1
|
Sattler JM, Keiber L, Abdelrahim A, Zheng X, Jäcklin M, Zechel L, Moreau CA, Steinbrück S, Fischer M, Janse CJ, Hoffmann A, Hentzschel F, Frischknecht F. Experimental vaccination by single dose sporozoite injection of blood-stage attenuated malaria parasites. EMBO Mol Med 2024; 16:2060-2079. [PMID: 39103697 PMCID: PMC11392930 DOI: 10.1038/s44321-024-00101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Malaria vaccination approaches using live Plasmodium parasites are currently explored, with either attenuated mosquito-derived sporozoites or attenuated blood-stage parasites. Both approaches would profit from the availability of attenuated and avirulent parasites with a reduced blood-stage multiplication rate. Here we screened gene-deletion mutants of the rodent parasite P. berghei and the human parasite P. falciparum for slow growth. Furthermore, we tested the P. berghei mutants for avirulence and resolving blood-stage infections, while preserving sporozoite formation and liver infection. Targeting 51 genes yielded 18 P. berghei gene-deletion mutants with several mutants causing mild infections. Infections with the two most attenuated mutants either by blood stages or by sporozoites were cleared by the immune response. Immunization of mice led to protection from disease after challenge with wild-type sporozoites. Two of six generated P. falciparum gene-deletion mutants showed a slow growth rate. Slow-growing, avirulent P. falciparum mutants will constitute valuable tools to inform on the induction of immune responses and will aid in developing new as well as safeguarding existing attenuated parasite vaccines.
Collapse
Affiliation(s)
- Julia M Sattler
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Lukas Keiber
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Aiman Abdelrahim
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Xinyu Zheng
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Martin Jäcklin
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Luisa Zechel
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Catherine A Moreau
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
| | - Smilla Steinbrück
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Medical School, 69120, Heidelberg, Germany
| | - Chris J Janse
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Medical School, 69120, Heidelberg, Germany
- Department of Neuroradiology, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, 3010, Bern, Switzerland
| | - Franziska Hentzschel
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany.
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
2
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Malian children infected with Plasmodium ovale and Plasmodium falciparum display very similar gene expression profiles. PLoS Negl Trop Dis 2023; 17:e0010802. [PMID: 36696438 PMCID: PMC9901758 DOI: 10.1371/journal.pntd.0010802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/06/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Plasmodium parasites caused 241 million cases of malaria and over 600,000 deaths in 2020. Both P. falciparum and P. ovale are endemic to Mali and cause clinical malaria, with P. falciparum infections typically being more severe. Here, we sequenced RNA from nine pediatric blood samples collected during infections with either P. falciparum or P. ovale, and characterized the host and parasite gene expression profiles. We found that human gene expression varies more between individuals than according to the parasite species causing the infection, while parasite gene expression profiles cluster by species. Additionally, we characterized DNA polymorphisms of the parasites directly from the RNA-seq reads and found comparable levels of genetic diversity in both species, despite dramatic differences in prevalence. Our results provide unique insights into host-pathogen interactions during malaria infections and their variations according to the infecting Plasmodium species, which will be critical to develop better elimination strategies against all human Plasmodium parasites.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore Maryland, United States of America
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Emily M. Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Andrea A. Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A. Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore Maryland, United States of America
| |
Collapse
|
3
|
Hobbs CV, Sahu T, Neal J, Conteh S, Voza T, Borkowsky W, Langhorne J, Duffy PE. Determinants of Malaria Protective Immunity in Mice Immunized with Live Sporozoites during Trimethoprim-Sulfamethoxazole Prophylaxis. Am J Trop Med Hyg 2020; 104:666-670. [PMID: 33350377 PMCID: PMC7866335 DOI: 10.4269/ajtmh.20-0749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/09/2020] [Indexed: 11/21/2022] Open
Abstract
HIV and malaria geographically overlap. Trimethoprim–sulfamethoxazole (TMP-SMX) is a drug widely used in HIV-exposed uninfected and infected children in malaria-endemic areas, and is known to have antimalarial effects. Further study in terms of antimalarial impact and effect on development of malaria-specific immunity is therefore essential. Using rodent malaria models, we previously showed that repeated Plasmodium exposure during TMP-SMX administration, or chemoprophylaxis vaccination (CVac), induces CD8 T-cell–dependent preerythrocytic immunity. However, humoral immune responses have been shown to be important in models of preerythrocytic immunity. Herein, we demonstrate that antibody-mediated responses contribute to protective immunity induced by CVac immune sera using TMP-SMX in models of homologous, but not heterologous, parasite species. Clinical studies must account for potential anti-Plasmodium antibody induced during TMP-SMX prophylaxis.
