1
|
Azam MS, Ibrahim AM, Leddy O, Oh SY, Schneewind O, Missiakas D. A SecA-associated protease modulates the extent of surface display of staphylococcal protein A. J Bacteriol 2025; 207:e0052224. [PMID: 40135891 PMCID: PMC12004944 DOI: 10.1128/jb.00522-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
In bacteria, signal peptides direct pre-proteins to the SecYEG secretion channel and are typically cleaved by signal peptidases during translocation across the membrane. In gram-positive bacteria, such as Staphylococcus aureus, some signal peptides have a pre-translocation function. Staphylococcal protein A (SpA) carries such an atypical signal sequence, with a YSIRK/GXXS motif that directs its precursor into the cross-wall of dividing cells for subsequent anchoring by sortase A. Here, we report that PepV-a member of the M20 peptidase family which has been described as a manganese-dependent dipeptidase in vitro-may influence the surface display of precursors with a YSIRK/GXXS motif. SpA deposition into cross-walls was increased in ΔpepV bacteria. Yet, in the absence of pepV, neither the kinetics of signal sequence processing nor the final product of the sorting reaction was altered. In pull-down experiments, PepV was identified as a ligand of SecA. When purified PepV was incubated with SpA precursors, this interaction triggered self-cleavage of the enzyme, an unexpected activity exacerbated by the presence of a chelating agent. In agreement with this finding, a pulse-chase experiment revealed that the half-life of PepV is extended in bacteria lacking spa. Collectively, these data reveal a mutually inhibitory relationship between SpA precursors and PepV, the net result suggesting that while PepV may reduce the surface display of SpA, SpA precursors destabilize PepV possibly to overcome such inhibition. IMPORTANCE The "signal hypothesis" proposed that N-terminal sequences of secretory proteins contain targeting cues directing nascent polypeptides to the endoplasmic reticulum. This concept was later confirmed as broadly applicable, even to prokaryotes with a single membrane. In gram-positive bacteria, signal sequences bearing the YSIRK/GXXS motif are necessary and sufficient to direct precursors to septal membranes. However, trans-acting factors involved in this spatially restricted targeting remain largely unknown. Here, we identify a member of the M20 metalloprotease family as a potential contributor to the septal surface display of proteins containing YSIRK/GXXS signal peptides.
Collapse
Affiliation(s)
- Muhammad S. Azam
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Amany M. Ibrahim
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Owen Leddy
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - So-Young Oh
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Ibrahim AM, Missiakas D. A novel polysaccharide in the envelope of S. aureus influences the septal secretion of preproteins with a YSIRK/GXXS motif. J Bacteriol 2025; 207:e0047824. [PMID: 39873517 PMCID: PMC11841062 DOI: 10.1128/jb.00478-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
Bacteria transport proteins across the plasma membrane to assemble their envelope, acquire nutrients, and establish appropriate interactions with their environment. The majority of these proteins are synthesized as precursors with a cleavable N-terminal signal sequence for recognition by the Sec machinery. In Staphylococcus aureus, a small subset of secreted precursors carries a YSIRK/GXXS motif. This motif provides a pre-translocation function by promoting the targeting of precursors to septal membranes, but the trans-acting factors that regulate such spatial distribution are not known. Here, we used immunofluorescence-microscopy to compare the spatial trafficking of Staphylococcal protein A (SpA), an abundant YSIRK/GXXS bearing precursor, between mutants of an arranged transposon library. This genetic search identified a cluster of five genes predicted to encode enzymes responsible for the synthesis of a novel surface polymer referred to as Staphylococcal surface carbohydrate, Ssc. Mutants in the ssc gene cluster no longer restrict the secretion of SpA into the cross-walls of S. aureus. ssc mutants replicate like wild-type bacteria unless grown in phosphate-limited conditions, and do not contribute to virulence when examined in a mouse model of bloodstream infection. Together, our observations suggest that S. aureus may encode a minor, phosphate-free carbohydrate, and propose a possible assembly pathway for this polymer. IMPORTANCE Gram-positive bacteria assemble peptidoglycan-linked polymers known as wall teichoic acids (WTA). Both Staphylococcus aureus and Bacillus subtilis elaborate WTAs made of poly-glycerol or poly-ribitol phosphates. WTAs contribute to cell shape maintenance, cation homeostasis, and resistance to antimicrobial compounds. Yet, B. subtilis replaces its phosphate-rich polymer with minor teichuronic acids whose functions remain elusive. S. aureus also encodes a minor wall polymer that may be required for growth under phosphate-limited condition. Here, we find that this polymer could help define the composition of the septal compartment, the site of cell division also used to recruit preproteins with a YSIRK/GXXS motif. Thus, the envelope of S. aureus may be more complex than previously thought with minor wall polymers contributing some discrete functions.
Collapse
Affiliation(s)
- Amany M. Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Izquierdo-Martinez A, Schäper S, Brito AD, Liao Q, Tesseur C, Sorg M, Botinas DS, Wang X, Pinho MG. Chromosome segregation dynamics during the cell cycle of Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638847. [PMID: 40027834 PMCID: PMC11870517 DOI: 10.1101/2025.02.18.638847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Research on chromosome organization and cell cycle progression in spherical bacteria, particularly Staphylococcus aureus, remains limited and fragmented. In this study, we established a working model to investigate chromosome dynamics in S. aureus using a Fluorescent Repressor-Operator System (FROS), which enabled precise localization of specific chromosomal loci. This approach revealed that the S. aureus cell cycle and chromosome replication cycle are not coupled, with cells exhibiting two segregated origins of replication at the start of the cell cycle. The chromosome has a specific origin-terminus-origin conformation, with origins localizing near the membrane, towards the tip of each hemisphere, or the "cell poles". We further used this system to assess the role of various proteins with a role in S. aureus chromosome biology, focusing on the ParB-parS and SMC-ScpAB systems. Our results demonstrate that ParB binds five parS chromosomal sequences and the resulting complexes influence chromosome conformation, but play a minor role in chromosome compaction and segregation. In contrast, the SMC-ScpAB complex plays a key role in S. aureus chromosome biology, contributing to chromosome compaction, segregation and spatial organization. Additionally, we systematically assessed and compared the impact of proteins linking chromosome segregation to cell division-Noc, FtsK, SpoIIIE and XerC-on origin and terminus number and positioning. This work provides a comprehensive study of the factors governing chromosome dynamics and organization in S. aureus, contributing to our knowledge on chromosome biology of spherical bacteria.
Collapse
Affiliation(s)
- Adrian Izquierdo-Martinez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Simon Schäper
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - António D. Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Qin Liao
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Coralie Tesseur
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Moritz Sorg
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Daniela S. Botinas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Mariana G. Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| |
Collapse
|
4
|
Ko EM, Kim S. Genome sequences of Staphylococcus aureus RN4220. Microbiol Resour Announc 2025; 14:e0046224. [PMID: 39679716 PMCID: PMC11737183 DOI: 10.1128/mra.00462-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
In this study, we present whole genome sequences of Staphylococcus aureus RN4220. Using PacBio DNA sequencing and de novo assembly, we obtained a single contig of 2,697,647 bp, which includes 2,652 predicted genes comprising protein-coding sequences, tRNAs, and rRNAs.
Collapse
Affiliation(s)
- Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Osong, South Korea
| | - Seonghan Kim
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Osong, South Korea
| |
Collapse
|
5
|
Tabashsum Z, Angeles-Solano M, Sidders AE, Parsons JB, Rowe SE. Palmitoleic acid sensitizes vancomycin-resistant Staphylococcus aureus to vancomycin by outpacing the expression of resistance genes. Microbiol Spectr 2025; 13:e0199624. [PMID: 39656010 PMCID: PMC11705785 DOI: 10.1128/spectrum.01996-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025] Open
Abstract
The rise in antibiotic resistance limits the availability of antibiotics to treat bacterial infections. Despite this, antibiotic development pipelines remain sparse which makes using adjuvants to reverse antibiotic resistance a promising therapeutic strategy. The use of vancomycin, a frontline antibiotic used to treat hospitalized patients with methicillin-resistant Staphylococcus aureus (MRSA) infections, is complicated by high rates of treatment failure. Vancomycin binds to the D-ala-D-ala terminus of the nascent peptidoglycan precursor lipid II, preventing cell wall biosynthesis. Vancomycin-resistant strains of S. aureus and Enterococci typically express a van gene cluster that is induced in response to vancomycin and results in the synthesis of an alternative lipid precursor with a peptide chain ending in D-ala-D-lac. Vancomycin has low affinity for the D-ala-D-lac terminus, and the bacteria can resume growth even in the presence of an otherwise lethal dose of vancomycin. We previously showed that palmitoleic acid, a host-produced monounsaturated fatty acid, combined with vancomycin led to an accumulation of large fluid patches in the bacterial membrane, resulting in membrane destabilization and cell death. In this study, we observed that palmitoleic acid increases the rate of vancomycin killing by more than 50-fold, compared to vancomycin alone. This rapid bactericidal activity by the combined treatment sensitized vancomycin-resistant S. aureus (VRSA) and vancomycin-resistant Enterococcus (VRE) to vancomycin, likely by outpacing the expression of vancomycin resistance genes. This study represents an important step in the ongoing effort to mitigate antibiotic resistance.IMPORTANCEThe development of antibiotics has transformed medicine, reducing the incidence and severity of bacterial infections and allowing for advancements in healthcare, including invasive surgeries and organ transplants. However, the rise of antibiotic resistance poses a significant threat to these medical advancements, leading to treatment failures that result in increased patient morbidity and mortality, as well as substantial healthcare costs. Vancomycin-resistant Enterococcus (VRE) species are prevalent in hospital settings and chronic infections. Although high-level vancomycin resistance in S. aureus is rare, S. aureus can acquire plasmids expressing vancomycin resistance genes from resistant Enterococcal species during infection, further complicating treatment. In this study, we find that palmitoleic acid increases the rate of vancomycin killing and restores sensitivity to vancomycin-resistant S. aureus (VRSA) and VRE isolates.
Collapse
Affiliation(s)
- Zajeba Tabashsum
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michelle Angeles-Solano
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashelyn E. Sidders
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joshua B. Parsons
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sarah E. Rowe
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Chou-Zheng L, Howell O, Boyle TA, Hossain M, Walker FC, Sheriff EK, Aslan B, Hatoum-Aslan A. AcrIIIA1 is a protein-RNA anti-CRISPR complex that targets core Cas and accessory nucleases. Nucleic Acids Res 2024; 52:13490-13514. [PMID: 39551936 DOI: 10.1093/nar/gkae1006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Clustered regularly-interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins protect bacteria and archaea from their viruses, and anti-CRISPRs (Acrs) are small virus-encoded proteins that inhibit CRISPR-Cas immunity. Over 80 families of Acrs have been described to date; however, only three of these subvert Type III CRISPR-Cas immunity. Type III systems employ a complex network of Cas and accessory nucleases to degrade viral nucleic acids. Here, we discover and characterize AcrIIIA1, the first Type III-A specific anti-CRISPR protein. We demonstrate that AcrIIIA1 binds to Csm2 within the Cas10-Csm effector complex and attenuates Cas10's DNase activity and second messenger production. Additionally, AcrIIIA1 associates with fragmented t(m)RNAs (acrIIIA1-RNAs), and we show that they co-purify with the Cas10-Csm complex during phage infection. Although the precise role(s) of acrIIIA1-RNAs remain unclear, we found that they bind stably to RNase R, a host-encoded nuclease known to bolster immunity, and RNase R has the capacity to degrade them. Altogether, our results support a model in which AcrIIIA1 and its associated RNAs target both core Cas and accessory nucleases to provide robust protection against Type III CRISPR-Cas immunity.
