1
|
Huang Y, Cao J, Zhu M, Wang Z, Jin Z, Xiong Z. Nontoxigenic Bacteroides fragilis: A double-edged sword. Microbiol Res 2024; 286:127796. [PMID: 38870618 DOI: 10.1016/j.micres.2024.127796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/12/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
The contribution of commensal microbes to human health and disease is unknown. Bacteroides fragilis (B. fragilis) is an opportunistic pathogen and a common colonizer of the human gut. Nontoxigenic B. fragilis (NTBF) and enterotoxigenic B. fragilis (ETBF) are two kinds of B. fragilis. NTBF has been shown to affect the host immune system and interact with gut microbes and pathogenic microbes. Previous studies indicated that certain strains of B. fragilis have the potential to serve as probiotics, based on their observed relationship with the immune system. However, several recent studies have shown detrimental effects on the host when beneficial gut bacteria are found in the digestive system or elsewhere. In some pathological conditions, NTBF may have adverse reactions. This paper presents a comprehensive analysis of NTBF ecology from the host-microbe perspective, encompassing molecular disease mechanisms analysis, bacteria-bacteria interaction, bacteria-host interaction, and the intricate ecological context of the gut. Our review provides much-needed insights into the precise application of NTBF.
Collapse
Affiliation(s)
- Yumei Huang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiali Cao
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengpei Zhu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziwen Wang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ze Jin
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Pandey M, Bhattacharyya J. Gut microbiota and epigenetics in colorectal cancer: implications for carcinogenesis and therapeutic intervention. Epigenomics 2024; 16:403-418. [PMID: 38410915 DOI: 10.2217/epi-2023-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. The occurrence of CRC is associated with various genetic and epigenetic mutations in intestinal epithelial cells that transform them into adenocarcinomas. There is increasing evidence indicating the gut microbiota plays a crucial role in the regulation of host physiological processes. Alterations in gut microbiota composition are responsible for initiating carcinogenesis through diverse epigenetic modifications, including histone modifications, ncRNAs and DNA methylation. This work was designed to comprehensively review recent findings to provide insight into the associations between the gut microbiota and CRC at an epigenetic level. These scientific insights can be used in the future to develop effective strategies for early detection and treatment of CRC.
Collapse
Affiliation(s)
- Monu Pandey
- Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, 110608, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, 110608, India
| |
Collapse
|
3
|
Conn KA, Borsom EM, Cope EK. Implications of microbe-derived ɣ-aminobutyric acid (GABA) in gut and brain barrier integrity and GABAergic signaling in Alzheimer's disease. Gut Microbes 2024; 16:2371950. [PMID: 39008552 PMCID: PMC11253888 DOI: 10.1080/19490976.2024.2371950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
The gut microbial ecosystem communicates bidirectionally with the brain in what is known as the gut-microbiome-brain axis. Bidirectional signaling occurs through several pathways including signaling via the vagus nerve, circulation of microbial metabolites, and immune activation. Alterations in the gut microbiota are implicated in Alzheimer's disease (AD), a progressive neurodegenerative disease. Perturbations in gut microbial communities may affect pathways within the gut-microbiome-brain axis through altered production of microbial metabolites including ɣ-aminobutyric acid (GABA), the primary inhibitory mammalian neurotransmitter. GABA has been shown to act on gut integrity through modulation of gut mucins and tight junction proteins and may be involved in vagus nerve signal inhibition. The GABAergic signaling pathway has been shown to be dysregulated in AD, and may be responsive to interventions. Gut microbial production of GABA is of recent interest in neurological disorders, including AD. Bacteroides and Lactic Acid Bacteria (LAB), including Lactobacillus, are predominant producers of GABA. This review highlights how temporal alterations in gut microbial communities associated with AD may affect the GABAergic signaling pathway, intestinal barrier integrity, and AD-associated inflammation.
Collapse
Affiliation(s)
- Kathryn A. Conn
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Emily M. Borsom
- Center for Data-Driven Discovery for Biology, Allen Institute, Seattle, WA, USA
| | - Emily K. Cope
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
4
|
Lu G, Wang Z, Zhang B, Zhou Z, Hu D, Zhang D. Detecting Forest Musk Deer Abscess Disease Pathogens Using 16S rRNA High-Throughput Sequencing Technology. Animals (Basel) 2023; 13:3142. [PMID: 37835748 PMCID: PMC10572063 DOI: 10.3390/ani13193142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
Currently, researchers use bacterial culture and targeted PCR methods to classify, culture, and identify the pathogens causing abscess diseases. However, this method is limited by factors such as the type of culture medium and culture conditions, making it challenging to screen and proliferate many bacteria effectively. Fortunately, with the development of high-throughput sequencing technology, pathogen identification at the genetic level has become possible. Not only can this approach overcome the limitations of bacterial culture, but it can also accurately identify the types and relative abundance of pathogens. In this study, we used high-throughput sequencing of 16S rRNA to identify the pathogens in purulent fluid samples. Our results not only confirmed the presence of the main pathogen reported by previous researchers, Trueperella pyogenes, but also other obligate anaerobes, Fusobacterium necrophorum and Bacteroides fragilis as the dominant pathogens causing abscess diseases for the first time. Therefore, our findings suggest that high-throughput sequencing technology has the potential to replace traditional bacterial culture and targeted PCR methods.
Collapse
Affiliation(s)
- Guanjie Lu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (G.L.); (Z.W.); (B.Z.); (Z.Z.); (D.H.)
| | - Zhe Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (G.L.); (Z.W.); (B.Z.); (Z.Z.); (D.H.)
| | - Baofeng Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (G.L.); (Z.W.); (B.Z.); (Z.Z.); (D.H.)
| | - Zhichao Zhou
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (G.L.); (Z.W.); (B.Z.); (Z.Z.); (D.H.)
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (G.L.); (Z.W.); (B.Z.); (Z.Z.); (D.H.)
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (G.L.); (Z.W.); (B.Z.); (Z.Z.); (D.H.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Xiao L, Dou W, Wang Y, Deng H, Xu H, Pan Y. Treatment with S-adenosylmethionine ameliorates irinotecan-induced intestinal barrier dysfunction and intestinal microbial disorder in mice. Biochem Pharmacol 2023; 216:115752. [PMID: 37634598 DOI: 10.1016/j.bcp.2023.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
This study aimed to investigate the protective effects of S-adenosylmethionine (SAM) on irinotecan-induced intestinal barrier dysfunction and microbial ecological dysregulation in both mice and human colon cell line Caco-2, which is widely used for studying intestinal epithelial barrier function. Specifically, this study utilized Caco-2 monolayers incubated with 7-ethyl-10-hydroxycamptothecin (SN-38) as well as an irinotecan-induced diarrhea model in mice. Our study found that SAM pretreatment significantly reduced body weight loss and diarrhea induced by irinotecan in mice. Furthermore, SAM inhibited the increase of intestinal permeability in irinotecan-treated mice and ameliorated the decrease of Zonula occludens-1(ZO-1), Occludin, and Claudin-1 expression. Additionally, irinotecan treatment increased the relative abundance of Proteobacteria compared to the control group, an effect that was reversed by SAM administration. In Caco-2 monolayers, SAM reduced the expression of reactive oxygen species (ROS) and ameliorated the decrease in transepithelial electrical resistance (TER) and increase in fluorescein isothiocyanate-dextran 4000 Da (FD-4) flux caused by SN-38. Moreover, SAM attenuated changes in the localization and distribution of ZO-1and Occludin in Caco-2 monolayers induced by SN-38 and protected barrier function by inhibiting activation of the p38 MAPK/p65 NF-κB/MLCK/MLC signaling pathway. These findings provide preliminary evidence for the potential use of SAM in treating diarrhea caused by irinotecan.
Collapse
Affiliation(s)
- Lin Xiao
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Weidong Dou
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Yajie Wang
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Huan Deng
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Hao Xu
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China.
| | - YiSheng Pan
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China.
| |
Collapse
|
6
|
Deryabin DG, Kosyan DB, Inchagova KS, Duskaev GK. Plant-Derived Quorum Sensing Inhibitors (Quercetin, Vanillin and Umbelliferon) Modulate Cecal Microbiome, Reduces Inflammation and Affect Production Efficiency in Broiler Chickens. Microorganisms 2023; 11:1326. [PMID: 37317300 DOI: 10.3390/microorganisms11051326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Quorum sensing inhibitors (QSIs) are an attractive alternative to antibiotic growth promoters in farmed animal nutrition. The goal of the study was the diet supplementation of Arbor Acres chickens with quercetin (QC), vanillin (VN), and umbelliferon (UF), which are plant-derived QSIs preliminarily showing cumulative bioactivity. Chick cecal microbiomes were analyzed by 16s rRNA sequencing, inflammation status was assessed by blood sample analyses, and zootechnical data were summarized in the European Production Efficiency Factor (EPEF). When compared to the basal diet control group, a significant increase in the Bacillota:Bacteroidota ratio in the cecal microbiome was found in all experimental subgroups, with the highest expression > 10 at VN + UV supplementation. Bacterial community structure in all experimental subgroups was enriched with Lactobacillaceae genera and also changed in the abundance of some clostridial genera. Indices of richness, alpha diversity, and evenness of the chick microbiomes tended to increase after dietary supplementation. The peripheral blood leukocyte content decreased by 27.9-45.1% in all experimental subgroups, likely due to inflammatory response reduction following beneficial changes in the cecal microbiome. The EPEF calculation showed increased values in VN, QC + UF, and, especially, VN + UF subgroups because of effective feed conversion, low mortality, and broiler weight daily gain.
Collapse
Affiliation(s)
- Dmitry G Deryabin
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Dianna B Kosyan
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Ksenia S Inchagova
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Galimzhan K Duskaev
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| |
Collapse
|
7
|
Sambruni G, Macandog AD, Wirbel J, Cagnina D, Catozzi C, Dallavilla T, Borgo F, Fazio N, Fumagalli-Romario U, Petz WL, Manzo T, Ravenda SP, Zeller G, Nezi L, Schaefer MH. Location and condition based reconstruction of colon cancer microbiome from human RNA sequencing data. Genome Med 2023; 15:32. [PMID: 37131219 PMCID: PMC10155404 DOI: 10.1186/s13073-023-01180-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The association between microbes and cancer has been reported repeatedly; however, it is not clear if molecular tumour properties are connected to specific microbial colonisation patterns. This is due mainly to the current technical and analytical strategy limitations to characterise tumour-associated bacteria. METHODS Here, we propose an approach to detect bacterial signals in human RNA sequencing data and associate them with the clinical and molecular properties of the tumours. The method was tested on public datasets from The Cancer Genome Atlas, and its accuracy was assessed on a new cohort of colorectal cancer patients. RESULTS Our analysis shows that intratumoural microbiome composition is correlated with survival, anatomic location, microsatellite instability, consensus molecular subtype and immune cell infiltration in colon tumours. In particular, we find Faecalibacterium prausnitzii, Coprococcus comes, Bacteroides spp., Fusobacterium spp. and Clostridium spp. to be strongly associated with tumour properties. CONCLUSIONS We implemented an approach to concurrently analyse clinical and molecular properties of the tumour as well as the composition of the associated microbiome. Our results may improve patient stratification and pave the path for mechanistic studies on microbiota-tumour crosstalk.