Collapse
Affiliation(s)
- Charlotte V Hobbs
- Department of Microbiology, Batson Children's Hospital, University of Mississippi Medical Center, Jackson, Mississippi.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,Division of Infectious Diseases, Department of Pediatrics, Batson Children's Hospital, University of Mississippi Medical Center, Jackson, Mississippi
| | - Tejram Sahu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jillian Neal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Tatiana Voza
- Biological Sciences Department, New York City College of Technology, CUNY, New York, New York
| | - William Borkowsky
- Division of Infectious Disease and Immunology, Department of Pediatrics, New York University School of Medicine, New York, New York
| | | | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
A Virus Hosted in Malaria-Infected Blood Protects against T Cell-Mediated Inflammatory Diseases by Impairing DC Function in a Type I IFN-Dependent Manner. mBio 2020; 11:mBio.03394-19. [PMID: 32265335 PMCID: PMC7157782 DOI: 10.1128/mbio.03394-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coinfections shape immunity and influence the development of inflammatory diseases, resulting in detrimental or beneficial outcome. Coinfections with concurrent Plasmodium species can alter malaria clinical evolution, and malaria infection itself can modulate autoimmune reactions. Yet, the underlying mechanisms remain ill defined. Here, we demonstrate that the protective effects of some rodent malaria strains on T cell-mediated inflammatory pathologies are due to an RNA virus cohosted in malaria-parasitized blood. We show that live and extracts of blood parasitized by Plasmodium berghei K173 or Plasmodium yoelii 17X YM, protect against P. berghei ANKA-induced experimental cerebral malaria (ECM) and myelin oligodendrocyte glycoprotein (MOG)/complete Freund's adjuvant (CFA)-induced experimental autoimmune encephalomyelitis (EAE), and that protection is associated with a strong type I interferon (IFN-I) signature. We detected the presence of the RNA virus lactate dehydrogenase-elevating virus (LDV) in the protective Plasmodium stabilates and we established that LDV infection alone was necessary and sufficient to recapitulate the protective effects on ECM and EAE. In ECM, protection resulted from an IFN-I-mediated reduction in the abundance of splenic conventional dendritic cell and impairment of their ability to produce interleukin (IL)-12p70, leading to a decrease in pathogenic CD4+ Th1 responses. In EAE, LDV infection induced IFN-I-mediated abrogation of IL-23, thereby preventing the differentiation of granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing encephalitogenic CD4+ T cells. Our work identifies a virus cohosted in several Plasmodium stabilates across the community and deciphers its major consequences on the host immune system. More generally, our data emphasize the importance of considering contemporaneous infections for the understanding of malaria-associated and autoimmune diseases.IMPORTANCE Any infection modifies the host immune status, potentially ameliorating or aggravating the pathophysiology of a simultaneous inflammatory condition. In the course of investigating how malaria infection modulates the severity of contemporaneous inflammatory diseases, we identified a nonpathogenic mouse virus in stabilates of two widely used rodent parasite lines: Plasmodium berghei K173 and Plasmodium yoelii 17X YM. We established that the protective effects of these Plasmodium lines on cerebral malaria and multiple sclerosis are exclusively due to this virus. The virus induces a massive type I interferon (IFN-I) response and causes quantitative and qualitative defects in the ability of dendritic cells to promote pathogenic T cell responses. Beyond revealing a possible confounding factor in rodent malaria models, our work uncovers some bases by which a seemingly innocuous viral (co)infection profoundly changes the immunopathophysiology of inflammatory diseases.
Collapse
|
5
|
Mitran CJ, Yanow SK. The Case for Exploiting Cross-Species Epitopes in Malaria Vaccine Design. Front Immunol 2020; 11:335. [PMID: 32174924 PMCID: PMC7056716 DOI: 10.3389/fimmu.2020.00335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
The infection dynamics between different species of Plasmodium that infect the same human host can both suppress and exacerbate disease. This could arise from inter-parasite interactions, such as competition, from immune regulation, or both. The occurrence of protective, cross-species (heterologous) immunity is an unlikely event, especially considering that strain-transcending immunity within a species is only partial despite lifelong exposure to that species. Here we review the literature in humans and animal models to identify the contexts where heterologous immunity can arise, and which antigens may be involved. From the perspective of vaccine design, understanding the mechanisms by which exposure to an antigen from one species can elicit a protective response to another species offers an alternative strategy to conventional approaches that focus on immunodominant antigens within a single species. The underlying hypothesis is that certain epitopes are conserved across evolution, in sequence or in structure, and shared in antigens from different species. Vaccines that focus on conserved epitopes may overcome the challenges posed by polymorphic immunodominant antigens; but to uncover these epitopes requires approaches that consider the evolutionary history of protein families across species. The key question for vaccinologists will be whether vaccines that express these epitopes can elicit immune responses that are functional and contribute to protection against Plasmodium parasites.
Collapse
Affiliation(s)
| | - Stephanie K. Yanow
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Tang J, Templeton TJ, Cao J, Culleton R. The Consequences of Mixed-Species Malaria Parasite Co-Infections in Mice and Mosquitoes for Disease Severity, Parasite Fitness, and Transmission Success. Front Immunol 2020; 10:3072. [PMID: 32038623 PMCID: PMC6987389 DOI: 10.3389/fimmu.2019.03072] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
The distributions of human malaria parasite species overlap in most malarious regions of the world, and co-infections involving two or more malaria parasite species are common. Little is known about the consequences of interactions between species during co-infection for disease severity and parasite transmission success. Anti-malarial interventions can have disproportionate effects on malaria parasite species and may locally differentially reduce the number of species in circulation. Thus, it is important to have a clearer understanding of how the interactions between species affect disease and transmission dynamics. Controlled competition experiments using human malaria parasites are impossible, and thus we assessed the consequences of mixed-species infections on parasite fitness, disease severity, and transmission success using the rodent malaria parasite species Plasmodium chabaudi, Plasmodium yoelii, and Plasmodium vinckei. We compared the fitness of individual species within single species and co-infections in mice. We also assessed the disease severity of single vs. mixed infections in mice by measuring mortality rates, anemia, and weight loss. Finally, we compared the transmission success of parasites in single or mixed species infections by quantifying oocyst development in Anopheles stephensi mosquitoes. We found that co-infections of P. yoelii with either P. vinckei or P. chabaudi led to a dramatic increase in infection virulence, with 100% mortality observed in mixed species infections, compared to no mortality for P. yoelii and P. vinckei single infections, and 40% mortality for P. chabaudi single infections. The increased mortality in the mixed infections was associated with an inability to clear parasitaemia, with the non-P. yoelii parasite species persisting at higher parasite densities than in single infections. P. yoelii growth was suppressed in all mixed infections compared to single infections. Transmissibility of P. vinckei and P. chabaudi to mosquitoes was also reduced in the presence of P. yoelii in co-infections compared to single infections. The increased virulence of co-infections containing P. yoelii (reticulocyte restricted) and P. chabaudi or P. vinckei (predominantly normocyte restricted) may be due to parasite cell tropism and/or immune modulation of the host. We explain the reduction in transmission success of species in co-infections in terms of inter-species gamete incompatibility.
