1
|
Sands N, Malka S, Vecere G, Lee M, Stockman J, Krumbeck JA. Determining the Fecal Microbiome of Healthy Cockatiels ( Nymphicus hollandicus) Fed Seeds Versus Formulated Pelleted Diets by Next-Generation DNA Sequencing. J Avian Med Surg 2025; 39:2-11. [PMID: 40085117 DOI: 10.1647/avianms-d-24-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Fecal samples were collected from 34 clinically healthy cockatiels (Nymphicus hollandicus), with 15 consuming a commercially available seed diet and 19 on a formulated pelleted diet. Next-generation DNA sequencing was used to analyze the samples, revealing a diverse microbial landscape. A total of 179 bacterial species from 94 genera and 244 fungal species from 156 genera were identified across both diet groups. Although no significant differences in microbial diversity were observed between the 2 groups, distinct microbial compositions were noted. Notably, Corynebacterium kroppenstedtii and Enterococcus durans/faecium were enriched in the pellet-fed group, whereas Lactobacillus oris and a species in the Brevinemataceae family were more abundant in the seed-fed group. In the mycobiome, Aspergillus penicillioides, Meyerozyma sp, and Fusarium sp were enriched in the pelleted diet group, whereas Bulleribasidium oberjochense was more prevalent in the seed diet group. These findings highlight the nuanced effects of diet on the fecal microbiome of cockatiels, providing valuable insights for avian health management and potential probiotic interventions.
Collapse
Affiliation(s)
- Nicole Sands
- Long Island Bird and Exotics Veterinary Clinic, Great Neck, NY 11021, USA,
| | - Shachar Malka
- Long Island Bird and Exotics Veterinary Clinic, Great Neck, NY 11021, USA
| | - Gina Vecere
- Long Island Bird and Exotics Veterinary Clinic, Great Neck, NY 11021, USA
| | - Margaret Lee
- Long Island Bird and Exotics Veterinary Clinic, Great Neck, NY 11021, USA
| | - Jonathan Stockman
- Department of Clinical Veterinary Sciences, LIU College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | | |
Collapse
|
2
|
Zhang Y, Liu J, Li M, Dong Y, Li Z, Yi D, Wu T, Wang L, Zhao D, Hou Y. Zinc Oxide Administration Relieves the Diarrhea of ETEC K88-Infected Piglets by Reducing Ileal Apoptosis and Maintaining Gut Microbial Balance. Vet Sci 2025; 12:115. [PMID: 40005874 PMCID: PMC11861302 DOI: 10.3390/vetsci12020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
The impact of ZnO as a feed additive on growth-performance and intestinal function of Enterotoxigenic Escherichia coli (ETEC) K88-infected piglets remains unclear. Fecal scores of piglets in ETEC group were significantly increased compared to control group. ETEC K88 significantly damages the small intestine, including a reduction in villus height in the jejunum, duodenum, and ileum, and a decrease in total superoxide dismutase activity in the jejunum and catalase activity in the ileum and jejunum. Compared to control group, ETEC K88 infection significantly elevated the mRNA level of gene IL-1β and the level of ileal epithelial cell apoptosis. ZnO administration significantly alleviated these negative effects and improved the antioxidative capability of the ileum. Moreover, ZnO supplementation alleviated the imbalance of gut microbiota by restoring the reduced amount of Enterococcus and Lactobacillus in the jejunum, Clostridium in the ileum, and Lactobacillus in the cecum, as well as the increased amount of total eubacteria in the ileum and Enterococcus in the cecum induced by the ETEC K88 infection. In conclusion, ZnO administration can reduce the diarrhea of piglets infected with ETEC K88 by reducing the structural damage of the intestine, attenuating intestinal oxidative stress and epithelial cell apoptosis, and modulating the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yongqing Hou
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430024, China
| |
Collapse
|
3
|
Xiong X, Rao Y, Ma J, Wang Z, He Q, Gong J, Sheng W, Xu J, Zhu X, Tan Y, Yang Y. A catalog of microbial genes and metagenome-assembled genomes from the quail gut microbiome. Poult Sci 2023; 102:102931. [PMID: 37499616 PMCID: PMC10393819 DOI: 10.1016/j.psj.2023.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
The gut microbiome plays an important role in quail feed efficiency, immunity, production, and even behavior. Gut microbial gene catalogs and reference genomes are important for understanding the quail gut microbiome. However, quail gut microbes are lacked sequenced genomes and functional information to date. In this study, we report the first catalog of the microbial genes and metagenome-assembled genomes (MAGs) in fecal and cecum luminal content samples from 3 quail breeds using deep metagenomic sequencing. We identified a total of 2,419,425 nonredundant genes in the quail genome catalog, and a total of 473 MAGs were reconstructed through binning analysis. At 95% average nucleotide identity, the 473 MAGs were clustered into 283 species-level genome bins (SGBs), of which 225 SGBs belonged to species without any available genomes in the current database. Based on the quail gene catalog and MAGs, we identified 142 discriminative bacterial species and 244 discriminative MAGs between Chinese yellow quails and Japanese quails. The discriminative MAGs suggested a strain-level difference in the gut microbial composition. Additionally, a total of 25 Kyoto Encyclopedia of Genes and Genomes functional terms and 88 carbohydrate-active enzymes were distinctly enriched between Chinese yellow quails and Japanese quails. Most of the different species and MAGs were significantly interrelated with the shifts in the functional capacities of the quail gut microbiome. Taken together, we constructed a quail gut microbial gene catalog and enlarged the reference of quail gut microbial genomes. The results of this study provide a powerful and invaluable resource for quail gut microbiome-related research.
Collapse
Affiliation(s)
- Xinwei Xiong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China.
| | - Yousheng Rao
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Jinge Ma
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Zhangfeng Wang
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Qin He
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Jishang Gong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Wentao Sheng
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Jiguo Xu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Xuenong Zhu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Yuwen Tan
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Yanbei Yang
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| |
Collapse
|
4
|
Cheng YC, Kim SW. Use of Microorganisms as Nutritional and Functional Feedstuffs for Nursery Pigs and Broilers. Animals (Basel) 2022; 12:3141. [PMID: 36428369 PMCID: PMC9686830 DOI: 10.3390/ani12223141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The objectives of this review paper are to introduce the structures and composition of various microorganisms, to show some applications of single cells as alternative protein supplements or energy feeds in swine and poultry diets, and to discuss the functional effects of microorganisms as feed additives on the growth performance and intestinal health of nursery pigs and broilers. Microorganisms, including bacteria, yeasts, and microalgae, have been commonly supplemented in animal diets because they are cost-effective, stable, and have quantitative production that provides nutritional and functional benefits to pigs and broilers. Microorganisms could be alternative antibiotics to enhance intestinal health due to bioactive components from cell wall components, which interact with receptors on epithelial and immune cells. In addition, bioactive components could be digested by intestinal microbiota to produce short-chain fatty acids and enhance energy utilization. Otherwise, microorganisms such as single-cell protein (SCP) and single-cell oils (SCOs) are sustainable and economic choices to replace conventional protein supplements and energy feeds. Supplementing microorganisms as feedstuffs and feed additives improved the average daily gain by 1.83%, the daily feed intake by 0.24%, and the feed efficiency by 1.46% in pigs and broilers. Based on the properties of each microorganism, traditional protein supplements, energy feeds, and functional feed additives could be replaced by microorganisms, which have shown benefits to animal's growth and health. Therefore, specific microorganisms could be promising alternatives as nutritional and functional feedstuffs in animal diets.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Wu Y, Pang X, Wu Y, Liu X, Zhang X. Enterocins: Classification, Synthesis, Antibacterial Mechanisms and Food Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072258. [PMID: 35408657 PMCID: PMC9000605 DOI: 10.3390/molecules27072258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/15/2023]
Abstract
Enterococci, a type of lactic acid bacteria, are widely distributed in various environments and are part of the normal flora in the intestinal tract of humans and animals. Although enterococci have gradually evolved pathogenic strains causing nosocomial infections in recent years, the non-pathogenic strains have still been widely used as probiotics and feed additives. Enterococcus can produce enterocin, which are bacteriocins considered as ribosomal peptides that kill or inhibit the growth of other microorganisms. This paper reviews the classification, synthesis, antibacterial mechanisms and applications of enterocins, and discusses the prospects for future research.
Collapse
Affiliation(s)
- Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Xinxin Pang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Yansha Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Xinglin Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
- Correspondence: ; Tel.: +86-571-86984316
| |
Collapse
|
6
|
Melara EG, Avellaneda MC, Valdivié M, García-Hernández Y, Aroche R, Martínez Y. Probiotics: Symbiotic Relationship with the Animal Host. Animals (Basel) 2022; 12:719. [PMID: 35327116 PMCID: PMC8944810 DOI: 10.3390/ani12060719] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Antibiotic growth-promoters in animal feeding are known to generate bacterial resistance on commercial farms and have proven deleterious effects on human health. This review addresses the effects of probiotics and their symbiotic relationship with the animal host as a viable alternative for producing healthy meat, eggs, and milk at present and in the future. Probiotics can tolerate the conditions of the gastrointestinal tract, such as the gastric acid, pH and bile salts, to exert beneficial effects on the host. They (probiotics) may also have a beneficial effect on productivity, health and wellbeing in different parameters of animal performance. Probiotics stimulate the native microbiota (microbes that are present in their place of origin) and production of short-chain fatty acids, with proven effects such as antimicrobial, hypocholesterolemic and immunomodulatory effects, resulting in better intestinal health, nutrient absorption capacity and productive responses in ruminant and non-ruminant animals. These beneficial effects of probiotics are specific to each microbial strain; therefore, the isolation and identification of beneficial microorganisms, as well as in vitro and in vivo testing in different categories of farm animals, will guarantee their efficacy, replicability and sustainability in the current production systems.