Collapse
Affiliation(s)
- Gaia Sambruni
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Angeli D Macandog
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Jakob Wirbel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Danilo Cagnina
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Carlotta Catozzi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Tiziano Dallavilla
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Francesca Borgo
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
- Center for Omics Sciences, IRCCS San Raffaele Institute, Milano, Italy
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology-IRCCS, Milano, Italy
| | | | - Wanda L Petz
- Digestive Surgery, European Institute of Oncology-IRCCS, Milano, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Simona P Ravenda
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology-IRCCS, Milano, Italy
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Luigi Nezi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy.
| | - Martin H Schaefer
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy.
| |
Collapse
|
8
|
Schirò G, Iacono S, Balistreri CR. The Role of Human Microbiota in Myasthenia Gravis: A Narrative Review. Neurol Int 2023; 15:392-404. [PMID: 36976669 PMCID: PMC10053295 DOI: 10.3390/neurolint15010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune neuromuscular disease characterized by fluctuating weakness of the skeletal muscles. Although antibodies against the neuromuscular junction components are recognized, the MG pathogenesis remains unclear, even if with a well-known multifactorial character. However, the perturbations of human microbiota have been recently suggested to contribute to MG pathogenesis and clinical course. Accordingly, some products derived from commensal flora have been demonstrated to have anti-inflammatory effects, while other have been shown to possess pro-inflammatory properties. In addition, patients with MG when compared with age-matched controls showed a distinctive composition in the oral and gut microbiota, with a typical increase in Streptococcus and Bacteroides and a reduction in Clostridia as well as short-chain fatty acid reduction. Moreover, restoring the gut microbiota perturbation has been evidenced after the administration of probiotics followed by an improvement of symptoms in MG cases. To highlight the role of the oral and gut microbiota in MG pathogenesis and clinical course, here, the current evidence has been summarized and reviewed.
Collapse
Affiliation(s)
- Giuseppe Schirò
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Salvatore Iacono
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
- Correspondence:
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
9
|
Chen Z, Yang H, Fu H, Wu L, Liu M, Jiang H, Liu Q, Wang Y, Xiong S, Zhou M, Sun X, Chen C, Huang L. Gut bacterial species in late trimester of pregnant sows influence the occurrence of stillborn piglet through pro-inflammation response. Front Immunol 2023; 13:1101130. [PMID: 36741405 PMCID: PMC9890068 DOI: 10.3389/fimmu.2022.1101130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Maternal gut microbiota is an important regulator for the metabolism and immunity of the fetus during pregnancy. Recent studies have indicated that maternal intestinal microbiota is closely linked to the development of fetus and infant health. Some bacterial metabolites are considered to be directly involved in immunoregulation of fetus during pregnancy. However, the detailed mechanisms are largely unknown. In this study, we exploited the potential correlation between the gut microbiota of pregnant sows and the occurrence of stillborn piglets by combining the 16S rRNA gene and metagenomic sequencing data, and fecal metabolome in different cohorts. The results showed that several bacterial species from Bacteroides, potential pathogens, and LPS-producing bacteria exhibited significantly higher abundances in the gut of sows giving birth to stillborn piglets. Especially, Bacteroides fragilis stood out as the key driver in both tested cohorts and showed the most significant association with the occurrence of stillborn piglets in the DN1 cohort. However, several species producing short-chain fatty acids (SCFAs), such as Prevotella copri, Clostridium butyricum and Faecalibacterium prausnitzii were enriched in the gut of normal sows. Functional capacity analysis of gut microbiome revealed that the pathways associated with infectious diseases and immune diseases were enriched in sows giving birth to stillborn piglets. However, energy metabolism had higher abundance in normal sows. Fecal metabolome profiling analysis found that Lysophosphatidylethanolamine and phosphatidylethanolamine which are the main components of cell membrane of Gram-negative bacteria showed significantly higher concentration in stillbirth sows, while SCFAs had higher concentration in normal sows. These metabolites were significantly associated with the stillborn-associated bacterial species including Bacteroides fragilis. Lipopolysaccharide (LPS), IL-1β, IL-6, FABP2, and zonulin had higher concentration in the serum of stillbirth sows, indicating increased intestinal permeability and pro-inflammatory response. The results from this study suggested that certain sow gut bacterial species in late trimester of pregnancy, e.g., an excess abundance of Bacteroides fragilis, produced high concentration of LPS which induced sow pro-inflammatory response and might cause the death of the relatively weak piglets in a farrow. This study provided novel evidences about the effect of maternal gut microbiota on the fetus development and health.
Collapse
Affiliation(s)
| | - Hui Yang
- *Correspondence: Lusheng Huang, ; Congying Chen, ; Hui Yang,
| | | | | | | | | | | | | | | | | | | | - Congying Chen
- *Correspondence: Lusheng Huang, ; Congying Chen, ; Hui Yang,
| | - Lusheng Huang
- *Correspondence: Lusheng Huang, ; Congying Chen, ; Hui Yang,
| |
Collapse
|
10
|
Zhao C, Yang J, Chen M, Chen W, Yang X, Ye H, Wang L, Wang Y, Shi J, Yue F, Ma X. Synthetic Lignin-Derived Therapeutic Nano Reagent as Intestinal pH-Sensitive Drug Carriers Capable of Bypassing the Gastric Acid Environment for Colitis Treatment. ACS NANO 2023; 17:811-824. [PMID: 36521055 DOI: 10.1021/acsnano.2c11188] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oral drug delivery is a common route for management of inflammatory bowel disease (IBD) but suffers from low bioavailability and systemic side effects during passage through the alimentary canal. Here, we present a therapeutic nano reagent of a ferulic acid-derived lignin nanoparticle (FALNP). We showed that FALNP with favorable antioxidant activity can regulate IBD. More importantly, the intestinal pH-responsive degradability of FALNP allows it to withstand the harsh gastric acid environment, bypass physiological barriers, and target the intestine for gastrointestinal delivery. In vivo experiments showed that oral administration of FALNP markedly relieved pathological symptoms in a mouse model of acute colitis by reducing oxidative stress and regulating the gut microbiome. By integrating anti-inflammatory medicine, FALNP also can be used as a bioactive carrier to exert a potent synergistic therapeutic effect. In addition to colitis, FALNP can be readily adaptable for use as a carrier platform for therapy of many other intestinal diseases.
Collapse
Affiliation(s)
- Chengke Zhao
- Sauvage Laboratory for Smart Materials and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jiali Yang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases (Zheng Zhou), School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingfeng Chen
- Sauvage Laboratory for Smart Materials and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenjun Chen
- Sauvage Laboratory for Smart Materials and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xinyuan Yang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases (Zheng Zhou), School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Heng Ye
- Sauvage Laboratory for Smart Materials and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Liying Wang
- Sauvage Laboratory for Smart Materials and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yong Wang
- Sauvage Laboratory for Smart Materials and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jinjin Shi
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases (Zheng Zhou), School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Fengxia Yue
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
11
|
Xiong T, Zheng X, Zhang K, Wu H, Dong Y, Zhou F, Cheng B, Li L, Xu W, Su J, Huang J, Jiang Z, Li B, Zhang B, Lv G, Chen S. Ganluyin ameliorates DSS-induced ulcerative colitis by inhibiting the enteric-origin LPS/TLR4/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115001. [PMID: 35085745 DOI: 10.1016/j.jep.2022.115001] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD), that is associated with a significantly increased risk of colon cancer. As a classic traditional Chinese medicine, Ganluyin (GLY) has a long history as an anti-inflammatory medication, but its impacts on UC has not been established. AIM OF THE STUDY This study aims to evaluate the protective effect and mechanism of GLY on a pathway involving enteric-origin lipopolysaccharide (LPS), toll-like receptor (TLR)4, and NF-κB in mice with dextran sulfate sodium (DSS)-induced UC. MATERIALS AND METHODS After three weeks of intragastric administration of GLY, a UC model was induced in mice by administration of 4% DSS in drinking water for one week. The disease activity index (DAI) was measured, and histological staining was used to detect histopathological changes of colon. LPS content of the serum was measured by ELISA, and the expression of tight junction proteins and proteins related to TLR4/NF-κB pathway in colon were analyzed by immunohistochemistry or Western Blotting. The intestinal flora was analyzed by 16S rRNA sequencing. RESULTS GLY improved the histological pathological changes of DSS-induced UC, as assessed by DAI, colonic mucosal damage, inflammatory cell infiltration, and goblet cell and mucus reduction. GLY also protected the intestinal mucosal barrier by increasing the expression of the tight junction proteins, occludin, claudin-1, and ZO-1 and by reducing the serum LPS content and decreasing the expression of TLR4, MyD88, NF-κB, IL-6, IL-1β, and TNF-α proteins in colon. Analyses of the intestinal flora showed that GLY restored the homeostasis of the intestinal flora through increases in the abundance of Firmicutes and decreases in the abundance of Proteobacteria and Bacteroidetes, which is associated with the production of LPS. CONCLUSION GLY might exert an anti-UC effect by improving the colonic mucosal barrier and inhibiting the enteric-origin LPS/TLR4/NF-κB inflammatory pathway, and restoring the homeostasis of the intestinal flora in UC mice. These discoveries lay a strong foundation for GLY as a UC treatment.
Collapse
Affiliation(s)
- Taoxiu Xiong
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xiang Zheng
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Ke Zhang
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Hansong Wu
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Yingjie Dong
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Fuchen Zhou
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Bingbing Cheng
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Linzi Li
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Wanfeng Xu
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Jie Su
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Jiahui Huang
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Zetian Jiang
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Bo Li
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Beibei Zhang
- Center for Food Evaluation, State Administration for Market Regulation, Beijing, 100070, PR China.
| | - Guiyuan Lv
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Suhong Chen
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China.
| |
Collapse
|
12
|
Bang SI, Kim HY, Seo WT, Lee AY, Cho EJ. Mulberry vinegar attenuates lipopolysaccharide and interferon gamma-induced inflammatory responses in C6 glial cells. J Food Biochem 2022; 46:e14197. [PMID: 35471556 DOI: 10.1111/jfbc.14197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
The present study evaluated the effect of mulberry vinegar (MV) on the regulation of the inflammatory responses using C6 glial cells. Treatment with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) induced the nitric oxide and reactive oxygen species generation, while pre-incubation with MV inhibited these formations in a concentration-dependent manner. MV treatment also decreased the production of pro-inflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α in C6 glial cells stimulated by LPS/IFN-γ. Compared to the LPS/IFN-γ-treated control group, the MV-treated group exerts downregulation in the protein expressions of inducible nitric oxide synthase and cyclooxygenase-2, through inhibition of nuclear factor-κB activation. Protein expressions of glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 were also decreased in the MV-treated group. These findings suggest that MV prevents neuroinflammation by regulating the NF-κB signaling pathway and glial activation. PRACTICAL APPLICATION: Mulberry fruits (Morus alba L.) have been commonly consumed as juice or jam. It is a rich source of anthocyanins that might be associated with beneficial effects on human health, including the anti-oxidant, anti-inflammatory, anti-obesity, and anti-diabetic effects. Mulberry vinegar was produced by alcohol and acetic fermentation of mulberry juice, and they possessed a protective effect against LPS/IFN-γ-stimulated inflammatory responses in glial cells via regulation of glial activation and NF-κB signaling pathway (i.e., downregulation of iNOS, COX-2, TLR4, p-IκB, and NF-κB p65 protein expressions). Although further research especially animal and clinical trials are still necessary, the present study will be helpful to scale-up the production of functional vinegar with neuroprotective and anti-inflammatory properties using mulberry.