Collapse
Affiliation(s)
- Jianxia Tang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Thomas J Templeton
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Richard Culleton
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
7
|
Suzuki H, Kume A, Herbas MS. Potential of Vitamin E Deficiency, Induced by Inhibition of α-Tocopherol Efflux, in Murine Malaria Infection. Int J Mol Sci 2018; 20:ijms20010064. [PMID: 30586912 PMCID: PMC6337606 DOI: 10.3390/ijms20010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023] Open
Abstract
Although epidemiological and experimental studies have suggested beneficial effects of vitamin E deficiency on malaria infection, it has not been clinically applicable for the treatment of malaria owing to the significant content of vitamin E in our daily food. However, since α-tocopherol transfer protein (α-TTP) has been shown to be a determinant of vitamin E level in circulation, manipulation of α-tocopherol levels by α-TTP inhibition was considered as a potential therapeutic strategy for malaria. Knockout studies in mice indicated that inhibition of α-TTP confers resistance against malaria infections in murines, accompanied by oxidative stress-induced DNA damage in the parasite, arising from vitamin E deficiency. Combination therapy with chloroquine and α-TTP inhibition significantly improved the survival rates in murines with malaria. Thus, clinical application of α-tocopherol deficiency could be possible, provided that α-tocopherol concentration in circulation is reduced. Probucol, a recently found drug, induced α-tocopherol deficiency in circulation and was effective against murine malaria. Currently, treatment of malaria relies on the artemisinin-based combination therapy (ACT); however, when mice infected with malarial parasites were treated with probucol and dihydroartemisinin, the beneficial effect of ACT was pronounced. Protective effects of vitamin E deficiency might be extended to manage other parasites in future.
Collapse
Affiliation(s)
- Hiroshi Suzuki
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada, Obihiro 080-8555, Japan.
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.
| | - Aiko Kume
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada, Obihiro 080-8555, Japan.
| | - Maria Shirely Herbas
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada, Obihiro 080-8555, Japan.
| |
Collapse
|
8
|
Nacer A, Movila A, Sohet F, Girgis NM, Gundra UM, Loke P, Daneman R, Frevert U. Experimental cerebral malaria pathogenesis--hemodynamics at the blood brain barrier. PLoS Pathog 2014; 10:e1004528. [PMID: 25474413 PMCID: PMC4256476 DOI: 10.1371/journal.ppat.1004528] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/17/2014] [Indexed: 12/16/2022] Open
Abstract
Cerebral malaria claims the lives of over 600,000 African children every year. To better understand the pathogenesis of this devastating disease, we compared the cellular dynamics in the cortical microvasculature between two infection models, Plasmodium berghei ANKA (PbA) infected CBA/CaJ mice, which develop experimental cerebral malaria (ECM), and P. yoelii 17XL (PyXL) infected mice, which succumb to malarial hyperparasitemia without neurological impairment. Using a combination of intravital imaging and flow cytometry, we show that significantly more CD8(+) T cells, neutrophils, and macrophages are recruited to postcapillary venules during ECM compared to hyperparasitemia. ECM correlated with ICAM-1 upregulation on macrophages, while vascular endothelia upregulated ICAM-1 during ECM and hyperparasitemia. The arrest of large numbers of leukocytes in postcapillary and larger venules caused microrheological alterations that significantly restricted the venous blood flow. Treatment with FTY720, which inhibits vascular leakage, neurological signs, and death from ECM, prevented the recruitment of a subpopulation of CD45(hi) CD8(+) T cells, ICAM-1(+) macrophages, and neutrophils to postcapillary venules. FTY720 had no effect on the ECM-associated expression of the pattern recognition receptor CD14 in postcapillary venules suggesting that endothelial activation is insufficient to cause vascular pathology. Expression of the endothelial tight junction proteins claudin-5, occludin, and ZO-1 in the cerebral cortex and cerebellum of PbA-infected mice with ECM was unaltered compared to FTY720-treated PbA-infected mice or PyXL-infected mice with hyperparasitemia. Thus, blood brain barrier opening does not involve endothelial injury and is likely reversible, consistent with the rapid recovery of many patients with CM. We conclude that the ECM-associated recruitment of large numbers of activated leukocytes, in particular CD8(+) T cells and ICAM(+) macrophages, causes a severe restriction in the venous blood efflux from the brain, which exacerbates the vasogenic edema and increases the intracranial pressure. Thus, death from ECM could potentially occur as a consequence of intracranial hypertension.
