1
|
Chan V, Holcomb T, Kaspar JR, Shields RC. Characterization of MreCD in Streptococcus mutans. J Oral Microbiol 2025; 17:2487643. [PMID: 40206099 PMCID: PMC11980242 DOI: 10.1080/20002297.2025.2487643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Background Activities that control cell shape and division are critical for the survival of bacteria. However, little is known about the circuitry controlling these processes in the dental caries pathogen Streptococcus mutans. Methodology We designed experiments to characterize two genes, mreC and mreD, in S. mutans. Assays included cell morphology imaging, protein interaction analysis, transcriptomics, proteomics, and biofilm studies to generate a comprehensive understanding of the role of MreCD in S. mutans. Results Consistent with mreCD participating in cell elongation, cells lacking these genes were found to be rounder than wild-type cells. Using bacterial two-hybrid assays, interactions between MreCD and several other proteins implicated in cell elongation were observed. Further characterization, using proteomics, revealed that the surface-associated proteome is different in mutants lacking mreCD. Consistent with these changes we observed altered sucrose-mediated biofilm architecture. Loss of mreCD also had a noticeable impact on bacteriocin gene expression, which could account in part for the observation that mreCD mutants had a diminished capacity to compete with commensal streptococci. Conclusion Our results provide evidence that cell elongation proteins are required for normal S. mutans physiology and establish a foundation for additional examination of these and related proteins in this organism.
Collapse
Affiliation(s)
- Victor Chan
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | - Tessa Holcomb
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Justin R. Kaspar
- Division of Biosciences, Ohio State University, Columbus, OH, USA
| | - Robert C. Shields
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| |
Collapse
|
2
|
Daller B, Auer DL, Buchalla W, Bartsch S, Gessner A, Jakubovics NS, Al-Ahmad A, Hiergeist A, Cieplik F. Genomic and Transcriptomic Adaptation to Chlorhexidine in Streptococcus spp. J Dent Res 2025:220345251320912. [PMID: 40181292 DOI: 10.1177/00220345251320912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Antiseptics such as chlorhexidine digluconate (CHX) are widely used in clinical dental practice, but their potential risks, particularly regarding antimicrobial resistance (AMR), are not yet known. This study explores the genomic and transcriptomic mechanisms of CHX adaptation in 3 clinical isolates of Streptococcus spp. and their adapted counterparts. The genomic analysis revealed mutations in genes related to membrane structure, DNA repair, and metabolic processes. Mutations include those in diacylglycerol kinase that occurred in Streptococcus salivarius and the autolysin N-acetylmuramoyl-L-alanine amidase homologues in both Streptococcus mitis and Streptococcus vestibularis, which may contribute to enhanced CHX resistance. Our findings showed stress response genes constantly expressed in all 3 CHX-adapted strains, regardless of acute CHX exposure. Commonly upregulated genes were related to oxidative stress, DNA repair, and metabolic pathway changes, especially amino acid related metabolism. In addition, cell surface restructuring, multiple ABC transporter genes, as well as antimicrobial resistance-associated genes were constitutively expressed. Homologue genes that were significantly upregulated across all 3 species after mutation included recD (DNA repair), potE (amino acid transport), and groEL (stress response). In addition, we saw an increase in a gene associated with the penicillin-binding protein PBP2a in all strains. Beyond these conserved adaptations, we observed species-specific shifts under prolonged CHX exposure. In S. vestibularis, glutathione synthesis genes increased while fatty acid metabolism genes were downregulated. S. salivarius showed elevated expression of genes related to organic anion transport and RNA modification. S. mitis exhibited changes in pyrimidine metabolism, ion homeostasis, and pyruvate dehydrogenase complex genes. Uniquely, S. mitis also showed acute CHX response with upregulation of carbohydrate metabolism and phosphotransferase system genes. These findings highlight the complexity of CHX-induced adaptation, suggesting connections to genetic mutations and emphasizing the need for further research to understand and mitigate AMR risks.
