1
|
Poncin K, McKeand SA, Lavender H, Kurzyp K, Harrison OB, Roberti A, Melia C, Johnson E, Maiden MCJ, Greaves DR, Exley R, Tang CM. Bacteriocin-like peptides encoded by a horizontally acquired island mediate Neisseria gonorrhoeae autolysis. PLoS Biol 2025; 23:e3003001. [PMID: 39908303 PMCID: PMC11798529 DOI: 10.1371/journal.pbio.3003001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Neisseria gonorrhoeae is a human-specific pathogen that causes the important sexually transmitted infection, gonorrhoea, an inflammatory condition of the genitourinary tract. The bacterium is closely related to the meningococcus, a leading cause of bacterial meningitis. Both these invasive bacterial species undergo autolysis when in the stationary phase of growth. Autolysis is a form of programmed cell death (PCD) which is part of the life cycle of remarkably few bacteria and poses an evolutionary conundrum as altruistic death provides no obvious benefit for single-celled organisms. Here, we searched for genes present in these 2 invasive species but not in other members of the Neisseria genus. We identified a ~3.4 kb horizontally acquired region, we termed the nap island, which is largely restricted to the gonococcus and meningococcus. The nap island in the gonococcus encodes 3 cationic, bacteriocin-like peptides which have no detectable antimicrobial activity. Instead, the gonococcal Neisseria autolysis peptides (Naps) promote autolytic cell death when bacteria enter the stationary phase of growth. Furthermore, strains lacking the Naps exhibit reduced autolysis in assays of PCD. Expression of Naps is likely to be phase variable, explaining how PCD could have arisen in these important human pathogens. NapC also induces lysis of human cells, so the peptides are likely to have multiple roles during colonisation and disease. The acquisition of the nap island contributed to the emergence of PCD in the gonococcus and meningococcus and potentially to the appearance of invasive disease in Neisseria spp.
Collapse
Affiliation(s)
- Katy Poncin
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Samantha A. McKeand
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Hayley Lavender
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Kacper Kurzyp
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Odile B. Harrison
- Infectious Disease Epidemiology Unit, Nuffield Department of Population Health, Old Road Campus, University of Oxford, Oxford, United Kingdom
| | - Annabell Roberti
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Charlotte Melia
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Errin Johnson
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Martin C. J. Maiden
- Department of Biology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - David R. Greaves
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Rachel Exley
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Apicella MA, Edwards JL, Ketterer MR, Weiss DS, Zhang Y, Jen FEC, Jennings MP. The phospholipase A of Neisseria gonorrhoeae lyses eukaryotic membranes and is necessary for survival in neutrophils and cervical epithelial cells. mBio 2024; 15:e0242524. [PMID: 39324821 PMCID: PMC11481481 DOI: 10.1128/mbio.02425-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Contact-dependent hemolysins are virulence factors in a number of human pathogens, including Helicobacter pylori, Rickettsia typhi, Bartonella bacilliformis, Mycobacterium tuberculosis, entero-invasive Escherichia coli, and Shigella. Here we demonstrate that Neisseria gonorrhoeae produces an outer membrane protein, phospholipase A, that exhibits contact-dependent lytic activity on host cell membranes. This enzyme can lyse human erythrocytes over a 3-day period, whereas a phospholipase A mutant cannot. We demonstrated phospholipase A activity in the parent strain but not in two, independent phospholipase A mutants. A gene for phospholipase A, pldA (hereafter referred to as pla to avoid confusion with the gene for phospholipase D, pld), is present in all sequenced gonococcal strains. Fluid phase, hemolytic activity assays showed that 25 of 29 gonococcal strains tested had hemolytic activity greater than 50% of the positive control. In support of PLA as a gonococcal outer membrane protein, supernatants from 24-, 48-, and 72-h cultures of N. gonorrhoeae strain 1291 did not contain hemolysin activity, and a monoclonal antibody specific for gonococcal phospholipase A failed to detect the enzyme in these supernatants. The organism must be viable for lysis to occur, and the inclusion of EDTA in the media removes all activity. Our studies have shown that a phospholipase A mutant has significantly reduced survival in human neutrophils and primary human cervical epithelial cells compared to the parent gonococcal strain after 3 h of incubation. Collectively, our data demonstrate that gonococcal PLA lyses host cell membranes, which is important for intracellular survival. IMPORTANCE Intracellular survival is crucial to the success of Neisseria gonorrhoeae as a human pathogen. Multiple factors contribute to the intracellular survival of gonococci, including the ability to prohibit apoptosis of the epithelial cell the organism invades and mechanisms to evade host innate defense systems. The role of phospholipase A (PLA), an outer membrane protein, is important as it disrupts the host vacuolar and phagolysosomal membranes, preventing the effective delivery of innate immune factors that normally restrict organism growth within human cells. After cell entry, PLA disrupts the integrity of these host cell membranes, allowing the gonococcus to live free within disrupted vacuoles where it pilfers host cell nutrients that enable its survival and replication. A vaccine or drug that could neutralize PLA activity would disrupt the intracellular survival of the gonococcus.
Collapse
Affiliation(s)
- Michael A. Apicella
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Jennifer L. Edwards
- Department of Pediatrics, The Research Institute at Nationwide Children’s Hospital and The Ohio State University, Columbus, Ohio, USA
| | - Margaret R. Ketterer
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Yuan Zhang
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Freda E.-C. Jen
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Michael P. Jennings
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
3
|
Williams E, Seib KL, Fairley CK, Pollock GL, Hocking JS, McCarthy JS, Williamson DA. Neisseria gonorrhoeae vaccines: a contemporary overview. Clin Microbiol Rev 2024; 37:e0009423. [PMID: 38226640 PMCID: PMC10938898 DOI: 10.1128/cmr.00094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Neisseria gonorrhoeae infection is an important public health issue, with an annual global incidence of 87 million. N. gonorrhoeae infection causes significant morbidity and can have serious long-term impacts on reproductive and neonatal health and may rarely cause life-threatening disease. Global rates of N. gonorrhoeae infection have increased over the past 20 years. Importantly, rates of antimicrobial resistance to key antimicrobials also continue to increase, with the United States Centers for Disease Control and Prevention identifying drug-resistant N. gonorrhoeae as an urgent threat to public health. This review summarizes the current evidence for N. gonorrhoeae vaccines, including historical clinical trials, key N. gonorrhoeae vaccine preclinical studies, and studies of the impact of Neisseria meningitidis vaccines on N. gonorrhoeae infection. A comprehensive survey of potential vaccine antigens, including those identified through traditional vaccine immunogenicity approaches, as well as those identified using more contemporary reverse vaccinology approaches, are also described. Finally, the potential epidemiological impacts of a N. gonorrhoeae vaccine and research priorities for further vaccine development are described.
Collapse
Affiliation(s)
- Eloise Williams
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher K. Fairley
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Georgina L. Pollock
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jane S. Hocking
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - James S. McCarthy
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Deborah A. Williamson
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Harris-Jones TN, Pérez Medina KM, Hackett KT, Schave MA, Klimowicz AK, Schaub RE, Dillard JP. Mutation of mltG increases peptidoglycan fragment release, cell size, and antibiotic susceptibility in Neisseria gonorrhoeae. J Bacteriol 2023; 205:e0027723. [PMID: 38038461 PMCID: PMC10729727 DOI: 10.1128/jb.00277-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Neisseria gonorrhoeae is unusual in that the bacteria release larger amounts of cell wall material as they grow as compared to related bacteria, and the released cell wall fragments induce inflammation that leads to tissue damage in infected people. The study of MltG revealed the importance of this enzyme for controlling cell wall growth, cell wall fragment production, and bacterial cell size and suggests a role for MltG in a cell wall synthesis and degradation complex. The increased antibiotic sensitivities of mltG mutants suggest that an antimicrobial drug inhibiting MltG would be useful in combination therapy to restore the sensitivity of the bacteria to cell wall targeting antibiotics to which the bacteria are currently resistant.
Collapse
Affiliation(s)
- Tiffany N. Harris-Jones
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Krizia M. Pérez Medina
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kathleen T. Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Melanie A. Schave
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Amy K. Klimowicz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Harris-Jones TN, Medina KMP, Hackett KT, Schave MA, Schaub RE, Dillard JP. Mutation of mltG increases peptidoglycan fragment release, cell size, and antibiotic susceptibility in Neisseria gonorrhoeae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554517. [PMID: 37662418 PMCID: PMC10473753 DOI: 10.1101/2023.08.23.554517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Infection with the Gram-negative species Neisseria gonorrhoeae leads to inflammation that is responsible for the disease symptoms of gonococcal urethritis, cervicitis, and pelvic inflammatory disease. During growth these bacteria release significant amounts of peptidoglycan (PG) fragments which elicit inflammatory responses in the human host. To better understand the mechanisms involved in PG synthesis and breakdown in N. gonorrhoeae, we characterized the effects of mutation of mltG. MltG has been identified in other bacterial species as a terminase that stops PG strand growth by cleaving the growing glycan. Mutation of mltG in N. gonorrhoeae did not affect bacterial growth rate but resulted in increased PG turnover, more cells of large size, decreased autolysis under non-growth conditions, and increased sensitivity to antibiotics that affect PG crosslinking. An mltG mutant released greatly increased amounts of PG monomers, PG dimers, and larger oligomers. In the mltG background, mutation of either ltgA or ltgD, encoding the lytic transglycosylases responsible for PG monomer liberation, resulted in wild-type levels of PG monomer release. Bacterial two-hybrid assays identified positive interactions of MltG with synthetic penicillin-binding proteins PBP1 and PBP2 and the PG-degrading endopeptidase PBP4 (PbpG). These data are consistent with MltG acting as a terminase in N. gonorrhoeae and suggest that absence of MltG activity results in excessive PG growth and extra PG in the sacculus that must be degraded by lytic transglycosylases including LtgA and LtgD. Furthermore, absence of MltG causes a cell wall defect that is manifested as large cell size and antibiotic sensitivity.