Collapse
Affiliation(s)
- Adéla Nacer
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Alexandru Movila
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Fabien Sohet
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Natasha M. Girgis
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Uma Mahesh Gundra
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - P'ng Loke
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Richard Daneman
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Ute Frevert
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Claser C, Malleret B, Peng K, Bakocevic N, Gun SY, Russell B, Ng LG, Rénia L. Rodent Plasmodium-infected red blood cells: Imaging their fates and interactions within their hosts. Parasitol Int 2014; 63:187-94. [DOI: 10.1016/j.parint.2013.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/30/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
|
10
|
Toxoplasma gondii upregulates interleukin-12 to prevent Plasmodium berghei-induced experimental cerebral malaria. Infect Immun 2014; 82:1343-53. [PMID: 24396042 DOI: 10.1128/iai.01259-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A chronic infection with the parasite Toxoplasma gondii has previously been shown to protect mice against subsequent viral, bacterial, or protozoal infections. Here we have shown that a chronic T. gondii infection can prevent Plasmodium berghei ANKA-induced experimental cerebral malaria (ECM) in C57BL/6 mice. Treatment with soluble T. gondii antigens (STAg) reduced parasite sequestration and T cell infiltration in the brains of P. berghei-infected mice. Administration of STAg also preserved blood-brain barrier function, reduced ECM symptoms, and significantly decreased mortality. STAg treatment 24 h post-P. berghei infection led to a rapid increase in serum levels of interleukin 12 (IL-12) and gamma interferon (IFN-γ). By 5 days after P. berghei infection, STAg-treated mice had reduced IFN-γ levels compared to those of mock-treated mice, suggesting that reductions in IFN-γ at the time of ECM onset protected against lethality. Using IL-10- and IL-12βR-deficient mice, we found that STAg-induced protection from ECM is IL-10 independent but IL-12 dependent. Treatment of P. berghei-infected mice with recombinant IL-12 significantly decreased parasitemia and mortality. These data suggest that IL-12, either induced by STAg or injected as a recombinant protein, mediates protection from ECM-associated pathology potentially through early induction of IFN-γ and reduction in parasitemia. These results highlight the importance of early IL-12 induction in protection against ECM.
Collapse
|
11
|
Herbas MS, Natama MH, Suzuki H. Alpha-tocopherol transfer protein gene inhibition enhances the acquired immune response during malaria infection in mice. Parasitol Res 2013; 113:1019-27. [PMID: 24363183 DOI: 10.1007/s00436-013-3736-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/04/2013] [Indexed: 12/26/2022]
Abstract
Immune response to malaria infection is complex and seems to be regulated by innate and adaptive immune response as well as environmental factors such as host genetics and nutritional status. Previously, we have reported that α-tocopherol transfer protein knockout (α-ttp(Δ)) mice, showing low concentrations of α-tocopherol in circulation, infected with Plasmodium berghei NK65 survived significantly longer as compared with the wild-type mice. In addition, Plasmodium yoelii XL-17, a lethal strain, showed non-lethal virulence in α-ttp(Δ) mice. Thus, we hypothesized that the ability of the α-ttp(Δ) mice to control P. yoelli XL-17 proliferation may allow them to build an efficient immune response against murine malaria infection. On 15 days after infection with P. yoelli XL-17, α-ttp(Δ) mice were challenged to infection with P. berghei NK65. Results indicated that α-ttp(Δ) mice infected with P. yoelli XL-17 built a protective immunity against P. berghei NK65 associated to extremely low levels of parasitemia, a controlled inflammatory response, and a robust antibody response. Moreover, the importance of α-tocopherol for parasite proliferation was remarkable. The results suggest that inhibition of α-tocopherol transfer protein activity is effective for the enhancement of acquired immunity in murine malaria infection.
Collapse
Affiliation(s)
- Maria Shirley Herbas
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada, Obihiro, 080-8555, Japan
| | | | | |
Collapse
|
12
|
Clark CJ, Phillips RS. Cerebral malaria protection in mice by species-specific Plasmodium coinfection is associated with reduced CC chemokine levels in the brain. Parasite Immunol 2012; 33:637-41. [PMID: 21851365 DOI: 10.1111/j.1365-3024.2011.01329.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cerebral malaria is a major pathological complication of Plasmodium falciparum infection in humans. Epidemiological observations have suggested that the clinical evolution of P. falciparum infections may be influenced by the concurrent presence of another Plasmodium species. Infection of susceptible mouse strains with P. berghei ANKA (PbA) provides an experimental model of cerebral malaria which has been extensively used to identify different components of the immune system involved in cerebral malaria. This model has also been employed to investigate the influence of experimental mixed-Plasmodium-species infections on the expression of cerebral malaria; PbA-induced cerebral malaria is completely inhibited by the simultaneous presence of P. yoelii yoelii 17 X clone 1.1 parasites, and accumulation of CD8(+) T cells in the brain vasculature is abolished. We investigated whether brain levels of CD8(+) -T-cell-chemoattractant chemokines CCL3, CCL4 and CCL5 are reduced in these protected coinfected mice compared with PbA-infected mice. Coinfected mice were found to exhibit significantly reduced levels of all three chemokines on day 6 post-infection. This finding may contribute to the abolition of the accumulation of CD8(+) T cells in the brain vasculature and the prevention of the development of cerebral malaria in coinfected mice.
Collapse
Affiliation(s)
- C J Clark
- Infection & Immunity, Faculty of Biomedical & Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | |
Collapse
|
13
|
Role of interleukin-10 in malaria: focusing on coinfection with lethal and nonlethal murine malaria parasites. J Biomed Biotechnol 2011; 2011:383962. [PMID: 22190849 PMCID: PMC3228686 DOI: 10.1155/2011/383962] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 11/23/2022] Open
Abstract
Interleukin- (IL-) 10, anti-inflammatory cytokine, is known to inhibit the protective immune responses against malaria parasites and to be involved in exacerbating parasitemia during Plasmodium infection. In contrast, IL-10 is regarded as necessary for suppressing severe pathology during Plasmodium infection. Here, we summarize the role of IL-10 during murine malaria infection, focusing especially on coinfection with lethal and nonlethal strains of malaria parasites. Recent studies have demonstrated that the major sources of IL-10 are subpopulations of CD4+ T cells in humans and mice infected with Plasmodium. We also discuss the influence of innate immunity on the induction of CD4+ T cells during murine malaria coinfection.