Collapse
Affiliation(s)
- Elvia Guadalupe Melara
- Master Program in Sustainable Tropical Agriculture, Graduate Department, Zamorano University, P.O. Box 93, Valle de Yeguare, San Antonio de Oriente 11101, Honduras;
| | - Mavir Carolina Avellaneda
- Plant Pathology, Diagnosis and Molecular Research Lab, Agricultural Sciences and Production Department, Zamorano University, P.O. Box 93, San Antonio de Oriente 11101, Honduras;
| | - Manuel Valdivié
- National Center for Laboratory Animal Production, P.O. Box 6240, Santiago de las Vegas, Rancho Boyeros, Havana 10900, Cuba;
| | - Yaneisy García-Hernández
- Departamento de Animales Monogástricos, Instituto de Ciencia Animal, Carretera Central km 47 ½, San José de las Lajas 32700, Cuba;
| | - Roisbel Aroche
- Department of Animal Husbandry, Faculty of Agricultural Sciences, University of Granma, Bayamo 85100, Cuba;
| | - Yordan Martínez
- Poultry Research and Teaching Center, Agricultural Science and Production Department, Zamorano University, P.O. Box 93, Valle de Yeguare, San Antonio de Oriente 11101, Honduras
| |
Collapse
|
7
|
Shridhar PB, Amachawadi RG, Tokach M, Patel I, Gangiredla J, Mammel M, Nagaraja TG. Whole genome sequence analyses-based assessment of virulence potential and antimicrobial susceptibilities and resistance of Enterococcus faecium strains isolated from commercial swine and cattle probiotic products. J Anim Sci 2022; 100:6527694. [PMID: 35150575 PMCID: PMC8908542 DOI: 10.1093/jas/skac030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Enterococcus faecium is one of the more commonly used bacterial species as a probiotic in animals. The organism, a common inhabitant of the gut of animals and humans, is a major nosocomial pathogen responsible for a variety infections in humans and sporadic infections in animals. In swine and cattle, E. faecium-based probiotic products are used for growth promotion and gut functional and health benefits. The objective of this study was to utilize whole genome sequence-based analysis to assess virulence potential, detect antimicrobial resistance genes, and analyze phylogenetic relationships of E. faecium strains from commercial swine and cattle probiotics. Genomic DNA extracted from E. faecium strains, isolated from commercial probiotic products of swine (n = 9) and cattle (n = 13), were sequenced in an Illumina MiSeq platform and analyzed. Seven of the nine swine strains and seven of the 13 cattle strains were identified as Enterococcus lactis, and not as E. faecium. None of the 22 probiotic strains carried major virulence genes required to initiate infections, but many carried genes involved in adhesion to host cells, which may benefit the probiotic strains to colonize and persist in the gut. Strains also carried genes encoding resistance to a few medically important antibiotics, which included aminoglycosides [aac(6')-Ii, aph(3')-III, ant(6)-Ia], macrolide, lincosamide and streptogramin B (msrC), tetracyclines [tet(L) and tet(M)], and phenicols [cat-(pc194)]. The comparison of the genotypic to phentypic AMR data showed presence of both related and unrelated genes in the probiotic strains. Swine and cattle probiotic E. faecium strains belonged to diverse sequence types. Phylogenetic analysis of the probiotic strains, and strains of human (n = 29), swine (n = 4), and cattle (n = 4) origin, downloaded from GenBank, indicated close clustering of strains belonging to the same species and source, but a few swine and cattle probiotic strains clustered closely with other cattle and human fecal strains. In conclusion, the absence of major virulence genes characteristic of the clinical E. faecium strains suggests that these probiotic strains are unlikely to initiate opportunistic infection. However, the carriage of AMR genes to medically important antibiotics and close clustering of the probiotic strains with other human and cattle fecal strains suggests that probiotic strains may pose risk to serve as a source of transmitting AMR genes to other gut bacteria.
Collapse
Affiliation(s)
- Pragathi B Shridhar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506-5800, USA
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, Kansas State University, Manhattan, KS 66506-5800, USA,Corresponding author:
| | - Mike Tokach
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-5800, USA
| | - Isha Patel
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD 20708, USA
| | - Jayanthi Gangiredla
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD 20708, USA
| | - Mark Mammel
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD 20708, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506-5800, USA
| |
Collapse
|
8
|
Probiotic potential and safety assessment of bacteriocinogenic Enterococcus faecium strains with antibacterial activity against Listeria and vancomycin-resistant enterococci. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100070. [PMID: 34841360 PMCID: PMC8610289 DOI: 10.1016/j.crmicr.2021.100070] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/17/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023] Open
Abstract
Bacteriocinogenic Enterococcus faecium strains were evaluated for their beneficial and safety properties. Safety of the strains were evaluated based on phenotypic and bio-molecular approaches. The beneficial properties of the strains were demonstrated. High survivability under simulated GIT conditions and inhibition of Listeria spp. were demonstrated. The strains were found to carry genes coding for GABA production.
Enterococcus spp., known for their wide ecological distribution, have been associated with various fermented food products of plant and animal origin. The strains used in this study, bacteriocinogenic Enterococcus faecium previously isolated from artisanal soybean paste, have shown strong activity against Listeria spp. and vancomycin-resistant enterococci. Although their antimicrobial activity is considered beneficial, the potential application of enterococci is still under debate due to concerns about their safety for human and other animal consumption. Therefore, this study not only focuses on the screening of potential virulence factors, but also the auxiliary beneficial properties of the strains Ent. faecium ST651ea, ST7119ea, and ST7319ea. Phenotypic screening for gelatinase, hemolysin, and biogenic amine production showed that the strains were all safe. Furthermore, the antibiogram profiling showed that all the strains were susceptible to the panel of antibiotics used in the assessment except for erythromycin. Yet, Ent. faecium ST7319ea was found to carry some of the virulence genes used in the molecular screening for safety including hyl, esp, and IS16. The probiotic potential and other beneficial properties of the strains were also studied, demonstrating high aggregation and co-aggregation levels compared to previously characterized strains, in addition to high survivability under simulated gastrointestinal conditions, and production of numerous desirable enzymes as evaluated by APIZym, indicating diverse possible biotechnological applications of these strains. Additionally, the strains were found to carry genes coding for γ-aminobutyric acid (GABA) production, an auxiliary characteristic for their probiotic potential. Although these tests showed relatively favorable characteristics, it should be considered that these assays were carried out in vitro and should therefore also be assessed under in vivo conditions.
Collapse
|
9
|
Du Y, Luo S, Zhou X. Enterococcus faecium Regulates Honey Bee Developmental Genes. Int J Mol Sci 2021; 22:ijms222212105. [PMID: 34829986 PMCID: PMC8621553 DOI: 10.3390/ijms222212105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
Honey bees provide essential pollination services to the terrestrial ecosystem and produce important agricultural products. As a beneficial lactic acid bacterium, Enterococcus faecium is often supplied as a probiotic for honey bees and other animals. However, the underlying mechanisms of its actions and possible safety risks are not well understood. We present the first complete genome sequence of E. faecium isolated from the honey bee gut using nanopore sequencing, and investigate the effects and mechanisms of interactions between E. faecium and honey bees via transcriptome and miRNA analysis. E. faecium colonization increased honey bee gut weight. Transcriptome analysis showed that developmental genes were up-regulated. In accordance, the target genes of the down-regulated miRNAs were enriched in developmental pathways. We describe how E. faecium increases honey bee gut weight at the transcriptional and post-transcriptional levels, and add insights about how miRNAs mediate host and bacteria interactions.
Collapse
Affiliation(s)
- Yating Du
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Correspondence: (S.L.); (X.Z.)
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Correspondence: (S.L.); (X.Z.)
| |
Collapse
|
10
|
Abstract
Microbes in the 21st century are understood as symbionts ‘completing’ the human ‘superorganism’ (Homo sapiens plus microbial partners-in-health). This paper addresses a significant paradox: despite the vast majority of our genes being microbial, the lack of routine safety testing for the microbiome has led to unintended collateral side effects from pharmaceuticals that can damage the microbiome and inhibit innate ‘colonization resistance’ against pathobionts. Examples are discussed in which a Microbiome First Medicine approach provides opportunities to ‘manage our microbes’ holistically, repair dysbiotic superorganisms, and restore health and resilience in the gut and throughout the body: namely, managing nosocomial infections for Clostridioides difficile and Staphylococcus aureus and managing the gut and neural systems (gut–brain axis) in autism spectrum disorder. We then introduce a risk analysis tool: the evidence map. This ‘mapping’ tool was recently applied by us to evaluate evidence for benefits, risks, and uncertainties pertaining to the breastmilk ecosystem. Here, we discuss the potential role of the evidence map as a risk analysis methodology to guide scientific and societal efforts to: (1) enhance ecosystem resilience, (2) ‘manage our microbes’, and (3) minimize the adverse effects of both acute and chronic diseases.
Collapse
|
11
|
Different Responses of Microbiota across Intestinal Tract to Enterococcus faecium HDRsEf1 and Their Correlation with Inflammation in Weaned Piglets. Microorganisms 2021; 9:microorganisms9081767. [PMID: 34442847 PMCID: PMC8402050 DOI: 10.3390/microorganisms9081767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Enterococcus faecium HDRsEf1 (HDRsEf1) was identified to reduce the incidence of diarrhea in weaned piglets, but the mechanism has not been elucidated yet. Based on the fact that gut microbiota plays a crucial role in regulating inflammatory responses, the effects of HDRsEf1 on microbiota across the intestinal tract in weaned piglets were investigated. Microbiota from the luminal contents and the mucosa of the ileum, cecum, and colon of HDRsEf1-treated piglets were explored by 16S rRNA sequencing and qPCR. It was demonstrated that microbiota in different gut niches responded specifically to HDRsEf1, with major alterations occurring in the ileum and cecum. The total bacterial load of microbiota in ileal luminal contents and the relative abundance of Escherichia-Shigella in the ileal mucosa was significantly down-regulated by HDRsEf1 administration, while the relative abundance of butyrate-producing bacteria (including Clostridiaceae-1, Rumencoccidae, and Erysipelotrichaceae) in cecal luminal contents was significantly up-regulated. Moreover, the utilization of HDRsEf1 improved intestinal morphological development and reduced the inflammatory response, which were negatively correlated with the relative abundance of Escherichia-Shigella in the ileal mucosa and butyrate-producing bacteria in cecal luminal contents, respectively. Collectively, this study suggests that the administration of HDRsEf1 alters gut microbiota, thereby alleviating inflammation and improving intestinal morphological development in weaned piglets.