Collapse
Affiliation(s)
- Se In Bang
- Department of Food Science and Nutrition, Pusan National University, Busan, South Korea
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju, South Korea
| | - Weon Tack Seo
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju, South Korea
| | - Ah Young Lee
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju, South Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan, South Korea
| |
Collapse
|
13
|
Huang M, Liu Y, Dong W, Zhao Q, Duan R, Cao X, Wan Y, Yin J, Yi M. Toxicity of Pb continuous and pulse exposure on intestinal anatomy, bacterial diversity, and metabolites of Pelophylax nigromaculatus in pre-hibernation. CHEMOSPHERE 2022; 290:133304. [PMID: 34919911 DOI: 10.1016/j.chemosphere.2021.133304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Amphibians are often exposed to pulse pollution due to fluctuational inputs of pollutants in water. Traditional ecotoxicology research is mainly performed under constant exposure conditions, which is not consistent with the true environmental pollution. Frogs are sensitive to changes in water pollutants in pre-hibernation. Thus, to understand the toxicity difference to continuous and pulse exposure in environmental concentrations of Pb (100 μg/L), Pelophylax nigromaculatus adults were exposed to short-term treatments (8 days) in pre-hibernation. Individual mortality, intestinal anatomical structure, bacterial diversity, and metabolites were measured in a control group (CON), a Pb continuous treatment group (CEPb) and a Pb pulse treatment group (PEPb). The results showed that PEPb significantly increased individual mortality, compared to the control group and CEPb. PEPb induced pathological changes in the small intestinal tissues, such as mucosal erosion, swollen and distorted villi, large vacuoles, and the proliferation of goblet cells. In addition, PEPb altered the structure and diversity of intestinal bacteria, resulting in an increase in some pathogenic bacteria (e.g. Bacteroides and Ruminococcus) and a decrease in beneficial bacteria (e.g. Cetobacterium and Akkermansia). Both CEPb and PEPb significantly changed intestinal metabolites and metabolic pathways. Moreover, PEPb has a significant effect on the metabolism of amino acids by increasing the content of 5-Aminopentanoic acid, cis-4-Hydroxy-l-proline, Glycocholic acid, l-Alanine, and l-Isoleucine. We concluded that PEPb may lead to intestine impairment of P. nigromaculatus in pre-hibernation by inducing intestinal structural integrity destruction, bacterial imbalance, and metabolic dysfunction, resulting in a significant increase in mortality. The study provides new insights for understanding the intestinal responses of frogs to pulse metal exposure.
Collapse
Affiliation(s)
- Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Yang Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Wenjing Dong
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Qiang Zhao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
| | - Xiaohong Cao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Yuyue Wan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Jiawei Yin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Minghui Yi
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| |
Collapse
|
14
|
Oral and Intestinal Bacterial Substances Associated with Disease Activities in Patients with Rheumatoid Arthritis: A Cross-Sectional Clinical Study. J Immunol Res 2022; 2022:6839356. [PMID: 35224112 PMCID: PMC8881124 DOI: 10.1155/2022/6839356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/02/2023] Open
Abstract
Intestinal bacterial compositions of rheumatoid arthritis (RA) patients have been reported to be different from those of healthy people. Dysbiosis, imbalance of the microbiota, is widely known to cause gut barrier damage, resulting in an influx of bacteria and their substances into host bloodstreams in animal studies. However, few studies have investigated the effect of bacterial substances on the pathophysiology of RA. In this study, eighty-seven active RA patients who had inadequate responses to conventional synthetic disease-modifying antirheumatic drugs or severe comorbidities were analyzed for correlations between many factors such as disease activities, disease biomarkers, intestinal bacterial counts, fecal and serum lipopolysaccharide (LPS), LPS-binding protein (LBP), endotoxin neutralizing capacity (ENC), and serum antibacterial substance IgG and IgA antibody levels by multiple regression analysis with consideration for demographic factors such as age, sex, smoking, and methotrexate treatment. Serum LBP levels, fecal LPS levels, total bacteria counts, serum anti-LPS from Porphyromonas gingivalis (Pg-LPS) IgG antibody levels, and serum anti-Pg-LPS IgA antibody levels were selected for multiple regression analysis using Spearman’s correlation analysis. Serum LBP levels were correlated with disease biomarker levels, such as erythrocyte sedimentation rate (
), C-reactive protein (
), matrix metalloproteinase-3 (
), and IL-6 (
), and were inversely correlated with hemoglobin (
). Anti-Pg-LPS IgG antibody levels were inversely correlated with activity indices such as patient global assessments using visual analogue scale (VAS) (
) and painVAS (
). Total bacteria counts were correlated with ENC (
), and inversely correlated with serum LPS (
) and anti-Pg-LPS IgA antibody levels (
). These results suggest that substances from oral and gut microbiota may influence disease activity in RA patients.
Collapse
|
15
|
Amabebe E, Anumba DO. Diabetogenically beneficial gut microbiota alterations in third trimester of pregnancy. REPRODUCTION AND FERTILITY 2022; 2:R1-R12. [PMID: 35128441 PMCID: PMC8812459 DOI: 10.1530/raf-20-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022] Open
Abstract
Altered gut microbiota (dysbiosis), inflammation and weight gain are pivotal to the success of normal pregnancy. These are features of metabolic syndrome that ordinarily increase the risk of type 2 diabetes in non-pregnant individuals. Though gut microbiota influences host energy metabolism and homeostasis, the outcome (healthy or unhealthy) varies depending on pregnancy status. In a healthy pregnancy, the gut microbiota is altered to promote metabolic and immunological changes beneficial to the mother and foetus but could connote a disease state in non-pregnant individuals. During the later stages of gestation, metabolic syndrome-like features, that is, obesity-related gut dysbiotic microbiota, increased insulin resistance, and elevated pro-inflammatory cytokines, promote energy storage in adipose tissue for rapid foetal growth and development, and in preparation for energy-consuming processes such as parturition and lactation. The origin of this gestation-associated host–microbial interaction is still elusive. Therefore, this review critically examined the host–microbial interactions in the gastrointestinal tract of pregnant women at late gestation (third trimester) that shift host metabolism in favour of a diabetogenic or metabolic syndrome-like phenotype. Whether the diabetogenic effects of such interactions are indeed beneficial to both mother and foetus was also discussed with plausible mechanistic pathways and associations highlighted.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Dilly O Anumba
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
Le Noci V, Bernardo G, Bianchi F, Tagliabue E, Sommariva M, Sfondrini L. Toll Like Receptors as Sensors of the Tumor Microbial Dysbiosis: Implications in Cancer Progression. Front Cell Dev Biol 2021; 9:732192. [PMID: 34604233 PMCID: PMC8485072 DOI: 10.3389/fcell.2021.732192] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023] Open
Abstract
The microbiota is a complex ecosystem of active microorganisms resident in the body of mammals. Although the majority of these microorganisms resides in the distal gastrointestinal tract, high-throughput DNA sequencing technology has made possible to understand that several other tissues of the human body host their own microbiota, even those once considered sterile, such as lung tissue. These bacterial communities have important functions in maintaining a healthy body state, preserving symbiosis with the host immune system, which generates protective responses against pathogens and regulatory pathways that sustain the tolerance to commensal microbes. Toll-like receptors (TLRs) are critical in sensing the microbiota, maintaining the tolerance or triggering an immune response through the direct recognition of ligands derived from commensal microbiota or pathogenic microbes. Lately, it has been highlighted that the resident microbiota influences the initiation and development of cancer and its response to therapies and that specific changes in the number and distribution of taxa correlate with the existence of cancers in various tissues. However, the knowledge of functional activity and the meaning of microbiome changes remain limited. This review summarizes the current findings on the function of TLRs as sensors of the microbiota and highlighted their modulation as a reflection of tumor-associated changes in commensal microbiota. The data available to date suggest that commensal "onco-microbes" might be able to break the tolerance of TLRs and become complicit in cancer by sustaining its growth.
Collapse
Affiliation(s)
- Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Francesca Bianchi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
17
|
Chen G, Yang Z, Wen D, Guo J, Xiong Q, Li P, Zhao L, Wang J, Wu C, Dong L. Polydatin has anti-inflammatory and antioxidant effects in LPS-induced macrophages and improves DSS-induced mice colitis. Immun Inflamm Dis 2021; 9:959-970. [PMID: 34010516 PMCID: PMC8342204 DOI: 10.1002/iid3.455] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Polydatin (PD), a monocrystalline compound isolated from the root and rhizome of Polygonum cuspidatum, is widely used in inhibiting the inflammatory response and oxidative stress. PD has an anti-inflammatory effect on colitis mice; however, information regulating the mechanism by which maintains the intestinal epithelium barrier is currently scarce. Here, we assessed the anti-inflammatory and antioxidant of PD in lipopolysaccharide (LPS)-induced macrophages in vitro, and explored its effects on inhibiting intestinal inflammation and maintaining the intestinal epithelium barrier in dextran sodium sulfate (DSS)-induced colitis mice. Results showed that PD reduced the level of proinflammatory cytokines and enzymes, including tumor necrosis factor-α, interleukin-4 (IL-4), IL-6, cyclooxygenase-2, and inducible nitric oxide synthase, in LPS-induced macrophages, and improved the expression level of IL-10. PD maintained the expression of tight junction proteins in medium (LPS-induced macrophages medium)-induced MCEC cells. Additionally, PD inhibited the phosphorylation of nuclear factor-κB (NF-κB), p65, extracellular signal-regulated kinase-1/2, c-Jun N-terminal kinase, and p38 signaling pathways in LPS-induced macrophages and facilitated the phosphorylation of AKT and the nuclear translocation of Nrf2, improving the expression of HO-1 and NQO1. Furthermore, PD ameliorated the intestinal inflammatory response and improved the dysfunction of the colon epithelium barrier in DSS-induced colitis mice. Taken together, our results indicated that PD inhibited inflammation and oxidative stress, maintained the intestinal epithelium barrier, and the protective role of PD was associated with the NF-κB p65, itogen-activated protein kinases, and AKT/Nrf2/HO-1/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Guangxin Chen
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Ziyue Yang
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Da Wen
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Jian Guo
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
- Department of General Surgery, Shanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Qiuhong Xiong
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Ping Li
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Liping Zhao
- Department of Pathology, Shanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Junping Wang
- Department of Gastroenterology, Shanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Changxin Wu
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Lina Dong
- Central Laboratory, Shanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanShanxiChina
| |
Collapse
|
18
|
Su Y, Wang HK, Gan XP, Chen L, Cao YN, Cheng DC, Zhang DY, Liu WY, Li FF, Xu XM. Alterations of gut microbiota in gestational diabetes patients during the second trimester of pregnancy in the Shanghai Han population. J Transl Med 2021; 19:366. [PMID: 34446048 PMCID: PMC8394568 DOI: 10.1186/s12967-021-03040-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The causes of gestational diabetes mellitus (GDM) are still unclear. Recent studies have found that the imbalance of the gut microbiome could lead to disorders of human metabolism and immune system, resulting in GDM. This study aims to reveal the different gut compositions between GDM and normoglycemic pregnant women and find the relationship between gut microbiota and GDM. METHODS Fecal microbiota profiles from women with GDM (n = 21) and normoglycemic women (n = 32) were assessed by 16S rRNA gene sequencing. Fasting metabolic hormone concentrations were measured using multiplex ELISA. RESULTS Metabolic hormone levels, microbiome profiles, and inferred functional characteristics differed between women with GDM and healthy women. Additionally, four phyla and seven genera levels have different correlations with plasma glucose and insulin levels. Corynebacteriales (order), Nocardiaceae (family), Desulfovibrionaceae (family), Rhodococcus (genus), and Bacteroidetes (phylum) may be the taxonomic biomarkers of GDM. Microbial gene functions related to amino sugar and nucleotide sugar metabolism were found to be enriched in patients with GDM. CONCLUSION Our study indicated that dysbiosis of the gut microbiome exists in patients with GDM in the second trimester of pregnancy, and gut microbiota might be a potential diagnostic biomarker for the diagnosis, prevention, and treatment of GDM.