Collapse
Affiliation(s)
- Tiffany N. Harris-Jones
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| | - Krizia M. Pérez Medina
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| | - Kathleen T. Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| | - Melanie A. Schave
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| |
Collapse
|
6
|
Man-Bovenkerk S, Schipper K, van Sorge NM, Speijer D, van der Ende A, Pannekoek Y. Neisseria meningitidis Sibling Small Regulatory RNAs Connect Metabolism with Colonization by Controlling Propionate Use. J Bacteriol 2023; 205:e0046222. [PMID: 36856428 PMCID: PMC10029713 DOI: 10.1128/jb.00462-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Neisseria meningitidis (meningococcus) colonizes the human nasopharynx, primarily as a commensal, but sporadically causing septicemia and meningitis. During colonization and invasion, it encounters different niches with specific nutrient compositions. Small noncoding RNAs (sRNAs) are used to fine-tune expression of genes, allowing adaptation to their physiological differences. We have previously characterized sRNAs (Neisseria metabolic switch regulators [NmsRs]) controlling switches between cataplerotic and anaplerotic metabolism. Here, we extend the NmsR regulon by studying methylcitrate lyase (PrpF) and propionate kinase (AckA-1) involved in the methylcitrate cycle and serine hydroxymethyltransferase (GlyA) and 3-hydroxyacid dehydrogenase (MmsB) involved in protein degradation. These proteins were previously shown to be dysregulated in a ΔnmsRs strain. Levels of transcription of target genes and NmsRs were assessed by reverse transcriptase quantitative PCR (RT-qPCR). We also used a novel gene reporter system in which the 5' untranslated region (5' UTR) of the target gene is fused to mcherry to study NmsRs-target gene interaction in the meningococcus. Under nutrient-rich conditions, NmsRs downregulate expression of PrpF and AckA-1 by direct interaction with the 5' UTR of their mRNA. Overexpression of NmsRs impaired growth under nutrient-limiting growth conditions with pyruvate and propionic acid as the only carbon sources. Our data strongly suggest that NmsRs downregulate propionate metabolism by lowering methylcitrate enzyme activity under nutrient-rich conditions. Under nutrient-poor conditions, NmsRs are downregulated, increasing propionate metabolism, resulting in higher tricarboxylic acid (TCA) activities. IMPORTANCE Neisseria meningitidis colonizes the human nasopharynx, forming a reservoir for the sporadic occurrence of epidemic invasive meningococcal disease like septicemia and meningitis. Propionic acid generated by other bacteria that coinhabit the human nasopharynx can be utilized by meningococci for replication in this environment. Here, we showed that sibling small RNAs, designated NmsRs, riboregulate propionic acid utilization by meningococci and, thus, colonization. Under conditions mimicking the nasopharyngeal environment, NmsRs are downregulated. This leads to the conversion of propionic acid to pyruvate and succinate, resulting in higher tricarboxylic acid cycle activity, allowing colonization of the nasopharynx. NmsRs link metabolic state with colonization, which is a crucial step on the trajectory to invasive meningococcal disease.
Collapse
Affiliation(s)
- Sandra Man-Bovenkerk
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Kim Schipper
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Nina M. van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam UMC, Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, The Netherlands
| | - Dave Speijer
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Yvonne Pannekoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Pérez-Ortega J, van Boxtel R, de Jonge EF, Tommassen J. Regulated Expression of lpxC Allows for Reduction of Endotoxicity in Bordetella pertussis. Int J Mol Sci 2022; 23:8027. [PMID: 35887374 PMCID: PMC9324023 DOI: 10.3390/ijms23148027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 02/05/2023] Open
Abstract
The Gram-negative bacterium Bordetella pertussis is the causative agent of a respiratory infection known as whooping cough. Previously developed whole-cell pertussis vaccines were effective, but appeared to be too reactogenic mainly due to the presence of lipopolysaccharide (LPS, also known as endotoxin) in the outer membrane (OM). Here, we investigated the possibility of reducing endotoxicity by modulating the LPS levels. The promoter of the lpxC gene, which encodes the first committed enzyme in LPS biosynthesis, was replaced by an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter. The IPTG was essential for growth, even when the construct was moved into a strain that should allow for the replacement of LPS in the outer leaflet of the OM with phospholipids by defective phospholipid transporter Mla and OM phospholipase A. LpxC depletion in the absence of IPTG resulted in morphological changes of the cells and in overproduction of outer-membrane vesicles (OMVs). The reduced amounts of LPS in whole-cell preparations and in isolated OMVs of LpxC-depleted cells resulted in lower activation of Toll-like receptor 4 in HEK-Blue reporter cells. We suggest that, besides lipid A engineering, also a reduction in LPS synthesis is an attractive strategy for the production of either whole-cell- or OMV-based vaccines, with reduced reactogenicity for B. pertussis and other Gram-negative bacteria.
Collapse
Affiliation(s)
- Jesús Pérez-Ortega
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; (J.P.-O.); (R.v.B.); (E.F.d.J.)
- Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ria van Boxtel
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; (J.P.-O.); (R.v.B.); (E.F.d.J.)
| | - Eline F. de Jonge
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; (J.P.-O.); (R.v.B.); (E.F.d.J.)
- Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jan Tommassen
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; (J.P.-O.); (R.v.B.); (E.F.d.J.)
- Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
8
|
Haque S, Swami P, Khan A. S. Typhi derived vaccines and a proposal for outer membrane vesicles (OMVs) as potential vaccine for typhoid fever. Microb Pathog 2021; 158:105082. [PMID: 34265371 DOI: 10.1016/j.micpath.2021.105082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022]
Abstract
Typhoid fever is a serious systemic infection caused by Salmonella Typhi (S. Typhi), spread by the feco-oral route and closely associated with poor food hygiene and inadequate sanitation. Nearly 93% of S. Typhi strains have acquired antibiotic resistance against most antibiotics. Vaccination is the only promising way to prevent typhoid fever. This review covers the nature and composition of S. Typhi, pathogenecity and mode of infection, epidemiology, and nature of drug resistance. Several components (Vi-polysaccharides, O-antigens, flagellar antigens, full length OMPs, and short peptides from OMPs) of S. Typhi have been utilized for vaccine design for protection against typhoid fever. Vaccine delivery systems also contribute to efficacy of the vaccines. In this study, we propose to develop S. Typhi derived OMVs as vaccine for protection against typhoid fevers.
Collapse
Affiliation(s)
- Shabirul Haque
- Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Pooja Swami
- Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Azhar Khan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal, Pradesh, India.
| |
Collapse
|
9
|
Micoli F, MacLennan CA. Outer membrane vesicle vaccines. Semin Immunol 2020; 50:101433. [PMID: 33309166 DOI: 10.1016/j.smim.2020.101433] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Outer Membrane Vesicles (OMV) have received increased attention in recent years as a vaccine platform against bacterial pathogens. OMV from Neisseria meningitidis serogroup B have been extensively explored. Following the success of the MeNZB OMV vaccine in controlling an outbreak of N. meningitidis B in New Zealand, additional research and development resulted in the licensure of the OMV-containing four-component 4CMenB vaccine, Bexsero. This provided broader protection against multiple meningococcal B strains. Advances in the field of genetic engineering have permitted further improvements in the platform resulting in increased yields, reduced endotoxicity and decoration with homologous and heterologous antigens to enhance immuno genicity and provide broader protection. The OMV vaccine platform has been extended to many other pathogens. In this review, we discuss progress in the development of the OMV vaccine delivery platform, highlighting successful applications, together with potential challenges and gaps.
Collapse
Affiliation(s)
| | - Calman A MacLennan
- Bill & Melinda Gates Foundation, 62 Buckingham Gate, London, United Kingdom; Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Bacterial outer membrane vesicles as a platform for biomedical applications: An update. J Control Release 2020; 323:253-268. [PMID: 32333919 DOI: 10.1016/j.jconrel.2020.04.031] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/02/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
Outer membrane vesicles (OMVs) are produced by Gram-negative bacteria both in vitro and in vivo. OMVs are nano-sized spherical vehicles formed by lipid bilayer membranes and contain multiple parent bacteria-derived components. Based on the presence of bacterial antigens, pathogen-associated molecular patterns (PAMPs), adhesins, various proteins and the vesicle structure, OMVs have been developed for biomedical applications as bacterial vaccines, adjuvants, cancer immunotherapy agents, drug delivery vehicles, and anti-bacteria adhesion agents. In this review, we analyze the contributions of the structure and composition of OMVs to their applications, summarize the methods used to isolate and characterize OMVs, and highlight recent progress and future perspectives of OMVs in biomedical applications.