Collapse
Affiliation(s)
- Lucy Chou-Zheng
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Olivia Howell
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Tori A Boyle
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Motaher Hossain
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Forrest C Walker
- Department of Biological Sciences, University of Alabama, 1325 Hackberry Lane, Tuscaloosa, AL 35401, USA
| | - Emma K Sheriff
- Department of Biological Sciences, University of Alabama, 1325 Hackberry Lane, Tuscaloosa, AL 35401, USA
| | - Barbaros Aslan
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Asma Hatoum-Aslan
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Hossain M, Aslan B, Hatoum-Aslan A. Tandem mobilization of anti-phage defenses alongside SCCmec elements in staphylococci. Nat Commun 2024; 15:8820. [PMID: 39394251 PMCID: PMC11470126 DOI: 10.1038/s41467-024-53146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
Recent research has identified multiple immune systems that bacteria use to protect themselves from viral infections. However, little is known about the mechanisms by which these systems horizontally spread, especially among bacterial pathogens. Here, we investigate antiviral defenses in staphylococci, opportunistic pathogens that constitute leading causes of antibiotic-resistant infections. We show that these organisms harbor a variety of anti-phage defenses encoded within or near SCC (staphylococcal cassette chromosome) mec cassettes, mobile genomic islands that confer methicillin resistance. Importantly, we demonstrate that SCCmec-encoded recombinases mobilize not only SCCmec, but also tandem SCC-like cassettes enriched in genes coding for diverse defense systems. Further, we show that phage infection stimulates cassette mobilization (i.e. excision and circularization). Thus, our findings indicate that SCC/SCCmec cassettes not only spread antibiotic resistance but can also play a role in mobilizing anti-phage defenses.
Collapse
Affiliation(s)
- Motaher Hossain
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA
| | - Barbaros Aslan
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA
| | - Asma Hatoum-Aslan
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA.
| |
Collapse
|
8
|
Bonini D, Duggan S, Alnahari A, Brignoli T, Strahl H, Massey RC. Lipoteichoic acid biosynthesis by Staphylococcus aureus is controlled by the MspA protein. mBio 2024; 15:e0151224. [PMID: 39037275 PMCID: PMC11323550 DOI: 10.1128/mbio.01512-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/23/2024] Open
Abstract
Staphylococcus aureus produces a plethora of virulence factors critical to its ability to establish an infection and cause disease. We have previously characterized a small membrane protein, MspA, which has pleiotropic effects on virulence and contributes to S. aureus pathogenicity in vivo. Here we report that mspA inactivation triggers overaccumulation of the essential cell wall component, lipoteichoic acid (LTA), which, in turn, decreases autolytic activity and leads to increased cell size due to a delay in cell separation. We show that MspA directly interacts with the enzymes involved in LTA biosynthesis (LtaA, LtaS, UgtP, and SpsB), interfering with their normal activities. MspA, in particular, interacts with the type I signal peptidase SpsB, limiting its cleavage of LtaS into its active form. These findings suggest that MspA contributes to maintaining a physiological level of LTA in the cell wall by interacting with and inhibiting the activity of SpsB, thereby uncovering a critical role for the MspA protein in regulating cell envelope biosynthesis and pathogenicity.IMPORTANCEThe S. aureus cell envelope, comprising the cytoplasmic membrane, a thick peptidoglycan layer, and the anionic polymers lipoteichoic acid and wall teichoic acids, is fundamental for bacterial growth and division, as well as being the main interface between the pathogen and the host. It has become increasingly apparent that the synthesis and turnover of cell envelope components also affect the virulence of S. aureus. In this study, we show that MspA, an effector of S. aureus virulence, contributes to the maintenance of normal levels of lipoteichoic acid in the cell wall, with implications on cell cycle and size. These findings further our understanding of the connections between envelope synthesis and pathogenicity and suggest that MspA represents a promising target for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Dora Bonini
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Seána Duggan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Alaa Alnahari
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Biological Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Tarcisio Brignoli
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ruth C. Massey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Mediati DG, Dan W, Lalaouna D, Dinh H, Pokhrel A, Rowell KN, Michie KA, Stinear TP, Cain AK, Tree JJ. The 3' UTR of vigR is required for virulence in Staphylococcus aureus and has expanded through STAR sequence repeat insertions. Cell Rep 2024; 43:114082. [PMID: 38583155 DOI: 10.1016/j.celrep.2024.114082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are alarmingly common, and treatment is confined to last-line antibiotics. Vancomycin is the treatment of choice for MRSA bacteremia, and treatment failure is often associated with vancomycin-intermediate S. aureus isolates. The regulatory 3' UTR of the vigR mRNA contributes to vancomycin tolerance and upregulates the autolysin IsaA. Using MS2-affinity purification coupled with RNA sequencing, we find that the vigR 3' UTR also regulates dapE, a succinyl-diaminopimelate desuccinylase required for lysine and peptidoglycan synthesis, suggesting a broader role in controlling cell wall metabolism and vancomycin tolerance. Deletion of the 3' UTR increased virulence, while the isaA mutant is completely attenuated in a wax moth larvae model. Sequence and structural analyses of vigR indicated that the 3' UTR has expanded through the acquisition of Staphylococcus aureus repeat insertions that contribute sequence for the isaA interaction seed and may functionalize the 3' UTR.
Collapse
Affiliation(s)
- Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.
| | - William Dan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - David Lalaouna
- Université de Strasbourg, CNRS, ARN UPR 9002, Strasbourg, France
| | - Hue Dinh
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Alaska Pokhrel
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia; School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Keiran N Rowell
- Structural Biology Facility, University of New South Wales, Sydney, NSW, Australia
| | - Katharine A Michie
- Structural Biology Facility, University of New South Wales, Sydney, NSW, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Amy K Cain
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Crosby HA, Keim K, Kwiecinski JM, Langouët-Astrié CJ, Oshima K, LaRivière WB, Schmidt EP, Horswill AR. Host-derived protease promotes aggregation of Staphylococcus aureus by cleaving the surface protein SasG. mBio 2024; 15:e0348323. [PMID: 38511930 PMCID: PMC11005337 DOI: 10.1128/mbio.03483-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Staphylococcus aureus is one of the leading causes of hospital-acquired infections, many of which begin following attachment and accumulation on indwelling medical devices or diseased tissue. These infections are often linked to the establishment of biofilms, but another often overlooked key characteristic allowing S. aureus to establish persistent infection is the formation of planktonic aggregates. Such aggregates are physiologically similar to biofilms and protect pathogens from innate immune clearance and increase antibiotic tolerance. The cell-wall-associated protein SasG has been implicated in biofilm formation via mechanisms of intercellular aggregation but the mechanism in the context of disease is largely unknown. We have previously shown that the expression of cell-wall-anchored proteins involved in biofilm formation is controlled by the ArlRS-MgrA regulatory cascade. In this work, we demonstrate that the ArlRS two-component system controls aggregation, by repressing the expression of sasG by activation of the global regulator MgrA. We also demonstrate that SasG must be proteolytically processed by a non-staphylococcal protease to induce aggregation and that strains expressing functional full-length sasG aggregate significantly upon proteolysis by a mucosal-derived host protease found in human saliva. We used fractionation and N-terminal sequencing to demonstrate that human trypsin within saliva cleaves within the A domain of SasG to expose the B domain and induce aggregation. Finally, we demonstrated that SasG is involved in virulence during mouse lung infection. Together, our data point to SasG, its processing by host proteases, and SasG-driven aggregation as important elements of S. aureus adaptation to the host environment.IMPORTANCEHere, we demonstrate that the Staphylococcus aureus surface protein SasG is important for cell-cell aggregation in the presence of host proteases. We show that the ArlRS two-component regulatory system controls SasG levels through the cytoplasmic regulator MgrA. We identified human trypsin as the dominant protease triggering SasG-dependent aggregation and demonstrated that SasG is important for S. aureus lung infection. The discovery that host proteases can induce S. aureus aggregation contributes to our understanding of how this pathogen establishes persistent infections. The observations in this study demonstrate the need to strengthen our knowledge of S. aureus surface adhesin function and processing, regulation of adhesin expression, and the mechanisms that promote biofilm formation to develop strategies for preventing chronic infections.
Collapse
Affiliation(s)
- Heidi A. Crosby
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Klara Keim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jakub M. Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Christophe J. Langouët-Astrié
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kaori Oshima
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wells B. LaRivière
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eric P. Schmidt
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
11
|
Rocha GD, de Simoni Gouveia JJ, da Costa MM, Soares RAN, Gouveia GV. Resistance and virulence in Staphylococcus aureus by whole-genome sequencing: a comparative approach in blaZ-positive isolates. Braz J Microbiol 2024; 55:955-967. [PMID: 38265572 PMCID: PMC10920469 DOI: 10.1007/s42770-023-01243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024] Open
Abstract
Mastitis caused by Staphylococcus aureus is a worldwide problem in dairy farms, in part because of the pathogenicity of the bacteria, biofilm formation, and mechanisms of antimicrobial resistance that make the disease difficult to diagnose and treat, which is typically done with the use of beta-lactam antibiotics. The aim of the present study was to determine the virulence and resistance factors of S. aureus isolates from subclinical mastitis, blaZ + /mecA - /mecC - , resistant and sensitive to oxacillin. All isolates were classified as CC97 by MLST analysis, a clonal complex well adapted to the mammary gland and although STAU23 and STAU73 were resistant to oxacillin while STAU32 and STAU78 were sensitive, the genomic analysis identified only the blaZ operon corresponding to resistance to beta-lactams. However, the presence of the sdrC gene was revealed exclusively in resistant isolates, an important adhesin in the colonization process that potentiates pathogenicity in S. aureus. In addition, resistance islands (REIs) were identified in these isolates, suggesting more conserved REIs. In the analysis of SNPs throughout the genome, mutations were found in the trmB and smpB genes of the resistant isolates and in the murD and rimM genes of the sensitive isolates. This study highlights the potential benefit of genome-wide characterization tools to identify molecular mechanisms of S. aureus in bovine mastitis.
Collapse
Affiliation(s)
- Gabriela Dias Rocha
- Universidade Federal Do Vale Do São Francisco, Campus Ciências Agrárias, Rodovia Km 12, Lote 543, Projeto de Irrigação Nilo Coelho S/N, C1, Petrolina, PE, 56300-000, Brazil
| | - João José de Simoni Gouveia
- Universidade Federal Do Vale Do São Francisco, Campus Ciências Agrárias, Rodovia Km 12, Lote 543, Projeto de Irrigação Nilo Coelho S/N, C1, Petrolina, PE, 56300-000, Brazil
| | - Mateus Matiuzzi da Costa
- Universidade Federal Do Vale Do São Francisco, Campus Ciências Agrárias, Rodovia Km 12, Lote 543, Projeto de Irrigação Nilo Coelho S/N, C1, Petrolina, PE, 56300-000, Brazil
| | - Riani Ananda Nunes Soares
- Universidade Federal Do Vale Do São Francisco, Campus Ciências Agrárias, Rodovia Km 12, Lote 543, Projeto de Irrigação Nilo Coelho S/N, C1, Petrolina, PE, 56300-000, Brazil
| | - Gisele Veneroni Gouveia
- Universidade Federal Do Vale Do São Francisco, Campus Ciências Agrárias, Rodovia Km 12, Lote 543, Projeto de Irrigação Nilo Coelho S/N, C1, Petrolina, PE, 56300-000, Brazil.
| |
Collapse
|
12
|
Sychla A, Stach CS, Roach SN, Hayward AN, Langlois RA, Smanski MJ. High-throughput investigation of genetic design constraints in domesticated Influenza A Virus for transient gene delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580300. [PMID: 38405907 PMCID: PMC10888799 DOI: 10.1101/2024.02.14.580300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Replication-incompetent single cycle infectious Influenza A Virus (sciIAV) has demonstrated utility as a research and vaccination platform. Protein-based therapeutics are increasingly attractive due to their high selectivity and potent efficacy but still suffer from low bioavailability and high manufacturing cost. Transient RNA-mediated delivery is a safe alternative that allows for expression of protein-based therapeutics within the target cells or tissues but is limited by delivery efficiency. Here, we develop recombinant sciIAV as a platform for transient gene delivery in vivo and in vitro for therapeutic, research, and manufacturing applications (in vivo antimicrobial production, cell culture contamination clearance, and production of antiviral proteins in vitro). While adapting the system to deliver new protein cargo we discovered expression differences presumably resulting from genetic context effects. We applied a high-throughput screen to map these within the 3'-untranslated and coding regions of the hemagglutinin-encoding segment 4. This screen revealed permissible mutations in the 3'-UTR and depletion of RNA level motifs in the N-terminal coding region.