Collapse
Affiliation(s)
- Yao Su
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 of Haining Road, Hongkou District, Shanghai, 201600, China
| | - Hong-Kun Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 of Haining Road, Hongkou District, Shanghai, 201600, China
| | - Xu-Pei Gan
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 of Haining Road, Hongkou District, Shanghai, 201600, China
| | - Li Chen
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 of Haining Road, Hongkou District, Shanghai, 201600, China
| | - Yan-Nan Cao
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 of Haining Road, Hongkou District, Shanghai, 201600, China
| | - De-Cui Cheng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 of Haining Road, Hongkou District, Shanghai, 201600, China
| | - Dong-Yao Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 of Haining Road, Hongkou District, Shanghai, 201600, China
| | - Wen-Yu Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 of Haining Road, Hongkou District, Shanghai, 201600, China
| | - Fei-Fei Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 of Haining Road, Hongkou District, Shanghai, 201600, China.
| | - Xian-Ming Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 of Haining Road, Hongkou District, Shanghai, 201600, China.
| |
Collapse
|
19
|
Chen B, Luo J, Han Y, Du H, Liu J, He W, Zhu J, Xiao J, Wang J, Cao Y, Xiao H, Song M. Dietary Tangeretin Alleviated Dextran Sulfate Sodium-Induced Colitis in Mice via Inhibiting Inflammatory Response, Restoring Intestinal Barrier Function, and Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7663-7674. [PMID: 34182753 DOI: 10.1021/acs.jafc.1c03046] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, the preventive effect of tangeretin (TAN), a natural flavonoid derivative from citrus fruits, on the dextran sulfate sodium (DSS)-induced colitis in mice was evaluated. Our results showed that dietary TAN (0.04% and 0.08% w/w in the diet) significantly reduced the severity of colitis caused by DSS treatment in mice, evidenced by the increased colon length, the reduced disease activity index, and the attenuated colonic tissue damages. Moreover, dietary TAN inhibited the inflammatory response via down-regulating the overexpression of colonic inflammatory cytokines. Immunohistochemical analysis revealed that the intestinal barrier function was restored by TAN through enhancing claudin-1 and ZO-1 expressions. Additionally, dietary TAN modulated gut microbiota in colitic mice via enhancing gut microbiota diversity, ascending the level of beneficial bacteria, e.g., Lachnospiraceae and Lactobacillaceae, and descending the level of harmful bacteria, e.g., Enterobacteriaceae and Alistipes. Besides, dietary TAN promoted short-chain fatty acids production in DSS-treated mice. Altogether, these findings provided scientific evidence for the rational utilization of TAN as a preventive agent against colonic inflammation and related diseases.
Collapse
Affiliation(s)
- Bin Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Jiakang Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Wei He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Jinhui Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
20
|
Becker HEF, Jamin C, Bervoets L, Boleij A, Xu P, Pierik MJ, Stassen FRM, Savelkoul PHM, Penders J, Jonkers DMAE. Higher Prevalence of Bacteroides fragilis in Crohn's Disease Exacerbations and Strain-Dependent Increase of Epithelial Resistance. Front Microbiol 2021; 12:598232. [PMID: 34168621 PMCID: PMC8219053 DOI: 10.3389/fmicb.2021.598232] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteroides fragilis has previously been linked to Crohn's disease (CD) exacerbations, but results are inconsistent and underlying mechanisms unknown. This study investigates the epidemiology of B. fragilis and its virulence factors bft (enterotoxin) and ubiquitin among 181 CD patients and the impact on the intestinal epithelial barrier in vitro. The prevalence of B. fragilis was significantly higher in active (n = 69/88, 78.4%) as compared to remissive (n = 58/93, 62.4%, p = 0.018) CD patients. Moreover, B. fragilis was associated with intestinal strictures. Interestingly, the intestinal barrier function, as examined by transepithelial electrical resistance (TEER) measurements of Caco-2 monolayers, increased when exposed to secretomes of bft-positive (bft-1 and bft-2 isotype; increased TEER ∼160%, p < 0.001) but not when exposed to bft-negative strains. Whole metagenome sequencing and metabolomics, respectively, identified nine coding sequences and two metabolites that discriminated TEER-increasing from non-TEER-increasing strains. This study revealed a higher B. fragilis prevalence during exacerbation. Surprisingly, bft-positive secretomes increased epithelial resistance, but we excluded Bft as the likely causative factor.
Collapse
Affiliation(s)
- Heike E. F. Becker
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Division of Gastroenterology/Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Casper Jamin
- Department of Medical Microbiology, Caphri School for Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Liene Bervoets
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Annemarie Boleij
- Department of Pathology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Pan Xu
- Division of Gastroenterology/Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Marie J. Pierik
- Division of Gastroenterology/Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Frank R. M. Stassen
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Paul H. M. Savelkoul
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Center, Location VUMC, Amsterdam, Netherlands
| | - John Penders
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Caphri School for Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Daisy M. A. E. Jonkers
- Division of Gastroenterology/Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
21
|
Kitamura K, Sasaki M, Matsumoto M, Shionoya H, Iida K. Protective effect of Bacteroides fragilis LPS on Escherichia coli LPS-induced inflammatory changes in human monocytic cells and in a rheumatoid arthritis mouse model. Immunol Lett 2021; 233:48-56. [PMID: 33741378 DOI: 10.1016/j.imlet.2021.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
It has been reported that patients with rheumatoid arthritis (RA) have significantly less bacteria belonging to the Bacteroides group in their microbiota. We speculate that inhibition of cytokine production is impaired in patients with RA owing to their low levels of intestinal bacteria belonging to the Bacteroidetes group. Here we investigated the effect of Bacteroides fragilis lipopolysaccharide (B-LPS) on cytokine production in vitro and on the development of collagen antibody-induced arthritis (CAIA) in DBA/1 mice, an animal model of RA. in vitro culture experiments showed that Escherichia coli LPS (E-LPS)-induced cytokine production from THP-1 monocytic cells and peripheral blood mononuclear cells was significantly suppressed by B-LPS in a dose-dependent manner. A decrease in TNF-α and IL-1β production was also observed in LPS-tolerized macrophages induced by B-LPS at concentrations equal to and higher than that of E-LPS. Similar results were obtained when autoclaved feces were used to induce cytokine production instead of E-LPS. In in vivo experiments using CAIA models, B-LPS had no adverse effects even when administered at 10 times the concentration of E-LPS, which elicits severe arthritis. In addition, simultaneous administration of high dose B-LPS with E-LPS or administration of B-LPS prior to E-LPS significantly suppressed arthritis development in CAIA model animals when compared with administration of E-LPS alone. These results suggest that increasing certain bacterial groups such as Bacteroides is an effective strategy for preventing arthritis development in patients with RA.
Collapse
Affiliation(s)
- Kaori Kitamura
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan; Research Lab Section 5, Asama Chemical Co Ltd, 20-6 Kodenmacho, Chuo-ku, Tokyo, 103-0001, Japan
| | - Mizuho Sasaki
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Moe Matsumoto
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Hiroshi Shionoya
- Research Lab Section 5, Asama Chemical Co Ltd, 20-6 Kodenmacho, Chuo-ku, Tokyo, 103-0001, Japan
| | - Kaoruko Iida
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan; Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan.
| |
Collapse
|
22
|
Chen L, Liu Y, Tang Z, Shi X, Song Z, Cao F, Wei P, Li M, Li X, Jiang D, Yan Y, Yang N. Improvements in estrogen deficiency-induced hypercholesterolemia by Hypericum perforatum L. extract are associated with gut microbiota and related metabolites in ovariectomized (OVX) rats. Biomed Pharmacother 2021; 135:111131. [PMID: 33383372 DOI: 10.1016/j.biopha.2020.111131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Hypericum perforatum L. (HP), a well-known natural medicine, has a potential effect on menopausal hypercholesterolemia. However, the effect of HP extract on gut microbiota and related metabolites, which play vital roles in metabolic disease occurrence, in the context of estrogen deficiency have not yet been reported. The aims of the present study were to investigate the effects of HP extract on gut microbial composition and related metabolite profiles in ovariectomized (OVX) rats and reveal the relationships between pathological indicators and alterations in both gut microbial composition at the genus level and metabolites. Body weight, serum parameters, liver lipids and histomorphology were determined. Microbial composition was analyzed using 16S rRNA sequencing. Fecal short-chain fatty acids (SCFAs) and serum bile acids were quantitatively measured. Correlations between pathological indicators and alteration in gut microbiota and metabolites were investigated using Spearman's rank correlation test. Gene expression of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, cholesterol 7α-hydroxylase (CYP7A1) and cholesterol 27-hydroxylase (CYP27A1) in the liver and G protein-coupled receptors (GPCRs; GPR43 and GPR41), ZO-1 and occludin in the cecum were determined by PCR. Microbial composition and metabolite profiles were significantly changed in OVX rats compared with sham rats. Twelve bacterial genera, 5 SCFAs and 12 bile acids were identified as differential biomarkers. Differential genera, SCFAs and bile acids were closely associated with weight, total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). In OVX rats, HP administration can significantly reverse the pathological symptoms of body weight gain, serum lipid disorders and hepatic steatosis, at the meanwhile, reestablish gut microbial composition and metabolite profiles. Moreover, HP administration significantly upregulated the levels of CYP7A1, GPR43 and GPR41. In conclusion, HP can ameliorate estrogen deficiency-induced hypercholesterolemia. The underlying mechanism may be associated with improvements in gut microbiota composition and the profile of related metabolites as well as increases in bile acid secretion.
Collapse
Affiliation(s)
- Lin Chen
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China
| | - Yanru Liu
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China.
| | - Zhishu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China.
| | - Xinbo Shi
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China
| | - Zhongxing Song
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China
| | - Fan Cao
- College of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi, PR China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi, PR China
| | - Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi, PR China
| | - Xiaohong Li
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China
| | - Dahai Jiang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China
| | - Yafeng Yan
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China
| | - Ningjuan Yang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China
| |
Collapse
|
23
|
Zhang Y, Zhang P, Shang X, Lu Y, Li Y. Exposure of lead on intestinal structural integrity and the diversity of gut microbiota of common carp. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108877. [PMID: 32828913 DOI: 10.1016/j.cbpc.2020.108877] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
Lead is an environmental toxicant that has toxicity effect to the health of aquatic organisms. Gut microbiota has been reported to be closely related to human health. The aim of this study was to investigate the effects of lead exposure on the composition of gut microbiota. The composition of gut microbiota alteration was detected by 16S rRNA gene sequencing, following a 42-day exposure of lead (1 mg/L). The results showed that compared with the normal control group, the carp of lead group showed severe intestinal tissues injury and decreased Zona Occludens 1 (ZO-1) and occludin expression. The production of LPS in serum was increased by the treatment of lead exposure. Our results showed gut bacterial diversity in lead-treated common carp was lower than the control group. At the phylum level, the abundance of Bacteroidetes (LPS producing bacteria) and Fusobacteria in lead-treated carp were much higher than the control carp. And the abundance of Actinobacteria decreased by lead exposure. At the genus level, we found the abundance of Bacteroides (LPS producing bacteria) and Plesiomonas (an important pathogenic bacteria), increased significantly by lead exposure. And the abundance of Akkermansia, a critical probiotics, was markedly inhibited by lead exposure. In conclusion, this study indicated exposure of carp to lead causes gut microbiota alterations and intestinal structural integrity destruction.
