1
|
Prichard A, Garza KM, Shridhar A, He C, Bitarafan S, Pybus A, Wang Y, Snyder E, Goodson MC, Franklin TC, Jaeger D, Wood LB, Singer AC. Brain rhythms control microglial response and cytokine expression via NF-κB signaling. SCIENCE ADVANCES 2023; 9:eadf5672. [PMID: 37556553 PMCID: PMC10411883 DOI: 10.1126/sciadv.adf5672] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Microglia transform in response to changes in sensory or neural activity, such as sensory deprivation. However, little is known about how specific frequencies of neural activity, or brain rhythms, affect microglia and cytokine signaling. Using visual noninvasive flickering sensory stimulation (flicker) to induce electrical neural activity at 40 hertz, within the gamma band, and 20 hertz, within the beta band, we found that these brain rhythms differentially affect microglial morphology and cytokine expression in healthy animals. Flicker induced expression of certain cytokines independently of microglia, including interleukin-10 and macrophage colony-stimulating factor. We hypothesized that nuclear factor κB (NF-κB) plays a causal role in frequency-specific cytokine and microglial responses because this pathway is activated by synaptic activity and regulates cytokines. After flicker, phospho-NF-κB colabeled with neurons more than microglia. Inhibition of NF-κB signaling down-regulated flicker-induced cytokine expression and attenuated flicker-induced changes in microglial morphology. These results reveal a mechanism through which brain rhythms affect brain function by altering microglial morphology and cytokines via NF-κB.
Collapse
Affiliation(s)
- Ashley Prichard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kristie M. Garza
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Avni Shridhar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Christopher He
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Sara Bitarafan
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alyssa Pybus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yunmiao Wang
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Emma Snyder
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Matthew C. Goodson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tina C. Franklin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Dieter Jaeger
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Levi B. Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Annabelle C. Singer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Kulhari U, Kundu S, Mugale MN, Sahu BD. Nuciferine alleviates intestinal inflammation by inhibiting MAPK/NF-κB and NLRP3/Caspase 1 pathways in vivo and in vitro. Int Immunopharmacol 2023; 115:109613. [PMID: 36577154 DOI: 10.1016/j.intimp.2022.109613] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
Nuciferine (NCF) is an aporphine alkaloid and a principal bioactive constituent in the lotus plant. Herewith, we investigated the potential anti-inflammatory effect and underlying mechanisms of NCF employing dextran sulfate sodium (DSS)-induced ulcerative colitis in mice, a predominant intestinal inflammatory disease, and mouse RAW 264.7 cells in vitro. Lipopolysaccharide (LPS) was used to generate an inflammatory response in the RAW 264.7 cells. The disease activity index (DAI), colon morphology, colonoscopy, and colon histopathology were performed to assess experimental colitis. The biochemical assays, enzyme-linked immunosorbent assay (ELISA), and immunoblot analysis were performed to understand the underlying mechanisms. In RAW 264.7 cells, NCF pretreatment significantly decreased the expression of inducible nitric oxide synthase (iNOS), the expression and release of pro-inflammatory cytokines including interleukin (IL)-1β, IL-18, and tumor necrosis factor-α (TNF-α) and interfered with the activation of mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), and NOD-like family pyrin domain containing 3 (NLRP3) signaling pathways. The oral treatment of NCF substantially alleviated the DSS-induced DAI, increased colon length, and restored colon morphology and histology. Compared to the DSS-induced mice, the proteins involved in the activation of MAPK/NF-κB/NLRP3 pathways and the cytokines were markedly decreased in the NCF-treated mice. Moreover, the tight junction architecture of the colon was well-maintained in NCF treatment groups by regulating the expression of claudin-1 and zonula occludens-1 (ZO-1) proteins. All these findings suggest that NCF can be a promising molecule to modulate ulcerative colitis.
Collapse
Affiliation(s)
- Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101 Assam, India
| | - Sourav Kundu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101 Assam, India
| | - Madhav Nilakanth Mugale
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101 Assam, India.
| |
Collapse
|
3
|
Azam S, Kim YS, Jakaria M, Yu YJ, Ahn JY, Kim IS, Choi DK. Dioscorea nipponica Makino Rhizome Extract and Its Active Compound Dioscin Protect against Neuroinflammation and Scopolamine-Induced Memory Deficits. Int J Mol Sci 2022; 23:ijms23179923. [PMID: 36077321 PMCID: PMC9456145 DOI: 10.3390/ijms23179923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Activation of microglial cells by intrinsic or extrinsic insult causes neuroinflammation, a common phenomenon in neurodegenerative diseases. Prevention of neuroinflammation may ameliorate many neurodegenerative disease progressions. Dioscorea nipponica Makino (DN) extract can alleviate muscular atrophy and inflammatory diseases; however, the efficacy and mechanism of action in microglial cells remain unknown. The current study investigates the possible anti-inflammatory effects and mechanisms of Dioscorea nipponica Makino ethanol extract and its steroidal saponin dioscin. Our in vitro study shows that Dioscorea nipponica rhizome ethanol extract (DNRE) and dioscin protect against lipopolysaccharide (LPS)-activated inflammatory responses in BV-2 microglial cells by inhibiting phosphorylation and the nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), resulting in the downregulation of pro-inflammatory cytokines and enzymes. Consistent with our previous report of dioscin-mediated enhancement of neurotrophic factors in dopaminergic cells, here we found that dioscin upregulates brain-derived neurotrophic factor (BDNF) and cAMP-response element binding protein (CREB) phosphorylation (pCREB) in the cerebral cortex and hippocampus regions of the mouse brain. Scopolamine treatment increased pro-inflammatory enzyme levels and reduced the expression of BDNF and pCREB in the hippocampus and cortex regions, which led to impaired learning and referencing memory in mice. Pre-treatment of dioscin for 7 days substantially enhanced mice performances in maze studies, indicating amelioration in cognitive deficits. In conclusion, DNRE and its active compound dioscin protect against neurotoxicity most likely by suppressing NF-κB phosphorylation and upregulating neurotrophic factor BDNF.
Collapse
Affiliation(s)
- Shofiul Azam
- BK21 Program, Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Korea
| | - Yon-Suk Kim
- BKplus GLOCAL Education Program of Nutraceuticals Development, Konkuk University, Chungju 27478, Korea
| | - Md. Jakaria
- BK21 Program, Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Korea
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ye-Ji Yu
- BK21 Program, Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Korea
| | - Jae-Yong Ahn
- BK21 Program, Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Korea
| | - In-Su Kim
- BK21 Program, Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
| | - Dong-Kug Choi
- BK21 Program, Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: ; Tel.: +82-43-840-3610; Fax: +82-43-840-3872
| |
Collapse
|
4
|
Kara M, Boran T, Öztaş E, Jannuzzi AT, Özden S, Özhan G. Zoledronic acid-induced oxidative damage and endoplasmic reticulum stress-mediated apoptosis in human embryonic kidney (HEK-293) cells. J Biochem Mol Toxicol 2022; 36:e23083. [PMID: 35587103 DOI: 10.1002/jbt.23083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 11/06/2022]
Abstract
Zoledronic acid, a nitrogen-containing bisphosphonate drug, is used for the treatment of osteoporosis, Paget's disease of bone, and tumor-induced osteolysis. Zoledronic acid has also gained a place in cancer treatment due to its cytotoxic and antiproliferative effects in many cancer cells. Although zoledronic acid is considered safe, kidney damage is still one of the concerns in therapeutic doses. In the study, the aim was to assess the nephrotoxic profiles of zoledronic acid in the human embryonic kidney (HEK-293) cells. Cytotoxicity evaluation was performed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) and neutral red uptake tests, while oxidative stress was performed by reactive oxygen species (ROS) production via flow cytometry, and the incomprehensible evaluation of ROS-related genes by RT-PCR and apoptosis was performed with Annexin-PI analysis in flow cytometry. The obtained result showed that zoledronic acid inhibited cell viability (IC50 values were determined as 273.16 by MTT) and cell proliferation in a concentration-dependent manner, induced ROS production, caused glutathione depletion, and increased oxidative stress index and endoplasmic reticulum (ER) stress, indicating severe cellular stress. The expression levels of oxidative damage (L-fabp, α-GST, Nrf2, and HMOX1), ER stress (CASP4, IRE1-α, GADD153, and GRP78), and apoptosis (Bcl-2, Bax, Cyt-c, p53, CASP9, CASP3, NF-κB, TNF-α, and JNK) related genes were altered as well as IRE1-α protein levels. Herein, we were the first to show that increased oxidative stress and ER stress resulting in apoptosis are the key molecular pathways in zoledronic acid-induced nephrotoxicity equivalent to clinically administered concentrations.
Collapse
Affiliation(s)
- Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Tuğçe Boran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ezgi Öztaş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ayse Tarbin Jannuzzi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Sibel Özden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
5
|
Matsui M, Kajikuri J, Endo K, Kito H, Ohya S. K Ca3.1 inhibition-induced activation of the JNK/c-Jun signaling pathway enhances IL-10 expression in peripherally-induced regulatory T cells. J Pharmacol Sci 2021; 148:1-5. [PMID: 34924112 DOI: 10.1016/j.jphs.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/23/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
The KCa3.1 inhibition up-regulates IL-10 expression in regulatory T (Treg) cells in the recovery phase of inflammatory bowel disease (IBD) model mice; however, the underlying signaling pathway remains unclear. We investigated the involvement of AP-1 (Fos/Jun) and NF-κB in the expression of IL-10 and its transcription factors (TFs) in in vitro-induced mouse splenic Treg cells. The pharmacological inhibition of JNK reversed KCa3.1 inhibition-induced increases in the expression of IL-10 and its TFs. The inhibition of KCa3.1 increased phosphorylated JNK and c-Jun levels. Therefore, the JNK/c-Jun signaling pathway may contribute to the KCa3.1 inhibition-induced up-regulation of IL-10 in peripherally-induced Treg cells.