Collapse
Affiliation(s)
- Adam Sychla
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
| | - Christopher S Stach
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
| | - Shanley N Roach
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Department of Microbiology and Immunology, University of Minnesota, Saint Paul, MN 55108
| | - Amanda N Hayward
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
| | - Ryan A Langlois
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Department of Microbiology and Immunology, University of Minnesota, Saint Paul, MN 55108
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
| |
Collapse
|
13
|
Shields KE, Ranava D, Tan Y, Zhang D, Yap MNF. Epitranscriptional m6A modification of rRNA negatively impacts translation and host colonization in Staphylococcus aureus. PLoS Pathog 2024; 20:e1011968. [PMID: 38252661 PMCID: PMC10833563 DOI: 10.1371/journal.ppat.1011968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Macrolides, lincosamides, and streptogramin B (MLS) are structurally distinct molecules that are among the safest antibiotics for prophylactic use and for the treatment of bacterial infections. The family of erythromycin resistance methyltransferases (Erm) invariantly install either one or two methyl groups onto the N6,6-adenosine of 2058 nucleotide (m6A2058) of the bacterial 23S rRNA, leading to bacterial cross-resistance to all MLS antibiotics. Despite extensive structural studies on the mechanism of Erm-mediated MLS resistance, how the m6A epitranscriptomic mark affects ribosome function and bacterial physiology is not well understood. Here, we show that Staphylococcus aureus cells harboring m6A2058 ribosomes are outcompeted by cells carrying unmodified ribosomes during infections and are severely impaired in colonization in the absence of an unmodified counterpart. The competitive advantage of m6A2058 ribosomes is manifested only upon antibiotic challenge. Using ribosome profiling (Ribo-Seq) and a dual-fluorescence reporter to measure ribosome occupancy and translational fidelity, we found that specific genes involved in host interactions, metabolism, and information processing are disproportionally deregulated in mRNA translation. This dysregulation is linked to a substantial reduction in translational capacity and fidelity in m6A2058 ribosomes. These findings point to a general "inefficient translation" mechanism of trade-offs associated with multidrug-resistant ribosomes.
Collapse
Affiliation(s)
- Kathryn E. Shields
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - David Ranava
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, United States of America
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, United States of America
- Program of Bioinformatics and Computational Biology, College of Arts and Sciences, St. Louis, Missouri, United States of America
| | - Mee-Ngan F. Yap
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
14
|
Moran MC, Brewer MG, Schlievert PM, Beck LA. S. aureus virulence factors decrease epithelial barrier function and increase susceptibility to viral infection. Microbiol Spectr 2023; 11:e0168423. [PMID: 37737609 PMCID: PMC10581065 DOI: 10.1128/spectrum.01684-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/03/2023] [Indexed: 09/23/2023] Open
Abstract
Individuals with atopic dermatitis (AD) are highly colonized by Staphylococcus aureus and are more susceptible to severe viral complications. We hypothesized that S. aureus secreted virulence factors may alter keratinocyte biology to enhance viral susceptibility through disruption of the skin barrier, impaired keratinocyte differentiation, and/or inflammation. To address this hypothesis, human keratinocytes were exposed to conditioned media from multiple S. aureus strains that vary in virulence factor production (USA300, HG003, and RN4220) or select purified virulence factors. We have identified the S. aureus enterotoxin-like superantigen SElQ, as a virulence factor of interest, since it is highly produced by USA300 and was detected on the skin of 53% of AD subjects (n = 72) in a study conducted by our group. Treatment with USA300 conditioned media or purified SElQ resulted in a significant increase in keratinocyte susceptibility to infection with vaccinia virus, and also significantly decreased barrier function. Importantly, we have previously demonstrated that keratinocyte differentiation influences susceptibility to viral infection, and our qPCR observations indicated that USA300 S. aureus and SElQ alter differentiation in keratinocytes. CRISPR/Cas9 was used to knock out CD40, a potential enterotoxin receptor on epithelial cells. We found that CD40 expression on keratinocytes was not completely necessary for SElQ-mediated responses, as measured by proinflammatory cytokine expression and barrier function. Together, these findings support that select S. aureus virulence factors, particularly SElQ, enhance the susceptibility of epidermal cells to viral infection, which may contribute to the increased cutaneous infections observed in individuals with AD. IMPORTANCE Staphylococcus aureus skin colonization and infection are frequently observed in individuals with atopic dermatitis. Many S. aureus strains belong to the clonal group USA300, and these strains produce superantigens including the staphylococcal enterotoxin-like Q (SElQ). Our studies highlight that SElQ may play a key role by altering keratinocyte differentiation and reducing barrier function; collectively, this may explain the AD-specific enhanced infection risk to cutaneous viruses. It is unclear what receptor mediates SElQ's effects on keratinocytes. We have shown that one putative surface receptor, CD40, was not critical for its effects on proinflammatory cytokine production or barrier function.
Collapse
Affiliation(s)
- Mary C. Moran
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew G. Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Lisa A. Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
15
|
Jia J, Zheng M, Zhang C, Li B, Lu C, Bai Y, Tong Q, Hang X, Ge Y, Zeng L, Zhao M, Song F, Zhang H, Zhang L, Hong K, Bi H. Killing of Staphylococcus aureus persisters by a multitarget natural product chrysomycin A. SCIENCE ADVANCES 2023; 9:eadg5995. [PMID: 37540745 PMCID: PMC10403215 DOI: 10.1126/sciadv.adg5995] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Staphylococcus aureus poses a severe public health problem as one of the vital causative agents of healthcare- and community-acquired infections. There is a globally urgent need for new drugs with a novel mode of action (MoA) to combat S. aureus biofilms and persisters that tolerate antibiotic treatment. We demonstrate that a benzonaphthopyranone glycoside, chrysomycin A (ChryA), is a rapid bactericide that is highly active against S. aureus persisters, robustly eradicates biofilms in vitro, and shows a sustainable killing efficacy in vivo. ChryA was suggested to target multiple critical cellular processes. A wide range of genetic and biochemical approaches showed that ChryA directly binds to GlmU and DapD, involved in the biosynthetic pathways for the cell wall peptidoglycan and lysine precursors, respectively, and inhibits the acetyltransferase activities by competition with their mutual substrate acetyl-CoA. Our study provides an effective antimicrobial strategy combining multiple MoAs onto a single small molecule for treatments of S. aureus persistent infections.
Collapse
Affiliation(s)
- Jia Jia
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Mingxin Zheng
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Chongwen Zhang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Binglei Li
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Cai Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuefan Bai
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Qian Tong
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Xudong Hang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Yixin Ge
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Liping Zeng
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fuhang Song
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hongkai Bi
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
16
|
Zeden MS, Schuster CF, Gründling A. Allelic Exchange: Construction of an Unmarked In-Frame Deletion in Staphylococcus aureus. Cold Spring Harb Protoc 2023; 2023:107945. [PMID: 37117029 DOI: 10.1101/pdb.top107945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Here we describe an allelic-exchange procedure for the construction of an unmarked gene deletion in the bacterium Staphylococcus aureus As a practical example, we outline the construction of a tagO gene deletion in S. aureus using the allelic-exchange plasmid pIMAY*. We first present the general principles of the allelic-exchange method, along with information on counterselectable markers. Furthermore, we summarize relevant cloning procedures, such as the splicing by overhang extension (SOE) polymerase chain reaction (PCR) and Gibson assembly methods, and we conclude by giving some general consideration to performing genetic modifications in S. aureus.
Collapse
Affiliation(s)
- Merve S Zeden
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Christopher F Schuster
- Center for Pandemic Vaccines and Therapeutics (ZEPAI), Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Angelika Gründling
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
17
|
Al Ali A, Alsulami J, Aubee JI, Idowu A, Tomlinson BR, Felton EA, Jackson JK, Kennedy SJ, Torres NJ, Shaw LN, Thompson KM. Staphylococcus aureus SigS Induces Expression of a Regulatory Protein Pair That Modulates Its mRNA Stability. J Bacteriol 2023; 205:e0039222. [PMID: 37255480 PMCID: PMC10294688 DOI: 10.1128/jb.00392-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/13/2023] [Indexed: 06/01/2023] Open
Abstract
SigS is the sole extracytoplasmic function sigma factor in Staphylococcus aureus and is necessary for virulence, immune evasion, and adaptation to toxic chemicals and environmental stressors. Despite the contribution of SigS to a myriad of critical phenotypes, the downstream effectors of SigS-dependent pathogenesis, immune evasion, and stress adaptation remain elusive. To address this knowledge gap, we analyzed the S. aureus transcriptome following transient overexpression of SigS. We identified a bicistronic transcript, upregulated 1,000-fold, containing two midsized genes, each containing single domains of unknown function (DUFs). We renamed these genes SigS-regulated orfA (sroA) and SigS-regulated orfB (sroB). We demonstrated that SigS regulation of the sroAB operon is direct by using in vitro transcription analysis. Using Northern blot analysis, we also demonstrated that SroA and SroB have opposing autoregulatory functions on the transcriptional architecture of the sigS locus, with SroA stimulating SigS mRNA levels and SroB stimulating s750 (SigS antisense) levels. We hypothesized that these opposing regulatory effects were due to a direct interaction. We subsequently demonstrated a direct interaction between SroA and SroB using an in vivo surrogate genetics approach via bacterial adenylate cyclase-based two-hybrid (BACTH) analysis. We demonstrated that the SroA effect on SigS is at the posttranscriptional level of mRNA stability, highlighting a mechanism likely used by S. aureus to tightly control SigS levels. Finally, we demonstrate that the sroAB locus promotes virulence in a murine pneumonia model of infection. IMPORTANCE SigS is necessary for S. aureus virulence, immune evasion, and adaptation to chemical and environmental stressors. These processes are critically important for the ability of S. aureus to cause disease. However, the SigS-dependent transcriptome has not been identified, hindering our ability to identify downstream effectors of SigS that contribute to these pathogenic and adaptive phenotypes. Here, we identify a regulatory protein pair that is a major direct target of SigS, known as SroA and SroB. SroA also acts to stimulate SigS expression at the posttranscriptional level of RNA turnover, providing insight into intrinsically low levels of SigS. The discovery of SroA and SroB increases our understanding of SigS and the S. aureus pathogenesis process.