Collapse
Affiliation(s)
- Yue Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Peijun Zhang
- Health Monitoring and Inspection Center of Jilin Province, Changchun 130062, China
| | - Xinchi Shang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Yuting Lu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
24
|
Zhao Y, Jaber V, Lukiw WJ. Gastrointestinal Tract Microbiome-Derived Pro-inflammatory Neurotoxins in Alzheimer's Disease. JOURNAL OF AGING SCIENCE 2021; 9:002. [PMID: 34671696 PMCID: PMC8525708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The microbiome contained within the human gastrointestinal (GI)-tract constitutes a highly complex, dynamic and interactive internal prokaryotic ecosystem that possesses a staggering diversity, speciation and complexity. This repository of microbes comprises the largest interactive source and highest density of microbes anywhere in nature, collectively constituting the largest 'diffuse organ system' in the human body. Through the extracellular fluid (ECF), cerebrospinal fluid (CSF), lymphatic and glymphatic circulation, endocrine, systemic and neurovascular circulation and/or central and peripheral nervous systems (CNS, PNS) microbiome-derived signaling strongly impacts the health, well-being and vitality of the human host. Recent data from the Human Microbiome Initiative (HMI) and the Unified Human Gastrointestinal Genome (UHGG) consortium have classified over ~200 thousand diverse, non-redundant prokaryotic genomes in the human GI-tract microbiome involving about ~5 thousand different GI-tract microbes that all together encode almost ~200 million different protein sequences. While the largest proportion of different microbiome-derived proteins, lipoproteins and nucleic acids provide essential microorganism-specific gene products necessary to support microbial structure, function and viability, many of these same components are also shed from the outer cell wall of different Gram-negative bacterial species into surrounding biofluids which eventually enter the systemic circulation. Several of these microbial-derived secreted molecular species represent some of the most pro-inflammatory and noxious neurotoxins known. These neurotoxins disrupt cell-cell adhesion and easily translocate across aged or damaged plasma membranes and into the systemic circulation, brain, and CNS and PNS compartments. For example, microbial lipoprotein glycoconjugates such as Gram-negative bacteria-derived lipopolysaccharide (LPS), bacterial amyloids and more recently small non-coding RNA (sncRNA) microbial-derived neurotoxins have been found by many independent research groups to reside within the brain cells and CNS tissues of aged patients affected with Alzheimer's disease (AD). This 'Commentary' will highlight the most recent findings on these microbial-derived secreted toxins, their neurotropic properties and the potential contribution of these neurotoxic and pro-inflammatory microbial exudates to age-related inflammatory neurodegeneration, with specific reference to the human GI-tract abundant Gram-negative anaerobe Bacteroides fragilis and to AD wherever possible.
Collapse
Affiliation(s)
- Yuhai Zhao
- Department of Anatomy and Cell Biology, Louisiana State University, New Orleans, USA,LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, USA
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, USA
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, USA,Department of Ophthalmology, LSU Neuroscience Center Louisiana State University Health Science Center, New Orleans, USA,Department Neurology, LSU Neuroscience Center Louisiana State University Health Science Center, New Orleans, USA
| |
Collapse
|
25
|
Lukiw WJ, Arceneaux L, Li W, Bond T, Zhao Y. Gastrointestinal (GI)-Tract Microbiome Derived Neurotoxins and their Potential Contribution to Inflammatory Neurodegeneration in Alzheimer's Disease (AD). JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2021; 11:525. [PMID: 34457996 PMCID: PMC8395586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human gastrointestinal (GI)-tract microbiome is a rich, complex and dynamic source of microorganisms that possess a staggering diversity and complexity. Importantly there is a significant variability in microbial complexity even amongst healthy individuals-this has made it difficult to link specific microbial abundance patterns with age-related neurological disease. GI-tract commensal microorganisms are generally beneficial to human metabolism and immunity, however enterotoxigenic forms of microbes possess significant potential to secrete what are amongst the most neurotoxic and pro-inflammatory biopolymers known. These include toxic glycolipids such as lipopolysaccharide (LPS), enterotoxins, microbial-derived amyloids and small non-coding RNA. One major microbial species of the GI-tract microbiome, about ~100-fold more abundant than Escherichia coli in deep GI-tract regions is Bacteroides fragilis, an anaerobic, rod-shaped Gram-negative bacterium. B. fragilis can secrete: (i) a particularly potent, pro-inflammatory and unique LPS subtype (BF-LPS); and (ii) a zinc-metalloproteinase known as B. fragilis-toxin (BFT) or fragilysin. Ongoing studies indicate that BF-LPS and/or BFT disrupt paracellular-and transcellular-barriers by cleavage of intercellular-proteins resulting in 'leaky' barriers. These barriers: (i) become defective and more penetrable with aging and disease; and (ii) permit entry of microbiome-derived neurotoxins into the systemic-circulation from which they next transit the blood-brain barrier and gain access to the CNS. Here LPS accumulates and significantly alters homeostatic patterns of gene expression. The affinity of LPS for neuronal nuclei is significantly enhanced in the presence of amyloid beta 42 (Aβ42) peptides. Recent research on the appearance of the brain thanatomicrobiome at the time of death and the increasing likelihood of a complex brain microbiome are reviewed and discussed. This paper will also highlight some recent advances in this extraordinary research area that links the pro-inflammatory exudates of the GI-tract microbiome with innate-immune disturbances and inflammatory-signaling within the CNS with reference to Alzheimer's disease (AD) wherever possible.
Collapse
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States,Department of Ophthalmology, LSU Health Sciences Center,
New Orleans, LA, United States,Department of Neurology, Louisiana State University Health
Sciences Center, New Orleans, LA, United States,Corresponding author: Dr. Walter J. Lukiw, LSU
Neuroscience Center, Louisiana State University Health Sciences Center, New
Orleans, LA, United States,
| | - Lisa Arceneaux
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States,Department of Pharmacology, School of Pharmacy, Jiangxi
University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Taylor Bond
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States,Department of Anatomy and Cell Biology, Louisiana State
University, New Orleans, LA, United States
| |
Collapse
|
26
|
Liu QQ, Li CM, Fu LN, Wang HL, Tan J, Wang YQ, Sun DF, Gao QY, Chen YX, Fang JY. Enterotoxigenic Bacteroides fragilis induces the stemness in colorectal cancer via upregulating histone demethylase JMJD2B. Gut Microbes 2020; 12:1788900. [PMID: 32684087 PMCID: PMC7524313 DOI: 10.1080/19490976.2020.1788900] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The enrichment of Enterotoxigenic Bacteroides fragilis (ETBF) has been identified in CRC patients and associated with worse prognosis. Cancer stem cells (CSCs) play essential roles in CRC development. However, whether ETBF is involved in CSCs regulation is unknown. To clarify the role of ETBF in CSCs properties, we performed extreme limited dilution assays (ELDA) in nude mice injected with ETBF-treated or untreated CRC cells subcutaneously, tumor organoids culture in azoxymethane (AOM) mouse model after gavaging with or without ETBF, and cell sphere formation assay after incubating CRC cell lines with or without ETBF. The results indicated that ETBF increased the stemness of CRC cells in vivo and in vitro. Furthermore, ETBF enhanced the expression of core stemness transcription factors Nanog homeobox (NANOG) and sex determining region Y-box 2 (SOX2). Histone H3 Lysine 9 trimethylation (H3K9me3) is critical in regulating CSCs properties. As an epigenetic and transcriptional regulator, JmjC-domain containing histone demethylase 2B (JMJD2B) is essential for embryonic stem cell (ESC) transformation and H3K9me3 demethylation. Mechanistically, ETBF infection significantly upregulated JMJD2B levels in CRC cell lines and nude mice xenograft model. JMJD2B epigenetically upregulated NANOG expression via demethylating its promoter H3K9me3, to mediate ETBF-induced stemness of CRC cells. Subsequently, we found that the Toll-like receptor 4 (TLR4) pathway, activated by ETBF, contributed to the enhanced expression of JMJD2B via nuclear transcription factor nuclear factor of activated T cells 5 (NFAT5). Finally, in human CRC samples, the amount of ETBF positively correlated with nuclear NFAT5, JMJD2B, and NANOG expression levels. In summary, ETBF upregulated JMJD2B levels in a TLR4-NFAT5-dependent pathway, and played an important role in stemness regulation, which promoted colorectal carcinogenesis.
Collapse
Affiliation(s)
- Qian-Qian Liu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Min Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Na Fu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Lian Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Tan
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Qian Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan-Feng Sun
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin-Yan Gao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Qin-Yan Gao Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai200001, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,CONTACT Xuan Chen
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Peng L, Gao X, Nie L, Xie J, Dai T, Shi C, Tao L, Wang Y, Tian Y, Sheng J. Astragalin Attenuates Dextran Sulfate Sodium (DSS)-Induced Acute Experimental Colitis by Alleviating Gut Microbiota Dysbiosis and Inhibiting NF-κB Activation in Mice. Front Immunol 2020; 11:2058. [PMID: 33042117 PMCID: PMC7523281 DOI: 10.3389/fimmu.2020.02058] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
With the ulcerative colitis (UC) incidence increasing worldwide, it is of great importance to prevent and treat UC. However, efficient treatment options for UC are relatively limited. Due to the potentially serious adverse effects of existing drugs, there is an increasing demand for alternative candidate resources derived from natural and functional foods. Astragalin (AG) is a type of anti-inflammatory flavonoid, with Moringa oleifera and Cassia alata being its main sources. In this study, we investigated the therapeutic effects of AG on mice with dextran sulfate sodium (DSS)-induced colitis. Our results suggested that AG treatment reduced weight loss and the disease activity index (DAI), prevented colon shortening and alleviated colonic tissue damage. AG treatment reduced the expression of pro-inflammatory cytokines and related mRNAs (such as TNF-α, IL-6, and IL-1β), inhibited colonic infiltration by macrophages and neutrophils, ameliorated metabolic endotoxemia, and improved intestinal mucosal barrier function (increased expression levels of mRNAs such as ZO-1, occludin, and Muc2). Western blot analysis revealed that AG downregulated the NF-κB signaling pathway. Moreover, AG treatment partially reversed the alterations in the gut microbiota in colitis mice, mainly by increasing the abundance of potentially beneficial bacteria (such as Ruminococcaceae) and decreasing the abundance of potentially harmful bacteria (such as Escherichia-Shigella). Ruminococcaceae and Enterobacteriaceae (Escherichia-Shigella) were thought to be the key groups affected by AG to improve UC. Therefore, AG might exert a good anti-UC effect through microbiota/LPS/TLR4/NF-kB-related pathways in mice. The results of this study reveal the anti-inflammatory effect and mechanism of AG and provide an important reference for studying the mechanisms of natural flavonoids involved in preventing inflammation-driven diseases.
Collapse
Affiliation(s)
- Lei Peng
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Yunnan Province Research Institute of Plateau Characteristic Agricultural Industry, Kunming, China
| | - Xiaoyu Gao
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Province Research Institute of Plateau Characteristic Agricultural Industry, Kunming, China.,Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China
| | - Long Nie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jing Xie
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Tianyi Dai
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Chongying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Liang Tao
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Yan Wang
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Yunnan Province Research Institute of Plateau Characteristic Agricultural Industry, Kunming, China.,Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
28
|
Bundgaard-Nielsen C, Knudsen J, Leutscher PDC, Lauritsen MB, Nyegaard M, Hagstrøm S, Sørensen S. Gut microbiota profiles of autism spectrum disorder and attention deficit/hyperactivity disorder: A systematic literature review. Gut Microbes 2020; 11:1172-1187. [PMID: 32329656 PMCID: PMC7524304 DOI: 10.1080/19490976.2020.1748258] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Accumulating evidence has implicated an involvement of the gut-brain axis in autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD), however with highly diverse results. This systematic review aims to describe and evaluate studies investigating the gut microbiota composition in individuals with ASD or ADHD and to evaluate if variations in gut microbiota are associated with these disorders. Twenty-four articles were identified in a systematic literature search of PubMed and Embase up to July 22, 2019. They consisted of 20 studies investigating ASD and four studies investigating ADHD. For ASD, several studies agreed on an overall difference in β-diversity, although no consistent bacterial variation between all studies was reported. For ADHD, the results were more diverse, with no clear differences observed. Several common characteristics in gut microbiota function were identified for ASD compared to controls. In contrast, highly heterogeneous results were reported for ADHD, and thus the association between gut microbiota composition and ADHD remains unclear. For both disorders, methodological differences hampered the comparison of studies.
Collapse
Affiliation(s)
- Caspar Bundgaard-Nielsen
- Centre for Clinical Research, North Denmark Regional Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark,CONTACT Caspar Bundgaard-Nielsen Centre for Clinical Research North Denmark Regional Hospital and Department of Clinical Medicine, Aalborg University, Aalborg, Denmark Bispensgade 37, 9800 Hjoerring, Denmark
| | - Julie Knudsen
- Centre for Clinical Research, North Denmark Regional Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Peter D. C. Leutscher
- Centre for Clinical Research, North Denmark Regional Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Marlene B. Lauritsen
- Research Unit for Child and Adolescent Psychiatry, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Søren Hagstrøm
- Centre for Clinical Research, North Denmark Regional Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark,Department of Pediatrics, Aalborg University Hospital, Aalborg, Denmark
| | - Suzette Sørensen
- Centre for Clinical Research, North Denmark Regional Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
29
|
Wang C, Zhao J, Zhang H, Lee YK, Zhai Q, Chen W. Roles of intestinal bacteroides in human health and diseases. Crit Rev Food Sci Nutr 2020; 61:3518-3536. [PMID: 32757948 DOI: 10.1080/10408398.2020.1802695] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteroides, an abundant genus in the intestines of mammals, has been recently considered as the next generation probiotics (NGP) candidate due to its potential role in promoting host health. However, the role of Bacteroides in the development of intestinal dysfunctions such as diarrhea, inflammatory bowel disease, and colorectal cancer should not be overlooked. In the present study, we focused on nine most widely occurred and abundant Bacteroides species and discussed their roles in host immunity, glucose and lipid metabolism and the prevention or induction of diseases. Besides, we also discussed the current methods used in the safety evaluation of Bacteroides species and key opinions about the concerns of these strains for the future use.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Research Institute, Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
30
|
Yoshida N, Yamashita T, Kishino S, Watanabe H, Sasaki K, Sasaki D, Tabata T, Sugiyama Y, Kitamura N, Saito Y, Emoto T, Hayashi T, Takahashi T, Shinohara M, Osawa R, Kondo A, Yamada T, Ogawa J, Hirata KI. A possible beneficial effect of Bacteroides on faecal lipopolysaccharide activity and cardiovascular diseases. Sci Rep 2020; 10:13009. [PMID: 32747669 PMCID: PMC7398928 DOI: 10.1038/s41598-020-69983-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Faecal lipopolysaccharides (LPS) have attracted attention as potent elements to explain a correlation between the gut microbiota and cardiovascular disease (CVD) progression. However, the underlying mechanism of how specific gut bacteria contribute to faecal LPS levels remains unclear. We retrospectively analysed the data of 92 patients and found that the abundance of the genus Bacteroides was significantly and negatively correlated with faecal LPS levels. The controls showed a higher abundance of Bacteroides than that in the patients with CVD. The endotoxin units of the Bacteroides LPS, as determined by the limulus amoebocyte lysate (LAL) tests, were drastically lower than those of the Escherichia coli LPS; similarly, the Bacteroides LPS induced relatively low levels of pro-inflammatory cytokine production and did not induce sepsis in mice. Fermenting patient faecal samples in a single-batch fermentation system with Bacteroides probiotics led to a significant increase in the Bacteroides abundance, suggesting that the human gut microbiota could be manipulated toward decreasing the faecal LPS levels. In the clinical perspective, Bacteroides decrease faecal LPS levels because of their reduced LAL activity; therefore, increasing Bacteroides abundance might serve as a novel therapeutic approach to prevent CVD via reducing faecal LPS levels and suppressing immune responses.
Collapse
Affiliation(s)
- Naofumi Yoshida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 6500017, Japan
| | - Tomoya Yamashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 6500017, Japan.
| | - Shigenobu Kishino
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Kyoto, 6068502, Japan
| | - Hikaru Watanabe
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, 1528550, Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 6578501, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 6578501, Japan
| | - Tokiko Tabata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 6500017, Japan
| | - Yuta Sugiyama
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Kyoto, 6068502, Japan
| | - Nahoko Kitamura
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Kyoto, 6068502, Japan
| | - Yoshihiro Saito
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 6500017, Japan
| | - Takuo Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 6500017, Japan
| | - Tomohiro Hayashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 6500017, Japan
| | - Tomoya Takahashi
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, 1528550, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, 6500017, Japan
| | - Ro Osawa
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, 6578501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 6578501, Japan
| | - Takuji Yamada
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, 1528550, Japan
| | - Jun Ogawa
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Kyoto, 6068502, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 6500017, Japan
| |
Collapse
|
31
|
Indiani CMDSP, Rizzardi KF, Castelo PM, Ferraz LFC, Darrieux M, Parisotto TM. Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Child Obes 2018; 14:501-509. [PMID: 30183336 DOI: 10.1089/chi.2018.0040] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The aim of the present study was to undertake a systematic review exploring the relationship between childhood obesity and fecal microorganisms, to answer the following question: "Are Firmicutes and Bacteroidetes a significant risk indicator/factor for obesity in children?" The main search terms were "child" and "obesity" together with "gut microbiota" (PubMed: 2005-2017). The minimal requirements for inclusion were the evaluation of gut microbiota composition and BMI in children between 0 and 13 years of age. METHODS Assessed articles were carefully classified according to a predetermined criterion, and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) were considered. Seven articles were critically appraised and used as a basis for conclusions. RESULTS Three studies showed a positive association between Bacteroides fragilis and obesity. In addition, a high value of evidence indicated that a decrease in the Bacteroidetes phylum and in Bacteroides/Prevotella groups was related to high BMI. For the Firmicutes phylum, one high-quality study highlighted that it was positively correlated with weight gain. With regard to Firmicutes species, Clostridium leptum, Eubacterium hallii, and Lactobacillus spp. indicated adipose tissue storage, while Clostridium difficile and the Staphylococcus genus were correlated with low BMI. Despite the fact that only one study did not perform real-time polymerase chain reaction to quantify the microorganisms, its results corroborated those of the studies that did. CONCLUSIONS Changes in Firmicutes and Bacteroidetes phyla/species levels might in fact be significant indicators/factors for childhood obesity. However, given the small number of articles appraising these entire phyla and the heterogeneity among the species assessed, further well-designed studies are required to improve the knowledge.
Collapse
Affiliation(s)
| | - Karina Ferreira Rizzardi
- 1 Laboratory of Molecular Biology of Microorganisms, University São Francisco , São Paulo, Brazil
| | - Paula Midori Castelo
- 2 Department of Pharmaceutical Sciences, Federal University of São Paulo , São Paulo, Brazil
| | | | - Michelle Darrieux
- 1 Laboratory of Molecular Biology of Microorganisms, University São Francisco , São Paulo, Brazil
| | - Thaís Manzano Parisotto
- 1 Laboratory of Molecular Biology of Microorganisms, University São Francisco , São Paulo, Brazil
| |
Collapse
|
32
|
Ferrocino I, Ponzo V, Gambino R, Zarovska A, Leone F, Monzeglio C, Goitre I, Rosato R, Romano A, Grassi G, Broglio F, Cassader M, Cocolin L, Bo S. Changes in the gut microbiota composition during pregnancy in patients with gestational diabetes mellitus (GDM). Sci Rep 2018; 8:12216. [PMID: 30111822 PMCID: PMC6093919 DOI: 10.1038/s41598-018-30735-9] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Gestational diabetes mellitus (GDM), a common pregnancy complication, is associated with an increased risk of maternal/perinatal outcomes. We performed a prospective observational explorative study in 41 GDM patients to evaluate their microbiota changes during pregnancy and the associations between the gut microbiota and variations in nutrient intakes, anthropometric and laboratory variables. GDM patients routinely received nutritional recommendations according to guidelines. The fecal microbiota (by 16S amplicon-based sequencing), was assessed at enrolment (24-28 weeks) and at 38 weeks of gestational age. At the study end, the microbiota α-diversity significantly increased (P < 0.001), with increase of Firmicutes and reduction of Bacteroidetes and Actinobacteria. Patients who were adherent to the dietary recommendations showed a better metabolic and inflammatory pattern at the study-end and a significant decrease in Bacteroides. In multiple regression models, Faecalibacterium was significantly associated with fasting glucose; Collinsella (directly) and Blautia (inversely) with insulin, and with Homeostasis-Model Assessment Insulin-Resistance, while Sutterella with C-reactive protein levels. Consistent with this latter association, the predicted metagenomes showed a correlation between those taxa and inferred KEGG genes associated with lipopolysaccharide biosynthesis. A higher bacterial richness and strong correlations between pro-inflammatory taxa and metabolic/inflammatory variables were detected in GDM patients across pregnancy. Collectively these findings suggest that the development of strategies to modulate the gut microbiota might be a potentially useful tool to impact on maternal metabolic health.
Collapse
Affiliation(s)
- Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Valentina Ponzo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Adriana Zarovska
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Filomena Leone
- Clinical Nutrition Unit, S. Anna Hospital, Città della Salute e della Scienza, Turin, Italy
| | - Clara Monzeglio
- Gynecology and Obstetrics Unit, S. Anna Hospital, Città della Salute e della Scienza, Turin, Italy
| | - Ilaria Goitre
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Rosalba Rosato
- Department of Psychology, University of Turin, Turin, Italy
| | - Angelo Romano
- SC Controllo Alimenti e Igiene delle Produzioni, Istituto Zooprofilattico Sperimentale PVL, Turin, Italy
| | - Giorgio Grassi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Fabio Broglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy.
| | - Simona Bo
- Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
33
|
Oral administration of Pantoea agglomerans-derived lipopolysaccharide prevents metabolic dysfunction and Alzheimer's disease-related memory loss in senescence-accelerated prone 8 (SAMP8) mice fed a high-fat diet. PLoS One 2018; 13:e0198493. [PMID: 29856882 PMCID: PMC5983504 DOI: 10.1371/journal.pone.0198493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/20/2018] [Indexed: 12/30/2022] Open
Abstract
The pathogenesis of Alzheimer’s disease (AD) remains unclear, but an imbalance between the production and clearance of amyloid-β (Aβ) peptides is known to play a critical role in AD progression. A promising preventative approach is to enhance the normal Aβ clearance activity of brain phagocytes such as microglia. In mice, the intraperitoneal injection of Toll-like receptor 4 agonist was shown to enhance Aβ clearance and exhibit a preventative effect on AD-related pathology. Our previous clinical study demonstrated that orally administered Pantoea agglomerans-derived lipopolysaccharide (LPSp) exhibited an LDL (low-density lipoprotein)-lowering effect in human volunteers with hyperlipidemia, a known risk factor for AD. In vitro studies have shown that LPSp treatment increases Aβ phagocytosis by microglial cells; however it is still unclear whether orally administered LPSp exhibits a preventive effect on AD progression. We show here that in senescence-accelerated prone 8 (SAMP8) mice fed a high-fat diet, oral administration of LPSp at 0.3 or 1 mg/kg body weight·day for 18 weeks significantly improved glucose metabolism and lipid profiles. The LPSp treatment also reduced pro-inflammatory cytokine expression and oxidative-burst activity in the peripheral blood. Moreover, LPSp significantly reduced brain Aβ burden and memory impairment as seen in the water maze test, although we could not confirm a significant enhancement of Aβ phagocytosis in microglia isolated from the brains after treatment. Taken together, our results show that LPSp holds promise as a preventative therapy for AD or AD-related diseases induced by impairment of metabolic functions.