Collapse
|
11
|
Baarda BI, Zielke RA, Le Van A, Jerse AE, Sikora AE. Neisseria gonorrhoeae MlaA influences gonococcal virulence and membrane vesicle production. PLoS Pathog 2019; 15:e1007385. [PMID: 30845186 PMCID: PMC6424457 DOI: 10.1371/journal.ppat.1007385] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/19/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
The six-component maintenance of lipid asymmetry (Mla) system is responsible for retrograde transport of phospholipids, ensuring the barrier function of the Gram-negative cell envelope. Located within the outer membrane, MlaA (VacJ) acts as a channel to shuttle phospholipids from the outer leaflet. We identified Neisseria gonorrhoeae MlaA (ngo2121) during high-throughput proteomic mining for potential therapeutic targets against this medically important human pathogen. Our follow-up phenotypic microarrays revealed that lack of MlaA results in a complex sensitivity phenome. Herein we focused on MlaA function in cell envelope biogenesis and pathogenesis. We demonstrate the existence of two MlaA classes among 21 bacterial species, characterized by the presence or lack of a lipoprotein signal peptide. Purified truncated N. gonorrhoeae MlaA elicited antibodies that cross-reacted with a panel of different Neisseria. Little is known about MlaA expression; we provide the first evidence that MlaA levels increase in stationary phase and under anaerobiosis but decrease during iron starvation. Lack of MlaA resulted in higher cell counts during conditions mimicking different host niches; however, it also significantly decreased colony size. Antimicrobial peptides such as polymyxin B exacerbated the size difference while human defensin was detrimental to mutant viability. Consistent with the proposed role of MlaA in vesicle biogenesis, the ΔmlaA mutant released 1.7-fold more membrane vesicles. Comparative proteomics of cell envelopes and native membrane vesicles derived from ΔmlaA and wild type bacteria revealed enrichment of TadA–which recodes proteins through mRNA editing–as well as increased levels of adhesins and virulence factors. MlaA-deficient gonococci significantly outcompeted (up to 16-fold) wild-type bacteria in the murine lower genital tract, suggesting the growth advantage or increased expression of virulence factors afforded by inactivation of mlaA is advantageous in vivo. Based on these results, we propose N. gonorrhoeae restricts MlaA levels to modulate cell envelope homeostasis and fine-tune virulence. The Gram-negative outer membrane is a formidable barrier, primarily because of its asymmetric composition. A layer of lipopolysaccharide is exposed to the external environment and phospholipids are on the internal face of the outer membrane. MlaA is part of a bacterial system that prevents phospholipid accumulation within the lipopolysaccharide layer. If MlaA is removed, membrane asymmetry is disrupted and bacteria become more vulnerable to certain antimicrobials. Neisseria gonorrhoeae causes millions of infections worldwide annually. A growing number are resistant to available antibiotics. Improving our understanding of gonococcal pathogenicity and basic biological processes is required to facilitate the discovery of new weapons against gonorrhea. We investigated the role of MlaA in N. gonorrhoeae and found that when MlaA was absent, bacteria were more sensitive to antibiotics and human defensins. However, the mutant bacteria produced more membrane vesicles–packages of proteins wrapped in membrane material. Mutant vesicles and cell envelopes were enriched in proteins that contribute to disease. These alterations significantly increased mutant fitness during experimental infection of the female mouse genital tract. Our results provide new insights into the processes N. gonorrhoeae uses to fine-tune its ability to stay fit in the hostile environment of the genital tract.
Collapse
Affiliation(s)
- Benjamin I. Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Ryszard A. Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Adriana Le Van
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Ann E. Jerse
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
12
|
Sigurlásdóttir S, Wassing GM, Zuo F, Arts M, Jonsson AB. Deletion of D-Lactate Dehydrogenase A in Neisseria meningitidis Promotes Biofilm Formation Through Increased Autolysis and Extracellular DNA Release. Front Microbiol 2019; 10:422. [PMID: 30891026 PMCID: PMC6411758 DOI: 10.3389/fmicb.2019.00422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/18/2019] [Indexed: 11/23/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative bacterium that asymptomatically colonizes the human nasopharyngeal mucosa. Pilus-mediated initial adherence of N. meningitidis to the epithelial mucosa is followed by the formation of three-dimensional aggregates, called microcolonies. Dispersal from microcolonies contributes to the transmission of N. meningitidis across the epithelial mucosa. We have recently discovered that environmental concentrations of host cell-derived lactate influences N. meningitidis microcolony dispersal. Here, we examined the ability of N. meningitidis mutants deficient in lactate metabolism to form biofilms. A lactate dehydrogenease A (ldhA) mutant had an increased level of biofilm formation. Deletion of ldhA increased the N. meningitidis cell surface hydrophobicity and aggregation. In this study, we used FAM20, which belongs to clonal complex ST-11 that forms biofilms independently of extracellular DNA (eDNA). However, treatment with DNase I abolished the increased biofilm formation and aggregation of the ldhA-deficient mutant, suggesting a critical role for eDNA. Compared to wild-type, the ldhA-deficient mutant exhibited an increased autolytic rate, with significant increases in the eDNA concentrations in the culture supernatants and in biofilms. Within the ldhA mutant biofilm, the transcription levels of the capsule, pilus, and bacterial lysis genes were downregulated, while norB, which is associated with anaerobic respiration, was upregulated. These findings suggest that the absence of ldhA in N. meningitidis promotes biofilm formation and aggregation through autolysis-mediated DNA release.
Collapse
Affiliation(s)
- Sara Sigurlásdóttir
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Gabriela M Wassing
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Fanglei Zuo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Melanie Arts
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
13
|
Schaub RE, Dillard JP. The Pathogenic Neisseria Use a Streamlined Set of Peptidoglycan Degradation Proteins for Peptidoglycan Remodeling, Recycling, and Toxic Fragment Release. Front Microbiol 2019; 10:73. [PMID: 30766523 PMCID: PMC6365954 DOI: 10.3389/fmicb.2019.00073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/15/2019] [Indexed: 12/26/2022] Open
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis release peptidoglycan (PG) fragments from the cell as the bacteria grow. For N. gonorrhoeae these PG fragments are known to cause damage to human Fallopian tube tissue in organ culture that mimics the damage seen in patients with pelvic inflammatory disease. N. meningitidis also releases pro-inflammatory PG fragments, but in smaller amounts than those from N. gonorrhoeae. It is not yet known if PG fragment release contributes to the highly inflammatory conditions of meningitis and meningococcemia caused by N. meningitidis. Examination of the mechanisms of PG degradation and recycling identified proteins required for these processes. In comparison to the model organism E. coli, the pathogenic Neisseria have far fewer PG degradation proteins, and some of these proteins show differences in subcellular localization compared to their E. coli homologs. In particular, some N. gonorrhoeae PG degradation proteins were demonstrated to be in the outer membrane while their homologs in E. coli were found free in the periplasm or in the cytoplasm. The localization of two of these proteins was demonstrated to affect PG fragment release. Another major factor for PG fragment release is the allele of ampG. Gonococcal AmpG was found to be slightly defective compared to related PG fragment permeases, thus leading to increased release of PG. A number of additional PG-related factors affect other virulence functions in Neisseria. Endopeptidases and carboxypeptidases were found to be required for type IV pilus production and resistance to hydrogen peroxide. Also, deacetylation of PG was required for virulence of N. meningitidis as well as normal cell size. Overall, we describe the processes involved in PG degradation and recycling and how certain characteristics of these proteins influence the interactions of these pathogens with their host.
Collapse
Affiliation(s)
- Ryan E Schaub
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
14
|
Borges IP, Silva MF, Santiago FM, de Faria LS, Júnior ÁF, da Silva RJ, Costa MS, de Freitas V, Yoneyama KAG, Ferro EAV, Lopes DS, Rodrigues RS, de Melo Rodrigues V. Antiparasitic effects induced by polyclonal IgY antibodies anti-phospholipase A2 from Bothrops pauloensis venom. Int J Biol Macromol 2018; 112:333-342. [DOI: 10.1016/j.ijbiomac.2018.01.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 02/07/2023]
|
15
|
Christodoulides M, Heckels J. Novel approaches to Neisseria meningitidis vaccine design. Pathog Dis 2018; 75:3078540. [PMID: 28369428 DOI: 10.1093/femspd/ftx033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/20/2017] [Indexed: 12/30/2022] Open
Abstract
A range of vaccines is available for preventing life-threatening diseases caused by infection with Neisseria meningitidis (meningococcus, Men). Capsule polysaccharide (CPS)-conjugate vaccines are successful prophylactics for serogroup MenA, MenC, MenW and MenY infections, and outer membrane vesicle (OMV) vaccines have been used successfully for controlling clonal serogroup MenB infections. MenB vaccines based on recombinant proteins identified by reverse vaccinology (Bexsero™) and proteomics (Trumenba™) approaches have recently been licensed and Bexsero™ has been introduced into the UK infant immunisation programme. In this review, we chart the development of these licensed vaccines. In addition, we discuss the plethora of novel vaccinology approaches that have been applied to the meningococcus with varying success in pre-clinical studies, but which provide technological platforms for application to other pathogens. These strategies include modifying CPS, lipooligosaccharide and OMV; the use of recombinant proteins; structural vaccinology approaches of designing synthetic peptide/mimetope vaccines, DNA vaccines and engineered proteins; epitope presentation on biological and synthetic particles; through vaccination with live-attenuated pathogen(s), or with heterologous bacteria expressing vaccine antigens, or to competitive occupation of the nasopharyngeal niche by commensal bacterial spp. After close to a century of vaccine research, it is possible that meningococcal disease may be added, shortly, to the list of diseases to have been eradicated worldwide by rigorous vaccination campaigns.