Collapse
Affiliation(s)
- Amer Al Ali
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| | - Jamilah Alsulami
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| | - Joseph I. Aubee
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| | - Ayotimofe Idowu
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC, USA
| | - Brooke R. Tomlinson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Emily A. Felton
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Jessica K. Jackson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Sarah J. Kennedy
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Nathanial J. Torres
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Karl M. Thompson
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
18
|
Wei Y, Sturges CI, Palmer KL. Human Serum Supplementation Promotes Streptococcus mitis Growth and Induces Specific Transcriptomic Responses. Microbiol Spectr 2023; 11:e0512922. [PMID: 37014220 PMCID: PMC10269507 DOI: 10.1128/spectrum.05129-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/01/2023] [Indexed: 04/05/2023] Open
Abstract
Streptococcus mitis is a normal member of the human oral microbiota and a leading opportunistic pathogen causing infective endocarditis (IE). Despite the complex interactions between S. mitis and the human host, understanding of S. mitis physiology and its mechanisms of adaptation to host-associated environments is inadequate, especially compared with other IE bacterial pathogens. This study reports the growth-promoting effects of human serum on S. mitis and other pathogenic streptococci, including S. oralis, S. pneumoniae, and S. agalactiae. Using transcriptomic analyses, we identified that, with the addition of human serum, S. mitis downregulates uptake systems for metal ions and sugars, fatty acid biosynthetic genes, and genes involved in stress response and other processes related with growth and replication. S. mitis upregulates uptake systems for amino acids and short peptides in response to human serum. Zinc availability and environmental signals sensed by the induced short peptide binding proteins were not sufficient to confer the growth-promoting effects. More investigation is required to establish the mechanism for growth promotion. Overall, our study contributes to the fundamental understanding of S. mitis physiology under host-associated conditions. IMPORTANCE S. mitis is exposed to human serum components during commensalism in the human mouth and bloodstream pathogenesis. However, the physiological effects of serum components on this bacterium remain unclear. Using transcriptomic analyses, S. mitis biological processes that respond to the presence of human serum were revealed, improving the fundamental understanding of S. mitis physiology in human host conditions.
Collapse
Affiliation(s)
- Yahan Wei
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Camille I. Sturges
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Kelli L. Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
19
|
Hwang HJ, Li DD, Lee J, Kang MK, Moon HR, Lee JH. Compounds That Have an Anti-Biofilm Effect against Common Bacteria at Very Low Concentrations and Their Antibiotic Combination Effect. Antibiotics (Basel) 2023; 12:antibiotics12050853. [PMID: 37237757 DOI: 10.3390/antibiotics12050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Two synthetic compounds, MHY1383, azo-resveratrol and MHY1387, 5-[4-hydroxy-3,5-methoxybenzy]-2-thioxodihydropyrimidine-4,6[1H,5H]-dione have been reported to have an anti-biofilm effect on Pseudomonas aeruginosa at very low concentrations (1-10 pM). Here, we investigated the anti-biofilm effects of these compounds in various bacteria. We found that MHY1383 significantly inhibited Escherichia coli, Bacillus subtilis, and Staphylococcus aureus biofilm formation at 1 pM, 1 nM, and 10 nM, respectively. MHY1387 also inhibited the biofilm formation of E. coli, B. subtilis, and S. aureus at 1 pM, 10 nM, and 100 pM, respectively. Both MHY1383 and MHY1387 showed medium-dependent anti-biofilm effects on Salmonella enterica at high concentrations (10 μM). We also tested the susceptibility to antibiotics by measuring the minimum inhibitory concentration (MIC) in various bacteria. When P. aeruginosa, E. coli, B. subtilis, S. enterica, and S. aureus were treated with MHY1383 or MHY1387 in combination with four different antibiotics, the MICs of carbenicillin against B. subtilis and S. aureus were lowered more than two-fold by the combination with MHY1387. However, in all other combinations, the MIC changed within two-fold. The results of this study suggest that MHY1383 and MHY1387 are effective anti-biofilm agents and can be used at very low concentrations against biofilms formed by various types of bacteria. We also suggest that even if a substance that inhibits biofilm is used together with antibiotics, it does not necessarily have the effect of lowering the MIC of the antibiotics.
Collapse
Affiliation(s)
- Hyeon-Ji Hwang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Dan-Dan Li
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Jieun Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min Kyung Kang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Joon-Hee Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
20
|
Hossain M, Aslan B, Hatoum-Aslan A. Tandem mobilization of anti-phage defenses alongside SCC mec cassettes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533233. [PMID: 36993521 PMCID: PMC10055296 DOI: 10.1101/2023.03.17.533233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Bacterial viruses (phages) and the immune systems targeted against them significantly impact bacterial survival, evolution, and the emergence of pathogenic strains. While recent research has made spectacular strides towards discovering and validating new defenses in a few model organisms1-3, the inventory of immune systems in clinically-relevant bacteria remains underexplored, and little is known about the mechanisms by which these systems horizontally spread. Such pathways not only impact the evolutionary trajectory of bacterial pathogens, but also threaten to undermine the effectiveness of phage-based therapeutics. Here, we investigate the battery of defenses in staphylococci, opportunistic pathogens that constitute leading causes of antibiotic-resistant infections. We show that these organisms harbor a variety of anti-phage defenses encoded within/near the infamous SCC (staphylococcal cassette chromosome) mec cassettes, mobile genomic islands that confer methicillin resistance. Importantly, we demonstrate that SCCmec-encoded recombinases mobilize not only SCCmec, but also tandem cassettes enriched with diverse defenses. Further, we show that phage infection potentiates cassette mobilization. Taken together, our findings reveal that beyond spreading antibiotic resistance, SCCmec cassettes play a central role in disseminating anti-phage defenses. This work underscores the urgent need for developing adjunctive treatments that target this pathway to save the burgeoning phage therapeutics from suffering the same fate as conventional antibiotics.
Collapse
Affiliation(s)
- Motaher Hossain
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA
| | - Barbaros Aslan
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA
| | - Asma Hatoum-Aslan
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA
| |
Collapse
|
21
|
Liu CC, Lin MH. Hitchhiking motility of Staphylococcus aureus involves the interaction between its wall teichoic acids and lipopolysaccharide of Pseudomonas aeruginosa. Front Microbiol 2023; 13:1068251. [PMID: 36687638 PMCID: PMC9849799 DOI: 10.3389/fmicb.2022.1068251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus, which lacks pili and flagella, is nonmotile. However, it hitchhikes motile bacteria, such as Pseudomonas aeruginosa, to migrate in the environment. This study demonstrated that the hitchhiking motility of S. aureus SA113 was reduced after the tagO, which encodes an enzyme for wall teichoic acids (WTA) synthesis, was deleted. The hitchhiking motility was restored after the mutation was complemented by transforming a plasmid expressing TagO into the mutant. We also showed that adding purified lipopolysaccharide (LPS) to a culture that contains S. aureus SA113 and P. aeruginosa PAO1, reduced the movement of S. aureus, showing that WTA and LPS are involved in the hitchhiking motility of S. aureus. This study also found that P. aeruginosa promoted the movement of S. aureus in the digestive tract of Caenorhabditis elegans and in mice. In conclusion, this study reveals how S. aureus hitchhikes P. aeruginosa for translocation in an ecosystem. The results from this study improve our understanding on how a nonmotile pathogen moves in the environment and spreads in animals.
Collapse
Affiliation(s)
- Chao-Chin Liu
- 1Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Hui Lin
- 1Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan,2Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan,3Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan,*Correspondence: Mei-Hui Lin, ✉
| |
Collapse
|
22
|
Molendijk MM, Phan MVT, Bode LGM, Strepis N, Prasad DK, Worp N, Nieuwenhuijse DF, Schapendonk CME, Boekema BKHL, Verbon A, Koopmans MPG, de Graaf M, van Wamel WJB. Microcalorimetry: A Novel Application to Measure In Vitro Phage Susceptibility of Staphylococcus aureus in Human Serum. Viruses 2022; 15:14. [PMID: 36680055 PMCID: PMC9865112 DOI: 10.3390/v15010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Infections involving antibiotic resistant Staphylococcus aureus (S. aureus) represent a major challenge to successful treatment. Further, although bacteriophages (phages) could be an alternative to antibiotics, there exists a lack of correlation in phage susceptibility results between conventional in vitro and in vivo assays. This discrepancy may hinder the potential implementation of bacteriophage therapy. In this study, the susceptibility of twelve S. aureus strains to three commercial phage cocktails and two single phages was assessed. These S. aureus strains (including ten clinical isolates, five of which were methicillin-resistant) were compared using four assays: the spot test, efficiency of plating (EOP), the optical density assay (all in culture media) and microcalorimetry in human serum. In the spot test, EOP and optical density assay, all cocktails and single phages lysed both methicillin susceptible and methicillin resistant S. aureus strains. However, there was an absence of phage-mediated lysis in high concentrations of human serum as measured using microcalorimetry. As this microcalorimetry-based assay more closely resembles in vivo conditions, we propose that microcalorimetry could be included as a useful addition to conventional assays, thereby facilitating more accurate predictions of the in vivo susceptibility of S. aureus to phages during phage selection for therapeutic purposes.
Collapse
Affiliation(s)
- Michèle M. Molendijk
- Department Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 Rotterdam, The Netherlands
- Department of Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
| | - My V. T. Phan
- Department of Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
- Medical Research Council/Uganda Virus Research Institute, London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Lonneke G. M. Bode
- Department Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 Rotterdam, The Netherlands
| | - Nikolas Strepis
- Department Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 Rotterdam, The Netherlands
| | - Divyae K. Prasad
- Department of Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
| | - Nathalie Worp
- Department of Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
| | | | | | | | - Annelies Verbon
- Department Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 Rotterdam, The Netherlands
| | | | - Miranda de Graaf
- Department of Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
| | - Willem J. B. van Wamel
- Department Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 Rotterdam, The Netherlands
| |
Collapse
|
23
|
Synergistic antimicrobial effects of Dryopteris erythrosora extract and mild heat treatment against Staphylococcus aureus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
24
|
Panthee S, Hamamoto H, Paudel A, Kaito C, Suzuki Y, Sekimizu K. Hybrid assembly using long reads resolves repeats and completes the genome sequence of a laboratory strain of Staphylococcus aureus subsp. Aureus RN4220. Heliyon 2022; 8:e11376. [PMID: 36387480 PMCID: PMC9660545 DOI: 10.1016/j.heliyon.2022.e11376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/30/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022] Open
Abstract
Staphylococcus aureus RN4220 has been extensively used by staphylococcal researchers as an intermediate strain for genetic manipulation due to its ability to accept foreign DNA. Despite its wide use in laboratories, its complete genome is not available. In this study, we used a hybrid genome assembly approach using minION long reads and Illumina short reads to sequence the complete genome of S. aureus RN4220. The comparative analysis of the annotated complete genome showed the presence of 39 genes fragmented in the previous assembly, many of which were located near the repeat regions. Using RNA-Seq reads, we showed that a higher number of reads could be mapped to the complete genome than the draft genome and the gene expression profile obtained using the complete genome also differs from that obtained from the draft genome. Furthermore, by comparative transcriptomic analysis, we showed the correlation between expression levels of staphyloxanthin biosynthetic genes and the production of yellow pigment. This study highlighted the importance of long reads in completing microbial genomes, especially those possessing repetitive elements. S. aureus RN4220 is used as an intermediate strain for genetic manipulation. We completed its genome and found 39 fragmented genes in previous genome assembly. RNA-Seq analysis improved mapping of the reads with the use of complete genome. Expression of staphyloxanthin biosynthetic genes was correlated with its production.
Collapse
|
25
|
Youf R, Nasir A, Müller M, Thétiot F, Haute T, Ghanem R, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Ruthenium(II) Polypyridyl Complexes for Antimicrobial Photodynamic Therapy: Prospects for Application in Cystic Fibrosis Lung Airways. Pharmaceutics 2022; 14:pharmaceutics14081664. [PMID: 36015290 PMCID: PMC9412327 DOI: 10.3390/pharmaceutics14081664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) depends on a variety of parameters notably related to the photosensitizers used, the pathogens to target and the environment to operate. In a previous study using a series of Ruthenium(II) polypyridyl ([Ru(II)]) complexes, we reported the importance of the chemical structure on both their photo-physical/physico-chemical properties and their efficacy for aPDT. By employing standard in vitro conditions, effective [Ru(II)]-mediated aPDT was demonstrated against planktonic cultures of Pseudomonas aeruginosa and Staphylococcus aureus strains notably isolated from the airways of Cystic Fibrosis (CF) patients. CF lung disease is characterized with many pathophysiological disorders that can compromise the effectiveness of antimicrobials. Taking this into account, the present study is an extension of our previous work, with the aim of further investigating [Ru(II)]-mediated aPDT under in vitro experimental settings approaching the conditions of infected airways in CF patients. Thus, we herein studied the isolated influence of a series of parameters (including increased osmotic strength, acidic pH, lower oxygen availability, artificial sputum medium and biofilm formation) on the properties of two selected [Ru(II)] complexes. Furthermore, these compounds were used to evaluate the possibility to photoinactivate P. aeruginosa while preserving an underlying epithelium of human bronchial epithelial cells. Altogether, our results provide substantial evidence for the relevance of [Ru(II)]-based aPDT in CF lung airways. Besides optimized nano-complexes, this study also highlights the various needs for translating such a challenging perspective into clinical practice.