Collapse
|
12
|
Arsène MMJ, Davares AKL, Andreevna SL, Vladimirovich EA, Carime BZ, Marouf R, Khelifi I. The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics. Vet World 2021; 14:319-328. [PMID: 33776297 PMCID: PMC7994123 DOI: 10.14202/vetworld.2021.319-328] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Although the production of safe food for human consumption is the primary purpose for animal rearing, the environment and well-being of the animals must also be taken into consideration. Based on microbiological point of view, the production of healthy food from animals involves considering foodborne pathogens, on the one hand and on the other hand, the methods used to fight against germs during breeding. The conventional method to control or prevent bacterial infections in farming is the use antibiotics. However, the banning of these compounds as growth promoters caused many changes in animal breeding and their use has since been limited to the treatment and prevention of bacterial infections. In this function, their importance no longer needs to be demonstrated, but unfortunately, their excessive and abusive use have led to a double problem which can have harmful consequences on consumer health: Resistance to antibiotics and the presence of antibiotic residues in food. The use of probiotics appears to be a suitable alternative to overcome these problems because of their ability to modulate the immune system and intestinal microflora, and further considering their antagonistic role against certain pathogenic bacteria and their ability to play the role of growth factor (sometimes associated with prebiotics) when used as feed additives. This review aims to highlight some of the negative effects of the use of antibiotics in animal rearing as well as emphasize the current knowledge on the use of probiotics as a feed additive, their influence on animal production and their potential utility as an alternative to conventional antibiotics, particularly in poultry, pig, and fish farming.
Collapse
Affiliation(s)
- Mbarga M. J. Arsène
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Anyutoulou K. L. Davares
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Smolyakova L. Andreevna
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
| | | | - Bassa Z. Carime
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Razan Marouf
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
| | - Ibrahim Khelifi
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
| |
Collapse
|
13
|
Hoque MM, Adekanmbi F, Barua S, Rahman KS, Aida V, Anderson B, Poudel A, Kalalah A, Bolds S, Madere S, Kitchens S, Price S, Brown V, Lockaby BG, Kyriakis CS, Kaltenboeck B, Wang C. Peptide ELISA and FRET-qPCR Identified a Significantly Higher Prevalence of Chlamydia suis in Domestic Pigs Than in Feral Swine from the State of Alabama, USA. Pathogens 2020; 10:pathogens10010011. [PMID: 33375583 PMCID: PMC7823902 DOI: 10.3390/pathogens10010011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022] Open
Abstract
Chlamydia suis is an important, highly prevalent, and diverse obligate intracellular pathogen infecting pigs. In order to investigate the prevalence and diversity of C. suis in the U.S., 276 whole blood samples from feral swine were collected as well as 109 fecal swabs and 60 whole blood samples from domestic pigs. C. suis-specific peptide ELISA identified anti-C. suis antibodies in 13.0% of the blood of feral swine (26/276) and 80.0% of the domestic pigs (48/60). FRET-qPCR and DNA sequencing found C. suis DNA in 99.1% of the fecal swabs (108/109) and 21.7% of the whole blood (13/60) of the domestic pigs, but not in any of the assayed blood samples (0/267) in feral swine. Phylogenetic comparison of partial C. suis ompA gene sequences and C. suis-specific multilocus sequencing typing (MLST) revealed significant genetic diversity of the C. suis identified in this study. Highly genetically diverse C. suis strains are prevalent in domestic pigs in the USA. As crowding strongly enhances the frequency and intensity of highly prevalent Chlamydia infections in animals, less population density in feral swine than in domestic pigs may explain the significantly lower C. suis prevalence in feral swine. A future study is warranted to obtain C. suis DNA from feral swine to perform genetic diversity of C. suis between commercial and feral pigs.
Collapse
Affiliation(s)
- Md Monirul Hoque
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Folasade Adekanmbi
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Subarna Barua
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Kh. Shamsur Rahman
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Virginia Aida
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Brian Anderson
- Swine Research and Education Center, Auburn University, Auburn, AL 36830, USA;
| | - Anil Poudel
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Anwar Kalalah
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Sara Bolds
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA; (S.B.); (S.M.); (B.G.L.)
| | - Steven Madere
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA; (S.B.); (S.M.); (B.G.L.)
| | - Steven Kitchens
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Stuart Price
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Vienna Brown
- National Feral Swine Damage Management Program, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO 80521, USA;
| | - B. Graeme Lockaby
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA; (S.B.); (S.M.); (B.G.L.)
| | - Constantinos S. Kyriakis
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Bernhard Kaltenboeck
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Chengming Wang
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
- Correspondence:
| |
Collapse
|
14
|
Hassel DM, Curley T, Hoaglund EL. Evaluation of Fecal Sand Clearance in Horses With Naturally Acquired Colonic Sand Accumulation With a Product Containing Probiotics, Prebiotics, and Psyllium. J Equine Vet Sci 2020; 90:102970. [PMID: 32534763 DOI: 10.1016/j.jevs.2020.102970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/24/2022]
Abstract
Consumption of sand and dirt in horses can cause chronic diarrhea and colic because of irritation and obstruction of the gastrointestinal tract of horses. Prevention has primarily focused on changes in management to reduce the intake of sand and feeding of psyllium products. The purpose of this study was to evaluate the efficacy of a product containing probiotics, prebiotics, and psyllium in the clearance of colonic sand in horses with naturally acquired sand accumulation using a randomized, placebo-controlled, blinded clinical trial format. After identification of 10 horses with sand accumulation as determined by both auscultation and abdominal radiography, quantitative assessment of changes in colonic sand content in response to management changes combined with treatment with the probiotic/psyllium product or no treatment was assessed by blinded observers. Fecal sand output was monitored in both groups via sand sedimentation analysis of fecal samples every 3 days for 35 days and with pre- and post-treatment abdominal radiography. There was a significant reduction in sand accumulation in both treatment and control groups, but there were no significant differences between treatment and control groups in clearance of colonic sand as measured by both fecal sand sedimentation and quantitative radiography.
Collapse
Affiliation(s)
- Diana M Hassel
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO.
| | - Taylor Curley
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO
| | - Elizabeth L Hoaglund
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO
| |
Collapse
|
15
|
Wang K, Ran L, Yan T, Niu Z, Kan Z, Zhang Y, Yang Y, Xie L, Huang S, Yu Q, Wu D, Song Z. Anti-TGEV Miller Strain Infection Effect of Lactobacillus plantarum Supernatant Based on the JAK-STAT1 Signaling Pathway. Front Microbiol 2019; 10:2540. [PMID: 31781061 PMCID: PMC6851170 DOI: 10.3389/fmicb.2019.02540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Transmissible gastroenteritis (TGE), caused by transmissible gastroenteritis virus (TGEV), is one many gastrointestinal inflections in piglets, characterized by diarrhea, and high mortality. Probiotics are ubiquitous bacteria in animal intestines, which have many functions, such as promoting intestinal peristalsis and maintaining the intestinal balance. We found that the supernatant of the Lp-1 strain of Lactobacillus plantarum, isolated in our laboratory, and named Lp-1s had marked anti-TGEV effect on IPEC-J2 cells. Lp-1s could induce large amounts of interferon-β in IPEC-J2 cells in the early stage (6 h) of infection with TGEV, and increased the level of phosphorylated signal transducer and activator of transcription and its nuclear translocation in the late stage (24–48 h) of infection. This resulted in upregulated expression of interferon-stimulated genes, and increased the transcription and protein expression of antiviral proteins, resulting in an anti-TGEV effect.
Collapse
Affiliation(s)
- Kai Wang
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Ling Ran
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Tao Yan
- Department of Preventive Veterinary Medicine, Medical College of Animals, Xinjiang Agricultural University, Ürümqi, China
| | - Zheng Niu
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Zifei Kan
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Yiling Zhang
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Yang Yang
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Luyi Xie
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Shilei Huang
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Qiuhan Yu
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Di Wu
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Zhenhui Song
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Evaluation of safety and probiotic properties of a strain of Enterococcus faecium isolated from chicken bile. Journal of Food Science and Technology 2019; 57:578-587. [PMID: 32116367 DOI: 10.1007/s13197-019-04089-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
Abstract
Probiotics are important bacteria due to their benefit on human health. In this study, four strains of lactic acid bacteria from chicken bile were isolated and the strain with the best antimicrobial activity was selected for further identification and evaluation on its probiotic traits and safety. The strain was identified as Enterococcus faecium by biochemical characterization and 16S rDNA gene sequencing. The strain, named E. faecium MK-SQ-1, was tolerant to acid (pH 3.0), bile salts (up to 0.3%) or trypsin (up to 0.4%) for 3 h and it was able to survive from high temperature (up to 60 °C) for 15 min. This strain inhibited the growth of Salmonella enteritidis and Staphylococcus aureus intermediately. The genes responsible for virulence including asa1, cylA, efaA, esp, gelE and hyl were absent and the mice administrated orally with a very high dose (2 × 109 CFU) of the strain daily for 35 days were not found abnormal. The strain enhanced the serum IgG level and phagocytic index of mice significantly by daily oral administration at a high dose (2 × 108 CFU) for 21 days (p < 0.05). The strain did not have multi-antibiotic resistance and vancomycin resistance. Comprehensive evaluation showed E. faecium MK-SQ-1 could be a candidate as a probiotic strain used in human or animals.
Collapse
|
17
|
Effect of Multi-Microbial Probiotic Formulation Bokashi on Pro- and Anti-Inflammatory Cytokines Profile in the Serum, Colostrum and Milk of Sows, and in a Culture of Polymorphonuclear Cells Isolated from Colostrum. Probiotics Antimicrob Proteins 2019; 11:220-232. [PMID: 29305686 PMCID: PMC6449489 DOI: 10.1007/s12602-017-9380-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The use of probiotics in sows during pregnancy and lactation and their impact on the quality of colostrum and milk, as well as the health conditions of their offspring during the rearing period, are currently gaining the attention of researchers. The aim of the study was to determine the effect of Bokashi formulation on the concentrations of pro- and anti-inflammatory cytokines in the serum of sows during pregnancy, in their colostrum and milk, and in a culture of Con-A-stimulated polymorphonuclear cells (PMNs) isolated from the colostrum. The study was conducted on 60 sows aged 2–4 years. EM Bokashi were added to the sows’ feed. The material for the study consisted of peripheral blood, colostrum, and milk. Blood samples were collected from the sows on days 60 and 114 of gestation. Colostrum and milk samples were collected from all sows at 0, 24, 48, 72, 96, 120, 144, and 168 h after parturition. The results indicate that the use of Bokashi as feed additives resulted in increased concentrations of pro-inflammatory cytokines TNF-α and IL-6, which increase the protective capacity of the colostrum by stimulating cellular immune mechanisms protecting the sow and neonates against infection. At the same time, the increased concentrations of cytokines IL-4, IL-10, TGF-β, and of immunoglobulins in the colostrum and milk from sows in the experimental group demonstrate the immunoregulatory effect of Bokashi on Th2 cells and may lead to increased expression of regulatory T cells and polarization of the immune response from Th1 to Th2.