Collapse
|
34
|
Ma N, Guo P, Zhang J, He T, Kim SW, Zhang G, Ma X. Nutrients Mediate Intestinal Bacteria-Mucosal Immune Crosstalk. Front Immunol 2018; 9:5. [PMID: 29416535 PMCID: PMC5787545 DOI: 10.3389/fimmu.2018.00005] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
The intestine is the shared site of nutrient digestion, microbiota colonization and immune cell location and this geographic proximity contributes to a large extent to their interaction. The onset and development of a great many diseases, such as inflammatory bowel disease and metabolic syndrome, will be caused due to the imbalance of body immune. As competent assistants, the intestinal bacteria are also critical in disease prevention and control. Moreover, the gut commensal bacteria are essential for development and normal operation of immune system and the pathogens are also closely bound up with physiological disorders and diseases mediated by immune imbalance. Understanding how our diet and nutrient affect bacterial composition and dynamic function, and the innate and adaptive status of our immune system, represents not only a research need but also an opportunity or challenge to improve health. Herein, this review focuses on the recent discoveries about intestinal bacteria–immune crosstalk and nutritional regulation on their interplay, with an aim to provide novel insights that can aid in understanding their interactions.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Pingting Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
35
|
Lipopolysaccharide from Crypt-Specific Core Microbiota Modulates the Colonic Epithelial Proliferation-to-Differentiation Balance. mBio 2017; 8:mBio.01680-17. [PMID: 29042502 PMCID: PMC5646255 DOI: 10.1128/mbio.01680-17] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We identified a crypt-specific core microbiota (CSCM) dominated by strictly aerobic, nonfermentative bacteria in murine cecal and proximal colonic (PC) crypts and hypothesized that, among its possible functions, it may affect epithelial regeneration. In the present work, we isolated representative CSCM strains using selective media based upon our initial 16S rRNA-based molecular identification (i.e., Acinetobacter, Delftia, and Stenotrophomonas). Their tropism for the crypt was confirmed, and their influence on epithelial regeneration was demonstrated in vivo by monocolonization of germfree mice. We also showed that lipopolysaccharide (LPS), through its endotoxin activity, was the dominant bacterial agonist controlling proliferation. The relevant molecular mechanisms were analyzed using colonic crypt-derived organoids exposed to bacterial sonicates or highly purified LPS as agonists. We identified a Toll-like receptor 4 (TLR4)-dependent program affecting crypts at different stages of epithelial differentiation. LPS played a dual role: it repressed cell proliferation through RIPK3-mediated necroptosis of stem cells and cells of the transit-amplifying compartment and concurrently enhanced cell differentiation, particularly the goblet cell lineage. The LPS from crypt-specific core microbiota controls intestinal epithelium proliferation through necroptosis of stem cells and enhances cell differentiation, mainly the goblet cell lineage.
Collapse
|
36
|
Functional Changes in the Gut Microbiome Contribute to Transforming Growth Factor β-Deficient Colon Cancer. mSystems 2017; 2:mSystems00065-17. [PMID: 28951889 DOI: 10.1128/msystems.00065-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most treatable cancers, with a 5-year survival rate of ~64%, yet over 50,000 deaths occur yearly in the United States. In 15% of cases, deficiency in mismatch repair leads to null mutations in transforming growth factor β (TGF-β) type II receptor, yet genotype alone is not responsible for tumorigenesis. Previous work in mice shows that disruptions in TGF-β signaling combined with Helicobacter hepaticus cause tumorigenesis, indicating a synergistic effect between genotype and microbial environment. Here, we examine functional shifts in the gut microbiome in CRC using integrated -omics approaches to untangle the role of host genotype, inflammation, and microbial ecology. We profile the gut microbiome of 40 mice with/without deficiency in TGF-β signaling from a Smad3 (mothers against decapentaplegic homolog-3) knockout and with/without inoculation with H. hepaticus. Clear functional differences in the microbiome tied to specific bacterial species emerge from four pathways related to human colon cancer: lipopolysaccharide (LPS) production, polyamine synthesis, butyrate metabolism, and oxidative phosphorylation (OXPHOS). Specifically, an increase in Mucispirillum schaedleri drives LPS production, which is associated with an inflammatory response. We observe a commensurate decrease in butyrate production from Lachnospiraceae bacterium A4, which could promote tumor formation. H. hepaticus causes an increase in OXPHOS that may increase DNA-damaging free radicals. Finally, multiple bacterial species increase polyamines that are associated with colon cancer, implicating not just diet but also the microbiome in polyamine levels. These insights into cross talk between the microbiome, host genotype, and inflammation could promote the development of diagnostics and therapies for CRC. IMPORTANCE Most research on the gut microbiome in colon cancer focuses on taxonomic changes at the genus level using 16S rRNA gene sequencing. Here, we develop a new methodology to integrate DNA and RNA data sets to examine functional shifts at the species level that are important to tumor development. We uncover several metabolic pathways in the microbiome that, when perturbed by host genetics and H. hepaticus inoculation, contribute to colon cancer. The work presented here lays a foundation for improved bioinformatics methodologies to closely examine the cross talk between specific organisms and the host, important for the development of diagnostics and pre/probiotic treatment.
Collapse
|
37
|
Mousa WK, Athar B, Merwin NJ, Magarvey NA. Antibiotics and specialized metabolites from the human microbiota. Nat Prod Rep 2017; 34:1302-1331. [DOI: 10.1039/c7np00021a] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human microbiota associated with each body site produce specialized molecules to kill human pathogens. Advanced bioinformatics tools will help to discover unique microbiome chemistry.
Collapse
Affiliation(s)
- Walaa K. Mousa
- Departments of Biochemistry and Biomedical Sciences & Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
- Canada L8S 4K1
| | - Bilal Athar
- Departments of Biochemistry and Biomedical Sciences & Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
- Canada L8S 4K1
| | - Nishanth J. Merwin
- Departments of Biochemistry and Biomedical Sciences & Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
- Canada L8S 4K1
| | - Nathan A. Magarvey
- Departments of Biochemistry and Biomedical Sciences & Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
- Canada L8S 4K1
| |
Collapse
|
38
|
Di Lorenzo F, Silipo A, Matier T, Hanuszkiewicz A, Elborn JS, Lanzetta R, Sturiale L, Scamporrino A, Garozzo D, Valvano MA, Tunney MM, Molinaro A. Prevotella denticolaLipopolysaccharide from a Cystic Fibrosis Isolate Possesses a Unique Chemical Structure. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Kongsui R, Johnson SJ, Graham BA, Nilsson M, Walker FR. A combined cumulative threshold spectra and digital reconstruction analysis reveal structural alterations of microglia within the prefrontal cortex following low-dose LPS administration. Neuroscience 2015; 310:629-40. [PMID: 26440295 DOI: 10.1016/j.neuroscience.2015.09.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022]
Abstract
Sickness behaviors have become the focus of great interest in recent years as they represent a clear case of how peripheral disturbances in immune signaling can disrupt quite complex behaviors. In the current study, we were interested in examining whether we could identify any significant morphological disturbances in microglia associated with these sickness-like behaviors in adult male Sprague-Dawley rats. We chose lipopolysaccharide (LPS 100 μg/kg/i.p.), to induce sickness-like behaviors as it is the most well-validated approach to do so in rodents and humans. We were particularly interested in examining changes in microglia within the prefrontal cortex (PFC) as several recent neuroimaging studies have highlighted significant functional changes in this region following peripheral LPS administration. Paraformaldehyde-fixed tissue was collected from animals 24h post LPS administration and labeled immunohistochemically with an antibody directed to bind to Iba-1, a protein known to be involved in the structural remodeling of microglia. To analyze changes, we have made use of two recently described image analysis procedures. The first is known as cumulative threshold spectra (CTS) analysis. The second involves the unsupervised digital reconstruction of microglia. We undertook these complementary analysis of microglial cells in the both the pre- and infralimbic divisions of the PFC. Our results indicated that microglial soma size was significantly enlarged, while cell processes had contracted slightly following LPS administration. To our knowledge this study is to first to definitely demonstrate substantial microglial disturbances within the PFC following LPS delivered at a dose that was sufficient to induce significant sickness-like behavior.
Collapse
Affiliation(s)
- R Kongsui
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - S J Johnson
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - B A Graham
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - M Nilsson
- Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - F R Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
40
|
Abstract
Inflammatory cytokines activate tissue collagenases such as matrix metalloproteinases (MMPs). MMPs are antagonized by tissue inhibitors of metalloproteinases (TIMPs) that attempt to regulate excessive collagenase activity during inflammatory conditions. During chronic inflammatory conditions, induction of endotoxin tolerance negatively regulates the cytokine response in an attempt to curtail excessive host tissue damage. However, little is known about how downregulation of inflammatory cytokines during endotoxin tolerance regulates MMP activities. In this study, human monocyte-derived macrophages were either sensitized or further challenged to induce tolerance with lipopolysaccharide (LPS) from Porphyromonas gingivalis (PgLPS) or Escherichia coli (EcLPS). Inflammatory cytokines, such as TNF-α and IL-1β, and levels of MMP9 and TIMP1 were analyzed by a combination of cytometric bead array, western blot/gelatin zymography and real-time RT-PCR. Functional blocking with anti-TLR4 but not with anti-TLR2 significantly downregulated TNF-α and IL-1β. However, MMP9 levels were not inhibited by toll-like receptor (TLR) blocking. Interestingly, endotoxin tolerance significantly upregulated TIMP1 relative to MMP9 and downmodulated MMP9 secretion and its enzymatic activity. These results suggest that regulatory mechanisms such as induction of endotoxin tolerance could inhibit MMP activities and could facilitate restoring host tissue homeostasis.
Collapse
Affiliation(s)
- Manoj Muthukuru
- Department of periodontics, School of Dentistry, West Virginia University, One Medical Center Drive, PO Box 9448, Morgantown, WV 26506, USA
| | - Christopher W Cutler
- Department of periodontics, College of Dental Medicine, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA
| |
Collapse
|
41
|
Zhou X, Li J, Yang W. Calcium/calmodulin-dependent protein kinase II regulates cyclooxygenase-2 expression and prostaglandin E2 production by activating cAMP-response element-binding protein in rat peritoneal macrophages. Immunology 2014; 143:287-99. [PMID: 24773364 DOI: 10.1111/imm.12309] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/19/2014] [Accepted: 04/24/2014] [Indexed: 12/17/2022] Open
Abstract
Prostaglandin E2 (PGE2 ) is an important inducer of inflammation, which is also closely linked to the progress of tumours. In macrophages, PGE2 production is regulated by arachidonic acid release and cyclooxygenase-2 (COX-2) expression. In the present study, we found that COX-2 expression can be achieved by activating Ca(2+) /Calmodulin (CaM)-dependent protein kinase II (CaMKII) and cAMP-response element-binding protein (CREB) in rat peritoneal macrophages. Our results indicated that lipopolysaccharide and PMA could elicit the transient increase of the concentration of intracellular free calcium ions ([Ca(2+) ]i ), which induced activation of CaMKs with the presence of CaM. The subtype of CaMKs, CaMKII, then triggered the activation of CREB, which elevated COX-2 expression and PGE2 production in a chronological order. These results suggested that Ca(2+) /CaM-dependent CaMKII plays an important role in mediating COX-2 expression and PGE2 production by activating CREB in macrophages. The study also provides more useful information to clarify the mechanism of calcium regulation of PGE2 production, which plays an essential role in inflammation and cancers.