Collapse
Affiliation(s)
- Raphaëlle Youf
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Adeel Nasir
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Tanguy Haute
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Rosy Ghanem
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
- Correspondence:
| |
Collapse
|
26
|
Bari SMN, Chou-Zheng L, Howell O, Hossain M, Hill CM, Boyle TA, Cater K, Dandu VS, Thomas A, Aslan B, Hatoum-Aslan A. A unique mode of nucleic acid immunity performed by a multifunctional bacterial enzyme. Cell Host Microbe 2022; 30:570-582.e7. [PMID: 35421352 DOI: 10.1016/j.chom.2022.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/10/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022]
Abstract
The perpetual arms race between bacteria and their viruses (phages) has given rise to diverse immune systems, including restriction-modification and CRISPR-Cas, which sense and degrade phage-derived nucleic acids. These complex systems rely upon production and maintenance of multiple components to achieve antiphage defense. However, the prevalence and effectiveness of minimal, single-component systems that cleave DNA remain unknown. Here, we describe a unique mode of nucleic acid immunity mediated by a single enzyme with nuclease and helicase activities, herein referred to as Nhi (nuclease-helicase immunity). This enzyme provides robust protection against diverse staphylococcal phages and prevents phage DNA accumulation in cells stripped of all other known defenses. Our observations support a model in which Nhi targets and degrades phage-specific replication intermediates. Importantly, Nhi homologs are distributed in diverse bacteria and exhibit functional conservation, highlighting the versatility of such compact weapons as major players in antiphage defense.
Collapse
Affiliation(s)
- S M Nayeemul Bari
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Lucy Chou-Zheng
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Olivia Howell
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Motaher Hossain
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Courtney M Hill
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Tori A Boyle
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Katie Cater
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Vidya Sree Dandu
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Alexander Thomas
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Barbaros Aslan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Asma Hatoum-Aslan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA.
| |
Collapse
|
27
|
Maguin P, Varble A, Modell JW, Marraffini LA. Cleavage of viral DNA by restriction endonucleases stimulates the type II CRISPR-Cas immune response. Mol Cell 2022; 82:907-919.e7. [PMID: 35134339 PMCID: PMC8900293 DOI: 10.1016/j.molcel.2022.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022]
Abstract
Prokaryotic organisms have developed multiple defense systems against phages; however, little is known about whether and how these interact with each other. Here, we studied the connection between two of the most prominent prokaryotic immune systems: restriction-modification and CRISPR. While both systems employ enzymes that cleave a specific DNA sequence of the invader, CRISPR nucleases are programmed with phage-derived spacer sequences, which are integrated into the CRISPR locus upon infection. We found that restriction endonucleases provide a short-term defense, which is rapidly overcome through methylation of the phage genome. In a small fraction of the cells, however, restriction results in the acquisition of spacer sequences from the cleavage site, which mediates a robust type II-A CRISPR-Cas immune response against the methylated phage. This mechanism is reminiscent of eukaryotic immunity in which the innate response offers a first temporary line of defense and also activates a second and more robust adaptive response.
Collapse
Affiliation(s)
- Pascal Maguin
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Andrew Varble
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Joshua W. Modell
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.,Present address: Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, 725 N. Wolfe St., PCTB 803, Baltimore, MD 21205, USA
| | - Luciano A. Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.,Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.,Correspondence to:
| |
Collapse
|
28
|
Liu Q, Li D, Wang N, Guo G, Shi Y, Zou Q, Zhang X. Identification and Application of a Panel of Constitutive Promoters for Gene Overexpression in Staphylococcus aureus. Front Microbiol 2022; 13:818307. [PMID: 35295303 PMCID: PMC8918988 DOI: 10.3389/fmicb.2022.818307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is a leading pathogen that is currently the most common cause of infection in hospitalized patients. An in-depth genetic analysis of S. aureus virulence genes contributing to pathogenesis is needed to develop novel antimicrobial therapies. However, tools for genetic manipulation in S. aureus are limited, particularly those for gene expression. Here, 38 highly expressed genes were identified in S. aureus USA300_FPR3757 via RNA-seq. Promoter regions from 30 of these genes were successfully cloned, of which 20 promoters exhibited a wide range of activity. By utilizing these active promoters, 20 S. aureus-Escherichia coli shuttle vectors were constructed and evaluated by expressing an egfp reporter gene. Expression of the egfp gene under the control of different promoters was confirmed and quantified by Western blotting and qPCR, which suggested that the activity of these promoters varied from 18 to 650% of the activity of PsarA, a widely used promoter for gene expression. In addition, our constructed vectors were verified to be highly compatible with gene expression in different S. aureus strains. Furthermore, these vectors were evaluated and used to overexpress two endogenous proteins in S. aureus, namely, catalase and the transcriptional repressor of purine biosynthesis (PurR). Meanwhile, the physiological functions and phenotypes of overexpressed PurR and catalase in S. aureus were validated. Altogether, this evidence indicates that our constructed vectors provide a wide range of promoter activity on gene expression in S. aureus. This set of vectors carrying different constitutive promoters developed here will provide a powerful tool for the direct analysis of target gene function in staphylococcal cells.
Collapse
Affiliation(s)
- Qiang Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qiang Liu,
| | - Daiyu Li
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Guo
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaokai Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
- Xiaokai Zhang,
| |
Collapse
|
29
|
Park S, Jung D, O'Brien B, Ruffini J, Dussault F, Dube-Duquette A, Demontier É, Lucier JF, Malouin F, Dufour S, Ronholm J. Comparative genomic analysis of Staphylococcus aureus isolates associated with either bovine intramammary infections or human infections demonstrates the importance of restriction-modification systems in host adaptation. Microb Genom 2022; 8. [PMID: 35179459 PMCID: PMC8942034 DOI: 10.1099/mgen.0.000779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is a major etiological agent of clinical and subclinical bovine mastitis. The versatile and adaptative evolutionary strategies of this bacterium have challenged mastitis control and prevention globally, and the high incidence of S. aureus mastitis increases concerns about antimicrobial resistance (AMR) and zoonosis. This study aims to describe the evolutionary relationship between bovine intramammary infection (IMI)-associated S. aureus and human pathogenic S. aureus and further elucidate the specific genetic composition that leads to the emergence of successful bovine IMI-associated S. aureus lineages. We performed a phylogenomic analysis of 187 S. aureus isolates that originated from either dairy cattle or humans. Our results revealed that bovine IMI-associated S. aureus isolates showed distinct clades compared to human-originated S. aureus isolates. From a pan-genome analysis, 2070 core genes were identified. Host-specific genes and clonal complex (CC)-specific genes were also identified in bovine S. aureus isolates, mostly located in mobile genetic elements (MGEs). Additionally, the genome sequences of three apparent human-adapted isolates (two from CC97 and one from CC8), isolated from bovine mastitis samples, may provide an snapshot of the genomic characteristics in early host spillover events. Virulence and AMR genes were not conserved among bovine IMI-associated S. aureus isolates. Restriction-modification (R-M) genes in bovine IMI-associated S. aureus demonstrated that the Type I R-M system was lineage-specific and Type II R-M system was sequence type (ST)-specific. The distribution of exclusive, virulence, and AMR genes were closely correlated with the presence of R-M systems in S. aureus, suggesting that R-M systems may contribute to shaping clonal diversification by providing a genetic barrier to the horizontal gene transfer (HGT). Our findings indicate that the CC or ST lineage-specific R-M systems may limit genetic exchange between bovine-adapted S. aureus isolates from different lineages.
Collapse
Affiliation(s)
- Soyoun Park
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Québec, Canada.,Mastitis Network, Saint-Hyacinthe, Québec, Canada.,Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec, Canada
| | - Dongyun Jung
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Québec, Canada.,Mastitis Network, Saint-Hyacinthe, Québec, Canada.,Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec, Canada
| | - Bridget O'Brien
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Québec, Canada
| | - Janina Ruffini
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Québec, Canada
| | | | - Alexis Dube-Duquette
- Mastitis Network, Saint-Hyacinthe, Québec, Canada.,Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec, Canada.,Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Élodie Demontier
- Mastitis Network, Saint-Hyacinthe, Québec, Canada.,Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec, Canada.,Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Jean-François Lucier
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - François Malouin
- Mastitis Network, Saint-Hyacinthe, Québec, Canada.,Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec, Canada.,Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Simon Dufour
- Mastitis Network, Saint-Hyacinthe, Québec, Canada.,Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec, Canada.,Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Québec, Canada.,Mastitis Network, Saint-Hyacinthe, Québec, Canada.,Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
30
|
Aviram N, Thornal AN, Zeevi D, Marraffini LA. Different modes of spacer acquisition by the Staphylococcus epidermidis type III-A CRISPR-Cas system. Nucleic Acids Res 2022; 50:1661-1672. [PMID: 35048966 PMCID: PMC8860600 DOI: 10.1093/nar/gkab1299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 12/23/2022] Open
Abstract
CRISPR-Cas systems provide prokaryotic organisms with an adaptive defense mechanism that acquires immunological memories of infections. This is accomplished by integration of short fragments from the genome of invaders such as phages and plasmids, called ‘spacers’, into the CRISPR locus of the host. Depending on their genetic composition, CRISPR-Cas systems can be classified into six types, I-VI, however spacer acquisition has been extensively studied only in type I and II systems. Here, we used an inducible spacer acquisition assay to study this process in the type III-A CRISPR-Cas system of Staphylococcus epidermidis, in the absence of phage selection. Similarly to type I and II spacer acquisition, this type III system uses Cas1 and Cas2 to preferentially integrate spacers from the chromosomal terminus and free dsDNA ends produced after DNA breaks, in a manner that is enhanced by the AddAB DNA repair complex. Surprisingly, a different mode of spacer acquisition from rRNA and tRNA loci, which spans only the transcribed sequences of these genes and is not enhanced by AddAB, was also detected. Therefore, our findings reveal both common mechanistic principles that may be conserved in all CRISPR-Cas systems, as well as unique and intriguing features of type III spacer acquisition.
Collapse
Affiliation(s)
- Naama Aviram
- Laboratory of Bacteriology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Ashley N Thornal
- Laboratory of Bacteriology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - David Zeevi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Luciano A Marraffini
- Laboratory of Bacteriology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA.,Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
31
|
Doub JB. Risk of Bacteriophage Therapeutics to Transfer Genetic Material and Contain Contaminants Beyond Endotoxins with Clinically Relevant Mitigation Strategies. Infect Drug Resist 2022; 14:5629-5637. [PMID: 34992389 PMCID: PMC8711558 DOI: 10.2147/idr.s341265] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteriophage therapy is a promising adjuvant therapeutic in the treatment of multidrug-resistant infections and chronic biofilm infections. However, there is limited knowledge about how to best utilize these agents in vivo, leading to a wide range of treatment protocols. Moreover, while bacteriophages are similar to antibiotics in their antimicrobial effects, these are active viruses and are very different from conventional antibiotics. One main difference that clinicians should be cognizant about is the potential ability of these therapeutics to horizontally transfer genetic material, and the clinical ramifications of such events. In addition, while bacteriophage therapeutics are readily tested for sterility and endotoxins, clinicians should also be aware of other contaminants, such as exotoxins, pathogenicity islands and prophages, that can contaminate bacteriophage therapeutics, and their clinical ramifications. While the perception may be that these are only theoretical issues, regulatory agencies are starting to recommend their evaluation when using bacteriophage therapy and subsequently these topics are discussed herein, as are ways to test for and mitigate the adverse effects of these issues.