Collapse
|
18
|
Peng X, Wang R, Hu L, Zhou Q, Liu Y, Yang M, Fang Z, Lin Y, Xu S, Feng B, Li J, Jiang X, Zhuo Y, Li H, Wu D, Che L. Enterococcus faecium NCIMB 10415 administration improves the intestinal health and immunity in neonatal piglets infected by enterotoxigenic Escherichia coli K88. J Anim Sci Biotechnol 2019; 10:72. [PMID: 31452881 PMCID: PMC6702752 DOI: 10.1186/s40104-019-0376-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background This study aimed to investigate the effects of oral administration of Enterococcus faecium NCIMB 10415 (E. faecium) on intestinal development, immunological parameters and gut microbiota of neonatal piglets challenged with enterotoxigenic Escherichia coli K88 (ETEC). A total of 96 1-day-old sow-reared piglets were randomly assigned to 2 groups, with 48 piglets in each group. The piglets were from 16 litters (6 piglets each litter), and 3 piglets each litter were allocated to the E. faecium-supplemented (PRO) group, while the other 3 piglets were allocated to the control (CON) group. After colostrum intake, piglets in the PRO group were orally administrated with 3 × 109 CFU E. faecium per day for a period of one week. On day 8, one piglet per litter from each group was challenged (CON+ETEC, PRO+ETEC) or not (CON-ETEC, PRO-ETEC) with ETEC in a 2 × 2 factorial arrangement of treatments. On day 10 (2 days after challenge), blood and tissue samples were obtained from piglets. Results Before ETEC challenge, there were no significant differences for the average daily gain (ADG) and fecal score between the two groups of piglets. After ETEC challenge, the challenged piglets had greater fecal score compared to the non-challenged piglets, whereas E. faecium administration was able to decrease the fecal score. Piglets challenged with ETEC had shorter villous height, deeper crypt depth, and reduced number of goblet cells in the jejunum and decreased mRNA abundance of claudin-1 in the ileum, whereas increased the percentage of lymphocytes, concentrations of IL-1β in the plasma and TNF-α in the ileal mucosa, as well as increased the mRNA abundances of innate immunity-related genes in the ileum tissue. These deleterious effects caused by ETEC were partly alleviated by feeding E. faecium. In addition, piglets in PRO-ETEC group had decreased the percentage of CD8+ T cells of the peripheral blood when compared to those in CON-ETEC group. Moreover, E. faecium administration increased Verrucomicrobia at phylum level and decreased Bilophila at genus level. Conclusions These results suggest that oral administration of E. faecium alleviated the intestinal injury and diarrhea severity of neonatal piglets challenged by ETEC, partly through improving the intestinal microbiota and immune response. This offers a potential strategy of dietary intervention against intestinal impairment by ETEC in neonatal piglets. Electronic supplementary material The online version of this article (10.1186/s40104-019-0376-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xie Peng
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Ru Wang
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Liang Hu
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Qiang Zhou
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Yang Liu
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Min Yang
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China.,Animal Husbandry and Veterinary Department, Chengdu Agricultural College, Chengdu, Sichuan 611130 People's Republic of China
| | - Zhengfeng Fang
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Yan Lin
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Shengyu Xu
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Bin Feng
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Jian Li
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Xuemei Jiang
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Yong Zhuo
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Hua Li
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - De Wu
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Lianqiang Che
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| |
Collapse
|
19
|
Sun WW, Zhang NZ, Kang YH, Zhang L, Shan XF. First Report of Chlamydia Seroprevalence in Slaughter Pigs in Shandong Province, Eastern China. Vector Borne Zoonotic Dis 2019; 20:51-53. [PMID: 31368858 DOI: 10.1089/vbz.2019.2472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chlamydia, a kind of obligate intracellular Gram-negative bacteria, can infect humans and animals worldwide, including pigs. However, the information on Chlamydia infection is unavailable in pigs in Shandong province, eastern China. To assess the seroprevalence and risk factors of Chlamydia infection in pigs in Shandong province, eastern China, a total of 2108 serum samples of slaughter pigs were collected between January 2017 and December 2018, and specific antibodies against Chlamydia were detected by the indirect hemagglutination assay. The overall Chlamydia seroprevalence was 24.15% (509/2108, 95% confidence interval: 22.32-25.97). Species, sampling regions, and rearing systems of pigs were considered as risk factors for Chlamydia infection through statistical analysis by SAS analysis (p < 0.05). These results indicated that Chlamydia is highly prevalent in slaughter pigs in Shandong province, eastern China, and may pose a potential risk for human health. To our knowledge, this is the first investigation of Chlamydia seroprevalence in slaughter pigs in Shandong province, eastern China. Moreover, this is the first report to compare the Chlamydia seroprevalence between domestic pigs and farmed wild boars in a same study, which may provide important data for preventing and controlling Chlamydia infection in pigs in China.
Collapse
Affiliation(s)
- Wu-Wen Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People's Republic of China
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Yuan-Huan Kang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People's Republic of China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People's Republic of China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People's Republic of China
| |
Collapse
|
20
|
Wu Y, Zhen W, Geng Y, Wang Z, Guo Y. Pretreatment with probiotic Enterococcus faecium NCIMB 11181 ameliorates necrotic enteritis-induced intestinal barrier injury in broiler chickens. Sci Rep 2019; 9:10256. [PMID: 31311959 PMCID: PMC6635415 DOI: 10.1038/s41598-019-46578-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/28/2019] [Indexed: 02/08/2023] Open
Abstract
The dysfunction of tight-junction integrity caused by necrotic enteritis (NE) is associated with decreased nutrient absorption and gut injury in broiler chickens. Although probiotic Enterococcus faecium (E. faecium) has been reported to possess immune-regulatory characteristics and can prevent diarrhea in pigs, very little information exists in relation to the specific regulatory impact of E. faecium NCIMB 11181 on NE-induced intestinal barrier injury of broiler chickens. This study was conducted to investigate the protective effects of probiotic E. faecium NCIMB 11181 on NE-induced intestinal barrier injury in broiler chickens. The study also aimed to elucidate the mechanisms that underpin these protective effects. One hundred and eighty Arbor Acres (AA) broiler chicks (one day old) were randomly assigned using a 2 × 2 factorial arrangement into two groups fed different levels of dietary E. faecium NCIMB 11181 (0 or 2 × 108 CFU/kg of diet) and two disease-challenge groups (control or NE challenged). The results showed that NE induced body weight loss, intestinal lesions, and histopathological inflammation, as well as intestinal-cell apoptosis. These symptoms were alleviated following the administration of probiotic E. faecium NCIMB 11181. Pretreatment with probiotic E. faecium NCIMB 11181 significantly upregulated the expression of the Claudin-1 gene encoding a tight-junction protein. Claudin-1 and HSP70 protein expression were also increased in the jejunum regardless of NE infection. Furthermore, NE-infected birds fed with E. faecium displayed notable increases in MyD88, NF-κB, iNOS, PI3K, GLP-2, IL-1β, IL-4, and HSP70 mRNA expression. E. faecium NCIMB 11181 administration also significantly improved the animals’ intestinal microbial composition regardless of NE treatment. These findings indicated that addition of E. faecium NCIMB 11181 to poultry feed is effective in mitigating NE-induced gut injury, possibly by strengthening intestinal mucosal barrier function, as well as modulating gut microflora and intestinal mucosal immune responses.
Collapse
Affiliation(s)
- Yuanyuan Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenrui Zhen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanqiang Geng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Sato Y, Kuroki Y, Oka K, Takahashi M, Rao S, Sukegawa S, Fujimura T. Effects of Dietary Supplementation With Enterococcus faecium and Clostridium butyricum, Either Alone or in Combination, on Growth and Fecal Microbiota Composition of Post-weaning Pigs at a Commercial Farm. Front Vet Sci 2019; 6:26. [PMID: 30873417 PMCID: PMC6404372 DOI: 10.3389/fvets.2019.00026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/22/2019] [Indexed: 02/03/2023] Open
Abstract
Lactic acid bacteria (LAB) and butyric acid bacteria (BAB) are commonly used as probiotics in swine production. However, their combined effect on post-weaning pigs has not been assessed. Therefore, here we investigated the individual and combined efficacy of dietary Enterococcus faecium and Clostridium butyricum on the growth and gut microbiota of post-weaning pigs at a commercial farm. Four independent trials were conducted, in each of which five pens containing 10 pigs were assigned to one of five treatments: C, basal diet; L, basal diet + live E. faecium; D, basal diet + heat-killed E. faecium; M, basal diet + C. butyricum; or L+M, basal diet + live E. faecium + C. butyricum. Each trial was conducted over a 90-day period that was divided into two phases (Phase 1, days 0–40 post-weaning; and Phase 2, days 40–90 post-weaning), with the probiotics being supplemented only during Phase 1. Ten pigs in each pen were used for body weight (BW) analysis and fecal samples were collected from five or six of these pigs. In addition, the fecal samples from one randomly selected trial were used for gut microbiota analysis. We found that pigs in the L, D, and L+M treatment groups had a significantly higher BW than those in C (p < 0.05) but pigs in the L+M treatment group had a similar BW to those in the L and M groups. Furthermore, there were no significant differences in alpha diversity among the treatments but the beta diversity (weighted UniFrac distances) showed distinct clustering patterns, with pigs in C having discrete microbiota from those in all of the probiotics treatment groups except D (C vs. L, q = 0.04; C vs. M, q = 0.06; C vs. L+M, q = 0.06). These findings indicate that dietary supplementation with live or heat-killed E. faecium enhances growth performance in pigs but there is no synergistic effect when E. faecium is used in combination with C. butyricum. Furthermore, the addition of live E. faecium and C. butyricum to the diet of pigs may change the structure of the gut microbiota.