Collapse
Affiliation(s)
- Miki Matsui
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Kyoko Endo
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| |
Collapse
|
6
|
Tong J, Duan Z, Zeng R, Du L, Xu S, Wang L, Liu Y, Chen Q, Chen X, Li M. MiR-146a Negatively Regulates Aspergillus fumigatus-Induced TNF-α and IL-6 Secretion in THP-1 Macrophages. Mycopathologia 2021; 186:341-354. [PMID: 34089172 DOI: 10.1007/s11046-021-00538-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/17/2021] [Indexed: 10/20/2022]
Abstract
Aspergillus fumigatu (A. fumigatus) is one of the most common important fungal pathogens that cause life-threatening infectious disease in immunocompromised individuals. However, the host immune response against this pathogenic mold is not fully understood. MicroRNAs (miRNAs) play essential roles in regulating innate immunity. Thus, we investigated the function of miR-146a in inflammatory responses in macrophages after A. fumigatus stimulation in this study. We found that TNF-α and IL-6 were increased in THP-1 macrophage-like cells treated with A. fumigatus at both the mRNA and protein levels. The interaction between THP-1 macrophage-like cells and A. fumigatus resulted in a long-lasting increase in miR-146a expression dependent on p38 MAPK and NF-κB signaling. In A. fumigatus-challenged THP-1 macrophage-like cells, overexpression of miR-146a by miR-146a mimics decreased TNF-α and IL-6 production, whereas downregulation of miR-146a by anti-miR-146a significantly enhanced the level of TNF-α and IL-6. Our study demonstrates that the crosstalk between miR-146a and the inflammation-regulating p38 MAPK and NF-κB pathways might be a fine-tuning mechanism in the modulation of the inflammatory response in macrophages infected with A. fumigatus. Our findings illuminate the crucial role of miR-146a in the pathogenesis of human diseases associated with A. fumigatus infection.
Collapse
Affiliation(s)
- Jianbo Tong
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China.,Department of Dermatology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330001, People's Republic of China
| | - Zhimin Duan
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Rong Zeng
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Leilei Du
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Song Xu
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Liwei Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Yuzhen Liu
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Qing Chen
- Jiangsu Province Blood Center, Nanjing, 210042, Jiangsu, People's Republic of China. .,Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, People's Republic of China.
| | - Xu Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China.
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China. .,Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Columbianadin Dampens In Vitro Inflammatory Actions and Inhibits Liver Injury via Inhibition of NF-κB/MAPKs: Impacts on ∙OH Radicals and HO-1 Expression. Antioxidants (Basel) 2021; 10:antiox10040553. [PMID: 33918237 PMCID: PMC8067002 DOI: 10.3390/antiox10040553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
Columbianadin (CBN), a natural coumarin isolated from Angelica decursiva, is reported to have numerous biological activities, including anticancer and platelet aggregation inhibiting properties. Here, we investigated CBN’s anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell activation and deciphered the signaling process, which could be targeted by CBN as part of the mechanisms. Using a mouse model of LPS-induced acute liver inflammation, the CBN effects were examined by distinct histologic methods using trichrome, reticulin, and Weigert’s resorcin fuchsin staining. The result showed that CBN decreased LPS-induced expressions of TNF-α, IL-1β, and iNOS and NO production in RAW 264.7 cells and mouse liver. CBN inhibited LPS-induced ERK and JNK phosphorylation, increased IκBα levels, and inhibited NF-κB p65 phosphorylation and its nuclear translocation. Application of inhibitors for ERK (PD98059) and JNK (SP600125) abolished the LPS-induced effect on NF-κB p65 phosphorylation, which indicated that ERK and JNK signaling pathways were involved in CBN-mediated inhibition of NF-κB activation. Treatment with CBN decreased hydroxyl radical (•OH) generation and increased HO-1 expression in RAW 264.7 cells. Furthermore, LPS-induced liver injury, as indicated by elevated serum levels of liver marker enzymes (aspartate aminotransferase (AST) and alanine aminotransferase (ALT)) and histopathological alterations, were reversed by CBN. This work demonstrates the utility of CBN against LPS-induced inflammation, liver injury, and oxidative stress by targeting JNK/ERK and NF-κB signaling pathways.
Collapse
|
8
|
Zhang RM, McNerney KP, Riek AE, Bernal‐Mizrachi C. Immunity and Hypertension. Acta Physiol (Oxf) 2021; 231:e13487. [PMID: 32359222 DOI: 10.1111/apha.13487] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
Abstract
Hypertension is the primary cause of cardiovascular mortality. Despite multiple existing treatments, only half of those with the disease achieve adequate control. Therefore, understanding the mechanisms causing hypertension is essential for the development of novel therapies. Many studies demonstrate that immune cell infiltration of the vessel wall, kidney and central nervous system, as well as their counterparts of oxidative stress, the renal renin-angiotensin system (RAS) and sympathetic tone play a critical role in the development of hypertension. Genetically modified mice lacking components of innate and/or adaptive immunity confirm the importance of chronic inflammation in hypertension and its complications. Depletion of immune cells improves endothelial function, decreases oxidative stress, reduces vascular tone and prevents renal interstitial infiltrates, sodium retention and kidney damage. Moreover, the ablation of microglia or central nervous system perivascular macrophages reduces RAS-induced inflammation and prevents sympathetic nervous system activation and hypertension. Therefore, understanding immune cell functioning and their interactions with tissues that regulate hypertensive responses may be the future of novel antihypertensive therapies.
Collapse
Affiliation(s)
- Rong M. Zhang
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
| | - Kyle P. McNerney
- Department of Pediatrics Washington University School of Medicine St. Louis MO USA
| | - Amy E. Riek
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
| | - Carlos Bernal‐Mizrachi
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
- Department of Cell Biology and Physiology Washington University School of Medicine St. Louis MO USA
- Department of Medicine VA Medical Center St. Louis MO USA
| |
Collapse
|
9
|
Jung HJ, Park SH, Cho KM, Jung KI, Cho D, Kim TS. Threonyl-tRNA Synthetase Promotes T Helper Type 1 Cell Responses by Inducing Dendritic Cell Maturation and IL-12 Production via an NF-κB Pathway. Front Immunol 2020; 11:571959. [PMID: 33178197 PMCID: PMC7592646 DOI: 10.3389/fimmu.2020.571959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Threonyl-tRNA synthetase (TRS) is an aminoacyl-tRNA synthetase that catalyzes the aminoacylation of tRNA by transferring threonine. In addition to an essential role in translation, TRS was extracellularly detected in autoimmune diseases and also exhibited pro-angiogenetic activity. TRS is reported to be secreted into the extracellular space when vascular endothelial cells encounter tumor necrosis factor-α. As T helper (Th) type 1 response and IFN-γ levels are associated with autoimmunity and angiogenesis, in this study, we investigated the effects of TRS on dendritic cell (DC) activation and CD4 T cell polarization. TRS-treated DCs exhibited up-regulated expression of activation-related cell-surface molecules, including CD40, CD80, CD86, and MHC class II. Treatment of DCs with TRS resulted in a significant increase of IL-12 production. TRS triggered nuclear translocation of the NF-κB p65 subunit along with the degradation of IκB proteins and the phosphorylation of MAPKs in DCs. Additionally, MAPK inhibitors markedly recovered the degradation of IκB proteins and the increased IL-12 production in TRS-treated DCs, suggesting the involvement of MAPKs as the upstream regulators of NF-κB in TRS-induced DC maturation and activation. Importantly, TRS-stimulated DCs significantly increased the populations of IFN-γ+CD4 T cells, and the levels of IFN-γ when co-cultured with CD4+ T cells. The addition of a neutralizing anti-IL-12 mAb to the cell cultures of TRS-treated DCs and CD4+ T cells resulted in decreased IFN-γ production, indicating that TRS-stimulated DCs may enhance the Th1 response through DC-derived IL-12. Injection of OT-II mice with OVA-pulsed, TRS-treated DCs also enhanced Ag-specific Th1 responses in vivo. Importantly, injection with TRS-treated DC exhibited increased populations of IFN-γ+-CD4+ and -CD8+ T cells as well as secretion level of IFN-γ, resulting in viral clearance and increased survival periods in mice infected with influenza A virus (IAV), as the Th1 response is associated with the enhanced cellular immunity, including anti-viral activity. Taken together, these results indicate that TRS promotes the maturation and activation of DCs, DC-mediated Th1 responses, and anti-viral effect on IAV infection.
Collapse
Affiliation(s)
- Hak-Jun Jung
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Su-Ho Park
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Kyung-Min Cho
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Kwang Il Jung
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Daeho Cho
- Institute of Convergence Science, Korea University, Seoul, South Korea
| | - Tae Sung Kim
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
10
|
Anti-Inflammatory and Anti-Oxidative Effects of luteolin-7- O-glucuronide in LPS-Stimulated Murine Macrophages through TAK1 Inhibition and Nrf2 Activation. Int J Mol Sci 2020; 21:ijms21062007. [PMID: 32187984 PMCID: PMC7139836 DOI: 10.3390/ijms21062007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Various herbal extracts containing luteolin-7-O-glucuronide (L7Gn) have been traditionally used to treat inflammatory diseases. However, systemic studies aimed at elucidating the anti-inflammatory and anti-oxidative mechanisms of L7Gn in macrophages are insufficient. Herein, the anti-inflammatory and anti-oxidative effects of L7Gn and their underlying mechanisms of action in macrophages were explored. L7Gn inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages by transcriptional regulation of inducible NO synthase (iNOS) in a dose-dependent manner. The mRNA expression of inflammatory mediators, including cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α), was inhibited by L7Gn treatment. This suppression was mediated through transforming growth factor beta-activated kinase 1 (TAK1) inhibition that leads to reduced activation of nuclear factor-κB (NF-κB), p38, and c-Jun N-terminal kinase (JNK). L7Gn also enhanced the radical scavenging effect and increased the expression of anti-oxidative regulators, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and NAD(P)H quinone oxidoreductase 1 (NQO1), by nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) activation. These results indicate that L7Gn exhibits anti-inflammatory and anti-oxidative properties in LPS-stimulated murine macrophages, suggesting that L7Gn may be a suitable candidate to treat severe inflammation and oxidative stress.