Collapse
|
16
|
Pannekoek Y, Huis In 't Veld R, Schipper K, Bovenkerk S, Kramer G, Speijer D, van der Ende A. Regulation of Neisseria meningitidis cytochrome bc1 components by NrrF, a Fur-controlled small noncoding RNA. FEBS Open Bio 2017; 7:1302-1315. [PMID: 28904860 PMCID: PMC5586341 DOI: 10.1002/2211-5463.12266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/23/2022] Open
Abstract
NrrF is a small regulatory RNA of the human pathogen Neisseria meningitidis. NrrF was previously shown to repress succinate dehydrogenase (sdhCDAB) under control of the ferric uptake regulator (Fur). Here, we provide evidence that cytochrome bc1 , encoded by the polycistronic mRNA petABC, is a NrrF target as well. We demonstrated differential expression of cytochrome bc1 comparing wild-type meningococci and meningococci expressing NrrF when sufficient iron is available. Using a gfp-reporter system monitoring translational control and target recognition of sRNA in Escherichia coli, we show that interaction between NrrF and the 5' untranslated region of the petABC mRNA results in its repression. The NrrF region essential for repression of petABC was identified by site-directed mutagenesis and is fully conserved among meningococci. Our results provide further insights into the mechanism by which Fur controls essential components of the N. meningitidis respiratory chain. Adaptation of cytochrome bc1 complex component levels upon iron limitation is post-transcriptionally regulated via the small regulatory RNA NrrF.
Collapse
Affiliation(s)
- Yvonne Pannekoek
- Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA) Academic Medical Center The Netherlands
| | - Robert Huis In 't Veld
- Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA) Academic Medical Center The Netherlands
| | - Kim Schipper
- Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA) Academic Medical Center The Netherlands
| | - Sandra Bovenkerk
- Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA) Academic Medical Center The Netherlands
| | - Gertjan Kramer
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands.,Present address: Genome Biology Unit EMBL Heidelberg Heidelberg Germany
| | - Dave Speijer
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA) Academic Medical Center The Netherlands
| |
Collapse
|
17
|
Arenas J, Tommassen J. Meningococcal Biofilm Formation: Let's Stick Together. Trends Microbiol 2017; 25:113-124. [DOI: 10.1016/j.tim.2016.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022]
|
18
|
Dynamic capsule restructuring by the main pneumococcal autolysin LytA in response to the epithelium. Nat Commun 2016; 7:10859. [PMID: 26924467 PMCID: PMC4773454 DOI: 10.1038/ncomms10859] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/21/2016] [Indexed: 11/16/2022] Open
Abstract
Bacterial pathogens produce complex carbohydrate capsules to protect against bactericidal immune molecules. Paradoxically, the pneumococcal capsule sensitizes the bacterium to antimicrobial peptides found on epithelial surfaces. Here we show that upon interaction with antimicrobial peptides, encapsulated pneumococci survive by removing capsule from the cell surface within minutes in a process dependent on the suicidal amidase autolysin LytA. In contrast to classical bacterial autolysis, during capsule shedding, LytA promotes bacterial survival and is dispersed circumferentially around the cell. However, both autolysis and capsule shedding depend on the cell wall hydrolytic activity of LytA. Capsule shedding drastically increases invasion of epithelial cells and is the main pathway by which pneumococci reduce surface bound capsule during early acute lung infection of mice. The previously unrecognized role of LytA in removing capsule to combat antimicrobial peptides may explain why nearly all clinical isolates of pneumococci conserve this enzyme despite the lethal selective pressure of antibiotics. Pneumococci produce a carbohydrate capsule that protects them against components of the host immune system but sensitizes them to host antimicrobial peptides. Here, Kietzman et al. show that pneumococci respond to antimicrobial peptides by capsule shedding, which requires the main autolysin LytA.
Collapse
|
19
|
van der Pol L, Stork M, van der Ley P. Outer membrane vesicles as platform vaccine technology. Biotechnol J 2015; 10:1689-706. [PMID: 26912077 PMCID: PMC4768646 DOI: 10.1002/biot.201400395] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/13/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022]
Abstract
Outer membrane vesicles (OMVs) are released spontaneously during growth by many Gram-negative bacteria. They present a range of surface antigens in a native conformation and have natural properties like immunogenicity, self-adjuvation and uptake by immune cells which make them attractive for application as vaccines against pathogenic bacteria. In particular with Neisseria meningitidis, they have been investigated extensively and an OMV-containing meningococcal vaccine has recently been approved by regulatory agencies. Genetic engineering of the OMV-producing bacteria can be used to improve and expand their usefulness as vaccines. Recent work on meningitis B vaccines shows that OMVs can be modified, such as for lipopolysaccharide reactogenicity, to yield an OMV product that is safe and effective. The overexpression of crucial antigens or simultaneous expression of multiple antigenic variants as well as the expression of heterologous antigens enable expansion of their range of applications. In addition, modifications may increase the yield of OMV production and can be combined with specific production processes to obtain high amounts of well-defined, stable and uniform OMV particle vaccine products. Further improvement can facilitate the development of OMVs as platform vaccine product for multiple applications.
Collapse
Affiliation(s)
| | - Michiel Stork
- Product Development, Intravacc, Bilthoven, The Netherlands
| | | |
Collapse
|
20
|
Gasparini R, Panatto D, Bragazzi NL, Lai PL, Bechini A, Levi M, Durando P, Amicizia D. How the Knowledge of Interactions between Meningococcus and the Human Immune System Has Been Used to Prepare Effective Neisseria meningitidis Vaccines. J Immunol Res 2015; 2015:189153. [PMID: 26351643 PMCID: PMC4553322 DOI: 10.1155/2015/189153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/09/2015] [Indexed: 01/17/2023] Open
Abstract
In the last decades, tremendous advancement in dissecting the mechanisms of pathogenicity of Neisseria meningitidis at a molecular level has been achieved, exploiting converging approaches of different disciplines, ranging from pathology to microbiology, immunology, and omics sciences (such as genomics and proteomics). Here, we review the molecular biology of the infectious agent and, in particular, its interactions with the immune system, focusing on both the innate and the adaptive responses. Meningococci exploit different mechanisms and complex machineries in order to subvert the immune system and to avoid being killed. Capsular polysaccharide and lipooligosaccharide glycan composition, in particular, play a major role in circumventing immune response. The understanding of these mechanisms has opened new horizons in the field of vaccinology. Nowadays different licensed meningococcal vaccines are available and used: conjugate meningococcal C vaccines, tetravalent conjugate vaccines, an affordable conjugate vaccine against the N. menigitidis serogroup A, and universal vaccines based on multiple antigens each one with a different and peculiar function against meningococcal group B strains.
Collapse
Affiliation(s)
- R. Gasparini
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Panatto
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - N. L. Bragazzi
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - P. L. Lai
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - A. Bechini
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - M. Levi
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - P. Durando
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Amicizia
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| |
Collapse
|
21
|
Zielke RA, Wierzbicki IH, Weber JV, Gafken PR, Sikora AE. Quantitative proteomics of the Neisseria gonorrhoeae cell envelope and membrane vesicles for the discovery of potential therapeutic targets. Mol Cell Proteomics 2014; 13:1299-317. [PMID: 24607996 PMCID: PMC4014286 DOI: 10.1074/mcp.m113.029538] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 02/28/2014] [Indexed: 01/29/2023] Open
Abstract
Neisseria gonorrhoeae (GC) is a human-specific pathogen, and the agent of a sexually transmitted disease, gonorrhea. There is a critical need for new approaches to study and treat GC infections because of the growing threat of multidrug-resistant isolates and the lack of a vaccine. Despite the implied role of the GC cell envelope and membrane vesicles in colonization and infection of human tissues and cell lines, comprehensive studies have not been undertaken to elucidate their constituents. Accordingly, in pursuit of novel molecular therapeutic targets, we have applied isobaric tagging for absolute quantification coupled with liquid chromatography and mass spectrometry for proteome quantitative analyses. Mining the proteome of cell envelopes and native membrane vesicles revealed 533 and 168 common proteins, respectively, in analyzed GC strains FA1090, F62, MS11, and 1291. A total of 22 differentially abundant proteins were discovered including previously unknown proteins. Among those proteins that displayed similar abundance in four GC strains, 34 were found in both cell envelopes and membrane vesicles fractions. Focusing on one of them, a homolog of an outer membrane protein LptD, we demonstrated that its depletion caused loss of GC viability. In addition, we selected for initial characterization six predicted outer membrane proteins with unknown function, which were identified as ubiquitous in the cell envelopes derived from examined GC isolates. These studies entitled a construction of deletion mutants and analyses of their resistance to different chemical probes. Loss of NGO1985, in particular, resulted in dramatically decreased GC viability upon treatment with detergents, polymyxin B, and chloramphenicol, suggesting that this protein functions in the maintenance of the cell envelope permeability barrier. Together, these findings underscore the concept that the cell envelope and membrane vesicles contain crucial, yet under-explored determinants of GC physiology, which may represent promising targets for designing new therapeutic interventions.