Collapse
Affiliation(s)
| | - Yasutoshi Kuroki
- Tokyo R&D Center, Miyarisan Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Kentaro Oka
- Tokyo R&D Center, Miyarisan Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | | | | | | |
Collapse
|
22
|
Wu Y, Zhen W, Geng Y, Wang Z, Guo Y. Effects of dietary Enterococcus faecium NCIMB 11181 supplementation on growth performance and cellular and humoral immune responses in broiler chickens. Poult Sci 2019; 98:150-163. [PMID: 30137622 DOI: 10.3382/ps/pey368] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/18/2018] [Indexed: 12/26/2022] Open
Abstract
This study evaluated the effects of dietary Enterococcus faecium NCIMB 11181 on growth performance and immune response in broiler chickens. A total of 360 1-day-old Arbor Acres male birds were randomly assigned to 4 treatments that administered different dosages of E. faecium (0, 5 × 107, 1 × 108, and 2 × 108 CFU E. faecium/kg diet). The results revealed that average daily gain (ADG) changed quadratically, while feed conversion rate (FCR) increased linearly from day 22 to 35 and day 1 to 35 (P < 0.05). Supplementation of E. faecium at 5 × 107CFU/kg diet resulted in increased ADG (P < 0.05) compared with the other groups. Birds fed with 2 × 108 CFU/kg E. faecium exhibited increased peripheral blood lymphocyte proliferation in response to concanavalin A (Con A) (P < 0.05) at day 35 and enhanced skin responses following phytohemagglutinin (PHA) injection (P < 0.05) at 12 h. Serum lysozyme activity at day 21 increased linearly with dietary E. faecium concentration (P < 0.05), the highest activity was observed in the 1 × 108 and the 2 × 108 CFU E. faecium groups (P < 0.01). Serum levels of proinflammatory cytokines IL-1β, IL-2, IL-6, IFN-γ, and anti-inflammatory IL-4, IL-10 changed linearly or quadratically both at the initial and final phases (P < 0.05). In addition, BSA antibody titers were significantly increased following both primary and secondary inoculation when birds were fed with 1 × 108 or 2 × 108 CFU/kg E. faecium (P < 0.05). In comparison with other groups, birds received 5 × 107 CFU E. faecium exhibited the highest levels of serum IgG (P < 0.05) at day 35. Together, our results revealed that broiler diet supplemented with 5 × 107 CFU/kg E. faecium NCIMB 11181 was appropriate in relation to growth performance under normal conditions. Upon administration with higher dosages of E. faecium NCIMB 11181, obvious immune-stimulatory effects were observed following both cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Yuanyuan Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100093 Beijing, China
| | - Wenrui Zhen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100093 Beijing, China
| | - Yanqiang Geng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100093 Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100093 Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100093 Beijing, China
| |
Collapse
|
23
|
Zhai Q, Chen W. Functional Evaluation Model for Lactic Acid Bacteria. LACTIC ACID BACTERIA 2019:183-237. [DOI: 10.1007/978-981-13-7832-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Dopamine production in Enterococcus faecium: A microbial endocrinology-based mechanism for the selection of probiotics based on neurochemical-producing potential. PLoS One 2018; 13:e0207038. [PMID: 30485295 PMCID: PMC6261559 DOI: 10.1371/journal.pone.0207038] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022] Open
Abstract
The mechanisms by which probiotics may influence host physiology are still incompletely understood. Microbial endocrinology, a field representing the union of microbiology, endocrinology and neurobiology, has theorized that microorganisms have the capacity to serve as neurochemical delivery vehicles [1]. According to microbial endocrinology, neurochemicals can serve as a common language between host and bacterium, enabling bidirectional communication. We report herein the first demonstration that Enterococcus sp. has the capacity to produce dopamine in a gastrointestinal-like environment when supplied with the dopamine precursor L-3,4 dihydroxyphenylalanine (L-dopa). The results presented herein provide a means to select probiotics based on neurochemical-producing potential and suggest the possibility that probiotics containing E. faecium may serve to influence the host through dopaminergic pathways.
Collapse
|
25
|
Nie LB, Liang QL, Zou Y, Gao YH, Zhao Q, Hu GX, Zhu XQ. First Report of Chlamydia Seroprevalence in Farmed Wild Boars in China. Vector Borne Zoonotic Dis 2018; 18:504-508. [PMID: 29688824 DOI: 10.1089/vbz.2018.2272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chlamydia is Gram-negative obligate bacterium, which can cause human diseases worldwide and has huge economic impact on animals. It is yet to know whether farmed wild boars are infected with Chlamydia in China. To assess risk factors of Chlamydia infection in farmed wild boars in China, from April 2015 to February 2016, a total of 837 serum samples of farmed wild boars were collected in Jilin province, northeastern China, and antibodies against Chlamydia were examined by the indirect hemagglutination assay. The investigation showed that antibodies to Chlamydia were detected in 332 (39.67%, 95% CI 33.36-42.98) of 837 serum samples of farmed wild boars, seroprevalence ranged from 33.71% to 44.42% among different regions and the differences were statistically significant by SPSS analysis (p = 0.0248). These results indicated that Chlamydia is highly prevalent in farmed wild boars in Jilin province, northeastern China, and may pose a potential risk for human health. To our knowledge, this is the first report of Chlamydia seroprevalence in farmed wild boars in China, which provided baseline data for preventing and controlling Chlamydia infection in wild boars in China.
Collapse
Affiliation(s)
- Lan-Bi Nie
- 1 Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University , Changchun Jilin Province, The People's Republic of China .,2 State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, The People's Republic of China
| | - Qin-Li Liang
- 2 State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, The People's Republic of China
| | - Yang Zou
- 2 State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, The People's Republic of China
| | - Yun-Hang Gao
- 1 Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University , Changchun Jilin Province, The People's Republic of China
| | - Quan Zhao
- 1 Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University , Changchun Jilin Province, The People's Republic of China
| | - Gui-Xue Hu
- 1 Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University , Changchun Jilin Province, The People's Republic of China
| | - Xing-Quan Zhu
- 2 State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, The People's Republic of China .,3 Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine , Yangzhou, Jiangsu Province, The People's Republic of China
| |
Collapse
|
26
|
Li M, Jelocnik M, Yang F, Gong J, Kaltenboeck B, Polkinghorne A, Feng Z, Pannekoek Y, Borel N, Song C, Jiang P, Li J, Zhang J, Wang Y, Wang J, Zhou X, Wang C. Asymptomatic infections with highly polymorphic Chlamydia suis are ubiquitous in pigs. BMC Vet Res 2017; 13:370. [PMID: 29191191 PMCID: PMC5710075 DOI: 10.1186/s12917-017-1295-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
Background Chlamydia suis is an important, globally distributed, highly prevalent and diverse obligate intracellular pathogen infecting pigs. To investigate the prevalence and genetic diversity of C. suis in China, 2,137 nasal, conjunctival, and rectal swabs as well as whole blood and lung samples of pigs were collected in 19 regions from ten provinces of China in this study. Results We report an overall positivity of 62.4% (1,334/2,137) of C. suis following screening by Chlamydia spp. 23S rRNA-based FRET-PCR and high-resolution melting curve analysis and confirmatory sequencing. For C. suis-positive samples, 33.3 % of whole blood and 62.5% of rectal swabs were found to be positive for the C. suis tetR(C) gene, while 13.3% of whole blood and 87.0% of rectal swabs were positive for the C. suis tet(C) gene. Phylogenetic comparison of partial C. suis ompA gene sequences revealed significant genetic diversity in the C. suis strains. This genetic diversity was confirmed by C. suis-specific multilocus sequence typing (MLST), which identified 26 novel sequence types among 27 examined strains. Tanglegrams based on MLST and ompA sequences provided evidence of C. suis recombination amongst the strains analyzed. Conclusions Genetically highly diverse C. suis strains are exceedingly prevalent in pigs. As it stands, the potential pathogenic effect of C. suis on pig health and production of C. suis remains unclear and will be the subject of further investigations. Further study is also required to address the transmission of C. suis between pigs and the risk of 'spill-over' and 'spill-back' of infections to wild animals and humans. Electronic supplementary material The online version of this article (10.1186/s12917-017-1295-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Li
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, People's Republic of China
| | - Martina Jelocnik
- Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, QLD, Maroochydore, Australia
| | - Feng Yang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, People's Republic of China
| | - Jianseng Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, China
| | | | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, QLD, Maroochydore, Australia
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Nanjing, China
| | - Yvonne Pannekoek
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole Borel
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Chunlian Song
- Yunnan Agricultural University College of Animal Science & Technology, Kunming, Yunnan, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Li
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, People's Republic of China
| | - Jilei Zhang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, People's Republic of China
| | - Yaoyao Wang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, People's Republic of China
| | - Jiawei Wang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, People's Republic of China
| | - Xin Zhou
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, People's Republic of China
| | - Chengming Wang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, People's Republic of China. .,College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
27
|
Hossain MI, Sadekuzzaman M, Ha SD. Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review. Food Res Int 2017; 100:63-73. [DOI: 10.1016/j.foodres.2017.07.077] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
|
28
|
Oladipo IC, Lateef A, Elegbede JA, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Gueguim-Kana EB, Beukes LS, Oluyide TO, Atanda OR. Enterococcus species for the one-pot biofabrication of gold nanoparticles: Characterization and nanobiotechnological applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:250-257. [PMID: 28601037 DOI: 10.1016/j.jphotobiol.2017.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 11/28/2022]
Abstract
In the current work, cell-free extracts of four strains of non-pathogenic Enterococcus species of food origin, were studied for the green synthesis of gold nanoparticles (AuNPs), and characterized by UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The AuNPs were evaluated for their Anopheles gambiae larvicidal, dye degradation, antioxidant and thrombolytic activities. The blue-black colloidal AuNPs which absorbed maximally at 549-552nm were nearly spherical in shape, and crystalline in nature with size of 8-50nm. The EDX spectra showed formation of AuNPs to the tune of 89-94%. The prominent FTIR peaks obtained at 3251-3410, 2088 and 1641-1643cm-1 alluded to the fact that proteins were involved in the biofabrication and capping of AuNPs. AuNPs degraded methylene blue and malachite green by 24.3-57.6%, and 88.85-97.36% respectively in 24h, whereas at 12h, larvicidal activities with LC50 of 21.28-42.33μg/ml were obtained. DPPH scavenging activities of 33.24-51.47% were obtained for the biosynthesized AuNPs. The AuNPs prevented coagulation of blood and also achieved 9.4-94.6% lysis of blood clot showing potential nanomedical applications. This study has presented an eco-friendly and economical synthesis of AuNPs by non-pathogenic strains of Enterococcus species for various nanobiotechnological applications.