Collapse
|
11
|
Wang P, Ding X, Kim H, Michalek SM, Zhang P. Structural Effect on Adjuvanticity of Saponins. J Med Chem 2020; 63:3290-3297. [PMID: 32101001 DOI: 10.1021/acs.jmedchem.9b02063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have prepared a number of saponin-based vaccine adjuvant candidates. These unnatural saponins have a different terminal-functionalized side chain incorporated into the glucuronic acid unit that is attached to a triterpenoid core at its C3 position. The semisynthetic saponin adjuvants have shown significantly different immunostimulatory activities, suggesting that the structure of the side chain, triterpenoid core, and oligosaccharide domain together orchestrate saponin adjuvant's potentiation of immune responses. Among these new adjuvant candidates, VSA-2 (5b), a derivative of Momordica saponin (MS) II, showed consistent enhancement of immunoglobulin G2a (IgG2a) production when it was in formulation with either ovalbumin or recombinant hemagglutinin B (rHagB) antigen. With rHagB antigen, it induced a significantly higher IgG2a response than the positive control GPI-0100, a well-studied semisynthetic saponin adjuvant mixture derived from Quillaja saponaria Molina saponins, known for its ability to induce a balanced Th1/Th2 immunity. These results confirm that Momordica saponins are a viable natural source to provide potent saponin adjuvants after simple chemical derivatization and identify VSA-2 (5b) as another MS-based promising immunostimulant lead owing to its distinctive ability in potentiating the IgG2a response.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Xiong Ding
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Hyunjung Kim
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Suzanne M Michalek
- Department of Microbiology, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Ping Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| |
Collapse
|
12
|
Wang P, Ding X, Kim H, Škalamera Đ, Michalek SM, Zhang P. Vaccine Adjuvants Derivatized from Momordica Saponins I and II. J Med Chem 2019; 62:9976-9982. [PMID: 31657920 DOI: 10.1021/acs.jmedchem.9b01511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have derivatized Momordica saponins (MS) I and II through their coupling at C3 glucuronic acid site with dodecylamine. The derivatives show significantly different immunostimulant activity profiles from their respective natural parent saponins. In particular, adjuvant VSA-1 (5), the derivative of MS I, potentiates a significantly higher IgG2a responose than the corresponding natural product. Its IgG1 and IgG2a production is similar to that of GPI-0100, indicating a potential mixed and antigen-specific Th1/Th2 immune response, which is different from the Th2 immunity induced by the natural saponin MS I. In addition, toxicity evaluations show that adjuvant VSA-1 (5) is much less toxic than the widely used natural saponin mixture Quil A. These results prove that derivatizing Momordica saponins can be a viable way for easy access to structurally defined saponin immunostimulants with favorable adjvuant activity and low toxicity.
Collapse
|
13
|
Chang SN, Khan I, Dey DK, Cho KH, Hwang BS, Bae KB, Kang SC, Park JG. Decursinol angelate ameliorates 12-O-tetradecanoyl phorbol-13-acetate (TPA) -induced NF-κB activation on mice ears by inhibiting exaggerated inflammatory cell infiltration, oxidative stress and pro-inflammatory cytokine production. Food Chem Toxicol 2019; 132:110699. [PMID: 31351099 DOI: 10.1016/j.fct.2019.110699] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 12/28/2022]
Abstract
Decursinol angelate (DA) is a pyranocoumarin purified from the roots of Angelica gigas. Here, we synthesized DA and determined its anti-inflammatory potential on TPA-induced mice ear inflammation. First, we evaluated the non-toxic behaviour of DA on HaCaT cells. Additionally, we observed the free radical scavenging potential of DA at 60 μM to be 50%. This finding was further supported by nitric oxide assay, malondialdehyde assay, H2DCFDA staining and western blotting analysis of antioxidant enzymes. DA also suppressed the activation and polarization of macrophage phagocytic activity on RAW 264.7 cells. We further evaluated the expression of ICAM-1, MCP-1, MIP-2 and MIP-1β on in-vivo model system. Consequently, DA significantly reduced the production of NF-κB and COX-2 induced proinflammatory cytokine levels on TPA induced ear edema. Inhibition of MAPK and transcriptional factor NF-κB was also validated by western blotting analysis of p-ERK, p-p38, IKKα, IKKγ, IκBα, NF-κB-p65. Immunohistochemistry and immunofluorescence staining of NFκB-p65, TNF-α and IL-1β were also performed to support the findings. Conclusively, these results suggest that topical administration of DA significantly inhibited the expression of pro-inflammatory cytokines by blocking the canonical NF-κB and MAPK pathway. Therefore, we suggest DA as a potent therapeutic compound against skin inflammation related diseases.
Collapse
Affiliation(s)
- Sukkum Ngullie Chang
- Department of Biotechnology, Daegu University, Gyeongsan, 38453, Republic of Korea
| | - Imran Khan
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Gyeongsan, 38453, Republic of Korea
| | - Kiu-Hyung Cho
- Research group, Gyeongbuk Institute for Bio Industry(GIB), Andong, 36728, Republic of Korea
| | - Buyng Su Hwang
- Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Ki Beom Bae
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, 38453, Republic of Korea.
| | - Jae Gyu Park
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea
| |
Collapse
|
14
|
Wang P, Škalamera Đ, Sui X, Zhang P, Michalek SM. Synthesis and Evaluation of QS-7-Based Vaccine Adjuvants. ACS Infect Dis 2019; 5:974-981. [PMID: 30920199 DOI: 10.1021/acsinfecdis.9b00039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have designed and synthesized two analogs (5 and 6) of QS-7, a natural saponin compound isolated from Quillaja saponaria (QS) Molina tree bark. The only structural difference between compound 5 and 6 is that 5 is acetylated at the 3- and 4-O positions of the quillaic acid C28 fucosyl unit while 6 is not. However, the two analogs show significantly different immunostimulant profiles. Compound 5 may potentiate a mixed Th1/Th2 (Th, T helper cells) immune response against the specific antigens while compound 6 may only induce a Th2-biased immunity. These results suggest that the 3- and/or 4-O acetyl groups of the fucosyl unit may play an important role in tuning the adjuvanticity of the QS-7 analogs, and compound 5 can serve as a structurally defined synthetic adjuvant when a mixed Th1/Th2 immune responses is desired.
Collapse
|
15
|
Paik S, Choe JH, Choi GE, Kim JE, Kim JM, Song GY, Jo EK. Rg6, a rare ginsenoside, inhibits systemic inflammation through the induction of interleukin-10 and microRNA-146a. Sci Rep 2019; 9:4342. [PMID: 30867482 PMCID: PMC6416268 DOI: 10.1038/s41598-019-40690-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/15/2019] [Indexed: 12/14/2022] Open
Abstract
The immunobiological functions of Rg6, a rare ginsenoside from ginseng, have been largely unreported. In this paper, we demonstrate that Rg6 has a significant immunosuppressive function on Toll-like receptor (TLR) 4-induced systemic inflammatory responses. Rg6 was found to negatively regulate pro-inflammatory responses and severity in vivo, and thus induced recovery in mice with lipopolysaccharide (LPS)-induced septic shock and cecal ligation and puncture (CLP)-induced sepsis. Rg6 treatment also facilitated recovery in mice with LPS-induced lung damage via reduced neutrophil infiltration and tumor necrosis factor-α expression in lung tissues. Rg6 injection also downregulated pro-inflammatory cytokines and increased the levels of interleukin (IL)-10 in the serum of septic mice. Mechanistically, Rg6 did not induce TLR negative regulators, such as A20 and IRAK-M, in bone marrow-derived macrophages (BMDMs). Instead, addition of Rg6 to LPS-activated BMDMs augmented IL-10 expression, whereas it inhibited inflammatory signaling, such as by nuclear factor κB activation and mitogen-activated protein kinases. Furthermore, Rg6 significantly induced miR-146a, an operator miRNA for anti-inflammation, in BMDMs. Collectively, these data indicate that Rg6 inhibits inflammatory responses through the induction of IL-10 and miR-146a.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Infection Control Convergence Research Center, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Jin Ho Choe
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Infection Control Convergence Research Center, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Ga-Eun Choi
- Infection Control Convergence Research Center, Chungnam National University, Daejeon, 35015, Republic of Korea.,College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ji-Eun Kim
- Infection Control Convergence Research Center, Chungnam National University, Daejeon, 35015, Republic of Korea.,College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jin-Man Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Infection Control Convergence Research Center, Chungnam National University, Daejeon, 35015, Republic of Korea.,Department of Pathology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Gyu Yong Song
- Infection Control Convergence Research Center, Chungnam National University, Daejeon, 35015, Republic of Korea. .,College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea. .,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea. .,Infection Control Convergence Research Center, Chungnam National University, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
16
|
Koonpaew S, Teeravechyan S, Frantz PN, Chailangkarn T, Jongkaewwattana A. PEDV and PDCoV Pathogenesis: The Interplay Between Host Innate Immune Responses and Porcine Enteric Coronaviruses. Front Vet Sci 2019; 6:34. [PMID: 30854373 PMCID: PMC6395401 DOI: 10.3389/fvets.2019.00034] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/28/2019] [Indexed: 12/24/2022] Open
Abstract
Enteropathogenic porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV), members of the coronavirus family, account for the majority of lethal watery diarrhea in neonatal pigs in the past decade. These two viruses pose significant economic and public health burdens, even as both continue to emerge and reemerge worldwide. The ability to evade, circumvent or subvert the host’s first line of defense, namely the innate immune system, is the key determinant for pathogen virulence, survival, and the establishment of successful infection. Unfortunately, we have only started to unravel the underlying viral mechanisms used to manipulate host innate immune responses. In this review, we gather current knowledge concerning the interplay between these viruses and components of host innate immunity, focusing on type I interferon induction and signaling in particular, and the mechanisms by which virus-encoded gene products antagonize and subvert host innate immune responses. Finally, we provide some perspectives on the advantages gained from a better understanding of host-pathogen interactions. This includes their implications for the future development of PEDV and PDCoV vaccines and how we can further our knowledge of the molecular mechanisms underlying virus pathogenesis, virulence, and host coevolution.
Collapse
Affiliation(s)
- Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Samaporn Teeravechyan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Phanramphoei Namprachan Frantz
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
17
|
HO-1 Induction by Selaginella tamariscina Extract Inhibits Inflammatory Response in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7816923. [PMID: 30581485 PMCID: PMC6276425 DOI: 10.1155/2018/7816923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Abstract
Selaginella Herba is the dried, aerial part of Selaginella tamariscina (P.Beauv.) Spring and has been used to treat amenorrhea, abdominal pain, headaches, and hematuria in Korea. However, scientific evidence regarding the anti-inflammatory activity and action mechanism of Selaginella tamariscina is lacking. Thus, the present study was performed to investigate the anti-inflammatory and antioxidant activities of Selaginella tamariscina ethanol extract (STE) against lipopolysaccharide (LPS)-induced inflammatory responses and identify the molecular mechanism responsible. STE was prepared by heating in 70% ethanol and its quality was confirmed by HPLC. STE dose-dependently inhibited the productions of inflammatory mediators (NO and PGE2) and proinflammatory cytokines (IL-1β and IL-6) in LPS-stimulated RAW 264.7 cells. STE markedly suppressed the phosphorylations of MAPKs, IκB-α, and NF-κB and the nuclear translocation of NF-κB induced by LPS stimulation. In addition, STE exhibited good free radical scavenging activity and prevented ROS generation by LPS. STE also upregulated the expression of Nrf2 and HO-1 and promoted the nuclear translocation of Nrf2. Taken together, STE was found to have anti-inflammatory and antioxidant effects on RAW 264.7 macrophages and the mechanism appeared to involve the MAPK, NF-κB, and Nrf2/HO-1 signaling pathways. These results suggest that STE might be useful for preventing or treating inflammatory diseases and provide scientific evidence that supports the developments of herbal prescriptions or novel natural products.