Collapse
|
14
|
LaCrue AN, Scheel M, Kennedy K, Kumar N, Kyle DE. Effects of artesunate on parasite recrudescence and dormancy in the rodent malaria model Plasmodium vinckei. PLoS One 2011; 6:e26689. [PMID: 22039533 PMCID: PMC3200358 DOI: 10.1371/journal.pone.0026689] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 10/02/2011] [Indexed: 11/25/2022] Open
Abstract
Artemisinin (ART) is the recommended first line therapy for treating uncomplicated and drug-resistant Plasmodium falciparum, the most pathogenic form of malaria. However, treatment failure following ART monotherapy is not uncommon and resistance to this rapidly acting drug has been reported in the Thai-Cambodian border. Recent in vitro studies have shown that following treatment with dihydroartemisinin (DHA), the development of ring-stage parasites is arrested for up to 20 days. These arrested (i.e. dormant) rings could be responsible for the recrudescence of infection that is observed following ART monotherapy. To develop a better understanding of the stage-specific effects of ART and determine if dormancy occurs in vivo, the ART derivative artesunate (AS) was used to treat mice infected with the synchronous rodent malaria parasites P. vinckei petteri (non-lethal) and P. v. vinckei (lethal). Results show that in both the non-lethal and lethal strains, ring-stage parasites are the least susceptible to treatment with AS and that the day of treatment has more of an impact on recrudescence than the total dose administered. Additionally, 24 hrs post-treatment with AS, dormant forms similar in morphology to those seen in vitro were observed. Finally, rate of recrudescence studies suggest that there is a positive correlation between the number of dormant parasites present and when recrudescence occurs in the vertebrate host. Collectively, these data suggest that dormancy occurs in vivo and contributes to recrudescence that is observed following AS treatment. It is possible that this may represent a novel mechanism of parasite survival following treatment with AS.
Collapse
Affiliation(s)
- Alexis N. LaCrue
- Department of Global Health, University of South Florida, Tampa, Florida, United States of America
- * E-mail: (DEK); (ANL)
| | - Misty Scheel
- Department of Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Katherine Kennedy
- Department of Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Nikesh Kumar
- Department of Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Dennis E. Kyle
- Department of Global Health, University of South Florida, Tampa, Florida, United States of America
- * E-mail: (DEK); (ANL)
| |
Collapse
|
15
|
Ishida H, Matsuzaki-Moriya C, Imai T, Yanagisawa K, Nojima Y, Suzue K, Hirai M, Iwakura Y, Yoshimura A, Hamano S, Shimokawa C, Hisaeda H. Development of experimental cerebral malaria is independent of IL-23 and IL-17. Biochem Biophys Res Commun 2010; 402:790-5. [DOI: 10.1016/j.bbrc.2010.10.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 12/18/2022]
|
16
|
Chen G, Feng H, Liu J, Qi ZM, Wu Y, Guo SY, Li DM, Wang JC, Cao YM. Characterization of immune responses to single or mixed infections with P. yoelii 17XL and P. chabaudi AS in different strains of mice. Parasitol Int 2010; 59:400-6. [PMID: 20609420 DOI: 10.1016/j.parint.2010.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 05/03/2010] [Accepted: 05/20/2010] [Indexed: 12/29/2022]
Abstract
The outcome of Plasmodium yoelii 17XL (P.y17XL)-infected BALB/c and DBA/2 mice, ranging from death to spontaneous cure, depends largely on the establishment of effective Th1 and Th2 responses and a successful switch between Th1 and Th2 responses, as well as appropriate functioning of CD4(+)CD25(+)Foxp3(+)regulatory T cells (Tregs). The infection with another malaria-causing parasite, Plasmodium chabaudi AS (P.cAS), leads to a different outcome in BALB/c and DBA/2 mice compared to mice infected with P.y17XL alone. To understand the consequence of co-infection with P.y17XL and P.cAS, we determined the proliferation curve of parasites, pro-inflammatory/anti-inflammatory cytokine profiles, and the dynamic changes of the number of Tregs in DBA/2 and BALB/c mice with single or mixed-species infections. The infective mode in mixed-species infections was the same as single P.y17XL infections. The multiplication of P.y17XL parasites prevailed in BALB/c and DBA/2 mice with early mixed infections, as detected by RTQ-PCR. Subsequently, the multiplication of P.cAS parasites dominated in DBA/2 mice with mixed infections, while BALB/c mice succumbed to infection. In addition, the dynamic changes in IFN-gamma and IL-4 production in mice with mixed infections, used as a measure of Th1 and Th2 responsiveness, were consistent with P.y17XL-infected mice. Treg activation and the IL-10 level were also closely related to susceptibility to infection. Our findings demonstrate that the characteristics of the immune response during infections with mixed species are dependent on the mode of proliferation of different species of Plasmodium. Indeed, different species of Plasmodium can influence each other in the same host.