Collapse
Affiliation(s)
- James B Doub
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Jia Z, Müller M, Le Gall T, Riool M, Müller M, Zaat SA, Montier T, Schönherr H. Multiplexed detection and differentiation of bacterial enzymes and bacteria by color-encoded sensor hydrogels. Bioact Mater 2021; 6:4286-4300. [PMID: 33997506 PMCID: PMC8105640 DOI: 10.1016/j.bioactmat.2021.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/12/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
We report on the fabrication and characterization of color-encoded chitosan hydrogels for the rapid, sensitive and specific detection of bacterial enzymes as well as the selective detection of a set of tested bacteria through characteristic enzyme reactions. These patterned sensor hydrogels are functionalized with three different colorimetric enzyme substrates affording the multiplexed detection and differentiation of α-glucosidase, β-galactosidase and β-glucuronidase. The limits of detection of the hydrogels for an observation time of 60 min using a conventional microplate reader correspond to concentrations of 0.2, 3.4 and 4.5 nM of these enzymes, respectively. Based on their different enzyme expression patterns, Staphylococcus aureus strain RN4220, methicillin-resistant S. aureus (MRSA) strain N315, both producing α-glucosidase, but not β-glucuronidase and β-galactosidase, Escherichia coli strain DH5α, producing β-glucuronidase and α-glucosidase, but not β-galactosidase, and the enterohemorrhagic E. coli (EHEC) strain E32511, producing β-galactosidase, but none of the other two enzymes, can be reliably and rapidly distinguished from each other. These results confirm the applicability of enzyme sensing hydrogels for the detection and discrimination of specific enzymes to facilitate differentiation of bacterial strains. Patterned hydrogels thus possess the potential to be further refined as detection units of a multiplexed format to identify certain bacteria for future application in point-of-care microbiological diagnostics in food safety and medical settings.
Collapse
Affiliation(s)
- Zhiyuan Jia
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078 GGFB, F-29200, Brest, France
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Max Müller
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078 GGFB, F-29200, Brest, France
- CHRU de Brest, Service de génétique médicale et de biologie de la reproduction, Centre de Référence des Maladies Rares « Maladies neuromusculaires », F-29200, Brest, France
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
| |
Collapse
|
33
|
Göller PC, Elsener T, Lorgé D, Radulovic N, Bernardi V, Naumann A, Amri N, Khatchatourova E, Coutinho FH, Loessner MJ, Gómez-Sanz E. Multi-species host range of staphylococcal phages isolated from wastewater. Nat Commun 2021; 12:6965. [PMID: 34845206 PMCID: PMC8629997 DOI: 10.1038/s41467-021-27037-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
The host range of bacteriophages defines their impact on bacterial communities and genome diversity. Here, we characterize 94 novel staphylococcal phages from wastewater and establish their host range on a diversified panel of 117 staphylococci from 29 species. Using this high-resolution phage-bacteria interaction matrix, we unveil a multi-species host range as a dominant trait of the isolated staphylococcal phages. Phage genome sequencing shows this pattern to prevail irrespective of taxonomy. Network analysis between phage-infected bacteria reveals that hosts from multiple species, ecosystems, and drug-resistance phenotypes share numerous phages. Lastly, we show that phages throughout this network can package foreign genetic material enclosing an antibiotic resistance marker at various frequencies. Our findings indicate a weak host specialism of the tested phages, and therefore their potential to promote horizontal gene transfer in this environment.
Collapse
Affiliation(s)
- Pauline C. Göller
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Tabea Elsener
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Dominic Lorgé
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Natasa Radulovic
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Viona Bernardi
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Annika Naumann
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Nesrine Amri
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Ekaterina Khatchatourova
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Felipe Hernandes Coutinho
- grid.26811.3c0000 0001 0586 4893Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Martin J. Loessner
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Elena Gómez-Sanz
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland. .,Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain.
| |
Collapse
|
34
|
Cross-genus Boot-up of Synthetic Bacteriophage in Staphylococcus aureus Using a New and Efficient DNA Transformation Method. Appl Environ Microbiol 2021; 88:e0148621. [PMID: 34818102 DOI: 10.1128/aem.01486-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen causing a wide range of infections and food poisoning in humans with antibiotic resistance, specifically to methicillin, compounding the problem. Bacteriophages (phages) provide an alternative treatment strategy, but only infect a limited number of circulating strains and may quickly become ineffective due to bacterial resistance. To overcome these obstacles, engineered phages have been proposed, but methods are needed for efficient transformation of large DNA molecules into S. aureus to boot-up (i.e., rescue) infectious phages. We present a new, efficient and reproducible DNA transformation method, NEST (Non-Electroporation Staphylococcus Transformation), for S. aureus to boot-up of purified phage genomic DNA (at least 150 kb in length tested) and whole yeast-assembled synthetic phage genomes. This method is a powerful new tool for transformation of DNA in S. aureus and will enable the rapid development of engineered therapeutic phages and phage cocktails against Gram-positive pathogens. Importance The continued emergence of antibiotic resistant bacterial pathogens has heightened the urgency for alternative antibacterial strategies. Phages provide an alternative treatment strategy, but are difficult to optimize. Synthetic biology approaches have been successfully used to construct and rescue genomes of model phages, but only in a limited number of highly transformable host species. In this study, we used a new, reproducible, and efficient transformation method to reconstitute a functional non-model Siphophage from a constructed synthetic genome. This method will facilitate not only the engineering of Staphylococcus and Enterococcus phages for therapeutic applications but also the engineering of Staphylococcus strains by enabling transformation of higher molecular weight DNA to introduce more complex modifications.
Collapse
|
35
|
Patel N, Nair M. The small RNA RsaF regulates the expression of secreted virulence factors in Staphylococcus aureus Newman. J Microbiol 2021; 59:920-930. [PMID: 34554453 DOI: 10.1007/s12275-021-1205-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022]
Abstract
The pathogenesis of Staphylococcus aureus, from local infections to systemic dissemination, is mediated by a battery of virulence factors that are regulated by intricate mechanisms, which include regulatory proteins and small RNAs (sRNAs) as key regulatory molecules. We have investigated the involvement of sRNA RsaF, in the regulation of pathogenicity genes hyaluronate lyase (hysA) and serine proteaselike protein D (splD), by employing S. aureus strains with disruption and overexpression of rsaF. Staphylococcus aureus strain with disruption of rsaF exhibited marked down-regulation of hysA transcripts by 0.2 to 0.0002 fold, and hyaluronate lyase activity by 0.2-0.1 fold, as well as increased biofilm formation, during growth from log phase to stationery phase. These mutants also displayed down-regulation of splD transcripts by 0.8 to 0.005 fold, and reduced activity of multiple proteases by zymography. Conversely, overexpression of rsaF resulted in a 2- to 4- fold increase in hysA mRNA levels and hyaluronidase activity. Both hysA and splD mRNAs demonstrated an increased stability in RsaF+ strains. In silico RNA-RNA interaction indicated a direct base pairing of RsaF with hysA and splD mRNAs, which was established in electrophoretic mobility shift assays. The findings demonstrate a positive regulatory role for small RNA RsaF in the expression of the virulence factors, HysA and SplD.
Collapse
Affiliation(s)
- Niralee Patel
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Mrinalini Nair
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
36
|
Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells. PLoS Pathog 2021; 17:e1009874. [PMID: 34473800 PMCID: PMC8443034 DOI: 10.1371/journal.ppat.1009874] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/15/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A.
Collapse
|
37
|
Shin M, Mun D, Choi HJ, Kim S, Payne SM, Kim Y. Identification of a New Antimicrobial Agent against Bovine Mastitis-Causing Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9968-9978. [PMID: 34406764 DOI: 10.1021/acs.jafc.1c02738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Staphylococcus aureus RF122 is a major pathogen that causes bovine mastitis, which is the most prevalent and costly disease in the milk and dairy industry. S. aureus expresses various virulence factors that are especially highly associated with iron metabolism, and the bacterial ferrous iron transport system Feo is important for bacterial growth or virulence in mammalian hosts. In this study, we evaluated a new antimicrobial agent, PHT-427, targeting the S. aureus RF122 Feo system for the prevention of bovine mastitis. Various analyses on in vitro enzymatic assays, growth inhibition, virulence expressions, and toxicity of animal model systems were conducted to characterize the inhibition properties of PHT-427. This small molecule efficiently inhibited enzyme activity of FeoB and bacterial growth. PHT-427 attenuated various virulence factors related to milk quality, including staphyloxanthin production, biofilm formation, and coagulation. Considering the high frequency of antibiotic-resistant S. aureus in bovine mastitis isolates, PHT-427 synergistically enhanced bacterial antibiotic susceptibility and further inhibited global Gram-positive bacterial growth. Unlike its effects on bacteria, the inhibitor did not show any toxicity on animal model systems. These results indicate that the S. aureus Feo system represents a good target for antimicrobial strategies, and this new antimicrobial agent may represent a promising biotechnological application for preventing S. aureus-induced bovine mastitis in the milk and dairy industry.
Collapse
Affiliation(s)
- Minhye Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Daye Mun
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye Jin Choi
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sooah Kim
- Department of Environment Science & Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea
| | - Shelley M Payne
- Department of Molecular Biosciences, College of Natural Science, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Younghoon Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
38
|
The Mycobacteriophage Ms6 LysB N-Terminus Displays Peptidoglycan Binding Affinity. Viruses 2021; 13:v13071377. [PMID: 34372584 PMCID: PMC8309991 DOI: 10.3390/v13071377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Double-stranded DNA bacteriophages end their lytic cycle by disrupting the host cell envelope, which allows the release of the virion progeny. Each phage must synthesize lysis proteins that target each cell barrier to phage release. In addition to holins, which permeabilize the cytoplasmic membrane, and endolysins, which disrupt the peptidoglycan (PG), mycobacteriophages synthesize a specific lysis protein, LysB, capable of detaching the outer membrane from the complex cell wall of mycobacteria. The family of LysB proteins is highly diverse, with many members presenting an extended N-terminus. The N-terminal region of mycobacteriophage Ms6 LysB shows structural similarity to the PG-binding domain (PGBD) of the φKZ endolysin. A fusion of this region with enhanced green fluorescent protein (Ms6LysBPGBD-EGFP) was shown to bind to Mycobacterium smegmatis, Mycobacterium vaccae, Mycobacterium bovis BGC and Mycobacterium tuberculosis H37Ra cells pretreated with SDS or Ms6 LysB. In pulldown assays, we demonstrate that Ms6 LysB and Ms6LysBPGBD-EGFP bind to purified peptidoglycan of M. smegmatis, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis, demonstrating affinity to PG of the A1γ chemotype. An infection assay with an Ms6 mutant producing a truncated version of LysB lacking the first 90 amino acids resulted in an abrupt lysis. These results clearly demonstrate that the N-terminus of Ms6 LysB binds to the PG.