Collapse
Affiliation(s)
- Ryszard A. Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Igor H. Wierzbicki
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Jacob V. Weber
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Philip R. Gafken
- §Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024
| | - Aleksandra E. Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
22
|
Belosludtsev KN, Belosludtseva NV, Kondratyev MS, Agafonov AV, Purtov YA. Interaction of phospholipase A of the E. coli outer membrane with the inhibitors of eucaryotic phospholipases A₂ and their effect on the Ca²⁺-induced permeabilization of the bacterial membrane. J Membr Biol 2014; 247:281-288. [PMID: 24477786 DOI: 10.1007/s00232-014-9633-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 01/13/2014] [Indexed: 02/03/2023]
Abstract
Phospholipase A of the bacterial outer membrane (OMPLA) is a β-barrel membrane protein which is activated under various stress conditions. The current study examines interaction of inhibitors of eucaryotic phospholipases A₂--palmitoyl trifluoromethyl ketone (PACOCF₃) and aristolochic acid (AA)--with OMPLA and considers a possible involvement of the enzyme in the Ca²⁺-dependent permeabilization of the outer membrane of Escherichia coli. Using the method of molecular docking, it has been predicted that PACOCF₃ and AA bind to OMPLA at the same site and with the same affinity as the OMPLA inhibitors, hexadecanesulfonylfluoride and bromophenacyl bromide, and the substrate of the enzyme palmitoyl oleoyl phosphatidylethanolamine. It has also been shown that PACOCF₃, AA, and bromophenacyl bromide inhibit the Ca²⁺-induced temperature-dependent changes in the permeability of the bacterial membrane for the fluorescent probe propidium iodide and suppressed the transformation of E. coli cells with plasmid DNA induced by Ca²⁺ and heat shock. The cell viability was not affected by the eucaryotic phospholipases A₂ inhibitors. The study discusses a possible involvement of OMPLA in the mechanisms of bacterial transmembrane transport based on the permeabilization of the bacterial outer membrane.
Collapse
Affiliation(s)
- Konstantin N Belosludtsev
- Institute of Theoretical and Experimental Biophysics RAS, Institutskaya, 3, Pushchino, Moscow Region, 142290, Russia,
| | | | | | | | | |
Collapse
|
23
|
Zinc piracy as a mechanism of Neisseria meningitidis for evasion of nutritional immunity. PLoS Pathog 2013; 9:e1003733. [PMID: 24204275 PMCID: PMC3814407 DOI: 10.1371/journal.ppat.1003733] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/13/2013] [Indexed: 11/19/2022] Open
Abstract
The outer membrane of Gram-negative bacteria functions as a permeability barrier that protects these bacteria against harmful compounds in the environment. Most nutrients pass the outer membrane by passive diffusion via pore-forming proteins known as porins. However, diffusion can only satisfy the growth requirements if the extracellular concentration of the nutrients is high. In the vertebrate host, the sequestration of essential nutrient metals is an important defense mechanism that limits the growth of invading pathogens, a process known as “nutritional immunity.” The acquisition of scarce nutrients from the environment is mediated by receptors in the outer membrane in an energy-requiring process. Most characterized receptors are involved in the acquisition of iron. In this study, we characterized a hitherto unknown receptor from Neisseria meningitidis, a causative agent of sepsis and meningitis. Expression of this receptor, designated CbpA, is induced when the bacteria are grown under zinc limitation. We demonstrate that CbpA functions as a receptor for calprotectin, a protein that is massively produced by neutrophils and other cells and that has been shown to limit bacterial growth by chelating Zn2+ and Mn2+ ions. Expression of CbpA enables N. meningitidis to survive and propagate in the presence of calprotectin and to use calprotectin as a zinc source. Besides CbpA, also the TonB protein, which couples energy of the proton gradient across the inner membrane to receptor-mediated transport across the outer membrane, is required for the process. CbpA was found to be expressed in all N. meningitidis strains examined, consistent with a vital role for the protein when the bacteria reside in the host. Together, our results demonstrate that N. meningitidis is able to subvert an important defense mechanism of the human host and to utilize calprotectin to promote its growth. The sequestration of essential nutrient metals is a first line of defense used by vertebrates to limit the growth of invading pathogens, a process termed “nutritional immunity.” As a part of this defense mechanism, neutrophils and other cells produce massive amounts of calprotectin, a protein that limits bacterial growth by chelating Zn2+ and Mn2+ ions. We demonstrate here that Neisseria meningitidis, a resident of the human nasopharynx that occasionally causes sepsis and meningitis, is able to survive and propagate in the presence of calprotectin. N. meningitidis responds to zinc limitation by the overproduction of an outer membrane protein, called CbpA, that functions as a receptor for calprotectin and enables the bacteria to utilize calprotectin as zinc source. The ability of N. meningitidis to use calprotectin as a zinc source subverts an important defense mechanism of the host and adds a new mechanism to the host-pathogens arms race.
Collapse
|
24
|
Belaunzarán ML, Wilkowsky SE, Lammel EM, Giménez G, Bott E, Barbieri MA, de Isola ELD. Phospholipase A1: a novel virulence factor in Trypanosoma cruzi. Mol Biochem Parasitol 2012; 187:77-86. [PMID: 23275096 DOI: 10.1016/j.molbiopara.2012.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 12/08/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
Abstract
Phospholipase A1 (PLA1) has been described in the infective stages of Trypanosoma cruzi as a membrane-bound/secreted enzyme that significantly modified host cell lipid profile with generation of second lipid messengers and concomitant activation of protein kinase C. In the present work we determined higher levels of PLA1 expression in the infective amastigotes and trypomastigotes than in the non-infective epimastigotes of lethal RA strain. In addition, we found similar expression patterns but distinct PLA1 activity levels in bloodstream trypomastigotes from Cvd and RA (lethal) and K98 (non-lethal) T. cruzi strains, obtained at their corresponding parasitemia peaks. This fact was likely due to the presence of different levels of anti-T. cruzi PLA1 antibodies in sera of infected mice, that modulated the enzyme activity. Moreover, these antibodies significantly reduced in vitro parasite invasion indicating the participation of T. cruzi PLA1 in the early events of parasite-host cell interaction. We also demonstrated the presence of lysophospholipase activity in live infective stages that could account for self-protection against the toxic lysophospholipids generated by T. cruzi PLA1 action. At the genome level, we identified at least eight putative genes that codify for T. cruzi PLA1 with high amino acid sequence variability in their amino and carboxy-terminal regions; a putative PLA1 selected gene was cloned and expressed as a recombinant protein that possessed PLA1 activity. Collectively, the results presented here point out at T. cruzi PLA1 as a novel virulence factor implicated in parasite invasion.
Collapse
Affiliation(s)
- María Laura Belaunzarán
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Facultad de Medicina, Paraguay 2155, piso 13, C1121ABG, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
25
|
Pannekoek Y, van der Ende A. Identification and functional characterization of sRNAs in Neisseria meningitidis. Methods Mol Biol 2012; 799:73-89. [PMID: 21993640 DOI: 10.1007/978-1-61779-346-2_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A riboregulated network, in which small RNAs (sRNAs) regulate the stability and thus translation of transcripts (mRNA), has only recently been discovered in prokaryotes. Yet, during the last 5 years, hundreds of sRNAs have been identified in various bacterial species by using a wide variety of both computational and experimental approaches. The majority of the sRNAs interact with the 5'-untranslated region (UTR) of target mRNAs, thereby influencing the stability of target mRNAs, or by either suppressing or upregulating the ribosome entry to the mRNAs influencing translation. Here, we describe experimental approaches successfully used in our laboratory to identify and functionally characterize sRNAs in vivo in our model micro-organism Neisseria meningitidis.
Collapse
Affiliation(s)
- Yvonne Pannekoek
- Department of Medical Microbiology, Academic Medical Center, Center for Infection and Immunity, Amsterdam, The Netherlands.
| | | |
Collapse
|
26
|
Trivedi K, Tang CM, Exley RM. Mechanisms of meningococcal colonisation. Trends Microbiol 2011; 19:456-63. [PMID: 21816616 DOI: 10.1016/j.tim.2011.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/16/2011] [Accepted: 06/28/2011] [Indexed: 01/05/2023]
Abstract
Despite advances against infectious diseases over the past century, Neisseria meningitidis remains a major causative agent of meningitis and septicaemia worldwide. Its adaptation for survival in the human nasopharynx makes the meningococcus a highly successful commensal bacterium. Recent progress has been made in understanding the mechanisms that enable neisserial colonisation, in terms of the role of type IV pili, the impact of other adhesins, biofilm formation, nutrient acquisition and resistance to host immune defences. Refinements in cell-based and in vivo models will lead to improved understanding of the colonisation process, and hopefully to more effective vaccines and therapeutic strategies.
Collapse
Affiliation(s)
- Kaushali Trivedi
- Centre for Molecular Microbiology and Infection, Faculty of Medicine, Flowers Building, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
27
|
Belaunzarán ML, Lammel EM, de Isola ELD. Phospholipases a in trypanosomatids. Enzyme Res 2011; 2011:392082. [PMID: 21603263 PMCID: PMC3092542 DOI: 10.4061/2011/392082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/07/2011] [Indexed: 12/17/2022] Open
Abstract
Phospholipases are a complex and important group of enzymes widespread in nature, that play crucial roles in diverse biochemical processes and are classified as A1, A2, C, and D. Phospholipases A1 and A2 activities have been linked to pathogenesis in various microorganisms, and particularly in pathogenic protozoa they have been implicated in cell invasion. Kinetoplastids are a group of flagellated protozoa, including extra- and intracellular parasites that cause severe disease in humans and animals. In the present paper, we will mainly focus on the three most important kinetoplastid human pathogens, Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp., giving a perspective of the research done up to now regarding biochemical, biological, and molecular characteristics of Phospholipases A1 and A2 and their contribution to pathogenesis.
