1
|
Lee YJ, Cao D, Subhadra B, De Castro C, Speciale I, Inzana TJ. Relationship between capsule production and biofilm formation by Mannheimia haemolytica, and establishment of a poly-species biofilm with other Pasteurellaceae. Biofilm 2024; 8:100223. [PMID: 39492819 PMCID: PMC11530854 DOI: 10.1016/j.bioflm.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024] Open
Abstract
Mannheimia haemolytica is one of the bacterial agents responsible for bovine respiratory disease (BRD). The capability of M. haemolytica to form a biofilm may contribute to the development of chronic BRD infection by making the bacteria more resistant to host innate immunity and antibiotics. To improve therapy and prevent BRD, a greater understanding of the association between M. haemolytica surface components and biofilm formation is needed. M. haemolytica strain 619 (wild-type) made a poorly adherent, low-biomass biofilm. To examine the relationship between capsule and biofilm formation, a capsule-deficient mutant of wild-type M. haemolytica was obtained following mutagenesis with ethyl methanesulfonate to obtain mutant E09. Loss of capsular polysaccharide (CPS) in mutant E09 was supported by transmission electron microscopy and Maneval's staining. Mutant E09 attached to polyvinyl chloride plates more effectively, and produced a significantly denser and more uniform biofilm than the wild-type, as determined by crystal violet staining, scanning electron microscopy, and confocal laser scanning microscopy with COMSTAT analysis. The biofilm matrix of E09 contained predominately protein and significantly more eDNA than the wild-type, but not a distinct exopolysaccharide. Furthermore, treatment with DNase I significantly reduced the biofilm content of both the wild-type and E09 mutant. DNA sequencing of E09 showed that a point mutation occurred in the capsule biosynthesis gene wecB. The complementation of wecB in trans in mutant E09 successfully restored CPS production and reduced bacterial attachment/biofilm to levels similar to that of the wild-type. Fluorescence in-situ hybridization microscopy showed that M. haemolytica formed a poly-microbial biofilm with Histophilus somni and Pasteurella multocida. Overall, CPS production by M. haemolytica was inversely correlated with biofilm formation, the integrity of which required eDNA. A poly-microbial biofilm was readily formed between M. haemolytica, H. somni, and P. multocida, suggesting a mutualistic or synergistic interaction that may benefit bacterial colonization of the bovine respiratory tract.
Collapse
Affiliation(s)
- Yue-Jia Lee
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
- Institute of Food Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan, ROC
| | - Dianjun Cao
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| | - Bindu Subhadra
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| | - Cristina De Castro
- Department of Chemical Sciences, Università di Napoli FedericoII, Naples, Italy
| | | | - Thomas J. Inzana
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| |
Collapse
|
2
|
Perry EK, Tan MW. Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front Cell Infect Microbiol 2023; 13:1237164. [PMID: 37712058 PMCID: PMC10499362 DOI: 10.3389/fcimb.2023.1237164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Bacterial biofilms can be found in most environments on our planet, and the human body is no exception. Consisting of microbial cells encased in a matrix of extracellular polymers, biofilms enable bacteria to sequester themselves in favorable niches, while also increasing their ability to resist numerous stresses and survive under hostile circumstances. In recent decades, biofilms have increasingly been recognized as a major contributor to the pathogenesis of chronic infections. However, biofilms also occur in or on certain tissues in healthy individuals, and their constituent species are not restricted to canonical pathogens. In this review, we discuss the evidence for where, when, and what types of biofilms occur in the human body, as well as the diverse ways in which they can impact host health under homeostatic and dysbiotic states.
Collapse
Affiliation(s)
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, South San Francisco, CA, United States
| |
Collapse
|
3
|
Wang J, Raza W, Jiang G, Yi Z, Fields B, Greenrod S, Friman VP, Jousset A, Shen Q, Wei Z. Bacterial volatile organic compounds attenuate pathogen virulence via evolutionary trade-offs. THE ISME JOURNAL 2023; 17:443-452. [PMID: 36635489 PMCID: PMC9938241 DOI: 10.1038/s41396-023-01356-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Volatile organic compounds (VOCs) produced by soil bacteria have been shown to exert plant pathogen biocontrol potential owing to their strong antimicrobial activity. While the impact of VOCs on soil microbial ecology is well established, their effect on plant pathogen evolution is yet poorly understood. Here we experimentally investigated how plant-pathogenic Ralstonia solanacearum bacterium adapts to VOC-mixture produced by a biocontrol Bacillus amyloliquefaciens T-5 bacterium and how these adaptations might affect its virulence. We found that VOC selection led to a clear increase in VOC-tolerance, which was accompanied with cross-tolerance to several antibiotics commonly produced by soil bacteria. The increasing VOC-tolerance led to trade-offs with R. solanacearum virulence, resulting in almost complete loss of pathogenicity in planta. At the genetic level, these phenotypic changes were associated with parallel mutations in genes encoding lipopolysaccharide O-antigen (wecA) and type-4 pilus biosynthesis (pilM), which both have been linked with outer membrane permeability to antimicrobials and plant pathogen virulence. Reverse genetic engineering revealed that both mutations were important, with pilM having a relatively larger negative effect on the virulence, while wecA having a relatively larger effect on increased antimicrobial tolerance. Together, our results suggest that microbial VOCs are important drivers of bacterial evolution and could potentially be used in biocontrol to select for less virulent pathogens via evolutionary trade-offs.
Collapse
Affiliation(s)
- Jianing Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China
| | - Waseem Raza
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China.
- Institute for Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China
| | - Zhang Yi
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China
| | - Bryden Fields
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Samuel Greenrod
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ville-Petri Friman
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China.
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
- Department of Microbiology, University of Helsinki, Helsinki, 00014, Finland.
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China.
| |
Collapse
|
4
|
Tomás-Martínez S, Chen LM, Pabst M, Weissbrodt DG, van Loosdrecht MCM, Lin Y. Enrichment and application of extracellular nonulosonic acids containing polymers of Accumulibacter. Appl Microbiol Biotechnol 2023; 107:931-941. [PMID: 36484828 DOI: 10.1007/s00253-022-12326-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Pseudaminic and legionaminic acids are a subgroup of nonulosonic acids (NulOs) unique to bacterial species. There is a lack of advances in the study of these NulOs due to their complex synthesis and production. Recently, it was seen that "Candidatus Accumulibacter" can produce Pse or Leg analogues as part of its extracellular polymeric substances (EPS). In order to employ a "Ca. Accumulibacter" enrichment as production platform for bacterial sialic acids, it is necessary to determine which fractions of the EPS of "Ca. Accumulibacter" contain NulOs and how to enrich and/or isolate them. We extracted the EPS from granules enriched with "Ca. Accumulibcater" and used size-exclusion chromatography (SEC) to separate them into different molecular weight (MW) fractions. This separation resulted in two high molecular weight (> 5500 kDa) fractions dominated by polysaccharides, with a NulO content up to 4 times higher than the extracted EPS. This suggests that NulOs in "Ca. Accumulibacter" are likely located in high molecular weight polysaccharides. Additionally, it was seen that the extracted EPS and the NulO-rich fractions can bind and neutralize histones. This opens the possibility of EPS and NulO-rich fractions as potential source for sepsis treatment drugs. KEY POINTS: • NulOs in "Ca. Accumulibacter" are likely located in high MW polysaccharides • SEC allows to obtain high MW polysaccharide-rich fractions enriched with NulOs • EPS and the NulOs-rich fractions are a potential source for sepsis treatment drugs.
Collapse
Affiliation(s)
- Sergio Tomás-Martínez
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Le Min Chen
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - David G Weissbrodt
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
5
|
Identification of novel genes involved in the biofilm formation process of Avian Pathogenic Escherichia coli (APEC). PLoS One 2022; 17:e0279206. [PMID: 36534660 PMCID: PMC9762606 DOI: 10.1371/journal.pone.0279206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is the etiological agent of avian colibacillosis, a leading cause of economic loss to the poultry industry worldwide. APEC causes disease using a diverse repertoire of virulence factors and has the ability to form biofilms, which contributes to the survival and persistence of APEC in harsh environments. The objective of this study was to identify genes most widespread and important in APEC that contribute to APEC biofilm formation. Using the characterized APEC O18 as the template strain, a total of 15,660 mutants were randomly generated using signature tagged mutagenesis and evaluated for decreased biofilm formation ability using the crystal violet assay. Biofilm deficient mutants were sequenced, and a total of 547 putative biofilm formation genes were identified. Thirty of these genes were analyzed by PCR for prevalence among 109 APEC isolates and 104 avian fecal E. coli (AFEC) isolates, resulting in nine genes with significantly greater prevalence in APEC than AFEC. The expression of these genes was evaluated in the wild-type APEC O18 strain using quantitative real-time PCR (qPCR) in both the exponential growth phase and the mature biofilm phase. To investigate the role of these genes in biofilm formation, isogenic mutants were constructed and evaluated for their biofilm production and planktonic growth abilities. Four of the mutants (rfaY, rfaI, and two uncharacterized genes) displayed significantly decreased biofilm formation, and of those four, one (rfaI) displayed significantly decreased growth compared to the wild type. Overall, this study identified novel genes that may be important in APEC and its biofilm formation. The data generated from this study will benefit further investigation into the mechanisms of APEC biofilm formation.
Collapse
|
6
|
Tran NT, Vo LK, Komatsu M, Shiozaki K. Involvement of N-acetylneuraminate cytidylyltransferase in Edwardsiella piscicida pathogenicity. FISH & SHELLFISH IMMUNOLOGY 2022; 124:534-542. [PMID: 35477099 DOI: 10.1016/j.fsi.2022.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/22/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Edwardsiella piscicida is a gram-negative bacterium that causes Edwardsiellosis in cultured fish. Edwardsiellosis is accompanied by symptoms such as skin lesions, hemorrhage, and necrosis in fish organs, which leads to significant economic losses in the aquaculture industry. Recently, we found that bacterial sialoglycoconjugates may be involved in the infectivity of E. piscicida. The more infectious strains of E. piscicida contain more sialic acid in the bacterial body, and the mRNA level of putative CMP-Neu5Ac synthase (css) is upregulated compared to that in the non-pathogenic strain. However, this putative css gene is yet to be cloned, and the involvement of CSS in E. piscicida pathogenicity remains unclear. Here, we cloned and transferred the css gene from E. piscicida into the FPC498 strain. CSS promoted infection in cultured cells originating from different fish species, and enhanced the mortality of E. piscicida-infected zebrafish larvae. CSS enhanced cell attachment and motility in E. piscicida, which differs from the decreased bacterial growth observed with the sialic acid-supplemented M9 medium. Both fractions (chloroform-methanol)-soluble and -insoluble fraction) prepared from E. piscicida pellet exhibited the increment of sialo-conjugates induced by CSS. Further, lectin blotting revealed the increment of Sia α2-3- and α2-6-, but not α2-8-, -linked glycoprotein in CSS-overexpressing E. piscicida. Overall, these findings indicate the physiological significance of CSS and the role of sialylation in E. piscicida pathogenicity.