Collapse
Affiliation(s)
- Iyabo Christianah Oladipo
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Science Laboratory Technology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Agbaje Lateef
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Laboratory of Industrial Microbiology and Nanobiotechnology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria.
| | - Joseph Adetunji Elegbede
- Laboratory of Industrial Microbiology and Nanobiotechnology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Musibau Adewuyi Azeez
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Tesleem Babatunde Asafa
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Mechanical Engineering, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Taofeek Akangbe Yekeen
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Akeem Akinboro
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Evariste Bosco Gueguim-Kana
- Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, PieterMaritzburg 3209, South Africa
| | - Lorika Selomi Beukes
- Microscopy and Microanalysis Unit, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, PieterMaritzburg 3209, South Africa
| | - Tolulope Oluyomi Oluyide
- Department of Science Laboratory Technology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Oluwatoyin Rebecca Atanda
- Department of Science Laboratory Technology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| |
Collapse
|
29
|
Phenotypic and Genotypic Characterization of Bacteriocinogenic Enterococci Against Clostridium botulinum. Probiotics Antimicrob Proteins 2016; 9:182-188. [DOI: 10.1007/s12602-016-9240-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Chen H, Velayudhan D, Li A, Feng Z, Liu D, Yin Y, Nyachoti C. Growth performance, gastrointestinal microbial activity, and immunological response of piglets receiving microencapsulatedEnterococcus faecalisCG1.0007 and enzyme complex after an oral challenge withEscherichia coli(K88). CANADIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1139/cjas-2015-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine effects of dietary microencapsulated Enterococcus faecalis CG1.0007 probiotic and multienzyme complex (MC) in Enterotoxigenic Escherichia coli K88 (ETEC) challenged piglets. Thirty-six, 21-d-old weanling pigs were randomly allotted to four dietary treatments: a wheat–barley based negative control (NC), NC + MC, NC + probiotic, and NC + MC + probiotic. After 7-d acclimatization to treatments, pigs were weighed, blood was sampled, and then the pigs were orally challenged with an ETEC inoculum. After the challenge, blood was sampled at different time points; performance measures and fecal consistency scores were recorded; and on day 14, all pigs were killed to obtain intestinal tissue samples. During prechallenge, pigs receiving enzyme, probiotic, and a combination of both showed a significant improvement in daily gain (P = 0.03) and feed efficiency (P = 0.04) compared with control. During the postchallenge period, a greater (P = 0.05) ileal villus height was observed for diets supplemented with probiotic alone. Overall, pigs fed diets with probiotic alone also showed less incidence of diarrhea (P = 0.04) compared with control. In summary, the results indicate that dietary supplementation with microencapsulated Enterococcus faecalis CG1.0007 in weaned piglets challenged with ETEC was effective in controlling diarrhea.
Collapse
Affiliation(s)
- H.S. Chen
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Science, 368 Xuefu Road, Harbin, China
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - D.E. Velayudhan
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - A. Li
- Academy of State Administration of Grain, Beijing, China
| | - Z. Feng
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Science, 368 Xuefu Road, Harbin, China
| | - D. Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Science, 368 Xuefu Road, Harbin, China
| | - Y.L. Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - C.M. Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
31
|
Dowarah R, Verma AK, Agarwal N. The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: A review. ACTA ACUST UNITED AC 2016; 3:1-6. [PMID: 29767055 PMCID: PMC5941084 DOI: 10.1016/j.aninu.2016.11.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/28/2016] [Accepted: 11/05/2016] [Indexed: 11/28/2022]
Abstract
Antibiotics, often supplemented in feed, used as a growth promoter, may cause their residual effect in animal produce and also trigger antibiotic resistance in bacteria, which is of serious concern among swine farming entrepreneurs. As an alternative, supplementing probiotics gained interest in recent years. Lactobacillus being the most commonly used probiotic agent improves growth performance, feed conversion efficiency, nutrient utilization, intestinal microbiota, gut health and regulates immune system in pigs. The characteristics of Lactobacillus spp. and their probiotic effects in swine production are reviewed here under.
Collapse
Affiliation(s)
- Runjun Dowarah
- CAFT in Animal Nutrition, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - A K Verma
- CAFT in Animal Nutrition, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Neeta Agarwal
- CAFT in Animal Nutrition, Indian Veterinary Research Institute, Izatnagar 243122, India
| |
Collapse
|
32
|
Brown MA, Potroz MG, Teh SW, Cho NJ. Natural Products for the Treatment of Chlamydiaceae Infections. Microorganisms 2016; 4:E39. [PMID: 27754466 PMCID: PMC5192522 DOI: 10.3390/microorganisms4040039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/27/2022] Open
Abstract
Due to the global prevalence of Chlamydiae, exploring studies of diverse antichlamydial compounds is important in the development of effective treatment strategies and global infectious disease management. Chlamydiaceae is the most widely known bacterial family of the Chlamydiae order. Among the species in the family Chlamydiaceae, Chlamydia trachomatis and Chlamydia pneumoniae cause common human diseases, while Chlamydia abortus, Chlamydia psittaci, and Chlamydia suis represent zoonotic threats or are endemic in human food sources. Although chlamydial infections are currently manageable in human populations, chlamydial infections in livestock are endemic and there is significant difficulty achieving effective treatment. To combat the spread of Chlamydiaceae in humans and other hosts, improved methods for treatment and prevention of infection are needed. There exist various studies exploring the potential of natural products for developing new antichlamydial treatment modalities. Polyphenolic compounds can inhibit chlamydial growth by membrane disruption, reestablishment of host cell apoptosis, or improving host immune system detection. Fatty acids, monoglycerides, and lipids can disrupt the cell membranes of infective chlamydial elementary bodies (EBs). Peptides can disrupt the cell membranes of chlamydial EBs, and transferrins can inhibit chlamydial EBs from attachment to and permeation through the membranes of host cells. Cellular metabolites and probiotic bacteria can inhibit chlamydial infection by modulating host immune responses and directly inhibiting chlamydial growth. Finally, early stage clinical trials indicate that polyherbal formulations can be effective in treating chlamydial infections. Herein, we review an important body of literature in the field of antichlamydial research.
Collapse
Affiliation(s)
- Mika A Brown
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Centre for Biomimetic Sensor Science, 50 Nanyang Drive, Singapore 637553, Singapore.
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Michael G Potroz
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Centre for Biomimetic Sensor Science, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Seoh-Wei Teh
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Centre for Biomimetic Sensor Science, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Centre for Biomimetic Sensor Science, 50 Nanyang Drive, Singapore 637553, Singapore.
| |
Collapse
|
33
|
Feeding of Enterococcus faecium NCIMB 10415 Leads to Intestinal miRNA-423-5p-Induced Regulation of Immune-Relevant Genes. Appl Environ Microbiol 2016; 82:2263-2269. [PMID: 26826223 DOI: 10.1128/aem.04044-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/20/2016] [Indexed: 11/20/2022] Open
Abstract
Probiotics are widely used in human and animal health, but little is known about the mode of action of probiotics. One possible mechanism at the molecular level could be an influence on microRNAs (miRNAs) and the related immune-relevant target genes. Here, we analyzed differential expression of miRNA and potential target genes of ileal and jejunal lymphatic tissues from Enterococcus faeciumNCIMB 10415-fed piglets versus untreated controls by using next-generation sequencing. We identified miR-423-5p as being greatly affected by the treatment group (2.32-fold;P= 0.014). Validation by reverse transcription-quantitative PCR (RT-qPCR) confirmed a significant upregulation of miR-423-5p (2.11-fold;P= 0.03) and, additionally, downregulation of the important immune-relevant immunoglobulin lambda light C region (IGLC) (0.61-fold;P= 0.03) and immunoglobulin kappa constant (IGKC) (0.69-fold;P= 0.04) target genes. Expression analysis of miR-423-5p and IGLC at different age points shows a clear anti correlated relationship. Luciferase reporter assays with a HeLa cell line verified IGLC as a target of miR-423-5p. The results provided evidence for an effect of feeding of E. faeciumon the expression of miR-423-5p and on the regulation of the IGLC gene through miR-423-5p. This might be a possible mode of action of E. faeciumon immune cell regulation in the small intestine.
Collapse
|
34
|
Hamonic G, Pasternak JA, Käser T, Meurens F, Wilson HL. Extended semen for artificial insemination in swine as a potential transmission mechanism for infectious Chlamydia suis. Theriogenology 2016; 86:949-956. [PMID: 27087534 DOI: 10.1016/j.theriogenology.2016.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 10/22/2022]
Abstract
Although typically unnoticed, Chlamydia infections in swine have been shown to be both widespread and may impact production characteristics and reproductive performance in swine. Serum titers suggest Chlamydia infection within boar studs is common, and infected boars are known to shed chlamydia in their ejaculates. Although the transmission of viruses in chilled extended semen (ES) is well established, the inclusion of antibiotics in commercially available extender is generally believed to limit or preclude the transmission of infectious bacteria. The objective of this study was to evaluate the potential of ES used in artificial insemination to support transmission of the obligate intracellular bacteria Chlamydia suis (C suis) under standard industry conditions. First, the effect of C suis on sperm quality during storage was assessed by flow cytometry. Only concentrations above 5 × 10(5) viable C suis/mL caused significant spermicidal effects which only became evident after 7 days of storage at 17 °C. No significant effect on acrosome reaction was observed using any chlamydial concentration. Next, an in vitro infection model of swine testicular fibroblast cells was established and used to evaluate the effect of chilled storage on C suis viability under variable conditions. Storage in Androhep ES reduced viability by 34.4% at a multiplicity of infection of 1.25, an effect which increased to 53.3% when the multiplicity of infection decreased to 0.1. Interestingly, storage in semen extender alone (SE) or ES with additional antibiotics had no effect on bacterial viability. To rule out a secondary effect on extender resulting from metabolically active sperm, C suis was stored in fresh and expended SE and again no significant effect on bacterial viability was observed. Fluorescent microscopy of C suis in ES shows an association between bacteria and the remaining gel fraction after storage suggesting that the apparent reduction of bacterial viability in the presence of semen is due to adherence to gel fraction. Taken together, the results of this study suggest that C suis remains viable and infectious during chilled storage and is globally unaffected by antibiotics in extender. Thus, ES used in artificial insemination may act as a viable transmission mechanism for C suis in swine.