Collapse
|
18
|
Le HTT, Cho YC, Cho S. Methanol extract of Guettarda speciosa Linn. inhibits the production of inflammatory mediators through the inactivation of Syk and JNK in macrophages. Int J Mol Med 2018; 41:1783-1791. [PMID: 29328440 DOI: 10.3892/ijmm.2018.3377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/05/2018] [Indexed: 11/05/2022] Open
Abstract
Guettarda speciosa Linn. (G. speciosa, Rubiaceae) has been used as a traditional medicinal plant in Asia for the treatment of various inflammatory conditions, including cough, fever and maternal postpartum infection. However, the mechanisms underlying the anti‑inflammatory action of G. speciosa extracts have remained elusive. In the present study, the anti‑inflammatory effects of the methanol extract of G. speciosa (MGS) were investigated in murine macrophages by measuring the production of inflammatory mediators and the underlying mechanisms of action by performing immunoblotting analysis of proteins that are potentially involved. MGS reduced nitric oxide (NO) production through regulation of the expression of inducible NO synthase (iNOS) in lipopolysaccharide‑activated RAW 264.7 cells; however, cyclooxygenase‑2, the enzyme responsible for prostaglandin E2 production, was not affected at the mRNA or protein level. MGS reduced interleukin‑6 (IL‑6) production, but had no effect on tumor necrosis factor (TNF)‑α production. In addition, MGS suppressed the transcription of IL‑6, but not that of IL‑1β and TNF‑α. The effect of MGS on proinflammatory mediators resulted from the inhibition of the activation of spleen tyrosine kinase and c‑Jun N‑terminal kinase. In conclusion, the present study suggested that MGS may be a potential candidate for development as a therapeutic for alleviating inflammation.
Collapse
Affiliation(s)
- Hien Thi Thu Le
- Laboratory of Molecular Pharmacological Cell Biology, College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Young-Chang Cho
- Laboratory of Molecular Pharmacological Cell Biology, College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Sayeon Cho
- Laboratory of Molecular Pharmacological Cell Biology, College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
19
|
Wang P, Devalankar DA, Dai Q, Zhang P, Michalek SM. Synthesis and Evaluation of QS-21-Based Immunoadjuvants with a Terminal-Functionalized Side Chain Incorporated in the West Wing Trisaccharide. J Org Chem 2016; 81:9560-9566. [PMID: 27709937 PMCID: PMC6488304 DOI: 10.1021/acs.joc.6b00922] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three QS-21-based vaccine adjuvant candidates with a terminal-functionalized side chain incorporated in the west wing trisaccharide have been synthesized. The terminal polar functional group serves to increase the solubility of these analogues in water. Two of the synthetic analogues have been shown to have adjuvant activity comparable to that of GPI-0100. The stand-alone adjuvant activity of the new synthetic analogues again confirmed that it is a feasible way to develop new saponin-based vaccine adjuvants through derivatizing at the west wing branched trisaccharide domain. Inclusion of an additional polar functional group such as a carboxyl group (as in 3x) or a monosaccharide (as in 4x and 5x) is sufficient to increase the water solubility of the corresponding synthetic analogues to a level comparable to that of GPI-0100 and suitable for immunological studies and clinical application. The structure of the incorporated side chain has a significant impact on the adjuvant activity in terms of the magnitude and nature of the host's responses.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Dattatray A. Devalankar
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Qipu Dai
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Ping Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Suzanne M Michalek
- Department of Microbiology, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| |
Collapse
|
20
|
Connolly E, Millhouse E, Doyle R, Culshaw S, Ramage G, Moran GP. The Porphyromonas gingivalis hemagglutinins HagB and HagC are major mediators of adhesion and biofilm formation. Mol Oral Microbiol 2016; 32:35-47. [PMID: 28051836 DOI: 10.1111/omi.12151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 11/28/2022]
Abstract
Porphyromonas gingivalis is a bacterium associated with chronic periodontitis that possesses a family of genes encoding hemagglutinins required for heme acquisition. In this study we generated ΔhagB and ΔhagC mutants in strain W83 and demonstrate that both hagB and hagC are required for adherence to oral epithelial cells. Unexpectedly, a double ΔhagB/ΔhagC mutant had less severe adherence defects than either of the single mutants, but was found to exhibit increased expression of the gingipain-encoding genes rgpA and kgp, suggesting that a ΔhagB/ΔhagC mutant is only viable in populations of cells that exhibit increased expression of genes involved in heme acquisition. Disruption of hagB in the fimbriated strain ATCC33277 demonstrated that HagB is also required for stable attachment of fimbriated bacteria to oral epithelial cells. Mutants of hagC were also found to form defective single and multi-species biofilms that had reduced biomass relative to biofilms formed by the wild-type strain. This study highlights the hitherto unappreciated importance of these genes in oral colonization and biofilm formation.
Collapse
Affiliation(s)
- E Connolly
- Division of Oral Biosciences, Dublin Dental University Hospital, School of Dental Science, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - E Millhouse
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, School of Dental Science, University of Glasgow, Glasgow, UK
| | - R Doyle
- Division of Oral Biosciences, Dublin Dental University Hospital, School of Dental Science, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - S Culshaw
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, School of Dental Science, University of Glasgow, Glasgow, UK
| | - G Ramage
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, School of Dental Science, University of Glasgow, Glasgow, UK
| | - G P Moran
- Division of Oral Biosciences, Dublin Dental University Hospital, School of Dental Science, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Guo L, Wang T, Wu Y, Yuan Z, Dong J, Li X, An J, Liao Z, Zhang X, Xu D, Wen FQ. WNT/β-catenin signaling regulates cigarette smoke-induced airway inflammation via the PPARδ/p38 pathway. J Transl Med 2016; 96:218-29. [PMID: 26322419 DOI: 10.1038/labinvest.2015.101] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/18/2015] [Accepted: 05/05/2015] [Indexed: 02/05/2023] Open
Abstract
The mechanisms of WNT/β-catenin signaling involved in airway inflammation of chronic obstructive pulmonary disease (COPD) remain unknown, although recent observations have suggested an important contribution of the pathway in pulmonary parenchymal tissue repair and airway epithelium differentiation. We investigated the role of WNT/β-catenin signaling in cigarette smoke (CS)-related airway inflammation using patient lung tissues, human bronchial epithelial cells (16HBECs), and mouse models. Reduced activity of WNT/β-catenin signaling was observed in the airway epithelium of smokers with or without COPD. The mRNA expression of WNT transcription factor TCF4 negatively correlated with the pack year. The mRNA levels of WNT receptor FZD4 negatively correlated with the mRNA levels of IL-1β. CS exposure decreased the activity of WNT/β-catenin signaling in both 16HBECs and mice. In vitro studies demonstrated the upregulation of inflammatory cytokines TNF-α and IL-1β secretion induced by CS extract (CSE) could be attenuated by β-catenin activator SB216763 and be exacerbated by β-catenin small-interfering RNA (siRNA), respectively. Furthermore, the decrease in the expression of peroxisome proliferator-activated receptor (PPARδ) induced by CSE stimulation could be rescued by SB216763. SB216763 also attenuated the upregulation of phosphorylated p38 mitogen-activated protein kinase (MAPK) stimulated by CSE. Both PPARδ agonist and p38 MAPK inhibitor could suppress the TNF-α and IL-1β release induced by CSE treatment. In addition, PPARδ activation could abolish β-catenin siRNA-mediated aggravation of phosphorylated p38 MAPK in response to CSE. Finally, SB216763 treatment significantly ameliorated peribronchial inflammatory cell infiltration, leukocyte influx, and the release of TNF-α and IL-1β in the bronchoalveolar lavage fluid of CS-exposed mice. Taken together, our findings indicate that the reduced activity of WNT/β-catenin signaling induced by CS may promote inflammatory cytokine production in airway epithelium and have an essential role in airway inflammation in COPD by PPARδ/p38 MAPK pathway.
Collapse
Affiliation(s)
- Lingli Guo
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Tao Wang
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yanqiu Wu
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhicheng Yuan
- Department of Biological Science, College of Life Science, Sichuan University, Chengdu, China
| | - Jiajia Dong
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xiao'ou Li
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing An
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zenglin Liao
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xue Zhang
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Dan Xu
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Fu-Qiang Wen
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Chen Z, Su L, Xu Q, Katz J, Michalek SM, Fan M, Feng X, Zhang P. IL-1R/TLR2 through MyD88 Divergently Modulates Osteoclastogenesis through Regulation of Nuclear Factor of Activated T Cells c1 (NFATc1) and B Lymphocyte-induced Maturation Protein-1 (Blimp1). J Biol Chem 2015; 290:30163-74. [PMID: 26483549 DOI: 10.1074/jbc.m115.663518] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 01/10/2023] Open
Abstract
Toll-like receptors (TLR) and the receptor for interleukin-1 (IL-1R) signaling play an important role in bacteria-mediated bone loss diseases including periodontitis, rheumatoid arthritis, and osteomyelitis. Recent studies have shown that TLR ligands inhibit the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation from un-committed osteoclast precursors, whereas IL-1 potentiates RANKL-induced osteoclast formation. However, IL-1R and TLR belong to the same IL-1R/TLR superfamily, and activate similar intracellular signaling pathways. Here, we investigate the molecular mechanisms underlying the distinct effects of IL-1 and Porphyromonas gingivalis lipopolysaccharide (LPS-PG) on RANKL-induced osteoclast formation. Our results show that LPS-PG and IL-1 differentially regulate RANKL-induced activation of osteoclast genes encoding Car2, Ctsk, MMP9, and TRAP, as well as expression of NFATc1, a master transcription factor of osteoclastogenesis. Regulation of osteoclast genes and NFATc1 by LPS-PG and IL-1 is dependent on MyD88, an important signaling adaptor for both TLR and IL-1R family members. Furthermore, LPS-PG and IL-1 differentially regulate RANKL-costimulatory receptor OSCAR (osteoclast-associated receptor) expression and Ca(2+) oscillations induced by RANKL. Moreover, LPS-PG completely abrogates RANKL-induced gene expression of B lymphocyte-induced maturation protein-1 (Blimp1), a global transcriptional repressor of anti-osteoclastogenic genes encoding Bcl6, IRF8, and MafB. However, IL-1 enhances RANKL-induced blimp1 gene expression but suppresses the gene expression of bcl6, irf8, and mafb. Our study reveals the involvement of multiple signaling molecules in the differential regulation of RANKL-induced osteoclastogenesis by TLR2 and IL-1 signaling. Understanding the signaling cross-talk among TLR, IL-1R, and RANK is critical for identifying therapeutic strategies to control bacteria-mediated bone loss.
Collapse
Affiliation(s)
- Zhihong Chen
- From the Departments of Pediatric Dentistry, the Department of Prosthodontics, School and Hospital of Stomatology, Zhejiang University, Hangzhou, Zhejiang 310006, China, and
| | - Lingkai Su
- From the Departments of Pediatric Dentistry
| | - Qingan Xu
- From the Departments of Pediatric Dentistry, the The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jenny Katz
- From the Departments of Pediatric Dentistry
| | | | - Mingwen Fan
- the The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xu Feng
- Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Ping Zhang
- From the Departments of Pediatric Dentistry,
| |
Collapse
|
23
|
RETRACTED ARTICLE: Distinctive pathways characterize A. actinomycetemcomitans and P. gingivalis. Mol Biol Rep 2014; 42:441-9. [DOI: 10.1007/s11033-014-3785-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
|
24
|
Dhande I, Ma W, Hussain T. Angiotensin AT2 receptor stimulation is anti-inflammatory in lipopolysaccharide-activated THP-1 macrophages via increased interleukin-10 production. Hypertens Res 2014; 38:21-9. [PMID: 25209104 DOI: 10.1038/hr.2014.132] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/19/2014] [Accepted: 07/06/2014] [Indexed: 12/31/2022]
Abstract
Macrophages have an important role in the pathogenesis of hypertension and associated end-organ damage via the activation of the Toll-like receptors, such as Toll-like receptor-4 (TLR4). Accumulating evidence suggests that the angiotensin AT2 receptor (AT2R) has a protective role in pathological conditions involving inflammation and tissue injury. We have recently shown that AT(2)R stimulation is renoprotective, which occurs in part via increased levels of anti-inflammatory interleukin-10 (IL-10) production in renal epithelial cells; however, the role of AT(2)R in the inflammatory activity of macrophages is not known. The present study was designed to investigate whether AT(2)R activation stimulates an anti-inflammatory response in TLR4-induced inflammation. The effects of the anti-inflammatory mechanisms that occurred following pre-treatment with the AT(2)R agonist Compound 21 (C21) (1 μmol ml(-1)) on the cytokine profiles of THP-1 macrophages after activation by lipopolysaccharide (LPS) (1 μg ml(-1)) were studied. The AT(2)R agonist dose-dependently attenuated LPS-induced tumor necrosis factor-α (TNF-α) and IL-6 production but increased IL-10 production. IL-10 was critical for the anti-inflammatory effects of AT(2)R stimulation because the IL-10-neutralizing antibody dose-dependently abolished the AT(2)R-mediated decrease in TNF-α levels. Further, enhanced IL-10 levels were associated with a sustained, selective increase in the phosphorylation of extracellular signal-regulated kinase (ERK1/2) but not p38 mitogen-activated protein kinase (MAPK). Blocking the activation of ERK1/2 before C21 pre-treatment completely abrogated this increased IL-10 production in response to the AT(2)R agonist C21, while there was a partial reduction in IL-10 levels following the inhibition of p38. We conclude that AT(2)R stimulation exerts a novel anti-inflammatory response in THP-1 macrophages via enhanced IL-10 production as a result of sustained, selective ERK1/2 phosphorylation, which may have protective roles in hypertension and associated tissue injury.
Collapse
Affiliation(s)
- Isha Dhande
- 1] Department of Pharmacological and Pharmaceutical Sciences, Heart and Kidney Institute, University of Houston, Houston, TX, USA [2] Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Wanshu Ma
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Tahir Hussain
- 1] Department of Pharmacological and Pharmaceutical Sciences, Heart and Kidney Institute, University of Houston, Houston, TX, USA [2] Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| |
Collapse
|
25
|
Edwards MW, Aultman JA, Harber G, Bhatt JM, Sztul E, Xu Q, Zhang P, Michalek SM, Katz J. Role of mTOR downstream effector signaling molecules in Francisella tularensis internalization by murine macrophages. PLoS One 2013; 8:e83226. [PMID: 24312679 PMCID: PMC3849438 DOI: 10.1371/journal.pone.0083226] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 11/11/2013] [Indexed: 02/03/2023] Open
Abstract
Francisella tularensis is an infectious, gram-negative, intracellular microorganism, and the cause of tularemia. Invasion of host cells by intracellular pathogens like Francisella is initiated by their interaction with different host cell membrane receptors and the rapid phosphorylation of different downstream signaling molecules. PI3K and Syk have been shown to be involved in F. tularensis host cell entry, and both of these signaling molecules are associated with the master regulator serine/threonine kinase mTOR; yet the involvement of mTOR in F. tularensis invasion of host cells has not been assessed. Here, we report that infection of macrophages with F. tularensis triggers the phosphorylation of mTOR downstream effector molecules, and that signaling via TLR2 is necessary for these events. Inhibition of mTOR or of PI3K, ERK, or p38, but not Akt signaling, downregulates the levels of phosphorylation of mTOR downstream targets, and significantly reduces the number of F. tularensis cells invading macrophages. Moreover, while phosphorylation of mTOR downstream effectors occurs via the PI3K pathway, it also involves PLCγ1 and Ca(2+) signaling. Furthermore, abrogation of PLC or Ca(2+) signaling revealed their important role in the ability of F. tularensis to invade host cells. Together, these findings suggest that F. tularensis invasion of primary macrophages utilize a myriad of host signaling pathways to ensure effective cell entry.
Collapse
Affiliation(s)
- Michael W. Edwards
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - James A. Aultman
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gregory Harber
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jay M. Bhatt
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Qingan Xu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ping Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Suzanne M. Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jannet Katz
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
26
|
Wang P, Dai Q, Thogaripally P, Zhang P, Michalek SM. Synthesis of QS-21-based immunoadjuvants. J Org Chem 2013; 78:11525-34. [PMID: 24147602 DOI: 10.1021/jo402118j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three structurally defined QS-21-based immune adjuvant candidates (2a-2c) have been synthesized. Application of the two-stage activation glycosylation approach utilizing allyl glycoside building blocks improved the synthetic accessibility of the new adjuvants. The efficient synthesis and establishment of the stand-alone adjuvanticity of the examined synthetic adjuvant (2b) open the door to the pursuit of a new series of structurally defined QS-saponin-based synthetic adjuvants.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of Chemistry, ‡Department of Pediatric Dentistry, and §Department of Microbiology, University of Alabama at Birmingham , 901 14th Street South, Birmingham, Alabama 35294, United States
| | | | | | | | | |
Collapse
|
27
|
Hemoglobin receptor protein from Porphyromonas gingivalis induces interleukin-8 production in human gingival epithelial cells through stimulation of the mitogen-activated protein kinase and NF-κB signal transduction pathways. Infect Immun 2013; 82:202-11. [PMID: 24126532 DOI: 10.1128/iai.01140-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Periodontitis is an inflammatory disease of polymicrobial origin affecting the tissues supporting the tooth. The oral anaerobic bacterium Porphyromonas gingivalis, which is implicated as an important pathogen for chronic periodontitis, triggers a series of host inflammatory responses that promote the destruction of periodontal tissues. Among the virulence factors of P. gingivalis, hemoglobin receptor protein (HbR) is a major protein found in culture supernatants. In this study, we investigated the roles of HbR in the production of inflammatory mediators. We found that HbR induced interleukin-8 (IL-8) production in the human gingival epithelial cell line Ca9-22. p38 mitogen-activated protein kinase (MAPK) and extracellular signal-related kinase 1/2 (Erk1/2) were activated in HbR-stimulated Ca9-22 cells. Inhibitors of p38 MAPK (SB203580) and Erk1/2 (PD98059) blocked HbR-induced IL-8 production. Additionally, HbR stimulated the translocation of NF-κB-p65 to the nucleus, consistent with enhancement of IL-8 expression by activation of the NF-κB pathway. In addition, small interfering RNA (siRNA) targeting activating transcription factor 2 (ATF-2) or cyclic AMP-response element-binding protein (CREB) inhibited HbR-induced IL-8 production. Moreover, pretreatment with SB203580 and PD98059 reduced HbR-induced phosphorylation of CREB and ATF-2, respectively. Combined pretreatment with an inhibitor of NF-κB (BAY11-7082) and SB203580 was more efficient in inhibiting the ability of HbR to induce IL-8 production than pretreatment with either BAY11-7082 or SB203580 alone. Thus, in Ca9-22 cells, the direct activation of p38 MAPK and Erk1/2 by HbR caused the activation of the transcription factors ATF-2, CREB, and NF-κB, thus resulting in the induction of IL-8 production.
Collapse
|
28
|
IL-36 cytokine expression and its relationship with p38 MAPK and NF-κB pathways in psoriasis vulgaris skin lesions. ACTA ACUST UNITED AC 2013; 33:594-599. [DOI: 10.1007/s11596-013-1164-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/18/2013] [Indexed: 12/13/2022]
|
29
|
Zhou Z, Wang M, Zhao J, Wang L, Gao Y, Zhang H, Liu R, Song L. The increased transcriptional response and translocation of a Rel/NF-κB homologue in scallop Chlamys farreri during the immune stimulation. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1209-1215. [PMID: 23403154 DOI: 10.1016/j.fsi.2013.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 06/01/2023]
Abstract
The Rel/NF-κB transcription factors can function as key regulators to modulate the expression of immune-related genes in response to immune challenge or environmental stress. In the present study, a gene coding Rel/NF-κB homologue was identified from scallop Chlamys farreri (designated CfRel). Its deduced protein comprised 359 amino acids, and contained a conserved N-terminal Rel homology domain (RHD) and an IPT domain. There was an NF-κB/Rel/dorsal domain signature sequence in the RHD domain. The mRNA transcripts of CfRel could be detected in all the tested tissues including adductor muscle, mantle, gill, gonad, haemocytes, kidney and hepatopancreas, with the highest expression level in hepatopancreas. After LPS stimulation, there were two peaks of CfRel mRNA expression level in haemocytes at 6 h (25.25-fold, P < 0.05) and 24 h (59.66-fold, P < 0.05) respectively, while the mRNA expression of CfRel was only up-regulated at 3 h after PGN stimulation (2.35-fold, P < 0.05). By Western blotting technique, CfRel protein was observed in the cytoplasm and nucleus of scallop haemocytes, and its concentration in the haemocyte nucleus increased significantly at 3 h and 12 h after LPS stimulation. The noticeable NF-κB transcription activity of CfRel protein was determined by NF-κB luciferase reporter assays (122.43%, P < 0.05), and it decreased significantly (17.61%, P < 0.05) after the coexpression of scallop IκB protein. These results collectively suggested that CfRel mRNA transcripts and protein were induced by immune stimulation, and CfRel protein could extricate itself from IκB protein and transfer into the haemocyte nucleus to modulate the immune response in scallop.
Collapse
Affiliation(s)
- Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Krishnan G, Chatterjee N. Endocannabinoids alleviate proinflammatory conditions by modulating innate immune response in muller glia during inflammation. Glia 2012; 60:1629-45. [DOI: 10.1002/glia.22380] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/05/2012] [Indexed: 12/29/2022]
|
32
|
Lee HY, Hyung S, Lee NY, Yong TS, Han SH, Park SJ. Excretory-secretory products of Giardia lamblia induce interleukin-8 production in human colonic cells via activation of p38, ERK1/2, NF-κB and AP-1. Parasite Immunol 2012; 34:183-98. [PMID: 22224945 DOI: 10.1111/j.1365-3024.2012.01354.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Giardia lamblia, a pathogen causing diarrhoeal outbreaks, is interesting how it triggers immune response in the human epithelial cells. This study defined the crucial roles of signalling components involved in G. lamblia-induced cytokine production in human epithelial cells. Incubation of the gastrointestinal cell line HT-29 with G. lamblia GS trophozoites triggered production of interleukin (IL)-1β, IL-8 and tumour necrosis factor (TNF)-α. IL-8 production was not significantly decreased by physically separating the HT-29 cells and G. lamblia GS trophozoites. Indeed, treatment of HT-29 with G. lamblia excretory-secretory products (ESP) induced IL-8 production. Electrophoretic mobility gel shift and transfection assays using mutagenized IL-8 promoter reporter plasmids indicated that IL-8 production by G. lamblia ESP occurs through activation of two transcriptional factors, nuclear factor kappaB (NF-κB) and activator protein 1 (AP-1) in HT-29 cells. In addition, activation of two mitogen-activated protein kinases (MAPKs), p38 and ERK1/2, was also detected in the HT-29 cells stimulated with G. lamblia ESP. Selective inhibition of these MAPKs resulted in decreased production of ESP-induced IL-8. These results indicate that activation of p38, ERK1/2 MAPK, NF-κB and AP-1 comprises the signalling pathway responsible for IL-8 production by G. lamblia ESP.
Collapse
Affiliation(s)
- H-Y Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
33
|
Auger G, Corvec S, Roquilly A, Segain JP, Lepelletier D, Reynaud A, Asehnoune K. Escherichia coli-induced productions of pro-inflammatory cytokines are regulated by MAP kinases and G-protein but not by Akt: Relationship with phylogenetic groups and resistance patterns. Cytokine 2011; 56:290-7. [DOI: 10.1016/j.cyto.2011.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/17/2011] [Accepted: 06/22/2011] [Indexed: 11/28/2022]
|
34
|
Lee NY, Lee HY, Lee KH, Han SH, Park SJ. Vibrio vulnificus IlpA induces MAPK-mediated cytokine production via TLR1/2 activation in THP-1 cells, a human monocytic cell line. Mol Immunol 2011; 49:143-54. [PMID: 21903273 DOI: 10.1016/j.molimm.2011.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/01/2011] [Accepted: 08/06/2011] [Indexed: 01/28/2023]
Abstract
Vibrio vulnificus is a pathogenic bacterium causing primary septicemia, which is followed by a classical septic shock pathway including an overwhelming inflammatory cytokine response. V. vulnificus IlpA is a potent immunogenic lipoprotein that triggers cytokine production in human monocytes by activating the toll-like receptor 2 (TLR2). In this study, we further defined the IlpA signaling pathways involved in cytokine production in the human monocytic cell line, THP-1. TLR2 was involved in cytokine production by complexing with TLR1, but not with TLR6. MyD88 was necessary for IlpA-induced cytokine expression through TLR1/TLR2. Three mitogen activated protein kinases (MAPK), p38, ERK1/2, and JNK, were activated in THP-1 cells stimulated with recombinant IlpA (rIlpA). Selective inhibition of each MAPK resulted in significant decrease of rIlpA-induced cytokine production. Especially, functional TLR2 was necessary for IlpA-induced activation of p38 and JNK. IlpA augmented the DNA-binding activity of nuclear factor-kappaB (NF-κB) and activator protein-1 (AP-1) transcriptional factors to their recognition sites in THP-1 cells. These results suggest that serial activation of TLR1/TLR2, MyD88, the three MAPKs, and NF-κB/AP-1 comprises the signaling pathway responsible for proinflammatory cytokine production by V. vulnificus IlpA.
Collapse
Affiliation(s)
- Na Yeon Lee
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | | | | | | | | |
Collapse
|
35
|
Guo F, Guo X, Xie A, Lou YL, Wang Y. The suppressive effects of lanthanum on the production of inflammatory mediators in mice challenged by LPS. Biol Trace Elem Res 2011; 142:693-703. [PMID: 20680507 DOI: 10.1007/s12011-010-8792-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/22/2010] [Indexed: 11/28/2022]
Abstract
Lanthanide ions have been proven to have various biologic effects. Lanthanum with extremely active physical and chemical property was evidenced to possess antibacterial and immune adjustment effects. In the present study, the anti-inflammatory effects of lanthanum chloride (LaCl(3)) on lipopolysaccharide (LPS)-challenged mice were examined in vivo and in vitro. The results indicated that LaCl(3) can greatly decrease the secretion of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1β as well as TNF-α mRNA expression in the mice challenged with LPS. To clarify the mechanism involved, the effects of LaCl(3) on the activation of nuclear factor (NF)-κB were examined both in liver and in peritoneal macrophages. The LPS-induced activation of NF-κB was significantly blocked by LaCl(3). These findings demonstrate that the inhibition of the LPS-induced inflammatory media, such as TNF-α and IL-1β, by LaCl(3), is due to the inhibition of NF-κ B activation.
Collapse
Affiliation(s)
- Fei Guo
- Burns Institute, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | | | | | | | | |
Collapse
|
36
|
Zhang P, Liu J, Xu Q, Harber G, Feng X, Michalek SM, Katz J. TLR2-dependent modulation of osteoclastogenesis by Porphyromonas gingivalis through differential induction of NFATc1 and NF-kappaB. J Biol Chem 2011; 286:24159-69. [PMID: 21566133 DOI: 10.1074/jbc.m110.198085] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteolytic diseases, including rheumatoid arthritis, osteomyelitis, and periodontitis, are usually associated with bacterial infections. However, the precise mechanisms by which bacteria induce bone loss still remain unclear. Evidence exists that Toll-like receptor (TLR) signaling regulates both inflammation and bone metabolism and that the receptor activator of NF-κB ligand (RANKL) and its receptor RANK are the key regulators for bone remodeling and for the activation of osteoclasts. Here, we investigate the direct effects of the periodontal pathogen Porphyromonas gingivalis on osteoclast differentiation and show that P. gingivalis differentially modulates RANKL-induced osteoclast formation contingent on the state of differentiation of osteoclast precursors. In addition, although an optimal induction of cytokines by P. gingivalis is dependent on TLR2 and TLR4, as well as myeloid differentiation factor 88 and Toll/IL-1R domain-containing adaptor-inducing IFN-β, P. gingivalis utilizes TLR2/ myeloid differentiation factor 88 in modulating osteoclast differentiation. P. gingivalis modulates RANKL-induced osteoclast formation by differential induction of NFATc1 and c-Fos. More importantly, RANKL-mediated lineage commitment also has an impact on P. gingivalis-induced cytokine production. RANKL inhibits P. gingivalis-induced cytokine production by down-regulation of TLR/NF-κB and up-regulation of NFATc1. Our findings reveal novel aspects of the interactions between TLR and RANK signaling and provide a new model for understanding the mechanism underlying the pathogenesis of bacteria-mediated bone loss.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Gaddis DE, Michalek SM, Katz J. TLR4 signaling via MyD88 and TRIF differentially shape the CD4+ T cell response to Porphyromonas gingivalis hemagglutinin B. THE JOURNAL OF IMMUNOLOGY 2011; 186:5772-83. [PMID: 21498664 DOI: 10.4049/jimmunol.1003192] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombinant hemagglutinin B (rHagB), a virulence factor of the periodontal pathogen Porphyromonas gingivalis, has been shown to induce protective immunity against bacterial infection. Furthermore, we have demonstrated that rHagB is a TLR4 agonist for dendritic cells. However, it is not known how rHagB dendritic cell stimulation affects the activation and differentiation of T cells. Therefore, we undertook the present study to examine the role of TLR4 signaling in shaping the CD4(+) T cell response following immunization of mice with rHagB. Immunization with this Ag resulted in the induction of specific CD4(+) T cells and Ab responses. In TLR4(-/-) and MyD88(-/-) but not Toll/IL-1R domain-containing adapter inducing IFN-β-deficient (TRIF(Lps2)) mice, there was an increase in the Th2 CD4(+) T cell subset, a decrease in the Th1 subset, and higher serum IgG(1)/IgG(2) levels of HagB-specific Abs compared with those in wild-type mice. These finding were accompanied by increased GATA-3 and Foxp3 expression and a decrease in the activation of CD4(+) T cells isolated from TLR4(-/-) and MyD88(-/-) mice. Interestingly, TLR4(-/-) CD4(+) T cells showed an increase in IL-2/STAT5 signaling. Whereas TRIF deficiency had minimal effects on the CD4(+) T cell response, it resulted in increased IFN-γ and IL-17 production by memory CD4(+) T cells. To our knowledge, these results demonstrate for the first time that TLR4 signaling, via the downstream MyD88 and TRIF molecules, exerts a differential regulation on the CD4(+) T cell response to HagB Ag. The gained insight from the present work will aid in designing better therapeutic strategies against P. gingivalis infection.
Collapse
Affiliation(s)
- Dalia E Gaddis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
38
|
Taxman DJ, Holley-Guthrie EA, Huang MTH, Moore CB, Bergstralh DT, Allen IC, Lei Y, Gris D, Ting JPY. The NLR adaptor ASC/PYCARD regulates DUSP10, mitogen-activated protein kinase (MAPK), and chemokine induction independent of the inflammasome. J Biol Chem 2011; 286:19605-16. [PMID: 21487011 DOI: 10.1074/jbc.m111.221077] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ASC/PYCARD is a common adaptor for a diverse set of inflammasomes that activate caspase-1, most prominently the NLR-based inflammasome. Mounting evidence indicates that ASC and these NLRs also elicit non-overlapping functions, but the molecular basis for this difference is unclear. To address this, we performed microarray and network analysis of ASC shRNA knockdown cells. In pathogen-infected cells, an ASC-dependent interactome is centered on the mitogen-activated protein kinase (MAPK) ERK and on multiple chemokines. ASC did not affect the expression of MAPK but affected its phosphorylation by pathogens and Toll-like receptor agonists via suppression of the dual-specificity phosphatase, DUSP10/MKP5. Chemokine induction, DUSP function, and MAPK phosphorylation were independent of caspase-1 and IL-1β. MAPK activation by pathogen was abrogated in Asc(-/-) but not Nlrp3(-/-), Nlrc4(-/-), or Casp1(-/-) macrophages. These results demonstrate a function for ASC that is distinct from the inflammasome in modulating MAPK activity and chemokine expression and further identify DUSP10 as a novel ASC target.
Collapse
Affiliation(s)
- Debra J Taxman
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dobreva ZG, Miteva LD, Stanilova SA. The inhibition of JNK and p38 MAPKs downregulates IL-10 and differentially affects c-Jun gene expression in human monocytes. Immunopharmacol Immunotoxicol 2010; 31:195-201. [PMID: 19235539 DOI: 10.1080/08923970802626276] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Interleukin-10 is the most important anti-inflammatory cytokine that controls the progress of the immune response. The molecular mechanisms driving the IL10 gene regulation are not well understood. To gain insight into this process we studied the IL-10 expression on mRNA and protein levels, together with c-Jun, FOXP3 and RelA transcription factors gene expression in human monocytes. We investigated also, the involvement of JNK and p38 transduction pathways in IL-10, c-Jun, FOXP3 and RelA gene expression. The quantity determination of IL-10 was performed by ELISA. qRT-PCR was performed for the detection of mRNA transcripts. The pharmacological inhibitors SP600125 and SB202190 were used to explore JNK and p38 MAPKs involvement in IL10, c-Jun, FOXP3 and RelA gene expression. The measurement of IL-10 mRNA synthesis, triggered by lipopolysaccharide (LPS) or C3 binding glycoprotein (C3bgp) showed that stimulation with both inducers led to similar high level of IL-10 mRNA synthesis, whereas C3bgp was the stronger inducer of IL-10 production than LPS. JNK and p38 inhibition significantly decreased IL-10 expression in stimulated cells. C3bgp and LPS induced comparatively low expression of FOXP3, RelA and c-Jun mRNA in monocytes. The inhibition of p38 MAPK in stimulated monocytes resulted in significant enhancement of c-Jun mRNA synthesis suggesting the functional relation between p38 MAPK and c-Jun gene expression. We concluded that the IL10 gene transcription did not associate with enhancement of c-Jun, RelA and FOXP3 gene expression and strictly depended on the JNK and p38 MAPKs activation in stimulated human monocytes.
Collapse
Affiliation(s)
- Zlatka Georgieva Dobreva
- Department of Molecular Biology, Immunology and Genetics, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria.
| | | | | |
Collapse
|
40
|
Lewis JP. Metal uptake in host-pathogen interactions: role of iron in Porphyromonas gingivalis interactions with host organisms. Periodontol 2000 2010; 52:94-116. [PMID: 20017798 DOI: 10.1111/j.1600-0757.2009.00329.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Guo F, Lou Y, Feng N, Li G, Xie A, Huang X, Wang Y. Exposure to lanthanum compound diminishes LPS-induced inflammation-associated gene expression: involvements of PKC and NF-kappaB signaling pathways. Biometals 2010; 23:669-80. [PMID: 20349204 DOI: 10.1007/s10534-010-9327-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
Lanthanum chloride, a rare earth compound, possesses antibacterial and cellular immunity regulating properties. However, the underlying molecular mechanisms remain largely unknown. In this study, we examined the effects of lanthanum chloride on the production of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha), the expression of inducible NO synthase (iNOS) and TNF-alpha in RAW 264.7 cells, a mouse macrophage cell line. We found that the LPS-elicited excessive production of NO and TNF-alpha in RAW 264.7 cells was inhibited significantly in the presence of lanthanum chloride, and the attenuation of iNOS and TNF-alpha occurred at mRNA level. Furthermore, the possible signaling components affected by lanthanum chloride in the pathway that lead to LPS-induced iNOS and TNF-alpha expression were explored. The results indicated the involvements of PKC/Ca(2+) and NF-kappaB in the attenuation of NO and pro-inflammatory cytokine production by lanthanum chloride. Our observations suggest a possible therapeutic application of this agent for treating inflammatory diseases.
Collapse
Affiliation(s)
- Fei Guo
- Burns Institute, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
42
|
Correa F, Hernangómez M, Mestre L, Loría F, Spagnolo A, Docagne F, Di Marzo V, Guaza C. Anandamide enhances IL-10 production in activated microglia by targeting CB(2) receptors: roles of ERK1/2, JNK, and NF-kappaB. Glia 2010; 58:135-47. [PMID: 19565660 DOI: 10.1002/glia.20907] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endocannabinoid system exhibits anti-inflammatory properties by regulating cytokine production. Anandamide (AEA) down-regulates proinflammatory cytokines in a viral model of multiple sclerosis (MS). However, little is known about the mechanisms by which AEA exerts these effects. Microglial cells are the main source of cytokines within the brain and the first barrier of defense against pathogens by acting as antigen presenting cells. IL-10 is a key physiological negative regulator of microglial activation. In this study we show that AEA enhances LPS/IFNgamma-induced IL-10 production in microglia by targeting CB(2) receptors through the activation of ERK1/2 and JNK MAPKs. AEA also inhibits NF-kappaB activation by interfering with the phosphorylation of IkappaBalpha, which may result in an increase of IL-10 production. Moreover, endogenously produced IL-10 negatively regulates IL-12 and IL-23 cytokines, which in its turn modify the pattern of expression of transcription factors involved in Th commitment of splenocytes. This suggests that by altering the cytokine network, AEA could indirectly modify the type of immune responses within the central nervous system (CNS). Accordingly, pharmacological modulation of AEA uptake and degradation might be a useful tool for treating neuroinflammatory diseases.
Collapse
Affiliation(s)
- Fernando Correa
- Functional and Systems Neurobiology Department, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
WANG S, UCHI H, HAYASHIDA S, URABE K, MOROI Y, FURUE M. Differential expression of phosphorylated extracellular signal-regulated kinase 1/2, phosphorylated p38 mitogen-activated protein kinase and nuclear factor-κB p105/p50 in chronic inflammatory skin diseases. J Dermatol 2009; 36:534-40. [DOI: 10.1111/j.1346-8138.2009.00696.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Gaddis DE, Michalek SM, Katz J. Requirement of TLR4 and CD14 in dendritic cell activation by Hemagglutinin B from Porphyromonas gingivalis. Mol Immunol 2009; 46:2493-504. [PMID: 19540594 DOI: 10.1016/j.molimm.2009.05.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 05/18/2009] [Indexed: 01/04/2023]
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that is one of the causative agents of chronic adult periodontal disease. Among the potential virulence factors of P. gingivalis are the hemagglutinins. Recombinant Hemagglutinin B (rHagB) from P. gingivalis has been shown to activate the immune system by inducing specific antibodies that protect against experimental periodontal bone loss following P. gingivalis infection. Since different microbial products can stimulate dendritic cells (DC) through Toll-like receptors (TLRs), subsequently leading to T cell activation and antibody production, we wanted to investigate the immunostimulatory effect of rHagB on DC and the role of TLR signaling in this process. Using an endotoxin free rHagB preparation, our results show that stimulation of murine bone marrow-derived DC with rHagB leads to upregulation of the costimulatory molecules CD86 and CD40, activation of p38 and ERK MAP kinases, transcription factors NF-kappaB, CREB and IRF-3 and the production of IL-6, TNF-alpha, IL-12p40 and to a lesser extent IL-10 and IFN-beta. This activation process was absolutely dependent on TLR4 and CD14. While upregulation of CD86 was independent of the adaptor molecule MyD88, CD40 upregulation and optimal cytokine (IL-6, TNF-alpha, IL-12p40, IL-10 and IFN-beta) production required both MyD88 and TRIF molecules. These results are of importance since they are the first to provide insights into the interaction of rHagB with DC and TLRs. The information from this study will aid in the design of effective vaccines strategies against chronic adult periodontal disease.
Collapse
Affiliation(s)
- Dalia E Gaddis
- Department of Microbiology, University of Alabama at Birmingham, 35294-2170, United States
| | | | | |
Collapse
|
45
|
Reber L, Vermeulen L, Haegeman G, Frossard N. Ser276 phosphorylation of NF-kB p65 by MSK1 controls SCF expression in inflammation. PLoS One 2009; 4:e4393. [PMID: 19197368 PMCID: PMC2632887 DOI: 10.1371/journal.pone.0004393] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 12/09/2008] [Indexed: 02/07/2023] Open
Abstract
Transcription of the mast cell growth factor SCF (stem cell factor) is upregulated in inflammatory conditions, and this is dependent upon NF-κB, as well as the MAP kinases p38 and ERK activation. We show here that the MAPK downstream nuclear kinase MSK1 induces NF-κB p65 Ser276 phosphorylation upon IL-1ß treatment, which was inhibited in cells transfected with a MSK1 kinase-dead (KD) mutant compared to the WT control. In addition, we show by ChIP experiments that MSK1 as well as MAPK inhibition abolishes binding of p65, of its coactivator CBP, and of MSK1 itself to the κB intronic enhancer site of the SCF gene. We show that interaction between NF-κB and CBP is prevented in cells transfected by a p65 S276C mutant. Finally, we demonstrate that both transfections of MSK1-KD and MSK1 siRNA - but not the WT MSK1 or control siRNA - downregulate the expression of SCF induced by IL-1ß. Our study provides therefore a direct link between MSK1-mediated phosphorylation of Ser276 p65 of NF-κB, allowing its binding to the SCF intronic enhancer, and pathophysiological SCF expression in inflammation.
Collapse
Affiliation(s)
- Laurent Reber
- EA3771, Inflammation and Environment in Asthma, Université Louis Pasteur-Strasbourg-I, Faculté de Pharmacie, Illkirch, France
| | - Linda Vermeulen
- LEGEST, Department of Molecular Biology, Ghent University, Ghent, Belgium
| | - Guy Haegeman
- LEGEST, Department of Molecular Biology, Ghent University, Ghent, Belgium
| | - Nelly Frossard
- EA3771, Inflammation and Environment in Asthma, Université Louis Pasteur-Strasbourg-I, Faculté de Pharmacie, Illkirch, France
- * E-mail:
| |
Collapse
|
46
|
Zhang P, Katz J, Michalek SM. Glycogen synthase kinase-3beta (GSK3beta) inhibition suppresses the inflammatory response to Francisella infection and protects against tularemia in mice. Mol Immunol 2008; 46:677-87. [PMID: 18929413 DOI: 10.1016/j.molimm.2008.08.281] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 08/27/2008] [Indexed: 12/01/2022]
Abstract
Francisella tularensis, the causative agent of tularemia, is currently considered a category A bioterrorism agent due to its high virulence. Infection with F. tularensis results in an inflammatory response that plays an important role in the pathogenesis of the disease; however, the cellular mechanisms regulating this response are poorly understood. Glycogen synthase kinase-3beta (GSK3beta) is a serine/threonine protein kinase that has recently emerged as a key regulatory switch in the modulation of the inflammatory response. In this study, we investigated the effect of GSK3beta inhibition in regulating F. tularensis LVS-induced inflammatory responses. F. tularensis LVS infection of murine peritoneal macrophages induced a TLR2 dependent phosphorylation of GSK3beta. Inhibition of GSK3beta resulted in a significant decrease in the production of pro-inflammatory cytokine IL-6, IL-12p40 and TNF-alpha, as well as a significant increase in the production of the anti-inflammatory cytokine IL-10. GSK3beta regulated the F. tularensis LVS-induced cytokine response by differentially affecting the activation of transcription factors NF-kappaB and CREB. Inhibition of GSK3beta by lithium in vivo suppressed the inflammatory response in mice infected with F. tularensis LVS and conferred a survival advantage. In addition, we show that the production of IFN-gamma contributed to the development of tularemia and to the fatal outcome of the infected animals, depending on the timing and the relative level of the IFN-gamma produced. IFN-gamma potentiated F. tularensis LVS-induced cytokine production by increasing GSK3beta activity and the nuclear translocation of NF-kappaB. Taken together, these results demonstrate a regulatory function of GSK3beta in modulating inflammatory responses that can be detrimental to the host during an F. tularensis LVS infection, and suggest that inhibition of GSK3beta may represent a novel therapeutic approach in the treatment of tularemia.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | | | | |
Collapse
|
47
|
Human alpha- and beta-defensins bind to immobilized adhesins from Porphyromonas gingivalis. Infect Immun 2008; 76:5714-20. [PMID: 18852241 DOI: 10.1128/iai.00997-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human neutrophil peptide alpha-defensins (HNPs) and human beta-defensins (HBDs) are small well-characterized peptides with broad antimicrobial activities and a diversity of innate immune functions. Although the interactions of defensins with bacteria and their membranes have been well characterized, the interactions of defensins with bacterial adhesins have not. Here we determine if HNPs and HBDs bind to the immobilized adhesins of Porphyromonas gingivalis strain 381, recombinant hemagglutinin B (rHagB) and recombinant fimbrillin A (rFimA), by surface plasmon resonance spectroscopy. Association of HNPs and HBDs with rHagB or rFimA was dose dependent and defensin specific. HBD3, HNP-2, and HNP-1 bound more readily to immobilized rHagB than HBD2 and HBD1 did. HNP-2, HNP-1, and HBD3 bound more readily to immobilized rFimA than HBD1 and HBD2 did. Binding of defensins to adhesins may serve to prevent microbial adherence to tissues, attenuate proinflammatory cytokine responses, and facilitate delivery of bound antigen to antigen-presenting cells with defensin receptors.
Collapse
|
48
|
Pingel LC, Kohlgraf KG, Hansen CJ, Eastman CG, Dietrich DE, Burnell KK, Srikantha RN, Xiao X, Bélanger M, Progulske-Fox A, Cavanaugh JE, Guthmiller JM, Johnson GK, Joly S, Kurago ZB, Dawson DV, Brogden KA. Human beta-defensin 3 binds to hemagglutinin B (rHagB), a non-fimbrial adhesin from Porphyromonas gingivalis, and attenuates a pro-inflammatory cytokine response. Immunol Cell Biol 2008; 86:643-9. [PMID: 18711400 DOI: 10.1038/icb.2008.56] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regulatory mechanisms in mucosal secretions and tissues recognize antigens and attenuate pro-inflammatory cytokine responses. Here, we asked whether human beta-defensin 3 (HBD3) serves as an upstream suppressor of cytokine signaling that binds and attenuates pro-inflammatory cytokine responses to recombinant hemagglutinin B (rHagB), a non-fimbrial adhesin from Porphyromonas gingivalis strain 381. We found that HBD3 binds to immobilized rHagB and produces a significantly higher resonance unit signal in surface plasmon resonance spectroscopic analysis, than HBD2 and HBD1 that are used as control defensins. Furthermore, we found that HBD3 significantly attenuates (P<0.05) the interleukin (IL)-6, IL-10, granulocyte macrophage colony stimulating factor (GM-CSF) and tumor-necrosis factor-alpha (TNF-alpha) responses induced by rHagB in human myeloid dendritic cell culture supernatants and the extracellular signal-regulated kinases (ERK 1/2) response in human myeloid dendritic cell lysates. Thus, HBD3 binds rHagB and this interaction may be an important initial step to attenuate a pro-inflammatory cytokine response and an ERK 1/2 response.
Collapse
Affiliation(s)
- Lindsey C Pingel
- Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang M, He J, Mei B, Ma X, Huo Z. Therapeutic effects and anti-inflammatory mechanisms of heparin on acute lung injury in rabbits. Acad Emerg Med 2008; 15:656-63. [PMID: 19086324 DOI: 10.1111/j.1553-2712.2008.00146.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The objectives were to investigate the potential beneficial effects and molecular mechanisms of heparin and low-molecular-weight heparin (LMWH) on acute lung injury (ALI). METHODS Forty-eight rabbits were randomized into four groups: normal control group (Group A), lipopolysaccharide (LPS) group (Group B), LPS + heparin group (Group C), and LPS + LMWH group (Group D). The rabbit ALI model was established by intravenous (IV) injection with LPS. Alveolar-arterial O2 difference (P(A-a)O2), serum tumor necrosis factor alpha (TNF-alpha), circulating p38 mitogen-activated protein kinase (p38 MAPK) levels, lung nuclear factor (NF)-kappaB levels, and lung dry/wet (D/W) ratio were measured, and the lung injury scores were calculated. RESULTS Lipopolysaccharide caused significant increases in P(A-a)O2, serum TNF-alpha, expression of p38 MAPK in polymorphonuclear neutrophils (PMNs), the lung injury scores, and nuclear factor-kappaB (NF-kappaB) activity in the lung tissue and caused a decrease in lung D/W ratio. A positive linear correlation was found between p38 MAPK and TNF-alpha at 1, 2, 4, and 6 hours (r = 0.68, 0.92, 0.93, and 0.93, respectively) and between NF-kappaB and p38 MAPK and TNF-alpha at 6 hours (r = 0.94 and 0.83, respectively). IV heparin or LMWH given after LPS treatment attenuated these changes in inflammatory response, oxygenation, p38 MAPK expression, and NF-kappaB activation. CONCLUSIONS The anti-inflammatory mechanisms of heparin in ALI may be inhibiting p38 MAPK and NF-kappaB activities, and then TNF-alpha overexpression, thus alleviating the inflammatory reaction.
Collapse
Affiliation(s)
- Meitang Wang
- Emergency Department, Shanghai Changhai Hospital, Shanghai, China
| | | | | | | | | |
Collapse
|
50
|
Handfield M, Baker HV, Lamont RJ. Beyond good and evil in the oral cavity: insights into host-microbe relationships derived from transcriptional profiling of gingival cells. J Dent Res 2008; 87:203-23. [PMID: 18296603 DOI: 10.1177/154405910808700302] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In many instances, the encounter between host and microbial cells, through a long-standing evolutionary association, can be a balanced interaction whereby both cell types co-exist and inflict a minimal degree of harm on each other. In the oral cavity, despite the presence of large numbers of diverse organisms, health is the most frequent status. Disease will ensue only when the host-microbe balance is disrupted on a cellular and molecular level. With the advent of microarrays, it is now possible to monitor the responses of host cells to bacterial challenge on a global scale. However, microarray data are known to be inherently noisy, which is caused in part by their great sensitivity. Hence, we will address several important general considerations required to maximize the significance of microarray analysis in depicting relevant host-microbe interactions faithfully. Several advantages and limitations of microarray analysis that may have a direct impact on the significance of array data are highlighted and discussed. Further, this review revisits and contextualizes recent transcriptional profiles that were originally generated for the specific study of intricate cellular interactions between gingival cells and 4 important plaque micro-organisms. To our knowledge, this is the first report that systematically investigates the cellular responses of a cell line to challenge by 4 different micro-organisms. Of particular relevance to the oral cavity, the model bacteria span the entire spectrum of documented pathogenic potential, from commensal to opportunistic to overtly pathogenic. These studies provide a molecular basis for the complex and dynamic interaction between the oral microflora and its host, which may lead, ultimately, to the development of novel, rational, and practical therapeutic, prophylactic, and diagnostic applications.
Collapse
Affiliation(s)
- M Handfield
- Department of Oral Biology, College of Dentistry, Box 100424 JHMHSC, University of Florida, Gainesville, FL 32610-0424, USA.
| | | | | |
Collapse
|