Collapse
Affiliation(s)
- Nhung Thi Tran
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Linh Khanh Vo
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Masaharu Komatsu
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
7
|
Mirzaei R, Ranjbar R. Hijacking host components for bacterial biofilm formation: An advanced mechanism. Int Immunopharmacol 2022; 103:108471. [PMID: 34952466 DOI: 10.1016/j.intimp.2021.108471] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Biofilm is a community of bacteria embedded in the extracellular matrix that accounts for 80% of bacterial infections. Biofilm enables bacterial cells to provide particular conditions and produce virulence determinants in response to the unavailability of micronutrients and local oxygen, resulting in their resistance to various antibacterial agents. Besides, the human immune reactions are not completely competent in the elimination of biofilm. Most importantly, the growing body of evidence shows that some bacterial spp. use a variety of mechanisms by which hijack the host components to form biofilm. In this regard, host components, such as DNA, hyaluronan, collagen, fibronectin, mucin, oligosaccharide moieties, filamentous polymers (F-actin), plasma, platelets, keratin, sialic acid, laminin, vitronectin, C3- and C4- binding proteins, antibody, proteases, factor I, factor H, and acidic proline-rich proteins have been reviewed. Hence, the characterization of interactions between bacterial biofilm and the host would be critical to effectively address biofilm-associated infections. In this paper, we review the latest information on the hijacking of host factors by bacteria to form biofilm.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Nontypeable Haemophilus influenzae Redox Recycling of Protein Thiols Promotes Resistance to Oxidative Killing and Bacterial Survival in Biofilms in a Smoke-Related Infection Model. mSphere 2022; 7:e0084721. [PMID: 35044805 PMCID: PMC8769201 DOI: 10.1128/msphere.00847-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Smoke exposure is a risk factor for community-acquired pneumonia, which is typically caused by host-adapted airway opportunists like nontypeable Haemophilus influenzae (NTHi). Genomic analyses of NTHi revealed homologs of enzymes with predicted roles in reduction of protein thiols, which can have key roles in oxidant resistance. Using a clinical NTHi isolate (NTHi 7P49H1), we generated isogenic mutants in which homologs of glutathione reductase (open reading frame NTHI 0251), thioredoxin-dependent thiol peroxidase (NTHI 0361), thiol peroxidase (NTHI 0907), thioredoxin reductase (NTHI 1327), and glutaredoxin/peroxiredoxin (NTHI 0705) were insertionally inactivated. Bacterial protein analyses revealed that protein oxidation after hydrogen peroxide treatment was elevated in all the mutant strains. Similarly, each of these mutants was less resistant to oxidative killing than the parental strain; these phenotypes were reversed by genetic complementation. Analysis of biofilm communities formed by the parental and mutant strains showed reduction in overall biofilm thickness and density and significant sensitization of bacteria within the biofilm structure to oxidative killing. Experimental respiratory infection of smoke-exposed mice with NTHi 7P49H1 showed significantly increased bacterial counts compared to control mice. Immunofluorescent staining of lung tissues showed NTHi communities on lung mucosae, interspersed with neutrophil extracellular traps; these bacteria had transcript profiles consistent with NTHi biofilms. In contrast, infection with the panel of NTHi mutants showed a significant decrease in bacterial load. Comparable results were observed in bactericidal assays with neutrophil extracellular traps in vitro. Thus, we conclude that thiol-mediated redox homeostasis is a determinant of persistence of NTHi within biofilm communities. IMPORTANCE Chronic bacterial respiratory infections are a significant problem for smoke-exposed individuals, especially those with chronic obstructive pulmonary disease (COPD). These infections often persist despite antibiotic use. Thus, the bacteria remain and contribute to the development of inflammation and other respiratory problems. Respiratory bacteria often form biofilms within the lungs; during growth in a biofilm, their antibiotic and oxidative stress resistance is incredibly heightened. It is well documented that redox homeostasis genes are upregulated during this phase of growth. Many common respiratory pathogens, such as NTHi and Streptococcus pneumoniae, are reliant on scavenging from the host the necessary components they need to maintain these redox systems. This work begins to lay the foundation for exploiting this requirement and thiol redox homeostasis pathways of these bacteria as a therapeutic target for managing chronic respiratory bacterial infections, which are resistant to traditional antibiotic treatments alone.
Collapse
|
9
|
Shin H, Kim G, Han SB, Jeong DC, Kang JH. Recurrent Meningitis Caused by β-Lactamase-Positive Amoxicillin/Clavulanate-Resistant Non-Typeable Haemophilus influenzae in a Child with an Inner Ear Malformation: A Case Report. Infect Chemother 2020; 53:808-813. [PMID: 33124213 PMCID: PMC8731253 DOI: 10.3947/ic.2020.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/27/2018] [Indexed: 11/24/2022] Open
Abstract
Infections with Haemophilus influenzae type b have been decreasing due to widespread use of conjugate vaccines thereto, and there has been an increasing trend in the relative proportion of invasive infections by non-typeable H. influenzae (NTHi). NTHi commonly colonizes the upper respiratory tract and causes recurrent infections of the adjacent organs. There is a rapid development of antibiotic resistance in NTHi strains, and therefore it is important to select appropriate antibiotics for treatment. We report a case of recurrent NTHi meningitis in a 5-year-old girl with a previous history of recurrent otitis media. The patient presented with fever accompanying recurrent vomiting, and β-lactamase-positive amoxicillin/clavulanate-resistant NTHi was isolated in cerebrospinal fluid culture. Antibiotic resistance testing revealed penicillin-binding protein 3 mutation, which is an important emerging mechanism of antibiotic resistance of NTHi. Cystic cochleovestibular malformation was also identified, which may be the predisposing condition for recurrent otitis media, and invasive NTHi infection. Acute symptoms resolved with antibiotic therapy (cefotaxime, 200 mg/kg per day). After surgical revision, the patient has been in good health without recurrence. In children with recurrent respiratory tract infections, or invasive NTHi infection, it is important to consider the presence of underlying diseases and infections due to antibiotic resistant pathogens, in order to select an appropriate antibiotic agent for treatment.
Collapse
Affiliation(s)
- Hyejo Shin
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Geonju Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Beom Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea.,The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dae Chul Jeong
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea.,The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Han Kang
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea.,The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
10
|
Hunt BC, Stanford D, Xu X, Li J, Gaggar A, Rowe SM, Raju SV, Swords WE. Haemophilus influenzae persists in biofilm communities in a smoke-exposed ferret model of COPD. ERJ Open Res 2020; 6:00200-2020. [PMID: 32802827 PMCID: PMC7418822 DOI: 10.1183/23120541.00200-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/18/2020] [Indexed: 12/01/2022] Open
Abstract
Rationale Non-typeable Haemophilus influenzae (NTHi) is a common inhabitant of the human nasopharynx and upper airways that can cause opportunistic infections of the airway mucosa including bronchopulmonary infections in patients with chronic obstructive pulmonary disease (COPD). It is clear that opportunistic infections contribute significantly to inflammatory exacerbations of COPD; however, there remains much to be learned regarding specific host and microbial determinants of persistence and/or clearance in this context. Methods In this study, we used a recently described ferret model for COPD, in which animals undergo chronic long-term exposure to cigarette smoke, to define host–pathogen interactions during COPD-related NTHi infections. Results NTHi bacteria colonised the lungs of smoke-exposed animals to a greater extent than controls, and elicited acute host inflammation and neutrophilic influx and activation, along with a significant increase in airway resistance and a decrease in inspiratory capacity consistent with inflammatory exacerbation; notably, these findings were not observed in air-exposed control animals. NTHi bacteria persisted within multicellular biofilm communities within the airway lumen, as evidenced by immunofluorescent detection of bacterial aggregates encased within a sialylated matrix as is typical of NTHi biofilms and differential bacterial gene expression consistent with the biofilm mode of growth. Conclusions Based on these results, we conclude that acute infection with NTHi initiates inflammatory exacerbation of COPD disease. The data also support the widely held hypothesis that NTHi bacteria persist within multicellular biofilm communities in the lungs of patients with COPD. Infection of smoke-exposed ferrets with COPD results in mucus obstruction and respiratory symptoms as in patients, and the bacteria are in a distinct mode of growth consistent with biofilmshttps://bit.ly/3euXpbQ
Collapse
Affiliation(s)
- Benjamin C Hunt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.,Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Denise Stanford
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Xin Xu
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Jindong Li
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Amit Gaggar
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.,Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Steven M Rowe
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.,Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - S Vamsee Raju
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.,Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - W Edward Swords
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.,Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| |
Collapse
|
11
|
Small-Molecule Acetylation by GCN5-Related N-Acetyltransferases in Bacteria. Microbiol Mol Biol Rev 2020; 84:84/2/e00090-19. [PMID: 32295819 DOI: 10.1128/mmbr.00090-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acetylation is a conserved modification used to regulate a variety of cellular pathways, such as gene expression, protein synthesis, detoxification, and virulence. Acetyltransferase enzymes transfer an acetyl moiety, usually from acetyl coenzyme A (AcCoA), onto a target substrate, thereby modulating activity or stability. Members of the GCN5- N -acetyltransferase (GNAT) protein superfamily are found in all domains of life and are characterized by a core structural domain architecture. These enzymes can modify primary amines of small molecules or of lysyl residues of proteins. From the initial discovery of antibiotic acetylation, GNATs have been shown to modify a myriad of small-molecule substrates, including tRNAs, polyamines, cell wall components, and other toxins. This review focuses on the literature on small-molecule substrates of GNATs in bacteria, including structural examples, to understand ligand binding and catalysis. Understanding the plethora and versatility of substrates helps frame the role of acetylation within the larger context of bacterial cellular physiology.
Collapse
|
12
|
Baddal B. Characterization of biofilm formation and induction of apoptotic DNA fragmentation by nontypeable Haemophilus influenzae on polarized human airway epithelial cells. Microb Pathog 2020; 141:103985. [PMID: 31968224 DOI: 10.1016/j.micpath.2020.103985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a common airway commensal and opportunistic pathogen that persists within biofilm communities in vivo. Biofilm studies so far are mainly based on assays on plastic surfaces. The aim of this work was to investigate the capacity of clinical NTHi strains to form biofilm structures on polarized Calu-3 human airway epithelial cells and primary normal human bronchial epithelial cells and to characterize the biofilm architecture. Formation of adherent NTHi biofilms post colonization of host cells at multiple time-points was evaluated using confocal laser scanning microscopy and electron microscopy. NTHi biofilms were analyzed in terms of biofilm height and presence of extracellular matrix components, and their apoptotic effects on epithelial cells were measured by TUNEL assay. Strain Fi176 was observed to form robust biofilms on airway epithelia over time, while disrupting the integrity of Calu-3 monolayer by 72 h of co-culture. NTHi biofilms were observed to induce apoptotic DNA fragmentation in host cells at 24 h post infection. Biofilm formation on cell monolayers by Fi176ΔpilA strain was markedly reduced compared to WT strain. Biofilm inhibition and disruption assays by crystal violet staining indicated that DNA and proteins are part of NTHi biofilms in vitro. Our findings highlight critical stages of NTHi pathogenesis following host colonization and provide useful biofilm models for future antimicrobial drug discovery investigations.
Collapse
Affiliation(s)
- Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, 99138, Nicosia, Cyprus; Microbial Pathogenesis Research Group, DESAM Institute, Near East University, Nicosia, Cyprus.
| |
Collapse
|
13
|
Desialylation by Edwardsiella tarda is the initial step in the regulation of its invasiveness. Biochem J 2019; 476:3183-3196. [DOI: 10.1042/bcj20190367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/03/2019] [Accepted: 10/14/2019] [Indexed: 01/15/2023]
Abstract
AbstractEdwardsiella tarda is a gram-negative bacterium causing significant economic losses to aquaculture. E. tarda possesses NanA sialidase which removes sialic acids from α2–3 sialo-glycoprotein of host cells. However, the relationship between NanA sialidase activity and E. tarda invasiveness remains poorly understood. Furthermore, the pathway of sialic acid metabolism in E. tarda remains to be elucidated. We studied sialidase activity in several E. tarda strains and found that the pathogenic strains exhibited higher sialidase activity and greater up-regulation of the NanA mRNA level than non-pathogenic strain. Pathogenic strains also showed higher rates of infection in GAKS cells, and the infection was drastically suppressed by sialidase inhibitor. Additionally, NanA gene overexpression significantly increased infection and treatment of E. tarda with free sialic acid enhanced the rate of infection in GAKS cells. Sialic acid treatment enhanced mRNA levels of two N-acetylneuraminate lyases and one N-acetylneuraminate cytidylyltransferase. E. tarda uses sialic acid as a carbon source for growth via N-acetylneuraminate lyases. The strains with high N-acetylneuraminate cytidylyltransferase level showed greater sialylation of the lipopolysaccharides and glycoproteins. Our study establishes the significance of desialylation by E. tarda sialidase in the regulation of its invasiveness.
Collapse
|
14
|
Harrison A, Hardison RL, Wallace RM, Fitch J, Heimlich DR, Bryan MO, Dubois L, John-Williams LS, Sebra RP, White P, Moseley MA, Thompson JW, Justice SS, Mason KM. Reprioritization of biofilm metabolism is associated with nutrient adaptation and long-term survival of Haemophilus influenzae. NPJ Biofilms Microbiomes 2019; 5:33. [PMID: 31700653 PMCID: PMC6831627 DOI: 10.1038/s41522-019-0105-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/03/2019] [Indexed: 01/14/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is a human-restricted pathogen with an essential requirement for heme-iron acquisition. We previously demonstrated that microevolution of NTHI promotes stationary phase survival in response to transient heme-iron restriction. In this study, we examine the metabolic contributions to biofilm formation using this evolved NTHI strain, RM33. Quantitative analyses identified 29 proteins, 55 transcripts, and 31 metabolites that significantly changed within in vitro biofilms formed by RM33. The synthesis of all enzymes within the tryptophan and glycogen pathways was significantly increased in biofilms formed by RM33 compared with the parental strain. In addition, increases were observed in metabolite transport, adhesin production, and DNA metabolism. Furthermore, we observed pyruvate as a pivotal point in the metabolic pathways associated with changes in cAMP phosphodiesterase activity during biofilm formation. Taken together, changes in central metabolism combined with increased stores of nutrients may serve to counterbalance nutrient sequestration.
Collapse
Affiliation(s)
- Alistair Harrison
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Rachael L. Hardison
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Rachel M. Wallace
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - James Fitch
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Steve and Cindy Rasmussen Institute for Genomic Medicine, 575 Children’s Crossroad, Columbus, OH 43215 USA
| | - Derek R. Heimlich
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Meghan O’ Bryan
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Laura Dubois
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Lisa St. John-Williams
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Robert P. Sebra
- Icahn School of Medicine at Mount Sinai, Icahn Institute and Department of Genetics & Genomic Sciences, 1 Gustave L. Levy Place, New York, NY 10029 USA
| | - Peter White
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Steve and Cindy Rasmussen Institute for Genomic Medicine, 575 Children’s Crossroad, Columbus, OH 43215 USA
| | - M. Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - J. Will Thompson
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Sheryl S. Justice
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
- Infectious Diseases Institute, The Ohio State University College of Medicine, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Kevin M. Mason
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
- Infectious Diseases Institute, The Ohio State University College of Medicine, 700 Children’s Drive, Columbus, OH 43205 USA
| |
Collapse
|
15
|
van den Broek MFL, De Boeck I, Kiekens F, Boudewyns A, Vanderveken OM, Lebeer S. Translating Recent Microbiome Insights in Otitis Media into Probiotic Strategies. Clin Microbiol Rev 2019; 32:e00010-18. [PMID: 31270125 PMCID: PMC6750133 DOI: 10.1128/cmr.00010-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microbiota of the upper respiratory tract (URT) protects the host from bacterial pathogenic colonization by competing for adherence to epithelial cells and by immune response regulation that includes the activation of antimicrobial and (anti-)inflammatory components. However, environmental or host factors can modify the microbiota to an unstable community that predisposes the host to infection or inflammation. One of the URT diseases most often encountered in children is otitis media (OM). The role of pathogenic bacteria like Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the pathogenesis of OM is well documented. Results from next-generation-sequencing (NGS) studies reveal other bacterial taxa involved in OM, such as Turicella and Alloiococcus Such studies can also identify bacterial taxa that are potentially protective against URT infections, whose beneficial action needs to be substantiated in relevant experimental models and clinical trials. Of note, lactic acid bacteria (LAB) are members of the URT microbiota and associated with a URT ecosystem that is deemed healthy, based on NGS and some experimental and clinical studies. These observations have formed the basis of this review, in which we describe the current knowledge of the molecular and clinical potential of LAB in the URT, which is currently underexplored in microbiome and probiotic research.
Collapse
Affiliation(s)
- Marianne F L van den Broek
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Ilke De Boeck
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Olivier M Vanderveken
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
16
|
Silva MD, Sillankorva S. Otitis media pathogens – A life entrapped in biofilm communities. Crit Rev Microbiol 2019; 45:595-612. [DOI: 10.1080/1040841x.2019.1660616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Daniela Silva
- CEB – Centre of Biological Engineering, LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Sanna Sillankorva
- CEB – Centre of Biological Engineering, LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
17
|
Brown JR, Jurcisek J, Lakhani V, Snedden A, Ray WC, Mokrzan EM, Bakaletz LO, Das J. In Silico Modeling of Biofilm Formation by Nontypeable Haemophilus influenzae In Vivo. mSphere 2019; 4:e00254-19. [PMID: 31366707 PMCID: PMC6669334 DOI: 10.1128/msphere.00254-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/08/2019] [Indexed: 01/08/2023] Open
Abstract
Biofilms formed by nontypeable Haemophilus influenzae (NTHI) bacteria play an important role in multiple respiratory tract diseases. Visual inspection of the morphology of biofilms formed during chronic infections shows distinct differences from biofilms formed in vitro To better understand these differences, we analyzed images of NTHI biofilms formed in the middle ears of Chinchilla lanigera and developed an in silico agent-based model of the formation of NTHI biofilms in vivo We found that, as in vitro, NTHI bacteria are organized in self-similar patterns; however, the sizes of NTHI clusters in vivo are more than 10-fold smaller than their in vitro counterparts. The agent-based model reproduced these patterns and suggested that smaller clusters occur due to elimination of planktonic NTHI cells by the host responses. Estimation of model parameters by fitting simulation results to imaging data showed that the effects of several processes in the model change during the course of the infection.IMPORTANCE Multiple respiratory illnesses are associated with formation of biofilms within the human airway by NTHI. However, a substantial amount of our understanding of the mechanisms that underlie NTHI biofilm formation is obtained from in vitro studies. Our in silico model that describes biofilm formation by NTHI within the middle ears of Chinchilla lanigera will help isolate processes potentially responsible for the differences between the morphologies of biofilms formed in vivo versus those formed in vitro Thus, the in silico model can be used to glean mechanisms that underlie biofilm formation in vivo and connect those mechanisms to those obtained from in vitro experiments. The in silico model developed here can be extended to investigate potential roles of specific host responses (e.g., mucociliary clearance) on NTHI biofilm formation in vivo The developed computational tools can also be used to analyze and describe biofilm formation by other bacterial species in vivo.