Collapse
Affiliation(s)
- G Hamonic
- Vaccine and Infectious Disease Organization (VIDO)-International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - J A Pasternak
- Vaccine and Infectious Disease Organization (VIDO)-International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - T Käser
- Vaccine and Infectious Disease Organization (VIDO)-International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - F Meurens
- LUNAM Université, Oniris, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, Nantes, France; INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, Nantes, France
| | - H L Wilson
- Vaccine and Infectious Disease Organization (VIDO)-International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
35
|
Zhang L, Li J, Yun T, Qi W, Liang X, Wang Y, Li A. Effects of pre-encapsulated and pro-encapsulated Enterococcus faecalis on growth performance, blood characteristics, and cecal microflora in broiler chickens. Poult Sci 2015; 94:2821-30. [DOI: 10.3382/ps/pev262] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2015] [Indexed: 12/11/2022] Open
|
36
|
Lorenzen E, Kudirkiene E, Gutman N, Grossi AB, Agerholm JS, Erneholm K, Skytte C, Dalgaard MD, Bojesen AM. The vaginal microbiome is stable in prepubertal and sexually mature Ellegaard Göttingen Minipigs throughout an estrous cycle. Vet Res 2015; 46:125. [PMID: 26510418 PMCID: PMC4625881 DOI: 10.1186/s13567-015-0274-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/15/2015] [Indexed: 11/30/2022] Open
Abstract
Although the pig has been introduced as an advanced animal model of genital tract infections in women, almost no knowledge exists on the porcine vaginal microbiota, especially in barrier-raised Göttingen Minipigs. In women, the vaginal microbiota plays a crucial role for a healthy vaginal environment and the fate of sexually transmitted infections such as Chlamydia trachomatis infections. Therefore, knowledge on the vaginal microbiota is urgently needed for the minipig model. The aim of this study was to characterize the microbiota of the anterior vagina by 16 s rRNA gene sequencing in prepubertal and sexually mature Göttingen Minipigs during an estrous cycle. The dominating phyla in the vaginal microbiota consisted of Firmicutes, Proteobacteria, Actinobacteria, Bacteriodetes and Tenericutes. The most abundant bacterial families were Enterobacteriaceae, unclassified families from Gammaproteobacteria, Clostridiales Family XI Incertae Sedis, Paenibacillaceae, Lactobacillaceae, Ruminococcaceae and Syntrophaceae. We found a higher abundance of Lactobacillaceae in the prepubertal Göttingen Minipigs compared to sexually mature non-pregnant Göttingen Minipigs. However, correlation tests and diversity parameters revealed a very stable vaginal microbiota in the Göttingen Minipigs, both before and after sexual maturity and on different days throughout an estrous cycle. The vaginal microbiota in Göttingen Minipigs was not dominated by lactobacilli, as it is in women and according to our results the minipig vaginal microbiota is very stable, in opposite to women. These differences should be considered when using the minipig as a model of the genital tract in women.
Collapse
Affiliation(s)
- Emma Lorenzen
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | - Egle Kudirkiene
- Section for Veterinary Clinical Microbiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nicole Gutman
- Section for Veterinary Clinical Microbiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - Jørgen Steen Agerholm
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Karin Erneholm
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | | | - Marlene Danner Dalgaard
- DTU Multi-Assay Core, Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark.
| | - Anders Miki Bojesen
- Section for Veterinary Clinical Microbiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
37
|
Zhang L, Li J, Yun TT, Li AK, Qi WT, Liang XX, Wang YW, Liu S. Evaluation of pilot-scale microencapsulation of probiotics and product effect on broilers1. J Anim Sci 2015; 93:4796-807. [DOI: 10.2527/jas.2015-9243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
38
|
Naqid IA, Owen JP, Maddison BC, Gardner DS, Foster N, Tchórzewska MA, La Ragione RM, Gough KC. Prebiotic and probiotic agents enhance antibody-based immune responses to Salmonella Typhimurium infection in pigs. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2014.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Wang J, Ji H, Hou C, Wang S, Zhang D, Liu H, Shan D, Wang Y. Effects of Lactobacillus johnsonii XS4 supplementation on reproductive performance, gut environment, and blood biochemical and immunological index in lactating sows. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
High seroprevalence of Chlamydia infection in sows in Hunan province, subtropical China. Trop Anim Health Prod 2014; 46:701-4. [DOI: 10.1007/s11250-014-0548-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
|
41
|
Kreuzer S, Rieger J, Strucken EM, Thaben N, Hünigen H, Nöckler K, Janczyk P, Plendl J, Brockmann GA. Characterization of CD4+ subpopulations and CD25+ cells in ileal lymphatic tissue of weaned piglets infected with Salmonella Typhimurium with or without Enterococus faecium feeding. Vet Immunol Immunopathol 2014; 158:143-55. [PMID: 24485092 DOI: 10.1016/j.vetimm.2014.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 12/10/2013] [Accepted: 01/02/2014] [Indexed: 12/26/2022]
Abstract
The aim of the present study was to test the effect of Enterococcus faecium NCIMB 10415 (E. faecium) on CD4+ T helper immune cell subpopulations and CD25+ cells in ileal lymphatic tissue after challenge with Salmonella (S.) Typhimurium DT 104. German Landrace piglets treated with E. faecium (n=16) as a feed additive and untreated controls (n=16) were challenged with S. Typhimurium 10 days after weaning. The expression of lineage specific T helper cell subtype master transcription factors on mRNA level was measured in the whole tissue of the gut associated lymphoid tissues (ileocecal mesenteric lymph node, ileum with Peyer's patches and papilla ilealis) and in magnetically sorted T helper cells from blood and ileocecal mesenteric lymph nodes at two and 28 days post infection. CD25 protein expression of T helper cells was studied by flow cytometry in ileal Peyer's patches, lymph nodes and blood. Distribution and morphology of CD25+ cells was demonstrated in situ by immunohistochemistry in paraffin embedded specimens of the ileum and the ileocecal mesenteric lymph nodes. The data provide evidence for a higher T helper 2 cell driven immune response in the control group compared to the E. faecium treated group (P<0.05) in CD4+ magnetically sorted lymphocytes from the ileocecal mesenteric lymph nodes at two and 28 days post infection. We did not observe differences for CD25+ cells in immunohistochemistry and flow cytometry between E. faecium fed pigs and the control group, but provided a detailed description of the occurrence and morphology of these cells in the gut associate lymphoid tissues of piglets. In conclusion we suggest that (i) prolonged feeding with E. faecium can result in changes of the T helper cell response leading to a stronger infection with S. Typhimurium and (ii) that it is important to examine purified immune cells to be able to detect effects on T helper cell subpopulations.
Collapse
Affiliation(s)
- S Kreuzer
- Humboldt-Universität zu Berlin, Breeding Biology and Molecular Genetics, Invalidenstr. 42, D-10115 Berlin, Germany
| | - J Rieger
- Freie Universität Berlin, Department of Veterinary Medicine, Institute of Veterinary Anatomy, Koserstraße 20, 14195 Berlin, Germany
| | - E M Strucken
- Humboldt-Universität zu Berlin, Breeding Biology and Molecular Genetics, Invalidenstr. 42, D-10115 Berlin, Germany
| | - N Thaben
- Humboldt-Universität zu Berlin, Breeding Biology and Molecular Genetics, Invalidenstr. 42, D-10115 Berlin, Germany
| | - H Hünigen
- Freie Universität Berlin, Department of Veterinary Medicine, Institute of Veterinary Anatomy, Koserstraße 20, 14195 Berlin, Germany
| | - K Nöckler
- Federal Institute for Risk Assessment, Department of Biological Safety, Unit Molecular Diagnostics and Genetics, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - P Janczyk
- Federal Institute for Risk Assessment, Department of Biological Safety, Unit Molecular Diagnostics and Genetics, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - J Plendl
- Freie Universität Berlin, Department of Veterinary Medicine, Institute of Veterinary Anatomy, Koserstraße 20, 14195 Berlin, Germany
| | - Gudrun A Brockmann
- Humboldt-Universität zu Berlin, Breeding Biology and Molecular Genetics, Invalidenstr. 42, D-10115 Berlin, Germany.
| |
Collapse
|
42
|
Siepert B, Reinhardt N, Kreuzer S, Bondzio A, Twardziok S, Brockmann G, Nöckler K, Szabó I, Janczyk P, Pieper R, Tedin K. Enterococcus faecium NCIMB 10415 supplementation affects intestinal immune-associated gene expression in post-weaning piglets. Vet Immunol Immunopathol 2014; 157:65-77. [DOI: 10.1016/j.vetimm.2013.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/11/2013] [Accepted: 10/21/2013] [Indexed: 12/26/2022]
|
43
|
Feeding the probiotic Enterococcus faecium strain NCIMB 10415 to piglets specifically reduces the number of Escherichia coli pathotypes that adhere to the gut mucosa. Appl Environ Microbiol 2013; 79:7896-904. [PMID: 24123741 DOI: 10.1128/aem.03138-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Feed supplementation with the probiotic Enterococcus faecium for piglets has been found to reduce pathogenic gut microorganisms. Since Escherichia coli is among the most important pathogens in pig production, we performed comprehensive analyses to gain further insight into the influence of E. faecium NCIMB 10415 on porcine intestinal E. coli. A total of 1,436 E. coli strains were isolated from three intestinal habitats (mucosa, digesta, and feces) of probiotic-supplemented and nonsupplemented (control) piglets. E. coli bacteria were characterized via pulsed-field gel electrophoresis (PFGE) for clonal analysis. The high diversity of E. coli was reflected by 168 clones. Multilocus sequence typing (MLST) was used to determine the phylogenetic backgrounds, revealing 79 sequence types (STs). Pathotypes of E. coli were further defined using multiplex PCR for virulence-associated genes. While these analyses discerned only a few significant differences in the E. coli population between the feeding groups, analyses distinguishing clones that were uniquely isolated in either the probiotic group only, the control group only, or both groups (shared group) revealed clear effects at the habitat level. Interestingly, extraintestinal pathogenic E. coli (ExPEC)-typical clones adhering to the mucosa were significantly reduced in the probiotic group. Our data show a minor influence of E. faecium on the overall population of E. coli in healthy piglets. In contrast, this probiotic has a profound effect on mucosa-adherent E. coli. This finding further substantiates a specific effect of E. faecium strain NCIMB 10415 in piglets against pathogenic E. coli in the intestine. In addition, these data question the relevance of data based on sampling fecal E. coli only.