Collapse
Affiliation(s)
- B Daller
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - D L Auer
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - W Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - S Bartsch
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center, University of Freiburg, Medical Faculty, University of Freiburg, Freiburg i. Br., Germany
| | - A Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - N S Jakubovics
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - A Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center, University of Freiburg, Medical Faculty, University of Freiburg, Freiburg i. Br., Germany
| | - A Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - F Cieplik
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center, University of Freiburg, Medical Faculty, University of Freiburg, Freiburg i. Br., Germany
| |
Collapse
|
3
|
Kashi M, Varseh M, Hariri Y, Chegini Z, Shariati A. Natural compounds: new therapeutic approach for inhibition of Streptococcus mutans and dental caries. Front Pharmacol 2025; 16:1548117. [PMID: 40235544 PMCID: PMC11996897 DOI: 10.3389/fphar.2025.1548117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/12/2025] [Indexed: 04/17/2025] Open
Abstract
Streptococcus mutans is recognized as one of the leading causes of dental caries, and biofilm formation by this bacterium plays a key role in dental plaque development and caries progression. Given the increasing resistance of bacteria to antibiotics and the adverse effects of some synthetic antimicrobials, the search for natural alternatives has received increasing attention. The recently published studies have demonstrated that natural compounds (NCs) such as curcumin, cinnamaldehyde, eugenol, thymol, carvacrol, epigallocatechin gallate, farnesol, catechin, inulin, menthol, apigenin, myricetin, oleanolic acid, and resveratrol, have notable antimicrobial properties and can effectively inhibit the growth of Streptococcus mutans. NCs can disrupt bacterial membrane integrity, leading to cell death, and possess the capability to inhibit acid production, which is a key factor in caries development. NCs can also interfere with bacterial adhesion to surfaces, including teeth. The attachment inhibition is achieved by decreasing the expression of adhesion factors such as gtfs, ftf, fruA, and gbpB. NCs can disrupt bacterial metabolism, inhibit biofilm formation, disperse existing biofilm, and interfere with quorum sensing and two-component signal transduction systems. Moreover, novel drug delivery platforms were used to enhance the bioavailability and stability of NCs. Studies have also indicated that NCs exhibit significant efficacy in combination therapies. Notably, curcumin has shown promising results in photodynamic therapy against S. mutans. The current review article analyzes the mechanisms of action of various NCs against S. mutans and investigates their potential as alternative or complementary therapeutic options for managing this bacterium and dental caries.
Collapse
Affiliation(s)
- Milad Kashi
- Student research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Mahdieh Varseh
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
| | - Yasaman Hariri
- Student research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
4
|
Geng F, Liu J, Liu J, Lu Z, Pan Y. Recent progress in understanding the role of bacterial extracellular DNA: focus on dental biofilm. Crit Rev Microbiol 2024:1-19. [PMID: 39648406 DOI: 10.1080/1040841x.2024.2438117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Dental biofilm is a highly complicated and dynamic structure comprising not only microbial communities but also the surrounding matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA (eDNA) and other biopolymers. In recent years, the important role of bacterial eDNA in dental biofilms has gradually attracted attention. In this review, we present recent studies on the presence, dynamic conformation and release of oral bacterial eDNA. Moreover, updated information on functions associated with oral bacterial eDNA in biofilm formation, antibiotic resistance, activation of the immune system and immune evasion is highlighted. Finally, we summarize the role of oral bacterial eDNA as a promising target for the treatment of oral diseases. Increasing insight into the versatile roles of bacterial eDNA in dental biofilms will facilitate the prevention and treatment of biofilm-induced oral infections.
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Jinwen Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ze Lu
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Wu R, Nahm M, Yang J, Bush CA, Wu H. Identification and genetic engineering of pneumococcal capsule-like polysaccharides in commensal oral streptococci. Microbiol Spectr 2024; 12:e0188523. [PMID: 38488366 PMCID: PMC10986556 DOI: 10.1128/spectrum.01885-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 04/06/2024] Open
Abstract
Capsular polysaccharides (CPS) in Streptococcus pneumoniae are pivotal for bacterial virulence and present extensive diversity. While oral streptococci show pronounced antigenicity toward pneumococcal capsule-specific sera, insights into evolution of capsule diversity remain limited. This study reports a pneumococcal CPS-like genetic locus in Streptococcus parasanguinis, a predominant oral Streptococcus. The discovered locus comprises 15 genes, mirroring high similarity to those from the Wzy-dependent CPS locus of S. pneumoniae. Notably, S. parasanguinis elicited a reaction with pneumococcal 19B antiserum. Through nuclear magnetic resonance analysis, we ascertained that its CPS structure matches the chemical composition of the pneumococcal 19B capsule. By introducing the glucosyltransferase gene cps19cS from a pneumococcal serotype 19C, we successfully transformed S. parasanguinis antigenicity from 19B to 19C. Furthermore, substituting serotype-specific genes, cpsI and cpsJ, with their counterparts from pneumococcal serotype 19A and 19F enabled S. parasanguinis to generate 19A- and 19F-specific CPS, respectively. These findings underscore that S. parasanguinis harbors a versatile 19B-like CPS adaptable to other serotypes. Remarkably, after deleting the locus's initial gene, cpsE, responsible for sugar transfer, we noted halted CPS production, elongated bacterial chains, and diminished biofilm formation. A similar phenotype emerged with the removal of the distinct gene cpsZ, which encodes a putative autolysin. These data highlight the importance of S. parasanguinis CPS for biofilm formation and propose a potential shared ancestry of its CPS locus with S. pneumoniae. IMPORTANCE Diverse capsules from Streptococcus pneumoniae are vital for bacterial virulence and pathogenesis. Oral streptococci show strong responses to a wide range of pneumococcal capsule-specific sera. Yet, the evolution of this capsule diversity in relation to microbe-host interactions remains underexplored. Our research delves into the connection between commensal oral streptococcal and pneumococcal capsules, highlighting the potential for gene transfer and evolution of various capsule types. Understanding the genetic and evolutionary factors that drive capsule diversity in S. pneumoniae and its related oral species is essential for the development of effective pneumococcal vaccines. The present findings provide fresh perspectives on the cross-reactivity between commensal streptococci and S. pneumoniae, its influence on bacteria-host interactions, and the development of new strategies to manage and prevent pneumococcal illnesses by targeting and modulating commensal streptococci.
Collapse
Affiliation(s)
- Ren Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, School of Dentistry, Birmingham, Alabama, USA
| | - Moon Nahm
- Department of Medicine, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - Jinghua Yang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - C. Allen Bush
- Department of Chemistry and Biochemistry, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Hui Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, School of Dentistry, Birmingham, Alabama, USA
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University School of Dentistry, Portland, Oregon, USA
| |
Collapse
|
6
|
Zeng L, Walker AR, Burne RA, Taylor ZA. Glucose Phosphotransferase System Modulates Pyruvate Metabolism, Bacterial Fitness, and Microbial Ecology in Oral Streptococci. J Bacteriol 2023; 205:e0035222. [PMID: 36468868 PMCID: PMC9879115 DOI: 10.1128/jb.00352-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Spontaneous mutants with defects in the primary glucose phosphotransferase permease (manLMNO) of Streptococcus sanguinis SK36 showed enhanced fitness at low pH. Transcriptomics and metabolomics with a manL deletion mutant (SK36/manL) revealed redirection of pyruvate to production of acetate and formate, rather than lactate. These observations were consistent with measurements of decreased lactic acid accumulation and increased excretion of acetate, formate, pyruvate, and H2O2. Genes showing increased expression in SK36/manL included those encoding carbohydrate transporters, extracellular glycosidases, intracellular polysaccharide metabolism, and arginine deiminase and pathways for metabolism of acetoin, ethanolamine, ascorbate, and formate, along with genes required for membrane biosynthesis and adhesion. Streptococcus mutans UA159 persisted much better in biofilm cocultures with SK36/manL than with SK36, an effect that was further enhanced by culturing the biofilms anaerobically but dampened by adding arginine to the medium. We posited that the enhanced persistence of S. mutans with SK36/manL was in part due to excess excretion of pyruvate by the latter, as addition of pyruvate to S. mutans-S. sanguinis cocultures increased the proportions of UA159 in the biofilms. Reducing the buffer capacity or increasing the concentration of glucose benefited UA159 when cocultured with SK36, but not with SK36/manL, likely due to the altered metabolism and enhanced acid tolerance of the mutant. When manL was deleted in S. mutans or Streptococcus gordonii, the mutants presented altered fitness characteristics. Our study demonstrated that phosphotransferase system (PTS)-dependent modulation of central metabolism can profoundly affect streptococcal fitness and metabolic interactions, revealing another dimension in commensal-pathogen relationships influencing dental caries development. IMPORTANCE Dental caries is underpinned by a dysbiotic microbiome and increased acid production. As beneficial bacteria that can antagonize oral pathobionts, oral streptococci such as S. sanguinis and S. gordonii can ferment many carbohydrates, despite their relative sensitivity to low pH. We characterized the molecular basis for why mutants of glucose transporter ManLMNO of S. sanguinis showed enhanced production of hydrogen peroxide and ammonia and improved persistence under acidic conditions. A metabolic shift involving more than 300 genes required for carbohydrate transport, energy production, and envelope biogenesis was observed. Significantly, manL mutants engineered in three different oral streptococci displayed altered capacities for acid production and interspecies antagonism, highlighting the potential for targeting the glucose-PTS to modulate the pathogenicity of oral biofilms.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Alejandro R. Walker
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert A. Burne
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Zachary A. Taylor
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
King S, Quick A, King K, Walker AR, Shields RC. Activation of TnSmu1, an integrative and conjugative element, by an ImmR-like transcriptional regulator in Streptococcus mutans. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36201342 DOI: 10.1099/mic.0.001254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Integrative and conjugative elements (ICEs) are chromosomally encoded mobile genetic elements that can transfer DNA between bacterial strains. Recently, as part of efforts to determine hypothetical gene functions, we have discovered an important regulatory module encoded on an ICE known as TnSmu1 on the Streptococcus mutans chromosome. The regulatory module consists of a cI-like repressor with a helix-turn-helix DNA binding domain immR Smu (immunity repressor) and a metalloprotease immA Smu (anti-repressor). It is not possible to create an in-frame deletion mutant of immR Smu and repression of immR Smu with CRISPRi (CRISPR interference) causes substantial cell defects. We used a bypass of essentiality (BoE) screen to discover genes that allow deletion of the regulatory module. This revealed that conjugation genes, located within TnSmu1, can restore the viability of an immR Smu mutant. Deletion of immR Smu also leads to production of a circular intermediate form of TnSmu1, which is also inducible by the genotoxic agent mitomycin C. To gain further insights into potential regulation of TnSmu1 by ImmRSmu and broader effects on S. mutans UA159 physiology, we used CRISPRi and RNA-seq. Strongly induced genes included all the TnSmu1 mobile element, genes involved in amino acid metabolism, transport systems and a type I-C CRISPR-Cas system. Lastly, bioinformatic analysis shows that the TnSmu1 mobile element and its associated genes are well distributed across S. mutans isolates. Taken together, our results show that activation of TnSmu1 is controlled by the immRA Smu module, and that activation is deleterious to S. mutans, highlighting the complex interplay between mobile elements and their host.
Collapse
Affiliation(s)
- Shawn King
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Allison Quick
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Kalee King
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | | | - Robert C Shields
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| |
Collapse
|
8
|
Culp DJ, Hull W, Schultz AC, Bryant AS, Lizarraga CA, Dupuis MR, Chakraborty B, Lee K, Burne RA. Testing of candidate probiotics to prevent dental caries induced by Streptococcus mutans in a mouse model. J Appl Microbiol 2022; 132:3853-3869. [PMID: 35262250 DOI: 10.1111/jam.15516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
AIMS We evaluated two species of human oral commensal streptococci in protection against dental caries induced by Streptococcus mutans. METHODS AND RESULTS Candidate probiotics, Streptococcus sp. A12, Streptococcus sanguinis BCC23 and an arginine deiminase mutant of BCC23 (∆arcADS) were tested for their ability to reduce S. mutans-induced caries in an established mouse model. Mice were colonized with a probiotic, challenged with S. mutans, then intermittently reinoculated with a probiotic strain. Oral colonization of each strain and autochthonous bacteria was assessed by qPCR. Both BCC23 strains, but not A12, were associated with markedly reduced sulcal caries, persistently colonized mucosal and dental biofilms, and significantly lowered S. mutans counts. All three strains enhanced mucosal colonization of autochthonous bacteria. In a follow-up experiment, when S. mutans was established first, dental and mucosal colonization of S. mutans was unaltered by a subsequent challenge with either BCC23 strain. Results between BCC23 and BCC23 ∆arcADS were equivalent. CONCLUSIONS BCC23 is a potential probiotic to treat patients at high caries risk. Its effectiveness is independent of ADS activity, but initial dental cleaning to enhance establishment in dental biofilms may be required. SIGNIFICANCE AND IMPACT OF THE STUDY In vivo testing of candidate probiotics is highly informative, as effectiveness is not always reflected by genotype or in vitro behaviors.
Collapse
Affiliation(s)
- David J Culp
- University of Florida College of Dentistry, Department of Oral Biology, Gainesville, FL, USA
| | - William Hull
- University of Florida College of Dentistry, Department of Oral Biology, Gainesville, FL, USA
| | - Alexander C Schultz
- University of Florida College of Dentistry, Department of Oral Biology, Gainesville, FL, USA
| | - Ashley S Bryant
- University of Florida College of Dentistry, Department of Oral Biology, Gainesville, FL, USA
| | - Claudia A Lizarraga
- University of Florida College of Dentistry, Department of Oral Biology, Gainesville, FL, USA
| | - Madeline R Dupuis
- University of Florida College of Dentistry, Department of Oral Biology, Gainesville, FL, USA
| | - Brinta Chakraborty
- University of Florida College of Dentistry, Department of Oral Biology, Gainesville, FL, USA
| | - Kyulim Lee
- University of Florida College of Dentistry, Department of Oral Biology, Gainesville, FL, USA
| | - Robert A Burne
- University of Florida College of Dentistry, Department of Oral Biology, Gainesville, FL, USA
| |
Collapse
|
9
|
Spontaneous Mutants of Streptococcus sanguinis with Defects in the Glucose-Phosphotransferase System Show Enhanced Post-Exponential-Phase Fitness. J Bacteriol 2021; 203:e0037521. [PMID: 34460310 DOI: 10.1128/jb.00375-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic truncations in a gene encoding a putative glucose-phosphotransferase system (PTS) protein (manL, EIIABMan) were identified in subpopulations of two separate laboratory stocks of Streptococcus sanguinis SK36; the mutants had reduced PTS activities on glucose and other monosaccharides. To understand the emergence of these mutants, we engineered deletion mutants of manL and showed that the ManL-deficient strain had improved bacterial viability in the stationary phase and was better able to inhibit the growth of the dental caries pathogen Streptococcus mutans. Transcriptional analysis and biochemical assays suggested that the manL mutant underwent reprograming of central carbon metabolism that directed pyruvate away from production of lactate, increasing production of hydrogen peroxide (H2O2) and excretion of pyruvate. Addition of pyruvate to the medium enhanced the survival of SK36 in overnight cultures. Meanwhile, elevated pyruvate levels were detected in the cultures of a small but significant percentage (∼10%) of clinical isolates of oral commensal bacteria. Furthermore, the manL mutant showed higher expression of the arginine deiminase system than the wild type, which enhanced the ability of the mutant to raise environmental pH when arginine was present. To our surprise, significant discrepancies in genome sequence were identified between strain SK36 obtained from ATCC and the sequence deposited in GenBank. As the conditions that are likely associated with the emergence of spontaneous manL mutations, i.e., excess carbohydrates and low pH, are those associated with caries development, we propose that glucose-PTS strongly influences commensal-pathogen interactions by altering the production of ammonia, pyruvate, and H2O2. IMPORTANCE A health-associated dental microbiome provides a potent defense against pathogens and diseases. Streptococcus sanguinis is an abundant member of a health-associated oral flora that antagonizes pathogens by producing hydrogen peroxide. There is a need for a better understanding of the mechanisms that allow bacteria to survive carbohydrate-rich and acidic environments associated with the development of dental caries. We report the isolation and characterization of spontaneous mutants of S. sanguinis with impairment in glucose transport. The resultant reprograming of the central metabolism in these mutants reduced the production of lactic acid and increased pyruvate accumulation; the latter enables these bacteria to better cope with hydrogen peroxide and low pH. The implications of these discoveries in the development of dental caries are discussed.
Collapse
|
10
|
Abstract
Extracellular peptidoglycan-linked polysaccharide modifications mediate cell morphology, division, and autolysis in some Gram-positive bacterial pathogens. A new study shows that the degree and location of a specific modification controls peptidoglycan hydrolysis and placement of the axis of cell division.
Collapse
|
11
|
Zamakhaeva S, Chaton CT, Rush JS, Ajay Castro S, Kenner CW, Yarawsky AE, Herr AB, van Sorge NM, Dorfmueller HC, Frolenkov GI, Korotkov KV, Korotkova N. Modification of cell wall polysaccharide guides cell division in Streptococcus mutans. Nat Chem Biol 2021; 17:878-887. [PMID: 34045745 DOI: 10.1038/s41589-021-00803-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
In ovoid-shaped, Gram-positive bacteria, MapZ guides FtsZ-ring positioning at cell equators. The cell wall of the ovococcus Streptococcus mutans contains peptidoglycan decorated with serotype c carbohydrates (SCCs). In the present study, we identify the major cell separation autolysin AtlA as an SCC-binding protein. AtlA binding to SCC is attenuated by the glycerol phosphate (GroP) modification. Using fluorescently labeled AtlA constructs, we mapped SCC distribution on the streptococcal surface, revealing enrichment of GroP-deficient immature SCCs at the cell poles and equators. The immature SCCs co-localize with MapZ at the equatorial rings throughout the cell cycle. In GroP-deficient mutants, AtlA is mislocalized, resulting in dysregulated cellular autolysis. These mutants display morphological abnormalities associated with MapZ mislocalization, leading to FtsZ-ring misplacement. Altogether, our data support a model in which maturation of a cell wall polysaccharide provides the molecular cues for the recruitment of cell division machinery, ensuring proper daughter cell separation and FtsZ-ring positioning.
Collapse
Affiliation(s)
- Svetlana Zamakhaeva
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Catherine T Chaton
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Jeffrey S Rush
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Sowmya Ajay Castro
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Cameron W Kenner
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Alexander E Yarawsky
- Divisions of Immunobiology and Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew B Herr
- Divisions of Immunobiology and Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nina M van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA. .,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
12
|
Lee K, Kaspar JR, Rojas-Carreño G, Walker AR, Burne RA. A single system detects and protects the beneficial oral bacterium Streptococcus sp. A12 from a spectrum of antimicrobial peptides. Mol Microbiol 2021; 116:211-230. [PMID: 33590560 DOI: 10.1111/mmi.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
The commensal bacterium Streptococcus sp. A12 has multiple properties that may promote the stability of health-associated oral biofilms, including overt antagonism of the dental caries pathogen Streptococcus mutans. A LanFEG-type ABC transporter, PcfFEG, confers tolerance to the lantibiotic nisin and enhances the ability of A12 to compete against S. mutans. Here, we investigated the regulation of pcfFEG and adjacent genes for a two-component system, pcfRK, to better understand antimicrobial peptide resistance by A12. Induction of pcfFEG-pcfRK was the primary mechanism to respond rapidly to nisin. In addition to nisin, PcfFEG conferred tolerance by A12 to a spectrum of lantibiotic and non-lantibiotic antimicrobial peptides produced by a diverse collection of S. mutans isolates. Loss of PcfFEG resulted in the altered spatio-temporal arrangement of A12 and S. mutans in a dual-species biofilm model. Deletion of PcfFEG or PcfK resulted in constitutive activation of pcfFEG and expression of pcfFEG was inhibited by small peptides in the pcfK mutant. Transcriptional profiling of pcfR or pcfK mutants combined with functional genomics revealed peculiarities in PcfK function and a novel panel of genes responsive to nisin. Collectively, the results provide fundamental insights that strengthen the foundation for the design of microbial-based therapeutics to control oral infectious diseases.
Collapse
Affiliation(s)
- Kyulim Lee
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Justin R Kaspar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA
| | - Gisela Rojas-Carreño
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Alejandro R Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Wen ZT, Jorgensen AN, Huang X, Ellepola K, Chapman L, Wu H, Brady LJ. Multiple factors are involved in regulation of extracellular membrane vesicle biogenesis in Streptococcus mutans. Mol Oral Microbiol 2021; 36:12-24. [PMID: 33040492 PMCID: PMC7940556 DOI: 10.1111/omi.12318] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/26/2022]
Abstract
Streptococcus mutans, a major etiological agent of human dental caries, produces membrane vesicles (MVs) that contain protein and extracellular DNA. In this study, functional genomics, along with in vitro biofilm models, was used to identify factors that regulate MV biogenesis. Our results showed that when added to growth medium, MVs significantly enhanced biofilm formation by S. mutans, especially during growth in sucrose. This effect occurred in the presence and absence of added human saliva. Functional genomics revealed several genes, including sfp, which have a major effect on S. mutans MVs. In Bacillus sp. sfp encodes a 4'-phosphopantetheinyl transferase that contributes to surfactin biosynthesis and impacts vesiculogenesis. In S. mutans, sfp resides within the TnSmu2 Genomic Island that supports pigment production associated with oxidative stress tolerance. Compared to the UA159 parent, the Δsfp mutant, TW406, demonstrated a 1.74-fold (p < .05) higher MV yield as measured by BCA protein assay. This mutant also displayed increased susceptibility to low pH and oxidative stressors, as demonstrated by acid killing and hydrogen peroxide challenge assays. Deficiency of bacA, a putative surfactin synthetase homolog within TnSmu2, and especially dac and pdeA that encode a di-adenylyl cyclase and a phosphodiesterase, respectively, also significantly increased MV yield (p < .05). However, elimination of bacA2, a bacitracin synthetase homolog, resulted in a >1.5-fold (p < .05) reduction of MV yield. These results demonstrate that S. mutans MV properties are regulated by genes within and outside of the TnSmu2 island, and that as a major particulate component of the biofilm matrix, MVs significantly influence biofilm formation.
Collapse
Affiliation(s)
- Zezhang T. Wen
- Department of Oral and Craniofacial Biology, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health, New Orleans, LA
| | - Ashton N. Jorgensen
- Department of Oral and Craniofacial Biology, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health, New Orleans, LA
| | - Xiaochang Huang
- Department of Oral and Craniofacial Biology, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health, New Orleans, LA
| | - Kassapa Ellepola
- Department of Oral and Craniofacial Biology, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health, New Orleans, LA
| | - Lynne Chapman
- Department of Oral and Craniofacial Biology, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health, New Orleans, LA
| | - Hui Wu
- Integrative Biomedical and Diagnostics Science, School of Dentistry, Oregon Health and Science University, Portland, OR
| | - L. Jeannine Brady
- Department of Oral Biology, School of Dentistry, the University of Florida, Gainesville, FL
| |
Collapse
|
14
|
In Vivo Colonization with Candidate Oral Probiotics Attenuates Colonization and Virulence of Streptococcus mutans. Appl Environ Microbiol 2021; 87:AEM.02490-20. [PMID: 33277269 PMCID: PMC7851695 DOI: 10.1128/aem.02490-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A collection of 113 Streptococcus strains from supragingival dental plaque of caries-free individuals were recently tested in vitro for direct antagonism of the dental caries pathogen Streptococcus mutans, and for their capacity for arginine catabolism via the arginine deiminase system (ADS). To advance their evaluation as potential probiotics, twelve strains of commensal oral streptococci with various antagonistic and ADS potentials were assessed in a mouse model for oral (i.e., oral mucosal pellicles and saliva) and dental colonization under four diets (healthy or high-sucrose, with or without prebiotic arginine). Colonization by autochthonous bacteria was also monitored. One strain failed to colonize, whereas oral colonization by the other eleven strains varied by 3 log units. Dental colonization was high for five strains regardless of diet, six strains increased colonization with at least one high-sucrose diet, and added dietary arginine decreased dental colonization of two strains. Streptococcus sp. A12 (high in vitro ADS activity and antagonism) and two engineered mutants lacking the ADS (ΔarcADS) or pyruvate oxidase-mediated H2O2 production (ΔspxB) were tested for competition against S. mutans UA159. A12 wild type and ΔarcADS colonized only transiently, whereas ΔspxB persisted, but without altering oral or dental colonization by S. mutans In testing four additional candidates, S. sanguinis BCC23 markedly attenuated S. mutans' oral and dental colonization, enhanced colonization of autochthonous bacteria, and decreased severity of smooth surface caries under highly cariogenic conditions. Results demonstrate the utility of the mouse model to evaluate potential probiotics, revealing little correlation between in vitro antagonism and competitiveness against S. mutans in vivo IMPORTANCE Our results demonstrate in vivo testing of potential oral probiotics can be accomplished and can yield information to facilitate the ultimate design and optimization of novel anti-caries probiotics. We show human oral commensals associated with dental health are an important source of potential probiotics that may be used to colonize patients under dietary conditions of highly varying cariogenicity. Assessment of competitiveness against dental caries pathogen Streptococcus mutans and impact on caries identified strains or genetic elements for further study. Results also uncovered strains that enhanced oral and dental colonization by autochthonous bacteria when challenged with S. mutans, suggesting cooperative interactions for future elucidation. Distinguishing a rare strain that effectively compete with S. mutans under conditions that promote caries further validates our systematic approach to more critically evaluate probiotics for use in humans.
Collapse
|
15
|
Wang B, Yao Y, Wei P, Song C, Wan S, Yang S, Zhu GM, Liu HM. Housefly Phormicin inhibits Staphylococcus aureus and MRSA by disrupting biofilm formation and altering gene expression in vitro and in vivo. Int J Biol Macromol 2020; 167:1424-1434. [PMID: 33202277 DOI: 10.1016/j.ijbiomac.2020.11.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022]
Abstract
The increasing drug resistance of pathogenic bacteria is a crisis that threatens public health. Antimicrobial peptides (AMPs) have been suggested to be potentially effective alternatives to solve this problem. Here, we tested housefly Phormicin-derived peptides for effects on Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) infections in vitro and in vivo. A decreased bacterial load of MRSA was observed in the mouse scald model after treatment with Phormicin and in the positive control group (vancomycin). A mouse scrape model indicated that Phormicin helps the host fight drug-resistant MRSA infections. The protective effect of Phormicin on MRSA was confirmed in the Hermetia illucens larvae model. Phormicin also disrupted the formation of S. aureus and MRSA biofilms. Furthermore, this effect coincided with the downregulation of biofilm formation-related gene expression (agrC, sigB, RNAIII, altA, rbf, hla, hld, geh and psmɑ). Notably, virulence genes and several regulatory factors were also altered by Phormicin treatment. Based on these findings, housefly Phormicin helps the host inhibit MRSA infection through effects on biofilm formation and related gene networks. Therefore, housefly Phormicin potential represents a candidate agent for clinical MRSA chemotherapy.
Collapse
Affiliation(s)
- Bing Wang
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang 550025, Guizhou, China.
| | - Yang Yao
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - PengWei Wei
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - ChaoRong Song
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Shan Wan
- Department of Microbial Immunology, The first affiliated hospital of Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - SuWen Yang
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Gui Ming Zhu
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang 550025, Guizhou, China
| | - Hong Mei Liu
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
16
|
Morales-Aparicio JC, Lara Vasquez P, Mishra S, Barrán-Berdón AL, Kamat M, Basso KB, Wen ZT, Brady LJ. The Impacts of Sortase A and the 4'-Phosphopantetheinyl Transferase Homolog Sfp on Streptococcus mutans Extracellular Membrane Vesicle Biogenesis. Front Microbiol 2020; 11:570219. [PMID: 33193163 PMCID: PMC7649765 DOI: 10.3389/fmicb.2020.570219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular membrane vesicles (EMVs) are produced by many Gram-positive organisms, but information regarding vesiculogenesis is incomplete. We used single gene deletions to evaluate the impacts on Streptococcus mutans EMV biogenesis of Sortase A (SrtA), which affects S. mutans EMV composition, and Sfp, a 4'-phosphopantetheinyl transferase that affects Bacillus subtilis EMV stability. ΔsrtA EMVs were notably larger than Δsfp and wild-type (WT) EMVs. EMV proteins identified from all three strains are known to be involved in cell wall biogenesis and cell architecture, bacterial adhesion, biofilm cell density and matrix development, and microbial competition. Notably, the AtlA autolysin was not processed to its mature active form in the ΔsrtA mutant. Proteomic and lipidomic analyses of all three strains revealed multiple dissimilarities between vesicular and corresponding cytoplasmic membranes (CMs). A higher proportion of EMV proteins are predicted substrates of the general secretion pathway (GSP). Accordingly, the GSP component SecA was identified as a prominent EMV-associated protein. In contrast, CMs contained more multi-pass transmembrane (TM) protein substrates of co-translational transport machineries than EMVs. EMVs from the WT, but not the mutant strains, were enriched in cardiolipin compared to CMs, and all EMVs were over-represented in polyketide flavonoids. EMVs and CMs were rich in long-chain saturated, monounsaturated, and polyunsaturated fatty acids, except for Δsfp EMVs that contained exclusively polyunsaturated fatty acids. Lipoproteins were less prevalent in EMVs of all three strains compared to their CMs. This study provides insight into biophysical characteristics of S. mutans EMVs and indicates discrete partitioning of protein and lipid components between EMVs and corresponding CMs of WT, ΔsrtA, and Δsfp strains.
Collapse
Affiliation(s)
| | | | - Surabhi Mishra
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Ana L. Barrán-Berdón
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Zezhang T. Wen
- Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Zafar H, Saier MH. Comparative Genomics of the Transport Proteins of Ten Lactobacillus Strains. Genes (Basel) 2020; 11:genes11101234. [PMID: 33096690 PMCID: PMC7593918 DOI: 10.3390/genes11101234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
The genus Lactobacillus includes species that may inhabit different anatomical locations in the human body, but the greatest percentage of its species are inhabitants of the gut. Lactobacilli are well known for their probiotic characteristics, although some species may become pathogenic and exert negative effects on human health. The transportome of an organism consists of the sum of the transport proteins encoded within its genome, and studies on the transportome help in the understanding of the various physiological processes taking place in the cell. In this communication we analyze the transport proteins and predict probable substrate specificities of ten Lactobacillus strains. Six of these strains (L. brevis, L. bulgaricus, L. crispatus, L. gasseri, L. reuteri, and L. ruminis) are currently believed to be only probiotic (OP). The remaining four strains (L. acidophilus, L. paracasei, L. planatarum, and L. rhamnosus) can play dual roles, being both probiotic and pathogenic (PAP). The characteristics of the transport systems found in these bacteria were compared with strains (E. coli, Salmonella, and Bacteroides) from our previous studies. Overall, the ten lactobacilli contain high numbers of amino acid transporters, but the PAP strains contain higher number of sugar, amino acid and peptide transporters as well as drug exporters than their OP counterparts. Moreover, some of the OP strains contain pore-forming toxins and drug exporters similar to those of the PAP strains, thus indicative of yet unrecognized pathogenic potential. The transportomes of the lactobacilli seem to be finely tuned according to the extracellular and probiotic lifestyles of these organisms. Taken together, the results of this study help to reveal the physiological and pathogenic potential of common prokaryotic residents in the human body.
Collapse
Affiliation(s)
- Hassan Zafar
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0116, USA
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
- Correspondence: (H.Z.); (M.H.S.J.); Tel.: +1-858-534-4084 (M.H.S.J.); Fax: +1-858-534-7108 (M.H.S.J.)
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0116, USA
- Correspondence: (H.Z.); (M.H.S.J.); Tel.: +1-858-534-4084 (M.H.S.J.); Fax: +1-858-534-7108 (M.H.S.J.)
| |
Collapse
|
18
|
Balasubramanian AR, Vasudevan S, Shanmugam K, Lévesque CM, Solomon AP, Neelakantan P. Combinatorial effects of trans-cinnamaldehyde with fluoride and chlorhexidine on Streptococcus mutans. J Appl Microbiol 2020; 130:382-393. [PMID: 32707601 DOI: 10.1111/jam.14794] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 01/03/2023]
Abstract
AIMS The aim of this study was to investigate the effects of trans-cinnamaldehyde (TC) and its synergistic activity with chlorhexidine (CHX) and fluoride against Streptococcus mutans. METHODS AND RESULTS Streptococcus mutans UA159 was treated with TC alone and in combination with CHX or sodium fluoride. The synergy profile was analysed using the Zero Interaction Potency model. TC showed strong synergism (synergy score of 21·697) with CHX, but additive effect (synergy score of 5·298) with fluoride. TC and the combinations were tested for acid production (glycolytic pH drop) and biofilm formation by S. mutans, and nitric oxide production in macrophages. TC significantly inhibited sucrose-dependent biofilm formation and acid production by S. mutans. Mechanistic studies were carried out by qRT-PCR-based transcriptomic studies which showed that TC acts by impairing genes related to metabolism, quorum sensing, bacteriocin expression, stress tolerance and biofilm formation. CONCLUSIONS trans-Cinnamaldehyde potentiates CHX and sodium fluoride in inhibiting S. mutans biofilms and virulence through multiple mechanisms. This study sheds significant new light on the potential to develop TC as an anti-caries treatment. SIGNIFICANCE AND IMPACT OF THE STUDY Oral diseases were classified as a 'silent epidemic' in the US Surgeon General's Report on Oral Health. Two decades later, >4 billion people are still affected worldwide by caries, having significant effects on the quality of life. There is an urgent need to develop novel compounds and strategies to combat dental caries. Here, we prove that TC downregulates multiple pathways and potentiates the CHX and fluoride to prevent S. mutans biofilms and virulence. This study sheds significant new light on the potential to develop TC in combination with CHX or fluoride as novel treatments to arrest dental caries.
Collapse
Affiliation(s)
- A R Balasubramanian
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - S Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - K Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - C M Lévesque
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - A P Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - P Neelakantan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
19
|
Khan M, