrobial effects against B. anthracis spores and bacilli including marked reductions in spore and bacillus viability as determined using a fluorometric assay of bacterial viability and CFU determinations. Electron microscopy studies revealed that CXCL10-treated spores failed to undergo germination as judged by an absence of cytological changes in spore structure that occur during the process of germination. Immunogold labeling of CXCL10-treated spores demonstrated that the chemokine was located internal to the exosporium in association primarily with the spore coat and its interface with the cortex. To begin examining the potential biological relevance of chemokine-mediated antimicrobial activity, we used a murine model of inhalational anthrax. Upon spore challenge, the lungs of C57BL/6 mice (resistant to inhalational B. anthracis infection) had significantly higher levels of CXCL9, CXCL10, and CXCL11 than did the lungs of A/J mice (highly susceptible to infection). Increased CXC chemokine levels were associated with significantly reduced levels of spore germination within the lungs as determined by in vivo imaging. Taken together, our data demonstrate a novel antimicrobial role for host chemokines against B. anthracis that provides unique insight into host defense against inhalational anthrax; these data also support the notion for an innovative approach in treating B. anthracis infection as well as infections caused by other spore-forming organisms.
Collapse
|
24
|
Frankel AE, Kuo SR, Dostal D, Watson L, Duesbery NS, Cheng CP, Cheng HJ, Leppla SH. Pathophysiology of anthrax. FRONT BIOSCI-LANDMRK 2009; 14:4516-24. [PMID: 19273366 PMCID: PMC4109055 DOI: 10.2741/3544] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Infection by Bacillus anthracis in animals and humans results from accidental or intentional exposure, by oral, cutaneous or pulmonary routes, to spores, which are normally present in the soil. Treatment includes administration of antibiotics, vaccination or treatment with antibody to the toxin. A better understanding of the molecular basis of the processes involved in the pathogenesis of anthrax namely, spore germination in macrophages and biological effects of the secreted toxins on heart and blood vessels will lead to improved management of infected animals and patients. Controlling germination will be feasible by inhibiting macrophage paralysis and cell death. On the other hand, the control of terminal hypotension might be achieved by inhibition of cardiomyocyte mitogen-activated protein kinase and stimulation of vessel cAMP.
Collapse
|
25
|
Hahn AC, Lyons CR, Lipscomb MF. Effect of Bacillus anthracis virulence factors on human dendritic cell activation. Hum Immunol 2008; 69:552-61. [PMID: 18662733 PMCID: PMC2664623 DOI: 10.1016/j.humimm.2008.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 06/13/2008] [Accepted: 06/24/2008] [Indexed: 12/19/2022]
Abstract
Bacillus anthracis possesses three primary virulence factors: capsule, lethal toxin (LT), and edema toxin (ET). Dendritic cells (DCs) are critical to innate and acquired immunity and represent potential targets for these factors. We examined the ability of B. anthracis spores and bacilli to stimulate human monocyte-derived DC (MDDC), primary myeloid DC (mDC), and plasmacytoid DC (pDC) cytokine secretion. Exposure of MDDCs and mDCs to spores or vegetative bacilli of the genetically complete strain UT500 induced significantly increased cytokine secretion. Spores lacking genes required for capsule biosynthesis stimulated significantly higher cytokine secretion than UT500 spores from mDCs, but not MDDCs. In contrast, bacilli lacking capsule stimulated significantly higher cytokine secretion than UT500 bacilli in both MDDCs and mDCs. Spores or bacilli lacking both LT and ET stimulated significantly higher cytokine secretion than UT500 spores or bacilli, respectively, in both mDCs and MDDCs. pDCs exposed to spores or bacilli did not produce significant amounts of cytokines even when virulence factors were absent. In conclusion, B. anthracis employs toxins as well as capsule to inhibit human MDDC and mDC cytokine secretion, whereas human pDCs respond poorly even when capsule or both toxins are absent.
Collapse
Affiliation(s)
- Andrew C. Hahn
- Center for Infectious Disease and Immunity, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - C. Rick Lyons
- Center for Infectious Disease and Immunity, University of New Mexico Health Science Center, Albuquerque, NM, USA
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Mary F. Lipscomb
- Center for Infectious Disease and Immunity, University of New Mexico Health Science Center, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
26
|
High-throughput, single-cell analysis of macrophage interactions with fluorescently labeled Bacillus anthracis spores. Appl Environ Microbiol 2008; 74:5201-10. [PMID: 18552183 DOI: 10.1128/aem.02890-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The engulfment of Bacillus anthracis spores by macrophages is an important step in the pathogenesis of inhalational anthrax. However, from a quantitative standpoint, the magnitude to which macrophages interact with and engulf spores remains poorly understood, in part due to inherent limitations associated with commonly used assays. To analyze phagocytosis of spores by RAW264.7 macrophage-like cells in a high-throughput, nonsubjective manner, we labeled B. anthracis Sterne 7702 spores prior to infection with an Alexa Fluor 488 amine-reactive dye in a manner that did not alter their germination, growth kinetics, and heat resistance. Using flow cytometry, large numbers of cells exposed to labeled spores were screened to concurrently discriminate infected from uninfected cells and surface-associated from internalized spores. These experiments revealed that spore uptake was not uniform, but instead, highly heterogeneous and characterized by subpopulations of infected and uninfected cells, as well as considerable variation in the number of spores associated with individual cells. Flow cytometry analysis of infections demonstrated that spore uptake was independent of the presence or absence of fetal bovine serum, a germinant that, while routinely used in vitro, complicates the interpretation of the outcome of infections. Two commonly used macrophage cell lines, RAW264.7 and J774A.1 cells, were compared, revealing significant disparity between these two models in the rates of phagocytosis of labeled spores. These studies provide the experimental framework for investigating mechanisms of spore phagocytosis, as well as quantitatively evaluating strategies for interfering with macrophage binding and uptake of spores.
Collapse
|
27
|
Kang TJ, Basu S, Zhang L, Thomas KE, Vogel SN, Baillie L, Cross AS. Bacillus anthracis spores and lethal toxin induce IL-1beta via functionally distinct signaling pathways. Eur J Immunol 2008; 38:1574-84. [PMID: 18493980 PMCID: PMC3681412 DOI: 10.1002/eji.200838141] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Previous reports suggested that lethal toxin (LT)-induced caspase-1 activity and/or IL-1beta accounted for Bacillus anthracis (BA) infection lethality. In contrast, we now report that caspase-1-mediated IL-1beta expression in response to BA spores is required for anti-BA host defenses. Caspase-1(-/-) and IL-1beta(-/-) mice are more susceptible than wild-type (WT) mice to lethal BA infection, are less able to kill BA both in vivo and in vitro, and addition of rIL-1beta to macrophages from these mice restored killing in vitro. Non-germinating BA spores induced caspase-1 activity, IL-1beta and nitric oxide, by which BA are killed in WT but not in caspase-1(-/-) mice, suggesting that the spore itself stimulated inflammatory responses. While spores induced IL-1beta in LT-susceptible and -resistant macrophages, LT induced IL-1beta only in LT-susceptible macrophages. Cooperation between MyD88-dependent and -independent signaling pathways was required for spore-induced, but not LT-induced, IL-1beta. While both spores and LT induced caspase-1 activity and IL-1beta, LT did not induce IL-1beta mRNA, and spores did not induce cell death. Thus different components of the same bacterium each induce IL-1beta by distinct signaling pathways. Whereas the spore-induced IL-1beta limits BA infection, LT-induced IL-1beta enables BA to escape host defenses.
Collapse
Affiliation(s)
- Tae Jin Kang
- Center for Vaccine Development, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Subhendu Basu
- Center for Vaccine Development, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Lei Zhang
- Center for Vaccine Development, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Karen E. Thomas
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Les Baillie
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, USA
| | - Alan S. Cross
- Center for Vaccine Development, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
28
|
In vivo efficacy of a phosphodiester TLR-9 aptamer and its beneficial effect in a pulmonary anthrax infection model. Cell Immunol 2008; 251:78-85. [PMID: 18495099 DOI: 10.1016/j.cellimm.2008.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Revised: 04/02/2008] [Accepted: 04/04/2008] [Indexed: 11/21/2022]
Abstract
Immunostimulatory oligonucleotide (ISS-ODN) used as adjuvants are commonly modified with phosphorothioate (PS). The PS backbone prevents nuclease degradation, but confers undesired side effects, including systemic cytokine release. Previously, R10-60, a phosphodiester (PO) ISS-ODN, was structurally optimized as an intracellular Toll-like receptor-9 agonist. Here intravenous, intradermal and intranasal administration of PO R10-60 elicit local or adaptive immune responses with minimal systemic effects compared to a prototypic PS ISS-ODN in mice. Furthermore, prophylactic intranasal administration of PO R10-60 significantly delayed death in mice exposed to respiratory anthrax comparable to the PS ISS-ODN. The pattern of cytokine release suggested that early IL-1beta production might contribute to this protective effect, which was replicated with recombinant IL-1beta injections during infection. Hence, the transient effects from a PO TLR-9 agonist may be beneficial for protection in a bacterial bioterrorism attack, by delaying the onset of systemic infection without the induction of a cytokine syndrome.
Collapse
|
29
|
Huang JM, La Ragione RM, Nunez A, Cutting SM. Immunostimulatory activity of Bacillus spores. ACTA ACUST UNITED AC 2008; 53:195-203. [PMID: 18430003 DOI: 10.1111/j.1574-695x.2008.00415.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacillus species, typically Bacillus subtilis, are being used as probiotics and mounting evidence indicates that Bacillus species are important for development of a robust gut-associated lymphoid system (GALT). We used a number of gut isolates of Bacillus incorporating three species, B. subtilis, Bacillus licheniformis and Bacillus flexus to evaluate the nature of interaction between spores and the GALT. In mice orally administered with spores, evidence of cell proliferation was determined in the germinal centers of Peyer's patches. Stimulation of antigen-presenting cells and T lymphocytes was also markedly enhanced. Cytokines were shown to be induced in spleens and mesenteric lymph nodes of mice including the proinflammatory cytokines, tumour necrosis factor-alpha and IL-6. We also demonstrated that vegetative cells of B. subtilis can stimulate expression of the toll-like receptor (TLR) genes for TLR2 and TLR4. However, we were able to show that spores could not stimulate either and must, by default, interact with another TLR and by this mechanism help activate innate immunity.
Collapse
Affiliation(s)
- Jen-Min Huang
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | | | | | | |
Collapse
|
30
|
Complement C3d conjugation to anthrax protective antigen promotes a rapid, sustained, and protective antibody response. PLoS One 2007; 2:e1044. [PMID: 17940608 PMCID: PMC2001179 DOI: 10.1371/journal.pone.0001044] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 09/11/2007] [Indexed: 11/19/2022] Open
Abstract
B. anthracis is the causative agent of anthrax. Pathogenesis is primarily mediated through the exotoxins lethal factor and edema factor, which bind protective antigen (PA) to gain entry into the host cell. The current anthrax vaccine (AVA, Biothrax™) consists of aluminum-adsorbed cell-free filtrates of unencapsulated B. anthracis, wherein PA is thought to be the principle target of neutralization. In this study, we evaluated the efficacy of the natural adjuvant, C3d, versus alum in eliciting an anti-PA humoral response and found that C3d conjugation to PA and emulsion in incomplete Freund's adjuvant (IFA) imparted superior protection from anthrax challenge relative to PA in IFA or PA adsorbed to alum. Relative to alum-PA, immunization of mice with C3d-PA/IFA augmented both the onset and sustained production of PA-specific antibodies, including neutralizing antibodies to the receptor-binding portion (domain 4) of PA. C3d-PA/IFA was efficacious when administered either i.p. or s.c., and in adolescent mice lacking a fully mature B cell compartment. Induction of PA-specific antibodies by C3d-PA/IFA correlated with increased efficiency of germinal center formation and plasma cell generation. Importantly, C3d-PA immunization effectively protected mice from intranasal challenge with B. anthracis spores, and was approximately 10-fold more effective than alum-PA immunization or PA/IFA based on dose challenge. These data suggest that incorporation of C3d as an adjuvant may overcome shortcomings of the currently licensed aluminum-based vaccine, and may confer protection in the early days following acute anthrax exposure.
Collapse
|
31
|
Kahl-McDonagh MM, Arenas-Gamboa AM, Ficht TA. Aerosol infection of BALB/c mice with Brucella melitensis and Brucella abortus and protective efficacy against aerosol challenge. Infect Immun 2007; 75:4923-32. [PMID: 17664263 PMCID: PMC2044518 DOI: 10.1128/iai.00451-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucellosis is a zoonotic disease with a worldwide distribution that can be transmitted via intentional or accidental aerosol exposure. In order to engineer superior vaccine strains against Brucella species for use in animals as well as in humans, the possibility of challenge infection via aerosol needs to be considered to properly evaluate vaccine efficacy. In this study, we assessed the use of an aerosol chamber to infect deep lung tissue of mice to elicit systemic infections with either Brucella abortus or B. melitensis at various doses. The results reveal that B. abortus causes a chronic infection of lung tissue in BALB/c mice and peripheral organs at low doses. In contrast, B. melitensis infection diminishes more rapidly, and higher infectious doses are required to obtain infection rates in animals similar to those of B. abortus. Whether this difference translates to severity of human infection remains to be elucidated. Despite these differences, unmarked deletion mutants BADeltaasp24 and BMDeltaasp24 consistently confer superior protection to mice against homologous and heterologous aerosol challenge infection and should be considered viable candidates as vaccine strains against brucellosis.
Collapse
Affiliation(s)
- M M Kahl-McDonagh
- Texas A&M University, Department of Pathobiology, College Station, TX 77843-4467, USA
| | | | | |
Collapse
|
32
|
Triantafilou M, Uddin A, Maher S, Charalambous N, Hamm TSC, Alsumaiti A, Triantafilou K. Anthrax toxin evades Toll-like receptor recognition, whereas its cell wall components trigger activation via TLR2/6 heterodimers. Cell Microbiol 2007; 9:2880-92. [PMID: 17651447 DOI: 10.1111/j.1462-5822.2007.01003.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacillus anthracis is a Gram-positive bacillus that is the causative agent of anthrax. The virulence of the bacillus is partly due to the production of a tripartite virulence factor: protective antigen (PA), lethal factor (LF) and edema factor (EF). Recognition of the bacillus and its toxins by the innate immune system is likely to play a key role following infection. In this study we set out to investigate whether anthrax cell wall (ACW) components as well as the lethal toxin are sensed by Toll-like receptors (TLRs). Our data suggest that ACW components as well as PA are sensed by TLR2/6 heterodimers triggering an inflammatory response. This recognition takes place on the cell surface within specialized microdomains for ACW, whereas PA seems to trigger responses intracellularly. Interestingly, LF does not trigger a pro-inflammatory response, and when combined with PA, the complex is not sensed by the innate immune system. Overall our data suggest that TLR2/6 heterodimers are responsible for sensing the ACW and PA, whereas the formation of the subsequent toxin (LF + PA) seems to evade detection by the innate immune system contributing to the virulence of the toxin.
Collapse
Affiliation(s)
- Martha Triantafilou
- Infection and Immunity Group, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Basu S, Kang TJ, Chen WH, Fenton MJ, Baillie L, Hibbs S, Cross AS. Role of Bacillus anthracis spore structures in macrophage cytokine responses. Infect Immun 2007; 75:2351-8. [PMID: 17339355 PMCID: PMC1865778 DOI: 10.1128/iai.01982-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The innate immune response of macrophages (Mphi) to spores, the environmentally acquired form of Bacillus anthracis, is poorly characterized. We therefore examined the early Mphi cytokine response to B. anthracis spores, before germination. Mphi were exposed to bacilli and spores of Sterne strain 34F2 and its congenic nongerminating mutant (DeltagerH), and cytokine expression was measured by real-time PCR and an enzyme-linked immunosorbent assay. The exosporium spore layer was retained (exo+) or removed by sonication (exo-). Spores consistently induced a strong cytokine response, with the exo- spores eliciting a two- to threefold-higher response than exo+ spores. The threshold for interleukin-1beta (IL-1beta) production by wild-type Mphi was significantly lower than that required for tumor necrosis factor alpha expression. Cytokine production was largely dependent on MyD88, suggesting Toll-like receptor involvement; however, the expression of beta interferon in MyD88-/- Mphi suggests involvement of a MyD88-independent pathway. We conclude that (i) the B. anthracis spore is not immunologically inert, (ii) the exosporium masks epitopes recognized by the Mphi, (iii) the Mphi cytokine response to B. anthracis involves multiple pattern recognition receptors and signaling pathways, and (iv) compared to other cytokines, IL-1beta is expressed at a lower spore concentration.
Collapse
Affiliation(s)
- Subhendu Basu
- Center for Vaccine Development, Department of Medicine, University of Maryland, 685 W. Baltimore Street, HSF I-480, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Wu CCN, Hayashi T, Takabayashi K, Sabet M, Smee DF, Guiney DD, Cottam HB, Carson DA. Immunotherapeutic activity of a conjugate of a Toll-like receptor 7 ligand. Proc Natl Acad Sci U S A 2007; 104:3990-5. [PMID: 17360465 PMCID: PMC1820696 DOI: 10.1073/pnas.0611624104] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The immunotherapeutic activity of Toll-like receptor (TLR) activators has been difficult to exploit because of side effects related to the release and systemic dispersion of proinflammatory cytokines. To overcome this barrier, we have synthesized a versatile TLR7 agonist, 4-[6-amino-8-hydroxy-2-(2-methoxyethoxy)purin-9-ylmethyl]benzaldehyde (UC-1V150), bearing a free aldehyde that could be coupled to many different auxiliary chemical entities through a linker molecule with a hydrazine or amino group without any loss of activity. UC-1V150 was covalently coupled to mouse serum albumin (MSA) at a 5:1 molar ratio to yield a stable molecule with a characteristically altered UV spectrum. Compared with the unconjugated TLR7 agonist, the UC-1V150/MSA was a 10- to 100-fold more potent inducer of cytokine production in vitro by mouse bone marrow-derived macrophage and human peripheral blood mononuclear cells. When administrated to the lung, the conjugate induced a prolonged local release of cytokines at levels 10-fold or more higher than those found in serum. Under the same conditions, the untethered TLR7 ligand induced quick systemic cytokine release with resultant toxicity. In addition, two pulmonary infectious disease models were investigated wherein mice were pretreated with the conjugate and then challenged with either Bacillus anthracis spores or H1N1 influenza A virus. Significant delay in mortality was observed in both disease models with UC-1V150/MSA-pretreated mice, indicating the potential usefulness of the conjugate as a localized and targeted immunotherapeutic agent.
Collapse
Affiliation(s)
| | | | - Kenji Takabayashi
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0820; and
| | - Mojgan Sabet
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0820; and
| | - Donald F. Smee
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Science, Utah State University, 5600 Old Main Hill, Logan, UT 84322-5600
| | - Donald D. Guiney
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0820; and
| | | | - Dennis A. Carson
- *The Rebecca and John Moores Cancer Center and
- To whom correspondence should be addressed at:
Department of Medicine, University of California at San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0820. E-mail:
| |
Collapse
|
35
|
Glomski IJ, Fritz JH, Keppler SJ, Balloy V, Chignard M, Mock M, Goossens PL. Murine splenocytes produce inflammatory cytokines in a MyD88-dependent response to Bacillus anthracis spores. Cell Microbiol 2007; 9:502-13. [PMID: 16978234 DOI: 10.1111/j.1462-5822.2006.00806.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacillus anthracis is a sporulating Gram-positive bacterium that causes the disease anthrax. The highly stable spore is the infectious form of the bacterium that first interacts with the prospective host, and thus the interaction between the host and spore is vital to the development of disease. We focused our study on the response of murine splenocytes to the B. anthracis spore by using paraformaldehyde-inactivated spores (FIS), a treatment that prevents germination and production of products associated with vegetative bacilli. We found that murine splenocytes produce IL-12 and IFN-gamma in response to FIS. The IL-12 was secreted by CD11b cells, which functioned to induce the production of IFN-gamma by CD49b (DX5) NK cells. The production of these cytokines by splenocytes was not dependent on TLR2, TLR4, TLR9, Nod1, or Nod2; however, it was dependent on the signalling adapter protein MyD88. Unlike splenocytes, Nod1- and Nod2-transfected HEK cells were activated by FIS. Both IL-12 and IFN-gamma secretion were inhibited by treatment with B. anthracis lethal toxin. These observations suggest that the innate immune system recognizes spores with a MyD88-dependent receptor (or receptors) and responds by secreting inflammatory cytokines, which may ultimately aid in resisting infection.
Collapse
Affiliation(s)
- Ian J Glomski
- Institut Pasteur, Unité des Toxines et Pathogénie Bactérienne, Paris, F-75015, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Tournier JN, Quesnel-Hellmann A, Cleret A, Vidal DR. Contribution of toxins to the pathogenesis of inhalational anthrax. Cell Microbiol 2007; 9:555-65. [PMID: 17223930 DOI: 10.1111/j.1462-5822.2006.00866.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Inhalational anthrax is a life-threatening infectious disease of considerable concern, especially as a potential bioterrorism agent. Progress is gradually being made towards understanding the mechanisms used by Bacillus anthracis to escape the immune system and to induce severe septicaemia associated with toxaemia and leading to death. Recent advances in fundamental research have revealed previously unsuspected roles for toxins in various cell types. We summarize here pathological data for animal models and macroscopic histological examination data from recent clinical records, which we link to the effects of toxins. We describe three major steps in infection: (i) an invasion phase in the lung, during which toxins have short-distance effects on lung phagocytes; (ii) a phase of bacillus proliferation in the mediastinal lymph nodes, with local effects of toxins; and (iii) a terminal, diffusion phase, characterized by a high blood bacterial load and by long-distance effects of toxins, leading to host death. The pathophysiology of inhalational anthrax thus involves interactions between toxins and various cell partners, throughout the course of infection.
Collapse
Affiliation(s)
- Jean-Nicolas Tournier
- Pôle interactions hôte-pathogènes, Département de biologie des agents transmissibles, CRSSA, F-38702 La Tronche cedex, France.
| | | | | | | |
Collapse
|
37
|
Lee PL, West C, Crain K, Wang L. Genetic polymorphisms and susceptibility to lung disease. J Negat Results Biomed 2006; 5:5. [PMID: 16608528 PMCID: PMC1475880 DOI: 10.1186/1477-5751-5-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 04/11/2006] [Indexed: 11/10/2022] Open
Abstract
Susceptibility to infection by bacterium such as Bacillus anthracis has a genetic basis in mice and may also have a genetic basis in humans. In the limited human cases of inhalation anthrax, studies suggest that not all individuals exposed to anthrax spores were infected, but rather, individuals with underlying lung disease, particularly asthma, sarcoidosis and tuberculosis, might be more susceptible. In this study, we determined if polymorphisms in genes important in innate immunity are associated with increased susceptibility to infectious and non-infectious lung diseases, particularly tuberculosis and sarcoidosis, respectively, and therefore might be a risk factor for inhalation anthrax. Examination of 45 non-synonymous polymorphisms in ten genes: p47phox (NCF1), p67phox (NCF2), p40phox (NCF4), p22phox (CYBA), gp91phox (CYBB), DUOX1, DUOX2, TLR2, TLR9 and alpha 1-antitrypsin (AAT) in a cohort of 95 lung disease individuals and 95 control individuals did not show an association of these polymorphisms with increased susceptibility to lung disease.
Collapse
Affiliation(s)
- Pauline L Lee
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, 10550 North Torrey Pines Road, La Jolla, 92037, USA
| | - Carol West
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, 10550 North Torrey Pines Road, La Jolla, 92037, USA
| | - Karen Crain
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, 10550 North Torrey Pines Road, La Jolla, 92037, USA
| | - Lei Wang
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, 10550 North Torrey Pines Road, La Jolla, 92037, USA
| |
Collapse
|