Collapse
Affiliation(s)
- María Laura Belaunzarán
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 13, C1121ABG Buenos Aires, Argentina
| | | | | |
Collapse
|
28
|
Barh D, Misra AN, Kumar A, Vasco A. A novel strategy of epitope design in Neisseria gonorrhoeae. Bioinformation 2010; 5:77-85. [PMID: 21346868 PMCID: PMC3039994 DOI: 10.6026/97320630005077] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/17/2010] [Accepted: 06/08/2010] [Indexed: 11/23/2022] Open
Abstract
In spite of genome sequences of both human and N. gonorrhoeae in hand, vaccine for gonorrhea is yet not available. Due to availability of several host and pathogen genomes and numerous tools for in silico prediction of effective B-cell and T-cell epitopes; recent trend of vaccine designing has been shifted to peptide or epitope based vaccines that are more specific, safe, and easy to produce. In order to design and develop such a peptide vaccine against the pathogen, we adopted a novel computational approache based on sequence, structure, QSAR, and simulation methods along with fold level analysis to predict potential antigenic B-cell epitope derived T-cell epitopes from four vaccine targets of N. gonorrhoeae previously identified by us [Barh and Kumar (2009) In Silico Biology 9, 1-7]. Four epitopes, one from each protein, have been designed in such a way that each epitope is highly likely to bind maximum number of HLA molecules (comprising of both the MHC-I and II) and interacts with most frequent HLA alleles (A*0201, A*0204, B*2705, DRB1*0101, and DRB1*0401) in human population. Therefore our selected epitopes are highly potential to induce both the B-cell and T-cell mediated immune responses. Of course, these selected epitopes require further experimental validation.
Collapse
Affiliation(s)
- Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, WB-721172, India
| | - Amarendra Narayan Misra
- Department of Biosciences and Biotechnology, School of Biotechnology, Fakir Mohan University, Jnan Bigyan Vihar, Balasore-756020, Orissa, India
| | - Anil Kumar
- School of Biotechnology, Devi Ahilya University, Khandwa Road, Indore, MP-452001, India
| | - Azevedo Vasco
- Laboratorio de Genetica Celular eMolecular, Departmento de Biologia Geral, Instituto de Ciencias Biologics, Universidade Federal de Minas Gerais CP 486, CEP 31270-901 Belo
Horizonte, Minas Gerais, Brazil
| |
Collapse
|
29
|
Stork M, Bos MP, Jongerius I, de Kok N, Schilders I, Weynants VE, Poolman JT, Tommassen J. An outer membrane receptor of Neisseria meningitidis involved in zinc acquisition with vaccine potential. PLoS Pathog 2010; 6:e1000969. [PMID: 20617164 PMCID: PMC2895646 DOI: 10.1371/journal.ppat.1000969] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 05/27/2010] [Indexed: 12/03/2022] Open
Abstract
Since the concentration of free iron in the human host is low, efficient iron-acquisition mechanisms constitute important virulence factors for pathogenic bacteria. In Gram-negative bacteria, TonB-dependent outer membrane receptors are implicated in iron acquisition. It is far less clear how other metals that are also scarce in the human host are transported across the bacterial outer membrane. With the aim of identifying novel vaccine candidates, we characterized in this study a hitherto unknown receptor in Neisseria meningitidis. We demonstrate that this receptor, designated ZnuD, is produced under zinc limitation and that it is involved in the uptake of zinc. Upon immunization of mice, it was capable of inducing bactericidal antibodies and we could detect ZnuD-specific antibodies in human convalescent patient sera. ZnuD is highly conserved among N. meningitidis isolates and homologues of the protein are found in many other Gram-negative pathogens, particularly in those residing in the respiratory tract. We conclude that ZnuD constitutes a promising candidate for the development of a vaccine against meningococcal disease for which no effective universal vaccine is available. Furthermore, the results suggest that receptor-mediated zinc uptake represents a novel virulence mechanism that is particularly important for bacterial survival in the respiratory tract. The outer membrane protects Gram-negative bacteria against harmful compounds from the environment. Nutrients usually pass this barrier by passive diffusion via pore-forming proteins. However, nutrients that are scarce in the environment are taken up via an active, receptor-mediated process. The vast majority of Gram-negative bacterial receptors described to date are involved in iron acquisition. Since free iron is scarce in the human host, these receptors constitute important virulence factors. In a search for putative vaccine components, we have characterized here a new receptor of Neisseria meningitidis, a resident of the nasopharynx that occasionally causes sepsis and meningitis. We show that expression of this receptor is induced under zinc limitation and that the protein is involved in the uptake of zinc. Homologues of this protein are present in many other Gram-negative pathogens, particularly in those residing in the respiratory tract, suggesting that receptor-mediated zinc acquisition is important for bacteria residing in this niche. We also found that the protein is highly conserved among N. meningitidis isolates and that it induces bactericidal antibodies upon immunization of mice. Therefore, the protein appears an excellent candidate for the development of a vaccine against N. meningitidis, for which no universal vaccine is available yet.
Collapse
Affiliation(s)
- Michiel Stork
- Department of Molecular Microbiology, Utrecht University, Utrecht, The Netherlands
| | - Martine P. Bos
- Department of Molecular Microbiology, Utrecht University, Utrecht, The Netherlands
| | - Ilse Jongerius
- Department of Molecular Microbiology, Utrecht University, Utrecht, The Netherlands
| | - Natasja de Kok
- Department of Molecular Microbiology, Utrecht University, Utrecht, The Netherlands
| | - Ingrid Schilders
- Department of Molecular Microbiology, Utrecht University, Utrecht, The Netherlands
| | | | | | - Jan Tommassen
- Department of Molecular Microbiology, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
30
|
Hopman CTP, Speijer D, van der Ende A, Pannekoek Y. Identification of a novel anti-sigmaE factor in Neisseria meningitidis. BMC Microbiol 2010; 10:164. [PMID: 20525335 PMCID: PMC2893595 DOI: 10.1186/1471-2180-10-164] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/04/2010] [Indexed: 08/30/2023] Open
Abstract
Background Fine tuning expression of genes is a prerequisite for the strictly human pathogen Neisseria meningitidis to survive hostile growth conditions and establish disease. Many bacterial species respond to stress by using alternative σ factors which, in complex with RNA polymerase holoenzyme, recognize specific promoter determinants. σE, encoded by rpoE (NMB2144) in meningococci, is known to be essential in mounting responses to environmental challenges in many pathogens. Here we identified genes belonging to the σE regulon of meningococci. Results We show that meningococcal σE is part of the polycistronic operon NMB2140-NMB2145 and autoregulated. In addition we demonstrate that σE controls expression of methionine sulfoxide reductase (MsrA/MsrB). Moreover, we provide evidence that the activity of σE is under control of NMB2145, directly downstream of rpoE. The protein encoded by NMB2145 is structurally related to anti-sigma domain (ASD) proteins and characterized by a zinc containing anti-σ factor (ZAS) motif, a hall mark of a specific class of Zn2+-binding ASD proteins acting as anti-σ factors. We demonstrate that Cys residues in ZAS, as well as the Cys residue on position 4, are essential for anti-σE activity of NMB2145, as found for a minority of members of the ZAS family that are predicted to act in the cytoplasm and responding to oxidative stimuli. However, exposure of cells to oxidative stimuli did not result in altered expression of σE. Conclusions Together, our results demonstrate that meningococci express a functional transcriptionally autoregulated σE factor, the activity of which is controlled by a novel meningococcal anti-σ factor belonging to the ZAS family.
Collapse
Affiliation(s)
- Carla Th P Hopman
- Academic Medical Center, Center for Infection and Immunity Amsterdam (CINIMA), Department of Medical Microbiology, Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
31
|
Biofilm formation by the human pathogen Neisseria meningitidis. Med Microbiol Immunol 2010; 199:173-83. [PMID: 20376486 DOI: 10.1007/s00430-010-0149-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Indexed: 10/19/2022]
Abstract
The past decade has seen an increasing interest in biofilm formation by Neisseria meningitidis, a human facultative pathogen causing life-threatening childhood disease commencing from asymptomatic nasopharyngeal colonization. Studying the biology of in vitro biofilm formation improves the understanding of inter-bacterial processes in asymptomatic carriage, of bacterial aggregate formation on host cells, and of meningococcal population biology. This paper reviews publications referring to meningococcal biofilm formation with an emphasis on the role of motility and of extracellular DNA. The theory of sub-dividing the meningococcal population in settler and spreader lineages is discussed, which provides a mechanistic framework for the assumed balance of colonization efficacy and transmission frequency.
Collapse
|
32
|
Lappann M, Claus H, van Alen T, Harmsen M, Elias J, Molin S, Vogel U. A dual role of extracellular DNA during biofilm formation ofNeisseria meningitidis. Mol Microbiol 2010; 75:1355-71. [DOI: 10.1111/j.1365-2958.2010.07054.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Neil RB, Apicella MA. Clinical and laboratory evidence for Neisseria meningitidis biofilms. Future Microbiol 2009; 4:555-63. [PMID: 19492966 DOI: 10.2217/fmb.09.27] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neisseria meningitidis is the etiologic agent of meningococcal meningitis. Carriage of the organism is approximately 10% while active disease occurs at a rate of 1:100,000. Recent publications demonstrate that N. meningitidis has the ability to form biofilms on glass, plastic or cultured human bronchial epithelial cells. Microcolony-like structures are also observed in histological sections from patients with active meningococcal disease. This review investigates the possible role of meningococcal biofilms in carriage and active disease, based on the laboratory and clinical aspects of the disease.