Collapse
Affiliation(s)
- Guang Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Heping District, Shenyang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Steenkeste N, Rogers WO, Okell L, Jeanne I, Incardona S, Duval L, Chy S, Hewitt S, Chou M, Socheat D, Babin FX, Ariey F, Rogier C. Sub-microscopic malaria cases and mixed malaria infection in a remote area of high malaria endemicity in Rattanakiri province, Cambodia: implication for malaria elimination. Malar J 2010; 9:108. [PMID: 20409349 PMCID: PMC2868861 DOI: 10.1186/1475-2875-9-108] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 04/22/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria microscopy and rapid diagnostic tests are insensitive for very low-density parasitaemia. This insensitivity may lead to missed asymptomatic sub-microscopic parasitaemia, a potential reservoir for infection. Similarly, mixed infections and interactions between Plasmodium species may be missed. The objectives were first to develop a rapid and sensitive PCR-based diagnostic method to detect low parasitaemia and mixed infections, and then to investigate the epidemiological importance of sub-microscopic and mixed infections in Rattanakiri Province, Cambodia. METHODS A new malaria diagnostic method, using restriction fragment length polymorphism analysis of the cytochrome b genes of the four human Plasmodium species and denaturing high performance liquid chromatography, has been developed. The results of this RFLP-dHPLC method have been compared to 1) traditional nested PCR amplification of the 18S rRNA gene, 2) sequencing of the amplified fragments of the cytochrome b gene and 3) microscopy. Blood spots on filter paper and Giemsa-stained blood thick smears collected in 2001 from 1,356 inhabitants of eight villages of Rattanakiri Province have been analysed by the RFLP-dHPLC method and microscopy to assess the prevalence of sub-microscopic and mixed infections. RESULTS The sensitivity and specificity of the new RFLP-dHPLC was similar to that of the other molecular methods. The RFLP-dHPLC method was more sensitive and specific than microscopy, particularly for detecting low-level parasitaemia and mixed infections. In Rattanakiri Province, the prevalences of Plasmodium falciparum and Plasmodium vivax were approximately two-fold and three-fold higher, respectively, by RFLP-dHPLC (59% and 15%, respectively) than by microscopy (28% and 5%, respectively). In addition, Plasmodium ovale and Plasmodium malariae were never detected by microscopy, while they were detected by RFLP-dHPLC, in 11.2% and 1.3% of the blood samples, respectively. Moreover, the proportion of mixed infections detected by RFLP-dHPLC was higher (23%) than with microscopy (8%). CONCLUSIONS The rapid and sensitive molecular diagnosis method developed here could be considered for mass screening and ACT treatment of inhabitants of low-endemicity areas of Southeast Asia.
Collapse
Affiliation(s)
- Nicolas Steenkeste
- Unité d'Epidémiologie Moléculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Belnoue E, Voza T, Costa FTM, Grüner AC, Mauduit M, Rosa DS, Depinay N, Kayibanda M, Vigário AM, Mazier D, Snounou G, Sinnis P, Rénia L. Vaccination with live Plasmodium yoelii blood stage parasites under chloroquine cover induces cross-stage immunity against malaria liver stage. THE JOURNAL OF IMMUNOLOGY 2009; 181:8552-8. [PMID: 19050274 DOI: 10.4049/jimmunol.181.12.8552] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Immunity to malaria has long been thought to be stage-specific. In this study we show that immunization of BALB/c mice with live erythrocytes infected with nonlethal strains of Plasmodium yoelii under curative chloroquine cover conferred protection not only against challenge by blood stage parasites but also against sporozoite challenge. This cross-stage protection was dose-dependent and long lasting. CD4(+) and CD8(+) T cells inhibited malaria liver but not blood stage. Their effect was mediated partially by IFN-gamma, and was completely dependent of NO. Abs against both pre-erythrocytic and blood parasites were elicited and were essential for protection against blood stage and liver stage parasites. Our results suggest that Ags shared by liver and blood stage parasites can be the foundation for a malaria vaccine that would provide effective protection against both pre-erythrocytic and erythrocytic asexual parasites found in the mammalian host.
Collapse
Affiliation(s)
- Elodie Belnoue
- Department of Immunology, Centre National de la Recherche Scientifique, Institut Cochin, Université Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Togbe D, Loureiro de Sousa P, Fauconnier M, Boissay V, Fick L, Scheu S, Pfeffer K, Menard R, Grau GE, Doan BT, Beloeil JC, Renia L, Hansen AM, Ball HJ, Hunt NH, Ryffel B, Quesniaux VFJ. Both functional LTbeta receptor and TNF receptor 2 are required for the development of experimental cerebral malaria. PLoS One 2008; 3:e2608. [PMID: 18612394 PMCID: PMC2442868 DOI: 10.1371/journal.pone.0002608] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 06/04/2008] [Indexed: 12/19/2022] Open
Abstract
Background TNF-related lymphotoxin α (LTα) is essential for the development of Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM). The pathway involved has been attributed to TNFR2. Here we show a second arm of LTα-signaling essential for ECM development through LTβ-R, receptor of LTα1β2 heterotrimer. Methodology/Principal Findings LTβR deficient mice did not develop the neurological signs seen in PbA induced ECM but died at three weeks with high parasitaemia and severe anemia like LTαβ deficient mice. Resistance of LTαβ or LTβR deficient mice correlated with unaltered cerebral microcirculation and absence of ischemia, as documented by magnetic resonance imaging and angiography, associated with lack of microvascular obstruction, while wild-type mice developed distinct microvascular pathology. Recruitment and activation of perforin+ CD8+ T cells, and their ICAM-1 expression were clearly attenuated in the brain of resistant mice. An essential contribution of LIGHT, another LTβR ligand, could be excluded, as LIGHT deficient mice rapidly succumbed to ECM. Conclusions/Significance LTβR expressed on radioresistant resident stromal, probably endothelial cells, rather than hematopoietic cells, are essential for the development of ECM, as assessed by hematopoietic reconstitution experiment. Therefore, the data suggest that both functional LTβR and TNFR2 signaling are required and non-redundant for the development of microvascular pathology resulting in fatal ECM.