Collapse
Affiliation(s)
- Xueyuan Zhou
- Department of Biophysics, School of Physics, Nankai University, Tianjin, China; Clinic Service Program, Leidos Biomedical Research Inc., Frederick, MD, USA
| | | | | |
Collapse
|
42
|
Darveau RP, Chilton PM. Naturally occurring low biological reactivity lipopolysaccharides as vaccine adjuvants. Expert Rev Vaccines 2014; 12:707-9. [DOI: 10.1586/14760584.2013.811181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Adjuvant activity of naturally occurring monophosphoryl lipopolysaccharide preparations from mucosa-associated bacteria. Infect Immun 2013; 81:3317-25. [PMID: 23798540 DOI: 10.1128/iai.01150-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural heterogeneity in the structure of the lipid A portion of lipopolysaccharide (LPS) produces differential effects on the innate immune response. Gram-negative bacterial species produce LPS structures that differ from the classic endotoxic LPS structures. These differences include hypoacylation and hypophosphorylation of the diglucosamine backbone, both differences known to decrease LPS toxicity. The effect of decreased toxicity on the adjuvant properties of many of these LPS structures has not been fully explored. Here we demonstrate that two naturally produced forms of monophosphorylated LPS, from the mucosa-associated bacteria Bacteroides thetaiotaomicron and Prevotella intermedia, function as immunological adjuvants for antigen-specific immune responses. Each form of mucosal LPS increased vaccination-initiated antigen-specific antibody titers in both quantity and quality when given simultaneously with vaccine antigen preparations. Interestingly, adjuvant effects on initial T cell clonal expansion were selective for CD4 T cells. No significant increase in CD8 T cell expansion was detected. MyD88/Toll-like receptor 4 (TLR4) and TRIF/TLR4 signaling pathways showed equally decreased signaling with the LPS forms studied here as with endotoxic LPS or detoxified monophosphorylated lipid A (MPLA). Natural monophosphorylated LPS from mucosa-associated bacteria functions as a weak but effective adjuvant for specific immune responses, with preferential effects on antibody and CD4 T cell responses over CD8 T cell responses.
Collapse
|
44
|
Kim TH, Lee KB, Kang MJ, Park JH. Critical role of Toll-like receptor 2 in Bacteroides fragilis-mediated immune responses in murine peritoneal mesothelial cells. Microbiol Immunol 2013; 56:782-8. [PMID: 22938101 DOI: 10.1111/j.1348-0421.2012.00505.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, the role of Toll-like receptor 2 (TLR2) in immune responses of murine peritoneal mesothelial cells against Bacteroides fragilis was investigated. Enzyme linked immunosorbent assay was used to measure cytokines and chemokines. Activation of nuclear factor κB (NF-κB-α) and mitogen-activated protein kinases (MAP kinases) was investigated by western blot analysis. B. fragilis induced production of interleukin-6, chemokine (C-X-C motif) ligand 1 (CXCL1) and chemokine (C-C motif) ligand 2 (CCL2) in wild type peritoneal mesothelial cells; this was impaired in TLR2-deficient cells. In addition, in response to B. fragilis, phosphorylation of inhibitory NF-κB-α and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) was induced in wild type mesothelial cells, but not in TLR2-deficient cells,. Inhibitor assay revealed that NF-κB and MAPKs are essential for B. fragilis-induced production of CXCL1 and CCL2 in mesothelial cells. These findings suggest that TLR2 mediates immune responses in peritoneal mesothelial cells in response to B. fragilis.
Collapse
Affiliation(s)
- Tae-Hyoun Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
45
|
Stappers MHT, Janssen NAF, Oosting M, Plantinga TS, Arvis P, Mouton JW, Joosten LAB, Netea MG, Gyssens IC. A role for TLR1, TLR2 and NOD2 in cytokine induction by Bacteroides fragilis. Cytokine 2012; 60:861-9. [PMID: 22998942 DOI: 10.1016/j.cyto.2012.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/15/2012] [Accepted: 08/18/2012] [Indexed: 01/01/2023]
Abstract
Bacteroides fragilis, an intestinal flora commensal microorganism, is frequently isolated from abscesses and soft tissue infections. This study aimed to identify pattern recognition receptors (PRRs) involved in B. fragilis recognition and to characterize the induced cytokine profile. Human PBMCs were stimulated with heat-killed B. fragilis and cytokine levels were determined by ELISA. Roles of individual PRRs were assessed using specific blockers of receptor signaling pathways and PBMCs carrying single nucleotide polymorphisms of PRR genes. Cell lines expressing human TLR2 or TLR4 were employed to assess TLR-specificity of B. fragilis. TLR1, TLR2 and NOD2 were the main PRRs responsible for recognition of B. fragilis, while TLR4, TLR6, NOD1 and Dectin-1 were not involved. B. fragilis induced strong IL-6 and IL-8, moderate IL-1β and TNF-α, and poor IL-10, IL-17, IL-23 and IFN-γ production. This study identifies the receptor pathways of the innate immune response to B. fragilis, and thus provides new insights in the host defense against B. fragilis.
Collapse
Affiliation(s)
- Mark H T Stappers
- Department of Medicine, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Biondo C, Malara A, Costa A, Signorino G, Cardile F, Midiri A, Galbo R, Papasergi S, Domina M, Pugliese M, Teti G, Mancuso G, Beninati C. Recognition of fungal RNA by TLR7 has a nonredundant role in host defense against experimental candidiasis. Eur J Immunol 2012; 42:2632-43. [PMID: 22777843 DOI: 10.1002/eji.201242532] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/06/2012] [Accepted: 06/27/2012] [Indexed: 01/24/2023]
Abstract
Despite convincing evidence for involvement of members of the Toll-like receptor (TLR) family in fungal recognition, little is known of the functional role of individual TLRs in antifungal defenses. We found here that TLR7 was partially required for the induction of IL-12 (IL-12p70) by Candida albicans or Saccharomyces cerevisiae. Moreover, the IL-12p70 response was completely abrogated in cells from 3d mice, which are unable to mobilize TLRs to endosomal compartments, as well as in cells from mice lacking either the TLR adaptor MyD88 or the IRF1 transcription factor. Notably, purified fungal RNA recapitulated IL-12p70 induction by whole yeast. Although RNA could also induce moderate TLR7-dependent IL-23 and tumor necrosis factor-alpha (TNF-α) secretion, TLR7 and other endosomal TLRs were redundant for IL-23 or TNF-α induction by whole fungi. Importantly, mice lacking TLR7 or IRF1 were hypersusceptible to systemic C. albicans infection. Our data suggest that IRF1 is downstream of a novel, nonredundant fungal recognition pathway that has RNA as a major target and requires phagosomal recruitment of intracellular TLRs. This pathway differs from those involved in IL-23 or TNF-α responses, which we show here to be independent from translocation of intracellular TLRs, phagocytosis, or phagosomal acidification.
Collapse
Affiliation(s)
- Carmelo Biondo
- The Elie Metchnikoff Department, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Identification of a TLR2-stimulating lipoprotein in Bacteroides fragilis JCM 11019 (NCTC 9343). Innate Immun 2012; 19:132-9. [DOI: 10.1177/1753425912454179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacteroides fragilis is found among the normal intestinal flora and is involved in host immunostimulation via TLR2. Its cell surface components, such as LPS and capsular polysaccharides, were reported to participate in host immunostimulation. In this study, we report on the existence of a lipoprotein that acts as a TLR2 stimulant in B. fragilis. The TLR2-stimulating lipoprotein was obtained using Triton X-114-water phase partitioning followed by preparative SDS-PAGE. Its N-terminal hydrophobic peptide, which was separated from a tryptic digest, was characterized as a triacylated lipopeptide, and the lipoprotein was identified as BF1333 by mass spectrometry of Asp-N-digested peptides. These results showed that the lipoprotein acts as a TLR2-stimulating component in B. fragilis.
Collapse
|
48
|
Lo CJ, Lo EJ. Angiotensin II inhibits interleukin-6 mRNA expression of LPS-stimulated macrophages through down-regulating calcium signaling. J Surg Res 2012; 181:287-92. [PMID: 22884451 DOI: 10.1016/j.jss.2012.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/07/2012] [Accepted: 07/02/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND The renin-angiotensin system plays a key role in the regulation of blood pressure following hemorrhage and shock. Recent studies also suggest renin-angiotensin system regulates inflammatory mediator production although the amechanism is largely unknown. This purpose of the study was to examine the effect of angiotensin II on macrophage (MØ) IL-6 messenger RNA (mRNA) expression induced by lipopolysaccharide (LPS) and on the alterations in the calcium influx. METHODS J774A.1 cells, a mouse MØ cell line, were exposed to E. coli LPS (1 or 10 μg/ml) in the presence of angiotensin II (10 nM to 1 μM). IL-6 mRNA expression was determined by the reverse transcription polymerase chain reaction technique. IL-6 protein production was measured by ELISA. To examine the involvement of calcium signaling in IL-6 mRNA expression, MØ were exposed to various calcium agonists and antagonists in the presence of LPS stimulation. Changes of intracellular [Ca(2+)] by LPS stimulation and angiotensin II treatment were determined by a fura-2 fluorescence ratio method. RESULTS LPS stimulation increased MØ IL-6 mRNA expression, which was inhibited by Angiotensin II in a dose-dependent fashion. Both thapsigargin and A23187 augmented the IL-6 mRNA levels induced by LPS stimulation, but only thapsigargin was able to induce IL-6 mRNA directly. TMB-8 but not verapamil inhibited LPS-stimulated MØ IL-6 mRNA. Finally, angiotensin II significantly altered the changes in intracellular [Ca(2+)] levels induced by LPS stimulation by reducing both the peak and slope of calcium spikes. CONCLUSIONS Our data show that calcium signaling is closely related to IL-6 mRNA expression. Angiotensin II inhibits IL-6 mRNA expression of LPS-stimulated MØ. The inhibitory effects of angiotensin II appear, at least in part, to be mediated through down regulating calcium dependent pathways.
Collapse
Affiliation(s)
- Chong-Jeh Lo
- Division of Trauma, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | | |
Collapse
|
49
|
Nakayama J, Kobayashi T, Tanaka S, Korenori Y, Tateyama A, Sakamoto N, Kiyohara C, Shirakawa T, Sonomoto K. Aberrant structures of fecal bacterial community in allergic infants profiled by 16S rRNA gene pyrosequencing. ACTA ACUST UNITED AC 2011; 63:397-406. [PMID: 22029688 DOI: 10.1111/j.1574-695x.2011.00872.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 08/27/2011] [Accepted: 08/28/2011] [Indexed: 12/18/2022]
Abstract
We investigated the correlation between fecal bacteria composition in early infancy and the prevalence of allergic diseases in late infancy. The fecal microbiota in the first 2 months was profiled using the 16S rRNA V6 short-tag sequences in the community and statistically compared between two groups of subjects who did and did not show allergic symptoms in the first 2 years (n = 11 vs. 11). In the allergic group, genus Bacteroides at 1 month and genera Propionibacterium and Klebsiella at 2 months were more abundant, and genera Acinetobacter and Clostridium at 1 month were less abundant than in the nonallergic group. Allergic infants who showed high colonization of Bacteroides and/or Klebsiella showed less colonization of Clostridium perfringens/butyricum, suggesting antagonism between these bacterial groups in the gastrointestinal tract. It was also remarkable that the relative abundance of total Proteobacteria, excluding genus Klebsiella, was significantly lower in the allergic than in the nonallergic group at the age of 1 month. These results indicate that pyrosequence-based 16S rRNA gene profiling is valid to find the intestinal microbiotal disorder that correlates with allergy development in later life.
Collapse
Affiliation(s)
- Jiro Nakayama
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Graduate School, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gambuzza M, Licata N, Palella E, Celi D, Foti Cuzzola V, Italiano D, Marino S, Bramanti P. Targeting Toll-like receptors: Emerging therapeutics for multiple sclerosis management. J Neuroimmunol 2011; 239:1-12. [DOI: 10.1016/j.jneuroim.2011.08.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/09/2011] [Accepted: 08/10/2011] [Indexed: 12/16/2022]
|