Collapse
|
39
|
A new, reliable, and high-throughput strategy to screen bacteria for antagonistic activity against Staphylococcus aureus. BMC Microbiol 2021; 21:189. [PMID: 34167492 PMCID: PMC8228506 DOI: 10.1186/s12866-021-02265-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/10/2021] [Indexed: 01/20/2023] Open
Abstract
Background Antibiotic-resistant Staphylococcus aureus clones have emerged globally over the last few decades. Probiotics have been actively studied as an alternative to antibiotics to prevent and treat S. aureus infections, but identifying new probiotic bacteria, that have antagonistic activity against S. aureus, is difficult since traditional screening strategies are time-consuming and expensive. Here, we describe a new plasmid-based method which uses highly stable plasmids to screen bacteria with antagonistic activity against S. aureus. Results We have created two recombinant plasmids (pQS1 and pQS3) which carry either gfpbk or mCherry under the control of a S. aureus quorum-sensing (QS) promoter (agrP3). Using this recombinant plasmid pair, we tested 81 bacteria isolated from Holstein dairy milk to identify bacteria that had growth-inhibiting activity against S. aureus and suggest potential explanations for the growth inhibition. The stability test illustrated that pQS1 and pQS3 remained highly stable for at least 24 h in batch culture conditions without selection pressure from antibiotics. This allowed co-culturing of S. aureus with other bacteria. Using the newly developed pQS plasmids, we found commensal bacteria, isolated from raw bovine milk, which had growth-inhibiting activity (n = 13) and quorum-quenching (QQ) activity (n = 13) towards both S. aureus Sa25 (CC97) and Sa27 (CC151). The pQS-based method is efficient and effective for simultaneously screening growth-inhibiting and QQ bacteria against S. aureus on agar media. Conclusions It was shown that growth-inhibiting and QQ activity toward pQS plasmid transformants of S. aureus can be simultaneously monitored by observing the zone of growth inhibition and reporter protein inhibition on agar plates. Newly identified antagonistic bacteria and their functional biomolecules are promising candidates for future development of probiotic drugs and prophylactics/therapeutics for bacterial infections including S. aureus. Furthermore, this new approach can be a useful method to find bacteria that can be used to prevent and treat S. aureus infections in both humans and animals. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02265-4.
Collapse
|
40
|
Fantone K, Tucker SL, Miller A, Yadav R, Bernardy EE, Fricker R, Stecenko AA, Goldberg JB, Rada B. Cystic Fibrosis Sputum Impairs the Ability of Neutrophils to Kill Staphylococcus aureus. Pathogens 2021; 10:pathogens10060703. [PMID: 34200034 PMCID: PMC8229215 DOI: 10.3390/pathogens10060703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) airway disease is characterized by chronic microbial infections and infiltration of inflammatory polymorphonuclear (PMN) granulocytes. Staphylococcus aureus (S. aureus) is a major lung pathogen in CF that persists despite the presence of PMNs and has been associated with CF lung function decline. While PMNs represent the main mechanism of the immune system to kill S. aureus, it remains largely unknown why PMNs fail to eliminate S. aureus in CF. The goal of this study was to observe how the CF airway environment affects S. aureus killing by PMNs. PMNs were isolated from the blood of healthy volunteers and CF patients. Clinical isolates of S. aureus were obtained from the airways of CF patients. The results show that PMNs from healthy volunteers were able to kill all CF isolates and laboratory strains of S. aureus tested in vitro. The extent of killing varied among strains. When PMNs were pretreated with supernatants of CF sputum, S. aureus killing was significantly inhibited suggesting that the CF airway environment compromises PMN antibacterial functions. CF blood PMNs were capable of killing S. aureus. Although bacterial killing was inhibited with CF sputum, PMN binding and phagocytosis of S. aureus was not diminished. The S. aureus-induced respiratory burst and neutrophil extracellular trap release from PMNs also remained uninhibited by CF sputum. In summary, our data demonstrate that the CF airway environment limits killing of S. aureus by PMNs and provides a new in vitro experimental model to study this phenomenon and its mechanism.
Collapse
Affiliation(s)
- Kayla Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
| | - Samantha L. Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
| | - Arthur Miller
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
| | - Ruchi Yadav
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
| | - Eryn E. Bernardy
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.E.B.); (A.A.S.); (J.B.G.)
| | - Rachel Fricker
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
| | - Arlene A. Stecenko
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.E.B.); (A.A.S.); (J.B.G.)
| | - Joanna B. Goldberg
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.E.B.); (A.A.S.); (J.B.G.)
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
- Correspondence:
| |
Collapse
|
41
|
Guimarães VA, Le Scornet A, Khemici V, Hausmann S, Armitano J, Prados J, Jousselin A, Manzano C, Linder P, Redder P. RNase J1 and J2 Are Host-Encoded Factors for Plasmid Replication. Front Microbiol 2021; 12:586886. [PMID: 34017314 PMCID: PMC8129170 DOI: 10.3389/fmicb.2021.586886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmids need to ensure their transmission to both daughter-cells when their host divides, but should at the same time avoid overtaxing their hosts by directing excessive host-resources toward production of plasmid factors. Naturally occurring plasmids have therefore evolved regulatory mechanisms to restrict their copy-number in response to the volume of the cytoplasm. In many plasmid families, copy-number control is mediated by a small plasmid-specified RNA, which is continuously produced and rapidly degraded, to ensure that its concentration is proportional to the current plasmid copy-number. We show here that pSA564 from the RepA_N-family is regulated by a small antisense RNA (RNA1), which, when over-expressed in trans, blocks plasmid replication and cures the bacterial host. The 5' untranslated region (5'UTR) of the plasmid replication initiation gene (repA) potentially forms two mutually exclusive secondary structures, ON and OFF, where the latter both sequesters the repA ribosome binding site and acts as a rho-independent transcriptional terminator. Duplex formation between RNA1 and the 5'UTR shifts the equilibrium to favor the putative OFF-structure, enabling a single small RNA to down-regulate repA expression at both transcriptional and translational levels. We further examine which sequence elements on the antisense RNA and on its 5'UTR target are needed for this regulation. Finally, we identify the host-encoded exoribonucleases RNase J1 and J2 as the enzymes responsible for rapidly degrading the replication-inhibiting section of RNA1. This region accumulates and blocks RepA expression in the absence of either RNase J1 or J2, which are therefore essential host factors for pSA564 replication in Staphylococcus aureus.
Collapse
Affiliation(s)
- Vanessa Andrade Guimarães
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre Le Scornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Paul Sabatier University, Toulouse, France
| | - Vanessa Khemici
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joshua Armitano
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Prados
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ambre Jousselin
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Paul Sabatier University, Toulouse, France
| | - Caroline Manzano
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Linder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peter Redder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Paul Sabatier University, Toulouse, France
| |
Collapse
|
42
|
Marincola G, Jaschkowitz G, Kieninger AK, Wencker FDR, Feßler AT, Schwarz S, Ziebuhr W. Plasmid-Chromosome Crosstalk in Staphylococcus aureus: A Horizontally Acquired Transcription Regulator Controls Polysaccharide Intercellular Adhesin-Mediated Biofilm Formation. Front Cell Infect Microbiol 2021; 11:660702. [PMID: 33829001 PMCID: PMC8019970 DOI: 10.3389/fcimb.2021.660702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) of clonal complex CC398 typically carry various antimicrobial resistance genes, many of them located on plasmids. In the bovine LA-MRSA isolate Rd11, we previously identified plasmid pAFS11 in which resistance genes are co-localized with a novel ica-like gene cluster, harboring genes required for polysaccharide intercellular adhesin (PIA)-mediated biofilm formation. The ica genes on pAFS11 were acquired in addition to a pre-existing ica locus on the S. aureus Rd11 chromosomal DNA. Both loci consist of an icaADBC operon and icaR, encoding a corresponding icaADBC repressor. Despite carrying two biofilm gene copies, strain Rd11 did not produce PIA and transformation of pAFS11 into another S. aureus strain even slightly diminished PIA-mediated biofilm formation. By focusing on the molecular background of the biofilm-negative phenotype of pAFS11-carrying S. aureus, we identified the pAFS11-borne ica locus copy as functionally fully active. However, transcription of both plasmid- and core genome-derived icaADBC operons were efficiently suppressed involving IcaR. Surprisingly, although being different on the amino acid sequence level, the two IcaR repressor proteins are mutually replaceable and are able to interact with the icaA promoter region of the other copy. We speculate that this regulatory crosstalk causes the biofilm-negative phenotype in S. aureus Rd11. The data shed light on an unexpected regulatory interplay between pre-existing and newly acquired DNA traits in S. aureus. This also raises interesting general questions regarding functional consequences of gene transfer events and their putative implications for the adaptation and evolution of bacterial pathogens.
Collapse
Affiliation(s)
- Gabriella Marincola
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Greta Jaschkowitz
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ann-Katrin Kieninger
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Freya D R Wencker
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Andrea T Feßler
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Free University of Berlin, Berlin, Germany
| | - Stefan Schwarz
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Free University of Berlin, Berlin, Germany
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
43
|
Wencker FDR, Marincola G, Schoenfelder SMK, Maaß S, Becher D, Ziebuhr W. Another layer of complexity in Staphylococcus aureus methionine biosynthesis control: unusual RNase III-driven T-box riboswitch cleavage determines met operon mRNA stability and decay. Nucleic Acids Res 2021; 49:2192-2212. [PMID: 33450025 PMCID: PMC7913692 DOI: 10.1093/nar/gkaa1277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 11/12/2022] Open
Abstract
In Staphylococcus aureus, de novo methionine biosynthesis is regulated by a unique hierarchical pathway involving stringent-response controlled CodY repression in combination with a T-box riboswitch and RNA decay. The T-box riboswitch residing in the 5′ untranslated region (met leader RNA) of the S. aureus metICFE-mdh operon controls downstream gene transcription upon interaction with uncharged methionyl-tRNA. met leader and metICFE-mdh (m)RNAs undergo RNase-mediated degradation in a process whose molecular details are poorly understood. Here we determined the secondary structure of the met leader RNA and found the element to harbor, beyond other conserved T-box riboswitch structural features, a terminator helix which is target for RNase III endoribonucleolytic cleavage. As the terminator is a thermodynamically highly stable structure, it also forms posttranscriptionally in met leader/ metICFE-mdh read-through transcripts. Cleavage by RNase III releases the met leader from metICFE-mdh mRNA and initiates RNase J-mediated degradation of the mRNA from the 5′-end. Of note, metICFE-mdh mRNA stability varies over the length of the transcript with a longer lifespan towards the 3′-end. The obtained data suggest that coordinated RNA decay represents another checkpoint in a complex regulatory network that adjusts costly methionine biosynthesis to current metabolic requirements.
Collapse
Affiliation(s)
- Freya D R Wencker
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg 97080, Germany
| | - Gabriella Marincola
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg 97080, Germany
| | - Sonja M K Schoenfelder
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg 97080, Germany
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, Greifswald 17489, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald 17489, Germany
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
44
|
Light Modulates Important Pathogenic Determinants and Virulence in ESKAPE Pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus. J Bacteriol 2021; 203:JB.00566-20. [PMID: 33288627 DOI: 10.1128/jb.00566-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Light sensing has been extensively characterized in the human pathogen Acinetobacter baumannii at environmental temperatures. However, the influence of light on the physiology and pathogenicity of human bacterial pathogens at temperatures found in warm-blooded hosts is still poorly understand. In this work, we show that Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa (ESKAPE) priority pathogens, which have been recognized by the WHO and the CDC as critical, can also sense and respond to light at temperatures found in human hosts. Most interestingly, in these pathogens, light modulates important pathogenicity determinants as well as virulence in an epithelial infection model, which could have implications in human infections. In fact, we found that alpha-toxin-dependent hemolysis, motility, and growth under iron-deprived conditions are modulated by light in S. aureus Light also regulates persistence, metabolism, and the ability to kill competitors in some of these microorganisms. Finally, light exerts a profound effect on the virulence of these pathogens in an epithelial infection model, although the response is not the same in the different species; virulence was enhanced by light in A. baumannii and S. aureus, while in A. nosocomialis and P. aeruginosa it was reduced. Neither the BlsA photoreceptor nor the type VI secretion system (T6SS) is involved in virulence modulation by light in A. baumannii Overall, this fundamental knowledge highlights the potential use of light to control pathogen virulence, either directly or by manipulating the light regulatory switch toward the lowest virulence/persistence configuration.IMPORTANCE Pathogenic bacteria are microorganisms capable of producing disease. Dangerous bacterial pathogens, such as Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, are responsible for serious intrahospital and community infections in humans. Therapeutics is often complicated due to resistance to multiple antibiotics, rendering them ineffective. In this work, we show that these pathogens sense natural light and respond to it by modulating aspects related to their ability to cause disease; in the presence of light, some of them become more aggressive, while others show an opposite response. Overall, we provide new understanding on the behavior of these pathogens, which could contribute to the control of infections caused by them. Since the response is distributed in diverse pathogens, this notion could prove a general concept.