Collapse
Affiliation(s)
- Dieudonnée Togbe
- University of Orléans and CNRS, Molecular Immunology and Embryology UMR6218, Orleans, France
| | | | - Mathilde Fauconnier
- University of Orléans and CNRS, Molecular Immunology and Embryology UMR6218, Orleans, France
| | - Victorine Boissay
- University of Orléans and CNRS, Molecular Immunology and Embryology UMR6218, Orleans, France
| | - Lizette Fick
- Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa
| | | | | | | | - Georges E. Grau
- The University of Sydney, Department of Pathology, Camperdown, Australia
| | - Bich-Thuy Doan
- CNRS CBM (Centre de Biophysique Moléculaire), Orleans, France
| | | | - Laurent Renia
- The University of Sydney, Department of Pathology, Camperdown, Australia
- Inserm, U567, Paris, France
| | - Anna M. Hansen
- The University of Sydney, Department of Pathology, Camperdown, Australia
| | - Helen J. Ball
- The University of Sydney, Department of Pathology, Camperdown, Australia
| | - Nicholas H. Hunt
- The University of Sydney, Department of Pathology, Camperdown, Australia
| | - Bernhard Ryffel
- University of Orléans and CNRS, Molecular Immunology and Embryology UMR6218, Orleans, France
- * E-mail: (BR); (VQ)
| | - Valerie F. J. Quesniaux
- University of Orléans and CNRS, Molecular Immunology and Embryology UMR6218, Orleans, France
- * E-mail: (BR); (VQ)
| |
Collapse
|
20
|
Niikura M, Kamiya S, Kita K, Kobayashi F. Coinfection with nonlethal murine malaria parasites suppresses pathogenesis caused by Plasmodium berghei NK65. THE JOURNAL OF IMMUNOLOGY 2008; 180:6877-84. [PMID: 18453608 DOI: 10.4049/jimmunol.180.10.6877] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mixed infection with different Plasmodium species is often observed in endemic areas, and the infection with benign malaria parasites such as Plasmodium vivax or P. malariae has been considered to reduce the risk of developing severe pathogenesis caused by P. falciparum. However, it is still unknown how disease severity is reduced in hosts during coinfection. In the present study, we investigated the influence of coinfection with nonlethal parasites, P. berghei XAT (Pb XAT) or P. yoelii 17X (Py 17X), on the outcome of P. berghei NK65 (Pb NK65) lethal infection, which caused high levels of parasitemia and severe pathogenesis in mice. We found that the simultaneous infection with nonlethal Pb XAT or Py 17X suppressed high levels of parasitemia, liver injury, and body weight loss caused by Pb NK65 infection, induced high levels of reticulocytemia, and subsequently prolonged survival of mice. In coinfected mice, the immune response, including the expansion of B220(int)CD11c(+) cells and CD4(+) T cells and expression of IL-10 mRNA, was comparable to that in nonlethal infection. Moreover, the suppression of liver injury and body weight loss by coinfection was reduced in IL-10(-/-) mice, suggesting that IL-10 plays a role for a reduction of severity by coinfection with nonlethal malaria parasites.
Collapse
Affiliation(s)
- Mamoru Niikura
- Institute of Laboratory Animals, Graduate School of Medicine, Faculty of Medicine, Kyorin University, Tokyo, Japan.
| | | | | | | |
Collapse
|
21
|
Cross-species immunity in malaria vaccine development: two, three, or even four for the price of one? Infect Immun 2007; 76:873-8. [PMID: 18056479 DOI: 10.1128/iai.00431-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Co-infection with Trypanosoma cruzi protects mice against early death by neurological or pulmonary disorders induced by Plasmodium berghei ANKA. Malar J 2007; 6:90. [PMID: 17620126 PMCID: PMC1965473 DOI: 10.1186/1475-2875-6-90] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 07/09/2007] [Indexed: 11/30/2022] Open
Abstract
Objective The objective of this study was to investigate whether the infection of C57BL/6 mice by P. berghei ANKA, which causes severe malaria, was modulated by co-infection with Trypanosoma cruzi. Methods Groups of C57BL/6 mice were infected either with P. berghei ANKA, T. cruzi strain G, or with both parasites. The presence of parasites was checked by microscopic examination of blood samples. Symptoms of neurological or respiratory disorders, as well as mortality, were registered. Breakdown of the blood brain barrier was determined by injecting the dye Evans blue. Histological sections of the lung were prepared and stained with hematoxilin-eosin. Results All mice infected only with P. berghei ANKA died within 7–11 days post-infection, either with symptoms of cerebral malaria or with respiratory abnormalities. The animals co-infected with T. cruzi strain G survived longer, without any of the referred to symptoms. Protection against the early death by severe malaria was effective when mice were given T. cruzi 15 days before P. berghei inoculation. Breakdown of the blood brain barrier and extensive pulmonary oedema, caused by malaria parasites, were much less pronounced in co-infected mice. The degree of protection to severe malaria and early death, conferred by co-infection with T. cruzi, was comparable to that conferred by treatment with anti-CD8 antibodies. Conclusion Co-infection with T. cruzi protects C57BL/6 against the early death by malaria infection, by partially preventing either the breakdown of the blood brain, and cerebral malaria as a consequence, or the pulmonary oedema.
Collapse
|
23
|
Parekh SB, Bubb WA, Hunt NH, Rae C. Brain metabolic markers reflect susceptibility status in cytokine gene knockout mice with murine cerebral malaria. Int J Parasitol 2006; 36:1409-18. [PMID: 16934816 DOI: 10.1016/j.ijpara.2006.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 07/13/2006] [Accepted: 07/14/2006] [Indexed: 11/16/2022]
Abstract
Treatment of cerebral malaria, a complication of the world's most significant parasitic disease, remains problematic due to lack of understanding of its pathogenesis. Metabolic changes, along with cytokine expression alterations and blood cell sequestration in the brain, have previously been reported during severe disease in human infection and mouse models leading to the "cytopathic hypoxia" and "sequestration" theories of pathogenesis. Here, to determine the robustness of the metabolic changes and their relationship to disease development, we investigated changes in cerebral metabolic markers in a mouse model of cerebral malaria (CM) in wildtype (C57BL/6) and cytokine knockout (TNF(-/-), IFNgamma(-/-) and LTalpha(-/-)) mice using multinuclear magnetic resonance spectroscopy. Mice susceptible to CM (wildtype, TNF(-/-)) showed decreased cerebral glucose use, decreased Krebs cycle metabolism and decreased high-energy phosphates. Conversely, mice resistant to CM (IFNgamma(-/-), LTalpha(-/-)) showed little sign of these effects, despite identical levels of parasitemia. Previously reported changes in lactate were shown to be strain dependent. Elevated glutamine and decreased phosphorylation potential emerged as robust metabolic markers of susceptibility, further implicating the trytophan/NAD(+) pathway in disease development. Thus these metabolic changes are firmly linked both to the immune system response to malaria and to the occurrence of pathogenic changes in experimental CM.