Collapse
Affiliation(s)
- Jonathan R Brown
- Battelle Center for Mathematical Medicine, The Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Joseph Jurcisek
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vinal Lakhani
- Battelle Center for Mathematical Medicine, The Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Ali Snedden
- High Performance Computing Center, The Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA
| | - William C Ray
- Battelle Center for Mathematical Medicine, The Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, the Ohio State University, Columbus, Ohio, USA
- Department of Biophysics Graduate Program, the Ohio State University, Columbus, Ohio, USA
| | - Elaine M Mokrzan
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lauren O Bakaletz
- Department of Pediatrics, College of Medicine, the Ohio State University, Columbus, Ohio, USA
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jayajit Das
- Battelle Center for Mathematical Medicine, The Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, the Ohio State University, Columbus, Ohio, USA
- Department of Biophysics Graduate Program, the Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Di Somma A, Caterino M, Soni V, Agarwal M, di Pasquale P, Zanetti S, Molicotti P, Cannas S, Nandicoori VK, Duilio A. The bifunctional protein GlmU is a key factor in biofilm formation induced by alkylating stress in Mycobacterium smegmatis. Res Microbiol 2019; 170:171-181. [DOI: 10.1016/j.resmic.2019.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
|
19
|
McDonald ND, DeMeester KE, Lewis AL, Grimes CL, Boyd EF. Structural and functional characterization of a modified legionaminic acid involved in glycosylation of a bacterial lipopolysaccharide. J Biol Chem 2018; 293:19113-19126. [PMID: 30315110 PMCID: PMC6295735 DOI: 10.1074/jbc.ra118.004966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/07/2018] [Indexed: 12/23/2022] Open
Abstract
Nonulosonic acids (NulOs) are a diverse family of α-keto acid carbohydrates present across all branches of life. Bacteria biosynthesize NulOs among which are several related prokaryotic-specific isomers and one of which, N-acetylneuraminic acid (sialic acid), is common among all vertebrates. Bacteria display various NulO carbohydrates on lipopolysaccharide (LPS), and the identities of these molecules tune host-pathogen recognition mechanisms. The opportunistic bacterial pathogen Vibrio vulnificus possesses the genes for NulO biosynthesis; however, the structures and functions of the V. vulnificus NulO glycan are unknown. Using genetic and chemical approaches, we show here that the major NulO produced by a clinical V. vulnificus strain CMCP6 is 5-N-acetyl-7-N-acetyl-d-alanyl-legionaminic acid (Leg5Ac7AcAla). The CMCP6 strain could catabolize modified legionaminic acid, whereas V. vulnificus strain YJ016 produced but did not catabolize a NulO without the N-acetyl-d-alanyl modification. In silico analysis suggested that Leg5Ac7AcAla biosynthesis follows a noncanonical pathway but appears to be present in several bacterial species. Leg5Ac7AcAla contributed to bacterial outer-membrane integrity, as mutant strains unable to produce or incorporate Leg5Ac7AcAla into the LPS have increased membrane permeability, sensitivity to bile salts and antimicrobial peptides, and defects in biofilm formation. Using the crustacean model, Artemia franciscana, we demonstrate that Leg5Ac7AcAla-deficient bacteria have decreased virulence potential compared with WT. Our data indicate that different V. vulnificus strains produce multiple NulOs and that the modified legionaminic acid Leg5Ac7AcAla plays a critical role in the physiology, survivability, and pathogenicity of V. vulnificus CMCP6.
Collapse
Affiliation(s)
| | - Kristen E DeMeester
- Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 and
| | - Amanda L Lewis
- the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Catherine Leimkuhler Grimes
- From the Departments of Biological Sciences and
- Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 and
| | | |
Collapse
|
20
|
Autoinducer 2 (AI-2) Production by Nontypeable Haemophilus influenzae 86-028NP Promotes Expression of a Predicted Glycosyltransferase That Is a Determinant of Biofilm Maturation, Prevention of Dispersal, and Persistence In Vivo. Infect Immun 2018; 86:IAI.00506-18. [PMID: 30249749 DOI: 10.1128/iai.00506-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an extremely common human pathobiont that persists on the airway mucosal surface within biofilm communities, and our previous work has shown that NTHi biofilm maturation is coordinated by the production and uptake of autoinducer 2 (AI-2) quorum signals. To directly test roles for AI-2 in maturation and maintenance of NTHi biofilms, we generated an NTHi 86-028NP mutant in which luxS transcription was under the control of the xylA promoter (NTHi 86-028NP luxS xylA::luxS), rendering AI-2 production inducible by xylose. Comparison of biofilms under inducing and noninducing conditions revealed a biofilm defect in the absence of xylose, whereas biofilm maturation increased following xylose induction. The removal of xylose resulted in the interruption of luxS expression and biofilm dispersal. Measurement of luxS transcript levels by real-time reverse transcription-PCR (RT-PCR) showed that luxS expression peaked as biofilms matured and waned before dispersal. Transcript profiling revealed significant changes following the induction of luxS, including increased transcript levels for a predicted family 8 glycosyltransferase (NTHI1750; designated gstA); this result was confirmed by real-time RT-PCR. An isogenic NTHi 86-028NP gstA mutant had a biofilm defect, including decreased levels of sialylated matrix and significantly altered biofilm structure. In experimental chinchilla infections, we observed a significant decrease in the number of bacteria in the biofilm population (but not in effusions) for NTHi 86-028NP gstA compared to the parental strain. Therefore, we conclude that AI-2 promotes NTHi biofilm maturation and the maintenance of biofilm integrity, due at least in part to the expression of a probable glycosyltransferase that is potentially involved in the synthesis of the biofilm matrix.
Collapse
|
21
|
Nontypeable Haemophilus influenzae Lipooligosaccharide Expresses a Terminal Ketodeoxyoctanoate In Vivo, Which Can Be Used as a Target for Bactericidal Antibody. mBio 2018; 9:mBio.01401-18. [PMID: 30065093 PMCID: PMC6069110 DOI: 10.1128/mbio.01401-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an important pathogen in individuals of all ages. The lipooligosaccharide (LOS) of NTHi has evolved a complex structure that can be attributed to a multiplicity of glycosyltransferases, the random switching of glycosyltransferase gene expression via phase variation, and the complex structure of its core region with multiple glycoform branch points. This article adds to that complexity by describing a multifunctional enzyme (LsgB) which optimally functions when the species is grown on a solid surface and which can add either a ketodeoxyoctanoate (KDO) or an N-acetylneuramic acid (Neu5Ac) moiety to a terminal N-acetyllactosamine structure of LOS. Our studies show that expression of lsgB is reduced four- to sixfold when NTHi is grown in broth. The substrate that the enzyme utilizes is dependent upon the concentration of free Neu5Ac (between 1 and 10 µg/ml) in the environment. In environments in which Neu5Ac is below that level, the enzyme utilizes endogenous CMP-KDO as the substrate. Our studies show that during in vivo growth in an NTHi biofilm, the KDO moiety is expressed by the organism. Monoclonal antibody 6E4, which binds KDO, is bactericidal for NTHi strains that express the KDO epitope at high levels. In a survey of 33 NTHi strains isolated from healthy and diseased individuals, the antibody was bactericidal (>90% kill) for 12 strains (36%). These studies open up the possibility of using a KDO-based glycoconjugate vaccine as part of a multicomponent vaccine against NTHi.IMPORTANCE Nontypeable Haemophilus influenzae is an important pathogen in middle ear infections in children, sinusitis in adults, and acute bronchitis in individuals with chronic obstructive lung disease. The organism is very well adapted to the human host environment, and this has hindered successful development of an effective vaccine. In this article, we describe a mechanism by which the bacteria decorates its surface lipooligosaccharide with a sugar unique to Gram-negative bacteria, ketodeoxyoctanoate (KDO). This sugar decoration is present during active infection and we have shown that an antibody directed against this sugar can result in killing of the organism. These data demonstrate that the lipooligosaccharide ketodeoxyoctanoate epitope may be a novel NTHi-specific candidate vaccine antigen.
Collapse
|
22
|
Harper M, Boyce JD. The Myriad Properties of Pasteurella multocida Lipopolysaccharide. Toxins (Basel) 2017; 9:toxins9080254. [PMID: 28825691 PMCID: PMC5577588 DOI: 10.3390/toxins9080254] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023] Open
Abstract
Pasteurella multocida is a heterogeneous species that is a primary pathogen of many different vertebrates. This Gram-negative bacterium can cause a range of diseases, including fowl cholera in birds, haemorrhagic septicaemia in ungulates, atrophic rhinitis in swine, and lower respiratory tract infections in cattle and pigs. One of the primary virulence factors of P. multocida is lipopolysaccharide (LPS). Recent work has shown that this crucial surface molecule shows significant structural variability across different P. multocida strains, with many producing LPS structures that are highly similar to the carbohydrate component of host glycoproteins. It is likely that this LPS mimicry of host molecules plays a major role in the survival of P. multocida in certain host niches. P. multocida LPS also plays a significant role in resisting the action of chicken cathelicidins, and is a strong stimulator of host immune responses. The inflammatory response to the endotoxic lipid A component is a major contributor to the pathogenesis of certain infections. Recent work has shown that vaccines containing killed bacteria give protection only against other strains with identical, or nearly identical, surface LPS structures. Conversely, live attenuated vaccines give protection that is broadly protective, and their efficacy is independent of LPS structure.
Collapse
Affiliation(s)
- Marina Harper
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - John Dallas Boyce
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
23
|
Haemophilus parainfluenzae Strain ATCC 33392 Forms Biofilms In Vitro and during Experimental Otitis Media Infections. Infect Immun 2017; 85:IAI.01070-16. [PMID: 28674033 DOI: 10.1128/iai.01070-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/28/2017] [Indexed: 12/31/2022] Open
Abstract
Haemophilus parainfluenzae is a nutritionally fastidious, Gram-negative bacterium with an oropharyngeal/nasopharyngeal carriage niche that is associated with a range of opportunistic infections, including infectious endocarditis and otitis media (OM). These infections are often chronic/recurrent in nature and typically involve bacterial persistence within biofilm communities that are highly resistant to host clearance. This study addresses the primary hypothesis that H. parainfluenzae forms biofilm communities that are important determinants of persistence in vivo The results from in vitro biofilm studies confirmed that H. parainfluenzae formed biofilm communities within which the polymeric matrix was mainly composed of extracellular DNA and proteins. Using a chinchilla OM infection model, we demonstrated that H. parainfluenzae formed surface-associated biofilm communities containing bacterial and host components that included neutrophil extracellular trap (NET) structures and that the bacteria mainly persisted in these biofilm communities. We also used this model to examine the possible interaction between H. parainfluenzae and its close relative Haemophilus influenzae, which is also commonly carried within the same host environments and can cause OM. The results showed that coinfection with H. influenzae promoted clearance of H. parainfluenzae from biofilm communities during OM infection. The underlying mechanisms for bacterial persistence and biofilm formation by H. parainfluenzae and knowledge about the survival defects of H. parainfluenzae during coinfection with H. influenzae are topics for future work.
Collapse
|
24
|
Sialic acid acquisition in bacteria-one substrate, many transporters. Biochem Soc Trans 2017; 44:760-5. [PMID: 27284039 DOI: 10.1042/bst20160056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 11/17/2022]
Abstract
The sialic acids are a family of 9-carbon sugar acids found predominantly on the cell-surface glycans of humans and other animals within the Deuterostomes and are also used in the biology of a wide range of bacteria that often live in association with these animals. For many bacteria sialic acids are simply a convenient source of food, whereas for some pathogens they are also used in immune evasion strategies. Many bacteria that use sialic acids derive them from the environment and so are dependent on sialic acid uptake. In this mini-review I will describe the discovery and characterization of bacterial sialic acids transporters, revealing that they have evolved multiple times across multiple diverse families of transporters, including the ATP-binding cassette (ABC), tripartite ATP-independent periplasmic (TRAP), major facilitator superfamily (MFS) and sodium solute symporter (SSS) transporter families. In addition there is evidence for protein-mediated transport of sialic acids across the outer membrane of Gram negative bacteria, which can be coupled to periplasmic processing of different sialic acids to the most common form, β-D-N-acetylneuraminic acid (Neu5Ac) that is most frequently taken up into the cell.
Collapse
|
25
|
Reimche JL, Kirse DJ, Whigham AS, Swords WE. Resistance of non-typeable Haemophilus influenzae biofilms is independent of biofilm size. Pathog Dis 2016; 75:ftw112. [PMID: 27956464 DOI: 10.1093/femspd/ftw112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/20/2016] [Accepted: 12/04/2016] [Indexed: 11/12/2022] Open
Abstract
The inflammatory middle ear disease known as otitis media can become chronic or recurrent in some cases due to failure of the antibiotic treatment to clear the bacterial etiological agent. Biofilms are known culprits of antibiotic-resistant infections; however, the mechanisms of resistance for non-typeable Haemophilus influenzae biofilms have not been completely elucidated. In this study, we utilized in vitro static biofilm assays to characterize clinical strain biofilms and addressed the hypothesis that biofilms with greater biomass and/or thickness would be more resistant to antimicrobial-mediated eradication than thinner and/or lower biomass biofilms. Consistent with previous studies, antibiotic concentrations required to eliminate biofilm bacteria tended to be drastically higher than concentrations required to kill planktonic bacteria. The size characterizations of the biofilms formed by the clinical isolates were compared to their minimum biofilm eradication concentrations for four antibiotics. This revealed no correlation between biofilm thickness or biomass and the ability to resist eradication by antibiotics. Therefore, we concluded that biofilm size does not play a role in antibiotic resistance, suggesting that reduction of antibiotic penetration may not be a significant mechanism for antibiotic resistance for this bacterial opportunist.
Collapse
Affiliation(s)
- Jennifer L Reimche
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27106, USA
| | - Daniel J Kirse
- Department of Otolaryngology, Wake Forest School of Medicine, Winston-Salem, NC 27106, USA
| | - Amy S Whigham
- Department of Otolaryngology, Wake Forest School of Medicine, Winston-Salem, NC 27106, USA
| | - W Edward Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27106, USA .,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
26
|
Kalograiaki I, Euba B, Proverbio D, Campanero-Rhodes MA, Aastrup T, Garmendia J, Solís D. Combined Bacteria Microarray and Quartz Crystal Microbalance Approach for Exploring Glycosignatures of Nontypeable Haemophilus influenzae and Recognition by Host Lectins. Anal Chem 2016; 88:5950-7. [PMID: 27176788 DOI: 10.1021/acs.analchem.6b00905] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recognition of bacterial surface epitopes by host receptors plays an important role in the infectious process and is intimately associated with bacterial virulence. Delineation of bacteria-host interactions commonly relies on the detection of binding events between purified bacteria- and host-target molecules. In this work, we describe a combined microarray and quartz crystal microbalance (QCM) approach for the analysis of carbohydrate-mediated interactions directly on the bacterial surface, thus preserving the native environment of the bacterial targets. Nontypeable Haemophilus influenzae (NTHi) was selected as a model pathogenic species not displaying a polysaccharide capsule or O-antigen-containing lipopolysaccharide, a trait commonly found in several important respiratory pathogens. Here, we demonstrate the usefulness of NTHi microarrays for exploring the presence of carbohydrate structures on the bacterial surface. Furthermore, the microarray approach is shown to be efficient for detecting strain-selective binding of three innate immune lectins, namely, surfactant protein D, human galectin-8, and Siglec-14, to different NTHi clinical isolates. In parallel, QCM bacteria-chips were developed for the analysis of lectin-binding kinetics and affinity. This novel QCM approach involves capture of NTHi on lectin-derivatized chips followed by formaldehyde fixation, rendering the bacteria an integrated part of the sensor chip, and subsequent binding assays with label-free lectins. The binding parameters obtained for selected NTHi-lectin pairs provide further insights into the interactions occurring at the bacterial surface.
Collapse
Affiliation(s)
- Ioanna Kalograiaki
- Instituto de Química Física Rocasolano, CSIC , Serrano 119, 28006 Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES) , Avda Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Begoña Euba
- CIBER de Enfermedades Respiratorias (CIBERES) , Avda Monforte de Lemos 3-5, 28029 Madrid, Spain.,Instituto de Agrobiotecnología , CSIC-UPNa-Gobierno Navarra, Avda Pamplona 123, 31192 Mutilva, Spain
| | | | - María A Campanero-Rhodes
- Instituto de Química Física Rocasolano, CSIC , Serrano 119, 28006 Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES) , Avda Monforte de Lemos 3-5, 28029 Madrid, Spain
| | | | - Junkal Garmendia
- CIBER de Enfermedades Respiratorias (CIBERES) , Avda Monforte de Lemos 3-5, 28029 Madrid, Spain.,Instituto de Agrobiotecnología , CSIC-UPNa-Gobierno Navarra, Avda Pamplona 123, 31192 Mutilva, Spain
| | - Dolores Solís
- Instituto de Química Física Rocasolano, CSIC , Serrano 119, 28006 Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES) , Avda Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
27
|
Abstract
Sialic acids, or the more broad term nonulosonic acids, comprise a family of nine-carbon keto-sugars ubiquitous on mammalian mucous membranes as terminal modifications of mucin glycoproteins. Sialic acids have a limited distribution among bacteria, and the ability to catabolize sialic acids is mainly confined to pathogenic and commensal species. This ability to utilize sialic acid as a carbon source is correlated with bacterial virulence, especially, in the sialic acid rich environment of the oral cavity, respiratory, intestinal, and urogenital tracts. This chapter discusses the distribution of sialic acid catabolizers among the sequenced bacterial genomes and examines the studies that have linked sialic acid catabolism with increased in vivo fitness in a number of species using several animal models. This chapter presents the most recent findings in sialobiology with a focus on sialic acid catabolism, which demonstrates an important relationship between the catabolism of sialic acid and bacterial pathogenesis.
Collapse
|
28
|
Post DMB, Ketterer MR, Coffin JE, Reinders LM, Munson RS, Bair T, Murphy TF, Foster ED, Gibson BW, Apicella MA. Comparative Analyses of the Lipooligosaccharides from Nontypeable Haemophilus influenzae and Haemophilus haemolyticus Show Differences in Sialic Acid and Phosphorylcholine Modifications. Infect Immun 2016; 84:765-74. [PMID: 26729761 PMCID: PMC4771351 DOI: 10.1128/iai.01185-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/28/2015] [Indexed: 11/20/2022] Open
Abstract
Haemophilus haemolyticus and nontypeable Haemophilus influenzae (NTHi) are closely related upper airway commensal bacteria that are difficult to distinguish phenotypically. NTHi causes upper and lower airway tract infections in individuals with compromised airways, while H. haemolyticus rarely causes such infections. The lipooligosaccharide (LOS) is an outer membrane component of both species and plays a role in NTHi pathogenesis. In this study, comparative analyses of the LOS structures and corresponding biosynthesis genes were performed. Mass spectrometric and immunochemical analyses showed that NTHi LOS contained terminal sialic acid more frequently and to a higher extent than H. haemolyticus LOS did. Genomic analyses of 10 strains demonstrated that H. haemolyticus lacked the sialyltransferase genes lic3A and lic3B (9/10) and siaA (10/10), but all strains contained the sialic acid uptake genes siaP and siaT (10/10). However, isothermal titration calorimetry analyses of SiaP from two H. haemolyticus strains showed a 3.4- to 7.3-fold lower affinity for sialic acid compared to that of NTHi SiaP. Additionally, mass spectrometric and immunochemical analyses showed that the LOS from H. haemolyticus contained phosphorylcholine (ChoP) less frequently than the LOS from NTHi strains. These differences observed in the levels of sialic acid and ChoP incorporation in the LOS structures from H. haemolyticus and NTHi may explain some of the differences in their propensities to cause disease.
Collapse
Affiliation(s)
| | | | - Jeremy E Coffin
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, USA
| | | | - Robert S Munson
- The Center for Microbial Pathogenesis at the Research Institute at Nationwide Children's Hospital and the Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Thomas Bair
- Bioinformatics Facility, The University of Iowa, Iowa City, Iowa, USA
| | - Timothy F Murphy
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Eric D Foster
- Department of Biostatistics, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Bradford W Gibson
- Buck Institute for Research on Aging, Novato, California, USA Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Michael A Apicella
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
29
|
Rybtke M, Hultqvist LD, Givskov M, Tolker-Nielsen T. Pseudomonas aeruginosa Biofilm Infections: Community Structure, Antimicrobial Tolerance and Immune Response. J Mol Biol 2015; 427:3628-45. [DOI: 10.1016/j.jmb.2015.08.016] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023]
|
30
|
Tikhomirova A, Trappetti C, Paton JC, Kidd SP. The outcome of H. influenzae and S. pneumoniae inter-species interactions depends on pH, nutrient availability and growth phase. Int J Med Microbiol 2015; 305:881-92. [PMID: 26481153 DOI: 10.1016/j.ijmm.2015.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/07/2015] [Accepted: 09/10/2015] [Indexed: 01/16/2023] Open
Abstract
Haemophilus influenzae and Streptococcus pneumoniae exist together as common commensals of the healthy human nasopharynx, but both are important aetiological agents of different diseases, including the paediatric disease otitis media. It was recently shown that the formation of a multispecies biofilm of H. influenzae and S. pneumoniae is the cause of chronic forms of otitis media. However, the interactions between the two species are not clearly defined. Using a defined and kinetic analysis, our study has shown that while co-existence of the two species occurs, S. pneumoniae is also able to convert H. influenzae to a non-culturable state. We determined that this process was dependent on growth phase and pH. To analyse the H. influenzae/S. pneumoniae interactions in more depth, we investigated the growth and transcriptional profile in a pH-defined batch culture model, as well as in a growth phase independent flow cell system. Transcriptomics has shown that there are changes in gene expression in each of the species when grown in co-culture, intriguingly inducing the S. pneumoniae bacteriocin transport genes, and phage-associated genes in both species. Importantly, we have shown vast changes in gene expression in a group of S. pneumoniae metabolic genes, including those encoding lactose utilisation, glycerol utilisation and sugar transport proteins; we have shown that the expression of these genes depends not only on the presence of H. influenzae, but also on the growth system utilised.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Research Centre for Infectious Disease, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Claudia Trappetti
- Research Centre for Infectious Disease, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - James C Paton
- Research Centre for Infectious Disease, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Stephen P Kidd
- Research Centre for Infectious Disease, School of Biological Sciences, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
31
|
Tsou YA, Lin CD, Hsu HY, Peng MT, Kuo YY, Tien N, Li JP, Wang CK, Wu HS, Tsai MH, Chen CM, Lai CH. Association of β-Lactam-Sensitive Haemophilus influenzae Type B with Adenoid Biofilm Formation in Patients with Adenoidectomy Surgery. Surg Infect (Larchmt) 2015; 16:709-15. [PMID: 26171604 DOI: 10.1089/sur.2014.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic adenoid infection by β-lactam-resistant Haemophilus influenzae type b (Hib) and biofilm formation contribute to adenoid hyperplasia. Middle ear disease consequently remains a critical issue in the pediatric population. The aim of this study was to investigate the correlation of Hib biofilm formation with middle ear effusion with adenoid hyperplasia (MEE-AH) and with pediatric obstructive sleep apnea (OSA). METHODS A total of 384 patients with adenoidectomy from January 2008 to December 2012 were recruited in this investigation. Thirty-two patients (14 female and 18 male; age 4-13 years) who obtained routine adenoidectomy surgery had Hib-positive cultures were enrolled in a retrospective manner. By using polysomnography, 18 patients were diagnosed as having MEE-AH with chronic adenotonsillitis, and 14 patients were diagnosed as having pediatric OSA. The results of the Hib biofilm, antibiotic resistance profiles, and scanning electron microscopy observation, which correlated with the clinical diagnosis, were analyzed by the chi-square test and Fisher exact test. RESULTS Biofilm formation by Hib was significantly present in the patients with MEE-AH rather than patients with OSA. β-lactam-sensitive Hib were resistant to augmentin because of the adenoid biofilm formation. However, this finding was uncommon in the pediatric OSA group. CONCLUSIONS Properly treating β-lactam-sensitive Hib infection may be an important issue in reducing MEE-AH and adenoid vegetation in the pediatric population. Further research is warranted to elucidate the association of Hib-related biofilm formation with treatment failure and the need to consider earlier surgical intervention.
Collapse
Affiliation(s)
- Yung-An Tsou
- 1 Department of Otolaryngology-Head and Neck Surgery, China Medical University Hospital , Taichung, Taiwan .,2 Department of Life Sciences, National Chung Hsing University , Taichung, Taiwan
| | - Chia-Der Lin
- 1 Department of Otolaryngology-Head and Neck Surgery, China Medical University Hospital , Taichung, Taiwan .,3 School of Medicine and Graduate Institute of Basic Medical Science, China Medical University , Taichung, Taiwan
| | - Hui-Ying Hsu
- 3 School of Medicine and Graduate Institute of Basic Medical Science, China Medical University , Taichung, Taiwan
| | - Ming-Te Peng
- 3 School of Medicine and Graduate Institute of Basic Medical Science, China Medical University , Taichung, Taiwan
| | - Yu-Yi Kuo
- 3 School of Medicine and Graduate Institute of Basic Medical Science, China Medical University , Taichung, Taiwan
| | - Ni Tien
- 4 Department of Laboratory Medicine, China Medical University Hospital , Taichung, Taiwan
| | - Ju-Pi Li
- 3 School of Medicine and Graduate Institute of Basic Medical Science, China Medical University , Taichung, Taiwan .,4 Department of Laboratory Medicine, China Medical University Hospital , Taichung, Taiwan
| | - Chien-Kuo Wang
- 5 Department of Biotechnology, Asia University , Taichung, Taiwan
| | - Hua-Shan Wu
- 6 Department of Nursing, Asia University , Taichung, Taiwan
| | - Ming-Hsui Tsai
- 1 Department of Otolaryngology-Head and Neck Surgery, China Medical University Hospital , Taichung, Taiwan .,3 School of Medicine and Graduate Institute of Basic Medical Science, China Medical University , Taichung, Taiwan
| | - Chuan-Mu Chen
- 2 Department of Life Sciences, National Chung Hsing University , Taichung, Taiwan .,7 Rong-Hsing Translational Medicine Center and iEGG Center, National Chung Hsing University , Taichung, Taiwan
| | - Chih-Ho Lai
- 3 School of Medicine and Graduate Institute of Basic Medical Science, China Medical University , Taichung, Taiwan .,6 Department of Nursing, Asia University , Taichung, Taiwan .,8 Department of Microbiology and Immunology, Chang Gung University , Taoyuan, Taiwan
| |
Collapse
|
32
|
Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing. Sci Rep 2015; 5:10044. [PMID: 26067561 PMCID: PMC4464384 DOI: 10.1038/srep10044] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/17/2015] [Indexed: 12/11/2022] Open
Abstract
The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions.
Collapse
|
33
|
Host-like carbohydrates promote bloodstream survival of Vibrio vulnificus in vivo. Infect Immun 2015; 83:3126-36. [PMID: 26015477 PMCID: PMC4496609 DOI: 10.1128/iai.00345-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/13/2015] [Indexed: 01/15/2023] Open
Abstract
Sialic acids are found on all vertebrate cell surfaces and are part of a larger class of molecules known as nonulosonic acids. Many bacterial pathogens synthesize related nine-carbon backbone sugars; however, the role(s) of these non-sialic acid molecules in host-pathogen interactions is poorly understood. Vibrio vulnificus is the leading cause of seafood-related death in the United States due to its ability to quickly access the host bloodstream, which it can accomplish through gastrointestinal or wound infection. However, little is known about how this organism persists systemically. Here we demonstrate that sialic acid-like molecules are present on the lipopolysaccharide of V. vulnificus, are required for full motility and biofilm formation, and also contribute to the organism's natural resistance to polymyxin B. Further experiments in a murine model of intravenous V. vulnificus infection demonstrated that expression of nonulosonic acids had a striking benefit for bacterial survival during bloodstream infection and dissemination to other tissues in vivo. In fact, levels of bacterial persistence in the blood corresponded to the overall levels of these molecules expressed by V. vulnificus isolates. Taken together, these results suggest that molecules similar to sialic acids evolved to facilitate the aquatic lifestyle of V. vulnificus but that their emergence also resulted in a gain of function with life-threatening potential in the human host.
Collapse
|
34
|
Post DMB, Held JM, Ketterer MR, Phillips NJ, Sahu A, Apicella MA, Gibson BW. Comparative analyses of proteins from Haemophilus influenzae biofilm and planktonic populations using metabolic labeling and mass spectrometry. BMC Microbiol 2014; 14:329. [PMID: 25551439 PMCID: PMC4302520 DOI: 10.1186/s12866-014-0329-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/16/2014] [Indexed: 11/25/2022] Open
Abstract
Background Non-typeable H. influenzae (NTHi) is a nasopharyngeal commensal that can become an opportunistic pathogen causing infections such as otitis media, pneumonia, and bronchitis. NTHi is known to form biofilms. Resistance of bacterial biofilms to clearance by host defense mechanisms and antibiotic treatments is well-established. In the current study, we used stable isotope labeling by amino acids in cell culture (SILAC) to compare the proteomic profiles of NTHi biofilm and planktonic organisms. Duplicate continuous-flow growth chambers containing defined media with either “light” (L) isoleucine or “heavy” (H) 13C6-labeled isoleucine were used to grow planktonic (L) and biofilm (H) samples, respectively. Bacteria were removed from the chambers, mixed based on weight, and protein extracts were generated. Liquid chromatography-mass spectrometry (LC-MS) was performed on the tryptic peptides and 814 unique proteins were identified with 99% confidence. Results Comparisons of the NTHi biofilm to planktonic samples demonstrated that 127 proteins showed differential expression with p-values ≤0.05. Pathway analysis demonstrated that proteins involved in energy metabolism, protein synthesis, and purine, pyrimidine, nucleoside, and nucleotide processes showed a general trend of downregulation in the biofilm compared to planktonic organisms. Conversely, proteins involved in transcription, DNA metabolism, and fatty acid and phospholipid metabolism showed a general trend of upregulation under biofilm conditions. Selected reaction monitoring (SRM)-MS was used to validate a subset of these proteins; among these were aerobic respiration control protein ArcA, NAD nucleotidase and heme-binding protein A. Conclusions The present proteomic study indicates that the NTHi biofilm exists in a semi-dormant state with decreased energy metabolism and protein synthesis yet is still capable of managing oxidative stress and in acquiring necessary cofactors important for biofilm survival. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0329-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deborah M B Post
- The Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| | - Jason M Held
- Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | | | - Nancy J Phillips
- The University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Alexandria Sahu
- The Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| | | | - Bradford W Gibson
- The Buck Institute for Research on Aging, Novato, CA, 94945, USA. .,The University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
35
|
Role of the nuclease of nontypeable Haemophilus influenzae in dispersal of organisms from biofilms. Infect Immun 2014; 83:950-7. [PMID: 25547799 DOI: 10.1128/iai.02601-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) forms biofilms in the middle ear during human infection. The biofilm matrix of NTHI contains extracellular DNA. We show that NTHI possesses a potent nuclease, which is a homolog of the thermonuclease of Staphylococcus aureus. Using a biofilm dispersal assay, studies showed a biofilm dispersal pattern in the parent strain, no evidence of dispersal in the nuclease mutant, and a partial return of dispersion in the complemented mutant. Quantitative PCR of mRNA from biofilms from a 24-h continuous flow system demonstrated a significantly increased expression of the nuclease from planktonic organisms compared to those in the biofilm phase of growth (P < 0.042). Microscopic analysis of biofilms grown in vitro showed that in the nuclease mutant the nucleic acid matrix was increased compared to the wild-type and complemented strains. Organisms were typically found in large aggregates, unlike the wild-type and complement biofilms in which the organisms were evenly dispersed throughout the biofilm. At 48 h, the majority of the organisms in the mutant biofilm were dead. The nuclease mutant formed a biofilm in the chinchilla model of otitis media and demonstrated a propensity to also form similar large aggregates of organisms. These studies indicate that NTHI nuclease is involved in biofilm remodeling and organism dispersal.
Collapse
|
36
|
Meadows JA, Wargo MJ. Catabolism of host-derived compounds during extracellular bacterial infections. J Cell Biochem 2014; 115:217-23. [PMID: 24038340 DOI: 10.1002/jcb.24664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 11/07/2022]
Abstract
Efficient catabolism of host-derived compounds is essential for bacterial survival and virulence. While these links in intracellular bacteria are well studied, such studies in extracellular bacteria lag behind, mostly for technical reasons. The field has identified important metabolic pathways, but the mechanisms by which they impact infection and in particular, establishing the importance of a compound's catabolism versus alternate metabolic roles has been difficult. In this review we will examine evidence for catabolism during extracellular bacterial infections in animals and known or potential roles in virulence. In the process, we point out key gaps in the field that will require new or newly adapted techniques.
Collapse
Affiliation(s)
- Jamie A Meadows
- Department of Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, Vermont, 05405
| | | |
Collapse
|
37
|
Wu S, Baum MM, Kerwin J, Guerrero D, Webster S, Schaudinn C, VanderVelde D, Webster P. Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae. Pathog Dis 2014; 72:143-60. [PMID: 24942343 DOI: 10.1111/2049-632x.12195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/07/2014] [Accepted: 06/11/2014] [Indexed: 11/28/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen, can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24- and 96-h NTHi biofilms contained polysaccharides and proteinaceous components as detected by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24-h biofilms, two were found only in 96-h biofilms, and fifteen were present in the ECM of both 24- and 96-h NTHi biofilms. All proteins identified were either associated with bacterial membranes or cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation.
Collapse
Affiliation(s)
- Siva Wu
- Bioenergy/GTL & Structural Biology Department, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Vaidya K, Osgood R, Ren D, Pichichero ME, Helguera M. Ultrasound imaging and characterization of biofilms based on wavelet de-noised radiofrequency data. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:583-595. [PMID: 24361221 DOI: 10.1016/j.ultrasmedbio.2013.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 06/03/2023]
Abstract
The ability to non-invasively image and characterize bacterial biofilms in children during nasopharyngeal colonization with potential otopathogens and during acute otitis media would represent a significant advance. We sought to determine if quantitative high-frequency ultrasound techniques could be used to achieve that goal. Systematic time studies of bacterial biofilm formation were performed on three preparations of an isolated Haemophilus influenzae (NTHi) strain, a Streptococcus pneumoniae (Sp) strain and a combination of H. influenzae and S. pneumoniae (NTHi + Sp) in an in vitro environment. The process of characterization included conditioning of the acquired radiofrequency data obtained with a 15-MHz focused, piston transducer by using a seven-level wavelet decomposition scheme to de-noise the individual A-lines acquired. All subsequent spectral parameter estimations were done on the wavelet de-noised radiofrequency data. Various spectral parameters-peak frequency shift, bandwidth reduction and integrated backscatter coefficient-were recorded. These parameters were successfully used to map the progression of the biofilms in time and to differentiate between single- and multiple-species biofilms. Results were compared with those for confocal microscopy and theoretical evaluation of form factor. We conclude that high-frequency ultrasound may prove a useful modality to detect and characterize bacterial biofilms in humans as they form on tissues and plastic materials.
Collapse
Affiliation(s)
- Kunal Vaidya
- Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, New York, USA
| | - Robert Osgood
- Biomedical Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Dabin Ren
- Rochester General Hospital Research Institute, Rochester, New York, USA
| | | | - María Helguera
- Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, New York, USA.
| |
Collapse
|
39
|
Tikhomirova A, Kidd SP. Haemophilus influenzae and Streptococcus pneumoniae: living together in a biofilm. Pathog Dis 2013; 69:114-26. [PMID: 23913525 DOI: 10.1111/2049-632x.12073] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 11/27/2022] Open
Abstract
Streptococcus pneumoniae and Haemophilus influenzae are both commensals of the human nasopharynx with an ability to migrate to other niches within the human body to cause various diseases of the upper respiratory tract such as pneumonia, otitis media and bronchitis. They have long been detected together in a multispecies biofilm in infected tissue. However, an understanding of their interplay is a recent field of study, and while over recent years, there has been research that has identified many specific elements important in these biofilms, to date, it remains questionable whether the relationship between H. influenzae and S. pneumoniae is competitive or cooperative. Additionally, the factors that govern the nature of the interspecies interaction are still undefined. This review aims to collate the information that has emerged on the cocolonization and co-infection by S. pneumoniae and nontypeable H. influenzae (NTHi) and their formation of a multispecies biofilm.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Research Centre for Infectious Disease, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
40
|
Winokur PL, Chaloner K, Doern GV, Ferreira J, Apicella MA. Safety and immunological outcomes following human inoculation with nontypeable Haemophilus influenzae. J Infect Dis 2013; 208:728-38. [PMID: 23715660 PMCID: PMC3733507 DOI: 10.1093/infdis/jit238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/13/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Nontypeable Haemophilus influenzae (NTHi) exclusively infects humans, causing significant numbers of upper respiratory tract infections. The goal of this study was to develop a safe experimental human model of NTHi nasopharyngeal colonization. METHODS A novel streptomycin-resistant strain of NTHi was developed, and 15 subjects were inoculated in an adaptive-design phase I trial to rapidly identify colonizing doses of NTHi. Bayesian analysis was used to estimate the human colonizing dose 50 and 90 (HCD50 and HCD90, respectively). Side effects and immunological responses to whole-cell sialylated NTHi were measured. RESULTS Nine subjects were colonized and tolerated colonization well. Immunological analyses demonstrated that 7 colonized subjects and 0 noncolonized subjects had a 4-fold rise in serum levels of immunoglobulin A, immunoglobulin M, or immunoglobulin G. Preexisting immunity to whole-cell NTHi did not predict success or failure of colonization. CONCLUSIONS The statistical design incorporated a slow escalation to higher dose levels. HCD50 and HCD90 Bayesian estimates were identified as approximately 2000 and 150 000 colony-forming units, respectively; credible interval estimates were broad. This study provides a potential platform for early proof of concept studies for NTHi vaccines, as well as a way to evaluate bacterial factors associated with colonization.
Collapse
Affiliation(s)
- Patricia L Winokur
- Department of Internal Medicine, Division of Infectious Diseases, University of Iowa, 200 Hawkins Dr, Iowa City,IA 52242, USA.
| | | | | | | | | |
Collapse
|
41
|
Relative contributions of lipooligosaccharide inner and outer core modifications to nontypeable Haemophilus influenzae pathogenesis. Infect Immun 2013; 81:4100-11. [PMID: 23980106 DOI: 10.1128/iai.00492-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a frequent commensal of the human nasopharynx that causes opportunistic infection in immunocompromised individuals. Existing evidence associates lipooligosaccharide (LOS) with disease, but the specific and relative contributions of NTHi LOS modifications to virulence properties of the bacterium have not been comprehensively addressed. Using NTHi strain 375, an isolate for which the detailed LOS structure has been determined, we compared systematically a set of isogenic mutant strains expressing sequentially truncated LOS. The relative contributions of 2-keto-3-deoxyoctulosonic acid, the triheptose inner core, oligosaccharide extensions on heptoses I and III, phosphorylcholine, digalactose, and sialic acid to NTHi resistance to antimicrobial peptides (AMP), self-aggregation, biofilm formation, cultured human respiratory epithelial infection, and murine pulmonary infection were assessed. We show that opsX, lgtF, lpsA, lic1, and lic2A contribute to bacterial resistance to AMP; lic1 is related to NTHi self-aggregation; lgtF, lic1, and siaB are involved in biofilm growth; opsX and lgtF participate in epithelial infection; and opsX, lgtF, and lpsA contribute to lung infection. Depending on the phenotype, the involvement of these LOS modifications occurs at different extents, independently or having an additive effect in combination. We discuss the relative contribution of LOS epitopes to NTHi virulence and frame a range of pathogenic traits in the context of infection.
Collapse
|
42
|
Improvement rate of acute otitis media caused by Haemophilus influenzae at 1 week is significantly associated with time to recovery. J Clin Microbiol 2013; 51:3542-6. [PMID: 23966504 DOI: 10.1128/jcm.01108-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute otitis media (AOM) is the most common upper respiratory tract infection in childhood. Children with AOM were enrolled at Tohoku Rosai Hospital between July 2006 and June 2011 if their middle ear fluid cultures after tympanocentesis yielded only Haemophilus influenzae. The susceptibilities of the isolates to ampicillin were determined, and microtiter biofilm assays and invasion assays using BEAS-2B cells were performed. The association between these bacterial characteristics and clinical relapses of AOM and treatment failures was evaluated. Seventy-four children (39 boys and 35 girls) with a median age of 1 year (interquartile range [IQR], 0.25 to 2 years) were enrolled. Among 74 H. influenzae isolates, 37 showed intermediate resistance or resistance to ampicillin (MIC, ≥ 2 μg/ml). In the microtiter biofilm assay, the median optical density at 600 nm (OD600) was 0.68 (IQR, 0.24 to 1.02), and 70 isolates formed biofilms. The median invasion rate was 15% (IQR, 0 to 10%), and 46 isolates invaded BEAS-2B cells. Relapses and treatment failures occurred in 19 and 6 children, respectively. There was no significant difference in the invasion rates between patients with and those without relapses or treatment failures. Also, there was no significant association between biofilm formation and relapse or treatment failure. The improvements in the severity scores after 1 week were significantly associated with the recovery time (P < 0.0001). We did not identify any significant association between relapse or treatment failure and bacterial factors. AOM has a multifactorial etiology, and this may explain why we could not find a significant association. An improvement in the severity score after 1 week of treatment may be a useful predictor of the outcome of AOM.
Collapse
|
43
|
Langereis JD, Hermans PWM. Novel concepts in nontypeable Haemophilus influenzae biofilm formation. FEMS Microbiol Lett 2013; 346:81-9. [PMID: 23808954 DOI: 10.1111/1574-6968.12203] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 01/03/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative microbe that frequently colonizes the human host without obvious signs of inflammation, but is also a frequent cause of otitis media in children and exacerbations in chronic obstructive pulmonary disease patients. Accumulating data suggest that NTHi can reside in biofilms during both colonization and infection. Recent literature proposes roles for phosphorylcholine, sialic acid, bacterial DNA, but also eukaryotic DNA in the development of NTHi biofilms. However, many questions remain. Until now, there are insufficient data to explain how NTHi forms biofilms. Here, we review the recent advances in NTHi biofilm formation with particular focus on the role that neutrophils may play in this process. We propose that recruitment of neutrophils facilitates NTHi biofilm formation on mucosal sites by the initiation of neutrophil extracellular traps.
Collapse
Affiliation(s)
- Jeroen D Langereis
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
44
|
Tremblay YDN, Deslandes V, Jacques M. Actinobacillus pleuropneumoniae genes expression in biofilms cultured under static conditions and in a drip-flow apparatus. BMC Genomics 2013; 14:364. [PMID: 23725589 PMCID: PMC3671958 DOI: 10.1186/1471-2164-14-364] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/14/2013] [Indexed: 12/13/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae is the Gram-negative bacterium responsible for porcine pleuropneumonia. This respiratory infection is highly contagious and characterized by high morbidity and mortality. The objectives of our study were to study the transcriptome of A. pleuropneumoniae biofilms at different stages and to develop a protocol to grow an A. pleuropneumoniae biofilm in a drip-flow apparatus. This biofilm reactor is a system with an air-liquid interface modeling lung-like environment. Bacteria attached to a surface (biofilm) and free floating bacteria (plankton) were harvested for RNA isolation. Labelled cDNA was hybridized to a microarray to compare the expression profiles of planktonic cells and biofilm cells. Results It was observed that 47 genes were differentially expressed (22 up, 25 down) in a 4 h-static growing/maturing biofilm and 117 genes were differentially expressed (49 up, 68 down) in a 6h-static dispersing biofilm. The transcriptomes of a 4 h biofilm and a 6 h biofilm were also compared and 456 genes (235 up, 221 down) were identified as differently expressed. Among the genes identified in the 4 h vs 6h biofilm experiment, several regulators of stress response were down-regulated and energy metabolism associated genes were up-regulated. Biofilm bacteria cultured using the drip-flow apparatus differentially expressed 161 genes (68 up, 93 down) compared to the effluent bacteria. Cross-referencing of differentially transcribed genes in the different assays revealed that drip-flow biofilms shared few differentially expressed genes with static biofilms (4 h or 6 h) but shared several differentially expressed genes with natural or experimental infections in pigs. Conclusion The formation of a static biofilm by A. pleuropneumoniae strain S4074 is a rapid process and transcriptional analysis indicated that dispersal observed at 6 h is driven by nutritional stresses. Furthermore, A. pleuropneumoniae can form a biofilm under low-shear force in a drip-flow apparatus and analyses indicated that the formation of a biofilm under low-shear force requires a different sub-set of genes than a biofilm grown under static conditions. The drip-flow apparatus may represent the better in vitro model to investigate biofilm formation of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Yannick D N Tremblay
- Groupe de recherche sur les maladies infectieuses du porc, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec J2S 7C6, Canada
| | | | | |
Collapse
|
45
|
|
46
|
Unified theory of bacterial sialometabolism: how and why bacteria metabolize host sialic acids. ISRN MICROBIOLOGY 2013; 2013:816713. [PMID: 23724337 PMCID: PMC3658417 DOI: 10.1155/2013/816713] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/27/2012] [Indexed: 11/18/2022]
Abstract
Sialic acids are structurally diverse nine-carbon ketosugars found mostly in humans and other animals as the terminal units on carbohydrate chains linked to proteins or lipids. The sialic acids function in cell-cell and cell-molecule interactions necessary for organismic development and homeostasis. They not only pose a barrier to microorganisms inhabiting or invading an animal mucosal surface, but also present a source of potential carbon, nitrogen, and cell wall metabolites necessary for bacterial colonization, persistence, growth, and, occasionally, disease. The explosion of microbial genomic sequencing projects reveals remarkable diversity in bacterial sialic acid metabolic potential. How bacteria exploit host sialic acids includes a surprisingly complex array of metabolic and regulatory capabilities that is just now entering a mature research stage. This paper attempts to describe the variety of bacterial sialometabolic systems by focusing on recent advances at the molecular and host-microbe-interaction levels. The hope is that this focus will provide a framework for further research that holds promise for better understanding of the metabolic interplay between bacterial growth and the host environment. An ability to modify or block this interplay has already yielded important new insights into potentially new therapeutic approaches for modifying or blocking bacterial colonization or infection.
Collapse
|
47
|
Nicholson TL, Conover MS, Deora R. Transcriptome profiling reveals stage-specific production and requirement of flagella during biofilm development in Bordetella bronchiseptica. PLoS One 2012; 7:e49166. [PMID: 23152870 PMCID: PMC3495763 DOI: 10.1371/journal.pone.0049166] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/09/2012] [Indexed: 11/25/2022] Open
Abstract
We have used microarray analysis to study the transcriptome of the bacterial pathogen Bordetella bronchiseptica over the course of five time points representing distinct stages of biofilm development. The results suggest that B. bronchiseptica undergoes a coordinately regulated gene expression program similar to a bacterial developmental process. Expression and subsequent production of the genes encoding flagella, a classical Bvg− phase phenotype, occurs and is under tight regulatory control during B. bronchiseptica biofilm development. Using mutational analysis, we demonstrate that flagella production at the appropriate stage of biofilm development, i.e. production early subsequently followed by repression, is required for robust biofilm formation and maturation. We also demonstrate that flagella are necessary and enhance the initial cell-surface interactions, thereby providing mechanistic information on the initial stages of biofilm development for B. bronchiseptica. Biofilm formation by B. bronchiseptica involves the production of both Bvg-activated and Bvg-repressed factors followed by the repression of factors that inhibit formation of mature biofilms.
Collapse
Affiliation(s)
- Tracy L. Nicholson
- National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, United States of America
- * E-mail: (RD); (TLN)
| | - Matt S. Conover
- Program in Molecular Genetics, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Rajendar Deora
- Program in Molecular Genetics, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- * E-mail: (RD); (TLN)
| |
Collapse
|
48
|
Ünal CM, Singh B, Fleury C, Singh K, Chávez de Paz L, Svensäter G, Riesbeck K. QseC controls biofilm formation of non-typeable Haemophilus influenzae in addition to an AI-2-dependent mechanism. Int J Med Microbiol 2012; 302:261-9. [DOI: 10.1016/j.ijmm.2012.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 06/02/2012] [Accepted: 07/08/2012] [Indexed: 12/24/2022] Open
|
49
|
Novotny LA, Clements JD, Bakaletz LO. Kinetic analysis and evaluation of the mechanisms involved in the resolution of experimental nontypeable Haemophilus influenzae-induced otitis media after transcutaneous immunization. Vaccine 2012; 31:3417-26. [PMID: 23092856 DOI: 10.1016/j.vaccine.2012.10.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/31/2012] [Accepted: 10/09/2012] [Indexed: 01/09/2023]
Abstract
Transcutaneous immunization (TCI) is a simple and needle-free method with which to induce protective immune responses. Using a chinchilla model of nontypeable Haemophilus influenzae (NTHI)-induced otitis media (OM), we examined the efficacy afforded by TCI with a novel chimeric immunogen called 'chimV4' which targets two critical adhesins expressed by NTHI, outer membrane protein P5 and the majority subunit of NTHI Type IV pilus, PilA. Experimental OM was first established in cohorts of animals, and then TCI performed via a therapeutic immunization regime by rubbing vaccine formulations on hydrated pinnae. The kinetics of resolution of established experimental disease was evaluated by clinically-relevant assessments of OM, bacterial culture of planktonic and adherent NTHI within the middle ear and gross examination of the relative amount of NTHI mucosal biofilms within the middle ear space. Within seven days after primary TCI, a significant reduction in the signs of OM, significantly fewer NTHI adherent to the middle ear mucosa and significant resolution of mucosal biofilms was detected in animals that received chimV4+ the adjuvant LT(R192G-L211A), compared to animals administered LT(R192G-L211A) alone or saline by TCI (p<0.05) with eradication of NTHI within an additional seven days. The mechanism for rapid disease resolution involved efflux of activated dermal dendritic cells from the pinnae after TCI, secretion of factors chemotactic for CD4(+) T-cells, induction of polyfunctional IFNγ- and IL-17-producing CD4(+) T-cells and secretion of host defense peptide within the middle ear. These data support TCI as a therapeutic intervention against experimental NTHI-induced OM and begin to elucidate the host response to immunization by this noninvasive regimen.
Collapse
Affiliation(s)
- Laura A Novotny
- The Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis and The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH 43205, United States
| | | | | |
Collapse
|
50
|
Attenuation of Streptococcus suis virulence by the alteration of bacterial surface architecture. Sci Rep 2012; 2:710. [PMID: 23050094 PMCID: PMC3464449 DOI: 10.1038/srep00710] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/14/2012] [Indexed: 01/09/2023] Open
Abstract
NeuB, a sialic acid synthase catalyzes the last committed step of the de novo biosynthetic pathway of sialic acid, a major element of bacterial surface structure. Here we report a functional NeuB homologue of Streptococcus suis, a zoonotic agent, and systematically address its molecular and immunological role in bacterial virulence. Disruption of neuB led to thinner capsules and more susceptibility to pH, and cps2B inactivation resulted in complete absence of capsular polysaccharides. These two mutants both exhibited increased adhesion and invasion to Hep-2 cells and improved sensibility to phagocytosis. Not only do they retain the capability of inducing the release of host pro-inflammatory cytokines, but also result in the faster secretion of IL-8. Easier cleaning up of the mutant strains in whole blood is consistent with virulence attenuation seen with experimental infections of both mice and SPF-piglets. Therefore we concluded that altered architecture of S. suis surface attenuates its virulence.
Collapse
|