Collapse
Affiliation(s)
- R Brock Neil
- University of Iowa, Hygienic Laboratory, 102 Oakdale Campus, H101 OH, Iowa City, IA 52242-5002, USA
| | | |
Collapse
|
34
|
Pannekoek Y, Huis in ‘t Veld R, Hopman CTP, Langerak AAJ, Speijer D, van der Ende A. Molecular characterization and identification of proteins regulated by Hfq in Neisseria meningitidis. FEMS Microbiol Lett 2009; 294:216-24. [PMID: 19374669 PMCID: PMC2734931 DOI: 10.1111/j.1574-6968.2009.01568.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 03/04/2009] [Indexed: 01/06/2023] Open
Abstract
Hfq is a highly conserved pleiotropically acting prokaryotic RNA-binding protein involved in the post-transcriptional regulation of many stress-responsive genes by small RNAs. In this study, we show that Hfq of the strictly human pathogen Neisseria meningitidis is involved in the regulation of expression of components involved in general metabolic pathways, iron metabolism and virulence. A meningococcal hfq deletion strain (H44/76Deltahfq) is impaired in growth in nutrient-rich media and does not grow at all in nutrient-limiting medium. The growth defect was complemented by expression of hfq in trans. Using proteomics, the expression of 28 proteins was found to be significantly affected upon deletion of hfq. Of these, 20 proteins are involved in general metabolism, among them seven iron-responsive genes. Two proteins (PilE, TspA) are involved in adherence to human cells, a step crucial for the onset of disease. One of the differentially expressed proteins, GdhA, was identified as an essential virulence factor for establishment of sepsis in an animal model, studied earlier. These results show that in N. meningitidis Hfq is involved in the regulation of a variety of components contributing to the survival and establishment of meningococcal disease.
Collapse
Affiliation(s)
- Yvonne Pannekoek
- Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical CenterAmsterdam, The Netherlands
| | - Robert Huis in ‘t Veld
- Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical CenterAmsterdam, The Netherlands
| | - Carla Th P Hopman
- Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical CenterAmsterdam, The Netherlands
| | - Ankie AJ Langerak
- Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical CenterAmsterdam, The Netherlands
| | - Dave Speijer
- Clinical Proteomics Facility, Department of Medical Biochemistry, Academic Medical CenterAmsterdam, The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical CenterAmsterdam, The Netherlands
| |
Collapse
|
35
|
Bishop RE. Structural biology of membrane-intrinsic beta-barrel enzymes: sentinels of the bacterial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:1881-96. [PMID: 17880914 PMCID: PMC5007122 DOI: 10.1016/j.bbamem.2007.07.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 06/28/2007] [Accepted: 07/24/2007] [Indexed: 02/06/2023]
Abstract
The outer membranes of Gram-negative bacteria are replete with integral membrane proteins that exhibit antiparallel beta-barrel structures, but very few of these proteins function as enzymes. In Escherichia coli, only three beta-barrel enzymes are known to exist in the outer membrane; these are the phospholipase OMPLA, the protease OmpT, and the phospholipidColon, two colonslipid A palmitoyltransferase PagP, all of which have been characterized at the structural level. Structural details have also emerged for the outer membrane beta-barrel enzyme PagL, a lipid A 3-O-deacylase from Pseudomonas aeruginosa. Lipid A can be further modified in the outer membrane by two beta-barrel enzymes of unknown structure; namely, the Salmonella enterica 3'-acyloxyacyl hydrolase LpxR, and the Rhizobium leguminosarum oxidase LpxQ, which employs O(2) to convert the proximal glucosamine unit of lipid A into 2-aminogluconate. Structural biology now indicates how beta-barrel enzymes can function as sentinels that remain dormant when the outer membrane permeability barrier is intact. Host immune defenses and antibiotics that perturb this barrier can directly trigger beta-barrel enzymes in the outer membrane. The ensuing adaptive responses occur instantaneously and rapidly outpace other signal transduction mechanisms that similarly function to restore the outer membrane permeability barrier.
Collapse
Affiliation(s)
- Russell E Bishop
- Department of Biochemistry and Biomedical Sciences, 1200 Main Street West, Health Sciences Centre 4H19, McMaster University, Hamilton, ON, Canada L8N 3Z5.
| |
Collapse
|
36
|
Talà A, Progida C, De Stefano M, Cogli L, Spinosa MR, Bucci C, Alifano P. The HrpB-HrpA two-partner secretion system is essential for intracellular survival of Neisseria meningitidis. Cell Microbiol 2008; 10:2461-82. [PMID: 18680551 DOI: 10.1111/j.1462-5822.2008.01222.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study we used HeLa cells to investigate the role of the HrpB-HrpA two-partner secretion (TPS) system in the meningococcal infection cycle. Although there is evidence that several pathogenic microorganisms may use TPS systems to colonize epithelial surfaces, the meningococcal HrpB-HrpA TPS system was not primarily involved in adhesion to or invasion of HeLa cells. Instead, this system was essential for intracellular survival and escape from infected cells. Gentamicin protection assays, immunofluorescence and transmission electron microscopy analyses demonstrated that, in contrast to the wild-type strain, HrpB-HrpA-deficient mutants were primarily confined to late endocytic vacuoles and trapped in HeLa cells. Haemolytic tests using human erythrocytes suggested that the secreted HrpA proteins could act as manganese-dependent lysins directly involved in mediating vacuole escape. In addition, we demonstrated that escape of wild-type meningococci from infected cells required the use of an intact tubulin cytoskeleton and that the hrpB-hrpA genes, which are absent in other Neisseria spp., were upregulated during infection.
Collapse
Affiliation(s)
- Adelfia Talà
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Baart GJE, Zomer B, de Haan A, van der Pol LA, Beuvery EC, Tramper J, Martens DE. Modeling Neisseria meningitidis metabolism: from genome to metabolic fluxes. Genome Biol 2008; 8:R136. [PMID: 17617894 PMCID: PMC2323225 DOI: 10.1186/gb-2007-8-7-r136] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/16/2007] [Accepted: 07/06/2007] [Indexed: 01/22/2023] Open
Abstract
A genome-scale flux model for primary metabolism of Neisseria meningitidis was constructed; a minimal medium for growth of N. meningitidis was designed using the model and tested successfully in batch and chemostat cultures. Background Neisseria meningitidis is a human pathogen that can infect diverse sites within the human host. The major diseases caused by N. meningitidis are responsible for death and disability, especially in young infants. In general, most of the recent work on N. meningitidis focuses on potential antigens and their functions, immunogenicity, and pathogenicity mechanisms. Very little work has been carried out on Neisseria primary metabolism over the past 25 years. Results Using the genomic database of N. meningitidis serogroup B together with biochemical and physiological information in the literature we constructed a genome-scale flux model for the primary metabolism of N. meningitidis. The validity of a simplified metabolic network derived from the genome-scale metabolic network was checked using flux-balance analysis in chemostat cultures. Several useful predictions were obtained from in silico experiments, including substrate preference. A minimal medium for growth of N. meningitidis was designed and tested succesfully in batch and chemostat cultures. Conclusion The verified metabolic model describes the primary metabolism of N. meningitidis in a chemostat in steady state. The genome-scale model is valuable because it offers a framework to study N. meningitidis metabolism as a whole, or certain aspects of it, and it can also be used for the purpose of vaccine process development (for example, the design of growth media). The flux distribution of the main metabolic pathways (that is, the pentose phosphate pathway and the Entner-Douderoff pathway) indicates that the major part of pyruvate (69%) is synthesized through the ED-cleavage, a finding that is in good agreement with literature.
Collapse
Affiliation(s)
- Gino JE Baart
- Unit Research & Development, Netherlands Vaccine Institute (NVI), PO Box 457, 3720 AL Bilthoven, The Netherlands
- Food and Bioprocess Engineering Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Bert Zomer
- Unit Research & Development, Netherlands Vaccine Institute (NVI), PO Box 457, 3720 AL Bilthoven, The Netherlands
| | - Alex de Haan
- Unit Research & Development, Netherlands Vaccine Institute (NVI), PO Box 457, 3720 AL Bilthoven, The Netherlands
| | - Leo A van der Pol
- Unit Research & Development, Netherlands Vaccine Institute (NVI), PO Box 457, 3720 AL Bilthoven, The Netherlands
| | - E Coen Beuvery
- PAT Consultancy, Kerkstraat 66, 4132 BG Vianen, The Netherlands
| | - Johannes Tramper
- Food and Bioprocess Engineering Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Dirk E Martens
- Food and Bioprocess Engineering Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| |
Collapse
|
38
|
Wedege E, Bolstad K, Aase A, Herstad TK, McCallum L, Rosenqvist E, Oster P, Martin D. Functional and specific antibody responses in adult volunteers in new zealand who were given one of two different meningococcal serogroup B outer membrane vesicle vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:830-8. [PMID: 17494638 PMCID: PMC1951067 DOI: 10.1128/cvi.00039-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/25/2007] [Accepted: 04/25/2007] [Indexed: 11/20/2022]
Abstract
This study presents detailed analyses of total and specific serum antibody levels among 26 and 24 adult volunteers before vaccination and after the third dose of the meningococcal serogroup B outer membrane vesicle (OMV) vaccines MeNZB and MenBvac, respectively, in a clinical trial in New Zealand (V. Thornton, D. Lennon, K. Rasanathan, J. O'Hallahan, P. Oster, J. Stewart, S. Tilman, I. Aaberge, B. Feiring, H. Nokleby, E. Rosenqvist, K. White, S. Reid, K. Mulholland, M. J. Wakefield, and D. Martin, Vaccine 24:1395-1400, 2006). With the homologous vaccine strains as targets, both vaccines induced significant increases in serum bactericidal and opsonophagocytic activities and in the levels of immunoglobulin G (IgG) to OMV antigens in an enzyme-linked immunosorbent assay (ELISA) and to live meningococci by flow cytometry. They also induced high levels of activity against the heterologous strains, particularly in terms of opsonophagocytic activity and IgG binding to live bacteria. The antibody levels with the homologous and heterologous strains in the four assays showed high and significant positive correlations. Specific IgG binding to 10 major OMV antigens in each vaccine was measured by scanning of immunoblots; ELISAs for two antigens, lipopolysaccharide and Neisseria surface protein A (NspA), were also performed. Both vaccines elicited significant increases in IgG binding to all homologous and heterologous OMV antigens except NspA. The total IgG band intensity on the blots correlated significantly with the IgG levels determined by the OMV ELISA and flow cytometry. In conclusion, the results of the various immunological assays showed that both OMV vaccines gave rise to high levels of specific and cross-reacting antibodies.