Collapse
|
44
|
Han W, Zhang XL, Wang DW, Li LY, Liu GL, Li AK, Zhao YX. Effects of microencapsulated Enterococcus fecalis CG1.0007 on growth performance, antioxidation activity, and intestinal microbiota in broiler chickens. J Anim Sci 2013; 91:4374-82. [PMID: 23825327 DOI: 10.2527/jas.2012-5956] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We performed a series of trials to assess the effect of dietary supplementation with microencapsulated Enterococcus fecalis CG1.0007 on growth performance, antioxidation activity, and intestinal microbiota in Arbor Acres broiler chickens ("broilers"). A total of 150 1-d-old broilers were assigned randomly to 5 feeding treatments (a control group fed the basal diet, 3 groups fed the basal diet plus various concentrations of microencapsulated CG1.0007, and 1 group fed the basal diet plus an antibiotic). Changes in important genera of intestinal bacteria were studied using 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) profiling and real-time quantitative PCR analysis of fecal samples. During the course of the 42-d experimental period, ADG of the birds fed the high and intermediate concentrations of microcapsules were significantly greater (9.90 and 9.50%, respectively) and the ratios of feed to gain fed were significantly lower (4.40 and 4.00%, respectively) compared with the control group. The total antioxidant capacity and the content of malondialdehyde and superoxide dismutase in the microcapsule-treated groups showed significant changes in terms of antioxidation. The numbers of Lactobacillus and Bifidobacterium were significantly greater in the microcapsule-treated groups than in the control group. Cluster analysis indicated that the DGGE bacterial profiles were related to the feeding treatments and revealing the diversity and richness of the intestinal microbiota associated with supplementation of microcapsules. In summary, our results indicate that dietary addition of microencapsulated E. fecalis CG1.0007 enhanced the growth performance of the broilers and improved their health.
Collapse
Affiliation(s)
- W Han
- Academy of State Administration of Grain, Beijing, 100037, PR China
| | | | | | | | | | | | | |
Collapse
|
45
|
Benkerroum N. Traditional Fermented Foods of North African Countries: Technology and Food Safety Challenges With Regard to Microbiological Risks. Compr Rev Food Sci Food Saf 2013. [DOI: 10.1111/j.1541-4337.2012.00215.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Noreddine Benkerroum
- Inst. Agronomique et Vétérinaire Hassan II; Dépt. des Sciences Alimentaires et Nutritionnelles; BP 6202, Instituts; 10101-Rabat; Morocco
| |
Collapse
|
46
|
Yu D, Li W, Cui Z, Rajput I, Li Y, Wu H. Effect of Enterococcus faecium 1 (EF1) on Antioxidant Functioning Activity of Caco-2 Cells under Oxidative Stress. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/javaa.2012.2307.2312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Kreuzer S, Machnowska P, Aßmus J, Sieber M, Pieper R, Schmidt MF, Brockmann GA, Scharek-Tedin L, Johne R. Feeding of the probiotic bacterium Enterococcus faecium NCIMB 10415 differentially affects shedding of enteric viruses in pigs. Vet Res 2012; 43:58. [PMID: 22838386 PMCID: PMC3431279 DOI: 10.1186/1297-9716-43-58] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023] Open
Abstract
Effects of probiotic bacteria on viral infections have been described previously. Here, two groups of sows and their piglets were fed with or without feed supplementation of the probiotic bacterium Enterococcus faecium NCIMB 10415. Shedding of enteric viruses naturally occurring in these pigs was analyzed by quantitative real-time RT-PCR. No differences between the groups were recorded for hepatitis E virus, encephalomyocarditis virus and norovirus. In contrast, astrovirus was exclusively detected in the non-supplemented control group. Rotavirus was shedded later and with lower amounts in the probiotic piglet group (p < 0.05); rotavirus-shedding piglets gained less weight than non-infected animals (p < 0.05). Serum titres of anti-rotavirus IgA and IgG antibodies were higher in piglets from the control group, whereas no difference was detected between sow groups. Phenotype analysis of immune cell antigens revealed significant differences of the CD4 and CD8β (p < 0.05) as well as CD8α and CD25 (p < 0.1) T cell populations of the probiotic supplemented group compared to the non-supplemented control group. In addition, differences were evident for CD21/MHCII-positive (p < 0.05) and IgM-positive (p < 0.1) B cell populations. The results indicate that probiotic bacteria could have effects on virus shedding in naturally infected pigs, which depend on the virus type. These effects seem to be caused by immunological changes; however, the distinct mechanism of action remains to be elucidated.
Collapse
Affiliation(s)
- Susanne Kreuzer
- Breeding Biology and Molecular Genetics, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
No beneficial effects evident for Enterococcus faecium NCIMB 10415 in weaned pigs infected with Salmonella enterica serovar Typhimurium DT104. Appl Environ Microbiol 2012; 78:4816-25. [PMID: 22544257 DOI: 10.1128/aem.00395-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium DT 104 is the major pathogen for salmonellosis outbreaks in Europe. We tested if the probiotic bacterium Enterococcus faecium NCIMB 10415 can prevent or alleviate salmonellosis. Therefore, piglets of the German Landrace breed that were treated with E. faecium (n = 16) as a feed additive and untreated controls (n = 16) were challenged with S. Typhimurium 10 days after weaning. The presence of salmonellae in feces and selected organs, as well as the immune response, were investigated. Piglets treated with E. faecium gained less weight than control piglets (P = 0.05). The feeding of E. faecium had no effect on the fecal shedding of salmonellae and resulted in a higher abundance of the pathogen in tonsils of all challenged animals. The specific (anti-Salmonella IgG) and nonspecific (haptoglobin) humoral immune responses as well as the cellular immune response (T helper cells, cytotoxic T cells, regulatory T cells, γδ T cells, and B cells) in the lymph nodes, Peyer's patches of different segments of the intestine (jejunal and ileocecal), the ileal papilla, and in the blood were affected in the course of time after infection (P < 0.05) but not by the E. faecium treatment. These results led to the conclusion that E. faecium may not have beneficial effects on the performance of weaned piglets in the case of S. Typhimurium infection. Therefore, we suggest a critical discussion and reconsideration of E. faecium NCIMB 10415 administration as a probiotic for pigs.
Collapse
|
49
|
Mafamane H, Szabó I, Schmidt MFG, Filter M, Walk N, Tedin K, Scharek-Tedin L. Studies on the effect of an Enterococcus faecium probiotic on T cell populations in peripheral blood and intestinal epithelium and on the susceptibility to Salmonella during a challenge infection with Salmonella Typhimurium in piglets. Arch Anim Nutr 2012; 65:415-30. [PMID: 22256673 DOI: 10.1080/1745039x.2011.623351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Although Enterococcus faecium is used as a probiotic feed supplement in animal production, feeding of the bacterium to piglets resulted in a more severe infection with Salmonella Typhimurium DT104 during a challenge experiment. To enlighten the mode of action by which E. faecium affected the piglets' health, we investigated the influence of the probiotic bacterium on the development of intestinal and circulating immune cells during a challenge experiment with S. Typhimurium DT104. To minimise varying impacts of the maternal immunity on the course of infection, only piglets were implemented that descended from Salmonella-free sows. In addition, the potency of purified blood and intraepithelial immune cells to control the growth of Salmonella was tested in vitro. In animals treated with E. faecium, a reduction of intraepithelial CD8alphabeta T cells, reduced circulating CD8alphabeta T cells and a less efficient control of intracellular Salmonella growth, mediated by peripheral blood mononuclear cells, were observed.
Collapse
Affiliation(s)
- Hassan Mafamane
- Institute of Immunology and Molecular Biology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Franz CMAP, Huch M, Abriouel H, Holzapfel W, Gálvez A. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 2011; 151:125-40. [PMID: 21962867 DOI: 10.1016/j.ijfoodmicro.2011.08.014] [Citation(s) in RCA: 470] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/03/2011] [Accepted: 08/13/2011] [Indexed: 11/29/2022]
Abstract
Enterococci belong to the lactic acid bacteria (LAB) and they are of importance in foods due to their involvement in food spoilage and fermentations, as well as their utilisation as probiotics in humans and slaughter animals. However, they are also important nosocomial pathogens that cause bacteraemia, endocarditis and other infections. Some strains are resistant to many antibiotics and possess virulence factors such as adhesins, invasins, pili and haemolysin. The role of enterococci in disease has raised questions on their safety for use in foods or as probiotics. Studies on the incidence of virulence traits among enterococcal strains isolated from food showed that some can harbour virulence traits, but it is also thought that virulence is not the result of the presence of specific virulence determinants alone, but is rather a more intricate process. Specific genetic lineages of hospital-adapted strains have emerged, such as E. faecium clonal complex (CC) 17 and E. faecalis CC2, CC9, CC28 and CC40, which are high risk enterococcal clonal complexes. These are characterised by the presence of antibiotic resistance determinants and/or virulence factors, often located on pathogenicity islands or plasmids. Mobile genetic elements thus are considered to play a major role in the establishment of problematic lineages. Although enterococci occur in high numbers in certain types of fermented cheeses and sausages, they are not deliberately added as starter cultures. Some E. faecium and E. faecalis strains are used as probiotics and are ingested in high numbers, generally in the form of pharmaceutical preparations. Such probiotics are administered to treat diarrhoea, antibiotic-associated diarrhoea or irritable bowel syndrome, to lower cholesterol levels or to improve host immunity. In animals, enterococcal probiotics are mainly used to treat or prevent diarrhoea, for immune stimulation or to improve growth. From a food microbiological point of view, the safety of the bacteria used as probiotics must be assured, and data on the major strains in use so far indicate that they are safe. The advantage of use of probiotics in slaughter animals, from a food microbiological point of view, lies in the reduction of zoonotic pathogens in the gastrointestinal tract of animals which prevents the transmission of these pathogens via food. The use of enterococcal probiotics should, in view of the development of problematic lineages and the potential for gene transfer in the gastrointestinal tract of both humans and animals, be carefully monitored, and the advantages of using these and new strains should be considered in a well contemplated risk/benefit analysis.
Collapse
Affiliation(s)
- Charles M A P Franz
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str.9, D-76131 Karlsruhe, Germany.
| | | | | | | | | |
Collapse
|