Collapse
Affiliation(s)
- Sapan B Parekh
- Discipline of Pathology, Institute for Biomedical Research, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
24
|
Coppi A, Cabinian M, Mirelman D, Sinnis P. Antimalarial activity of allicin, a biologically active compound from garlic cloves. Antimicrob Agents Chemother 2006; 50:1731-7. [PMID: 16641443 PMCID: PMC1472199 DOI: 10.1128/aac.50.5.1731-1737.2006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The incidence of malaria is increasing, and there is an urgent need to identify new drug targets for both prophylaxis and chemotherapy. Potential new drug targets include Plasmodium proteases that play critical roles in the parasite life cycle. We have previously shown that the major surface protein of Plasmodium sporozoites, the circumsporozoite protein (CSP), is proteolytically processed by a parasite-derived cysteine protease, and this processing event is temporally associated with sporozoite invasion of host cells. E-64, a cysteine protease inhibitor, inhibits CSP processing and prevents invasion of host cells in vitro and in vivo. Here we tested allicin, a cysteine protease inhibitor found in garlic extracts, for its ability to inhibit malaria infection. At low concentrations, allicin was not toxic to either sporozoites or mammalian cells. At these concentrations, allicin inhibited CSP processing and prevented sporozoite invasion of host cells in vitro. In vivo, mice injected with allicin had decreased Plasmodium infections compared to controls. When sporozoites were treated with allicin before injection into mice, malaria infection was completely prevented. We also tested allicin on erythrocytic stages and found that a 4-day regimen of allicin administered either orally or intravenously significantly decreased parasitemias and increased the survival of infected mice by 10 days. Together, these experiments demonstrate that the same cysteine protease inhibitor can target two different life cycle stages in the vertebrate host.
Collapse
Affiliation(s)
- Alida Coppi
- Department of Medical Parasitology, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | | | | | | |
Collapse
|
25
|
Rénia L, Potter SM, Mauduit M, Rosa DS, Kayibanda M, Deschemin JC, Snounou G, Grüner AC. Pathogenic T cells in cerebral malaria. Int J Parasitol 2006; 36:547-54. [PMID: 16600241 DOI: 10.1016/j.ijpara.2006.02.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 02/01/2006] [Accepted: 02/10/2006] [Indexed: 11/24/2022]
Abstract
Malaria remains a major global health problem and cerebral malaria (CM) is one of the most serious complications of this disease. Recent years have seen important advances in our understanding of the pathogenesis of cerebral malaria. Parasite sequestration, a hallmark of this syndrome, is thought to be solely responsible for the pathological process. However, this phenomenon cannot explain all aspects of the pathogenesis of CM. The use of an animal model, Plasmodium berghei ANKA in mice, has allowed the identification of specific pathological components of CM. Although multiple pathways may lead to CM, an important role for CD8+ T cells has been clarified. Other cells, including platelets, and mediators such as cytokines also have an important role. In this review we have focused on the role of T cells, and discuss what remains to be studied to understand the pathways by which these cells mediate CM.
Collapse
Affiliation(s)
- Laurent Rénia
- Department of Immunology, Institut Cochin, INSERM U567, CNRS UMR 8104, Université René Descartes, Hôpital Cochin, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Golenser J, McQuillan J, Hee L, Mitchell AJ, Hunt NH. Conventional and experimental treatment of cerebral malaria. Int J Parasitol 2006; 36:583-93. [PMID: 16603167 DOI: 10.1016/j.ijpara.2006.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 01/25/2006] [Accepted: 02/07/2006] [Indexed: 11/24/2022]
Abstract
The most severe complication of Plasmodium falciparum infection is cerebral malaria (CM). Cerebral malaria implies the presence of neurological features, especially impaired consciousness. The treatment of CM is limited to: (i) a few conventional anti-malarial drugs (quinine or artemisinins), (ii) adjunctive treatments (initial stabilisation, blood exchange transfusion, osmotic diuretics and correction of hypoglycaemia, acidosis and hypovolaemia) and (iii) immunomodulation. There are clear procedures concerning treatment of CM, which include the use of the anti-plasmodial drugs. Adjunctive treatments are permissible but there is no single official guideline and immune intervention is a possibility currently being examined in rodent models only. The suggested immunomodulation approach is based on the strong likelihood that CM is the result of an immunopathological process. P. falciparum initiates the multifactorial chain of events leading to lethal CM and, after a certain stage, it is impossible to stop the progression even by using anti-malarial drugs. We present evidence that CM is a result of a dysregulated immune response. Therefore, it might be prevented by early modulation of discrete factors that participate in this process. In experimental systems, some immunomodulators delay or prevent CM without affecting the parasitaemia. Therefore, in the future the ultimate treatment of CM may be a combination of an anti-malarial and an immunomodulator. However, the overall effect of an immunomodulator would need to be carefully examined in view of concomitant infections, especially in malaria endemic areas.
Collapse
Affiliation(s)
- J Golenser
- Department of Parasitology, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|