Collapse
Affiliation(s)
- E Wedege
- Norwegian Institute of Public Health, Department of Bacteriology and Immunology, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kortekaas J, Pettersson A, van der Biezen J, Weynants VE, van der Ley P, Poolman J, Bos MP, Tommassen J. Shielding of immunogenic domains in Neisseria meningitidis FrpB (FetA) by the major variable region. Vaccine 2007; 25:72-84. [PMID: 16914236 DOI: 10.1016/j.vaccine.2006.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 07/12/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
The meningococcal iron-limitation-inducible outer membrane protein FrpB (FetA) has been shown to induce bactericidal antibodies, and is, therefore, considered a vaccine candidate. However, these antibodies are strain specific and, consistently, epitope mapping showed that they are directed against a region, located in a surface-exposed loop, L5, that displays considerable sequence variability between strains. Here, we attempted to redirect the immune response to more conserved domains of the protein by deleting L5. Immunization with an FrpB protein lacking L5 resulted in a bactericidal antibody response, and epitope mapping showed that these antibodies were directed against loop L3, which also displays considerable sequence variability. To re-direct the immune response further, immunizations were performed with an FrpB protein lacking both L5 and L3. The antibodies obtained were not bactericidal. Furthermore, the bactericidal antibodies against L3 were only bactericidal in the absence of L5, and immunofluorescence microscopy experiments showed that L5 efficiently shields other immunogenic cell surface-exposed epitopes outside of this region on living cells. Whereas the ability of micro-organisms to vary surface-exposed domains that are targets for protective immunity has long been established, the current work shows that such domains can be remarkably efficient in shielding other, more conserved epitopes.
Collapse
Affiliation(s)
- Jeroen Kortekaas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Garcia DL, Dillard JP. AmiC functions as an N-acetylmuramyl-l-alanine amidase necessary for cell separation and can promote autolysis in Neisseria gonorrhoeae. J Bacteriol 2006; 188:7211-21. [PMID: 17015660 PMCID: PMC1636224 DOI: 10.1128/jb.00724-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae is prone to undergo autolysis under many conditions not conducive to growth. The role of autolysis during gonococcal infection is not known, but possible advantages for the bacterial population include provision of nutrients to a starving population, modulation of the host immune response by released cell components, and donation of DNA for natural transformation. Biochemical studies indicated that an N-acetylmuramyl-l-alanine amidase is responsible for cell wall breakdown during autolysis. In order to better understand autolysis and in hopes of creating a nonautolytic mutant, we mutated amiC, the gene for a putative peptidoglycan-degrading amidase in N. gonorrhoeae. Characterization of peptidoglycan fragments released during growth showed that an amiC mutant did not produce free disaccharide, consistent with a role for AmiC as an N-acetylmuramyl-l-alanine amidase. Compared to the wild-type parent, the mutant exhibited altered growth characteristics, including slowed exponential-phase growth, increased turbidity in stationary phase, and increased colony opacity. Thin-section electron micrographs showed that mutant cells did not fully separate but grew as clumps. Complementation of the amiC deletion mutant with wild-type amiC restored wild-type growth characteristics and transparent colony morphology. Overexpression of amiC resulted in increased cell lysis, supporting AmiC's purported function as a gonococcal autolysin. However, amiC mutants still underwent autolysis in stationary phase, indicating that other gonococcal enzymes are also involved in this process.
Collapse
Affiliation(s)
- Daniel L Garcia
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
41
|
Istivan TS, Coloe PJ. Phospholipase A in Gram-negative bacteria and its role in pathogenesis. MICROBIOLOGY-SGM 2006; 152:1263-1274. [PMID: 16622044 DOI: 10.1099/mic.0.28609-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phospholipase A (PLA) is one of the few enzymes present in the outer membrane of Gram-negative bacteria, and is likely to be involved in the membrane disruption processes that occur during host cell invasion. Both secreted and membrane-bound phospholipase A(2) activities have been described in bacteria, fungi and protozoa. Recently there have been increasing reports on the involvement of PLA in bacterial invasion and pathogenesis. This review highlights the latest findings on PLA as a virulence factor in Gram-negative bacteria.
Collapse
Affiliation(s)
- Taghrid S Istivan
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Melbourne, VIC 3083, Australia
| | - Peter J Coloe
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Melbourne, VIC 3083, Australia
| |
Collapse
|
42
|
Vipond C, Suker J, Jones C, Tang C, Feavers IM, Wheeler JX. Proteomic analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain NZ98/254. Proteomics 2006; 6:3400-13. [PMID: 16645985 DOI: 10.1002/pmic.200500821] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the absence of a suitable carbohydrate-based vaccine, outer membrane vesicle (OMV) vaccines have been used to disrupt outbreaks of serogroup B meningococcal disease for more than 20 years. Proteomic technology provides physical methods with the potential to assess the composition and consistency of these complex vaccines. 2-DE, combined with MS, were used to generate a proteome map of an OMV vaccine, developed to disrupt a long-running outbreak of group B disease in New Zealand. Seventy four spots from the protein map were identified including the outer membrane protein (OMP) antigens: PorA, PorB, RmpM and OpcA. Protein identification indicates that, in addition to OMPs, OMV vaccines contain periplasmic, membrane-associated and cytoplasmic proteins. 2-D-DIGE technology highlighted differences between preclinical development batches of vaccines from two different manufacturers.
Collapse
Affiliation(s)
- Caroline Vipond
- Department of Bacteriology, National Institute for Biological Standards and Control, South Mimms, Hertfordshire, UK.
| | | | | | | | | | | |
Collapse
|
43
|
van Ulsen P, Adler B, Fassler P, Gilbert M, van Schilfgaarde M, van der Ley P, van Alphen L, Tommassen J. A novel phase-variable autotransporter serine protease, AusI, of Neisseria meningitidis. Microbes Infect 2006; 8:2088-97. [PMID: 16824779 DOI: 10.1016/j.micinf.2006.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/23/2006] [Accepted: 03/23/2006] [Indexed: 11/29/2022]
Abstract
The sequenced genomes of pathogenic Neisseria meningitidis strains contain up to eight genes putatively encoding autotransporters, which are secreted proteins implicated in virulence. Here, we have characterized one of these genes, designated ausI, which encodes an autotransporter of the serine protease family. It was found to be specific for N. meningitidis and present in 14 out of 20 isolates, although only six of them expressed the gene. We show that expression of the gene is subject to phase variation as a result of a variable number of cytosines in a poly-C tract in the coding region. The open reading frame went out-of-phase at the poly-C tract in seven strains that did not express AusI. In the eighth strain, the open reading frame remained in frame at the poly-C tract, but it was disrupted by a premature stop codon further downstream. In accordance with its assignment as an autotransporter, a secreted AusI passenger domain was released into the extracellular milieu. This release was influenced by another autotransporter, NalP, as different forms of AusI were produced in the presence or absence of NalP. In silico sequence analysis suggested several putative functions for AusI, which, however, could not be confirmed experimentally.
Collapse
Affiliation(s)
- Peter van Ulsen
- Department of Molecular Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hamilton HL, Dillard JP. Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol Microbiol 2006; 59:376-85. [PMID: 16390436 DOI: 10.1111/j.1365-2958.2005.04964.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gonococci undergo frequent and efficient natural transformation. Transformation occurs so often that the population structure is panmictic, with only one long-lived clone having been identified. This high degree of genetic exchange is likely necessary to generate antigenic diversity and allow the persistence of gonococcal infection within the human population. In addition to spreading different alleles of genes for surface markers and allowing avoidance of the immune response, transformation facilitates the spread of antibiotic resistance markers, a continuing problem for treatment of gonococcal infections. Transforming DNA is donated by neighbouring gonococci by two different mechanisms: autolysis or type IV secretion. All types of DNA are bound non-specifically to the cell surface. However, for DNA uptake, Neisseria gonorrhoeae recognizes only DNA containing a 10-base sequence (GCCGTCTGAA) present frequently in the chromosome of neisserial species. Type IV pilus components and several pilus-associated proteins are necessary for gonococcal DNA uptake. Incoming DNA is subject to restriction, making establishment of replicating plasmids difficult but not greatly affecting chromosomal transformation. Processing and integration of transforming DNA into the chromosome involves enzymes required for homologous recombination. Recent research on DNA donation mechanisms and extensive work on type IV pilus biogenesis and recombination proteins have greatly improved our understanding of natural transformation in N. gonorrhoeae. The completion of the gonococcal genome sequence has facilitated the identification of additional transformation genes and provides insight into previous investigations of gonococcal transformation. Here we review these recent developments and address the implications of natural transformation in the evolution and pathogenesis N. gonorrhoeae.
Collapse
Affiliation(s)
- Holly L Hamilton
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Medical School, 53706, USA
| | | |
Collapse
|