Collapse
|
45
|
Karaboja X, Ren Z, Brandão HB, Paul P, Rudner DZ, Wang X. XerD unloads bacterial SMC complexes at the replication terminus. Mol Cell 2021; 81:756-766.e8. [PMID: 33472056 DOI: 10.1016/j.molcel.2020.12.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
Bacillus subtilis structural maintenance of chromosomes (SMC) complexes are topologically loaded at centromeric sites adjacent to the replication origin by the partitioning protein ParB. These ring-shaped ATPases then translocate down the left and right chromosome arms while tethering them together. Here, we show that the site-specific recombinase XerD, which resolves chromosome dimers, is required to unload SMC tethers when they reach the terminus. We identify XerD-specific binding sites in the terminus region and show that they dictate the site of unloading in a manner that depends on XerD but not its catalytic residue, its partner protein XerC, or the recombination site dif. Finally, we provide evidence that ParB and XerD homologs perform similar functions in Staphylococcus aureus. Thus, two broadly conserved factors that act at the origin and terminus have second functions in loading and unloading SMC complexes that travel between them.
Collapse
Affiliation(s)
- Xheni Karaboja
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Hugo B Brandão
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Payel Paul
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
46
|
Moller AG, Winston K, Ji S, Wang J, Hargita Davis MN, Solís-Lemus CR, Read TD. Genes Influencing Phage Host Range in Staphylococcus aureus on a Species-Wide Scale. mSphere 2021; 6:e01263-20. [PMID: 33441407 PMCID: PMC7845607 DOI: 10.1128/msphere.01263-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a human pathogen that causes serious diseases, ranging from skin infections to septic shock. Bacteriophages (phages) are both natural killers of S. aureus, offering therapeutic possibilities, and important vectors of horizontal gene transfer (HGT) in the species. Here, we used high-throughput approaches to understand the genetic basis of strain-to-strain variation in sensitivity to phages, which defines the host range. We screened 259 diverse S. aureus strains covering more than 40 sequence types for sensitivity to eight phages, which were representatives of the three phage classes that infect the species. The phages were variable in host range, each infecting between 73 and 257 strains. Using genome-wide association approaches, we identified putative loci that affect host range and validated their function using USA300 transposon knockouts. In addition to rediscovering known host range determinants, we found several previously unreported genes affecting bacterial growth during phage infection, including trpA, phoR, isdB, sodM, fmtC, and relA We used the data from our host range matrix to develop predictive models that achieved between 40% and 95% accuracy. This work illustrates the complexity of the genetic basis for phage susceptibility in S. aureus but also shows that with more data, we may be able to understand much of the variation. With a knowledge of host range determination, we can rationally design phage therapy cocktails that target the broadest host range of S. aureus strains and address basic questions regarding phage-host interactions, such as the impact of phage on S. aureus evolution.IMPORTANCEStaphylococcus aureus is a widespread, hospital- and community-acquired pathogen, many strains of which are antibiotic resistant. It causes diverse diseases, ranging from local to systemic infection, and affects both the skin and many internal organs, including the heart, lungs, bones, and brain. Its ubiquity, antibiotic resistance, and disease burden make new therapies urgent. One alternative therapy to antibiotics is phage therapy, in which viruses specific to infecting bacteria clear infection. In this work, we identified and validated S. aureus genes that influence phage host range-the number of strains a phage can infect and kill-by testing strains representative of the diversity of the S. aureus species for phage host range and associating the genome sequences of strains with host range. These findings together improved our understanding of how phage therapy works in the bacterium and improve prediction of phage therapy efficacy based on the predicted host range of the infecting strain.
Collapse
Affiliation(s)
- Abraham G Moller
- Microbiology and Molecular Genetics (MMG) Program, Graduate Division of Biological and Biomedical Sciences (GDBBS), Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Kyle Winston
- Department of Epidemiology, Rollins School of Public Health (RSPH), Emory University, Atlanta, Georgia, USA
| | - Shiyu Ji
- Eugene Gangarosa Laboratory Research Fellowship, Emory College Online & Summer Programs, Emory College of Arts and Sciences, Atlanta, Georgia, USA
| | - Junting Wang
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michelle N Hargita Davis
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Claudia R Solís-Lemus
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
47
|
Abstract
Ever since the discovery of antibodies, they have been generated by complicated multi-step procedures. Typically, these involve sequencing, cloning, and screening after expression of the antibodies in a suitable organism and format. Here, a staphylococcal nanobody display is described that omits many the abovementioned intermediate steps and allows for simultaneous screening of multiple targets without prior knowledge nor expression of the binders. This paper reports a detailed, general step-by-step protocol to achieve nanobodies of high affinity. Apart from its focus on radioactive and fluorescent targets, it gives options for various other target formats and additional applications for the staphylococcal library; including flow cytometry and immunoprecipitation. This provides a system for antibody engineers that can be easily adopted to their specific needs.
Collapse
Affiliation(s)
- Marco Cavallari
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
48
|
Nakamura K, O'Neill AM, Williams MR, Cau L, Nakatsuji T, Horswill AR, Gallo RL. Short chain fatty acids produced by Cutibacterium acnes inhibit biofilm formation by Staphylococcus epidermidis. Sci Rep 2020; 10:21237. [PMID: 33277548 PMCID: PMC7718897 DOI: 10.1038/s41598-020-77790-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Biofilm formation by bacterial pathogens is associated with numerous human diseases and can confer resistance to both antibiotics and host defenses. Many strains of Staphylococcus epidermidis are capable of forming biofilms and are important human pathogens. Since S. epidermidis coexists with abundant Cutibacteria acnes on healthy human skin and does not typically form a biofilm in this environment, we hypothesized that C. acnes may influence biofilm formation of S. epidermidis. Culture supernatants from C. acnes and other species of Cutibacteria inhibited S. epidermidis but did not inhibit biofilms by Pseudomonas aeruginosa or Bacillus subtilis, and inhibited biofilms by S. aureus to a lesser extent. Biofilm inhibitory activity exhibited chemical properties of short chain fatty acids known to be produced from C. acnes. The addition of the pure short chain fatty acids propionic, isobutyric or isovaleric acid to S. epidermidis inhibited biofilm formation and, similarly to C. acnes supernatant, reduced polysaccharide synthesis by S. epidermidis. Both short chain fatty acids and C. acnes culture supernatant also increased sensitivity of S. epidermidis to antibiotic killing under biofilm-forming conditions. These observations suggest the presence of C. acnes in a diverse microbial community with S. epidermidis can be beneficial to the host and demonstrates that short chain fatty acids may be useful to limit formation of a biofilm by S. epidermidis.
Collapse
Affiliation(s)
- Kouki Nakamura
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
| | - Alan M O'Neill
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
| | - Michael R Williams
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
| | - Laura Cau
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
- SILAB, R&D Department, Brive, France
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, USA
| | - Richard L Gallo
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA.
| |
Collapse
|
49
|
Mikati MO, Miller JJ, Osbourn DM, Barekatain Y, Ghebremichael N, Shah IT, Burnham CAD, Heidel KM, Yan VC, Muller FL, Dowd CS, Edwards RL, Odom John AR. Antimicrobial Prodrug Activation by the Staphylococcal Glyoxalase GloB. ACS Infect Dis 2020; 6:3064-3075. [PMID: 33118347 PMCID: PMC8543975 DOI: 10.1021/acsinfecdis.0c00582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the rising prevalence of multidrug resistance, there is an urgent need to develop novel antibiotics. Many putative antibiotics demonstrate promising in vitro potency but fail in vivo due to poor drug-like qualities (e.g., serum half-life, oral absorption, solubility, and toxicity). These drug-like properties can be modified through the addition of chemical protecting groups, creating "prodrugs" that are activated prior to target inhibition. Lipophilic prodrugging techniques, including the attachment of a pivaloyloxymethyl group, have garnered attention for their ability to increase cellular permeability by masking charged residues and the relative ease of the chemical prodrugging process. Unfortunately, pivaloyloxymethyl prodrugs are rapidly activated by human sera, rendering any membrane permeability qualities absent during clinical treatment. Identification of the bacterial prodrug activation pathway(s) will allow for the development of host-stable and microbe-targeted prodrug therapies. Here, we use two zoonotic staphylococcal species, Staphylococcus schleiferi and S. pseudintermedius, to establish the mechanism of carboxy ester prodrug activation. Using a forward genetic screen, we identify a conserved locus in both species encoding the enzyme hydroxyacylglutathione hydrolase (GloB), whose loss-of-function confers resistance to carboxy ester prodrugs. We enzymatically characterize GloB and demonstrate that it is a functional glyoxalase II enzyme, which has the capacity to activate carboxy ester prodrugs. As GloB homologues are both widespread and diverse in sequence, our findings suggest that GloB may be a useful mechanism for developing species- or genus-level prodrug targeting strategies.
Collapse
Affiliation(s)
- Marwa O Mikati
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Justin J Miller
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Damon M Osbourn
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Yasaman Barekatain
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Naomi Ghebremichael
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Ishaan T Shah
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Carey-Ann D Burnham
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Kenneth M Heidel
- Department of Chemistry, The George Washington University, Washington, DC 20052, United States
| | - Victoria C Yan
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Florian L Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Cynthia S Dowd
- Department of Chemistry, The George Washington University, Washington, DC 20052, United States
| | - Rachel L Edwards
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
50
|
Three-Dimensional In Vitro Staphylococcus aureus Abscess Communities Display Antibiotic Tolerance and Protection from Neutrophil Clearance. Infect Immun 2020; 88:IAI.00293-20. [PMID: 32817328 DOI: 10.1128/iai.00293-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a prominent human pathogen in bone and soft-tissue infections. Pathophysiology involves abscess formation, which consists of central staphylococcal abscess communities (SACs), surrounded by a fibrin pseudocapsule and infiltrating immune cells. Protection against the ingress of immune cells such as neutrophils, or tolerance to antibiotics, remains largely unknown for SACs and is limited by the lack of availability of in vitro models. We describe a three-dimensional in vitro model of SACs grown in a human plasma-supplemented collagen gel. The in vitro SACs reached their maximum size by 24 h and elaborated a fibrin pseudocapsule, as confirmed by electron and immunofluorescence microscopy. The in vitro SACs tolerated 100× the MIC of gentamicin alone and in combination with rifampin, while planktonic controls and mechanically dispersed SACs were efficiently killed. To simulate a host response, SACs were exposed to differentiated PLB-985 neutrophil-like (dPLB) cells and to primary human neutrophils at an early stage of SAC formation or after maturation at 24 h. Both cell types were unable to clear mature in vitro SACs, but dPLB cells prevented SAC growth upon early exposure before pseudocapsule maturation. Neutrophil exposure after plasmin pretreatment of the SACs resulted in a significant decrease in the number of bacteria within the SACs. The in vitro SAC model mimics key in vivo features, offers a new tool to study host-pathogen interactions and drug efficacy assessment, and has revealed the functionality of the S. aureus pseudocapsule in protecting the bacteria from host phagocytic responses and antibiotics.
Collapse
|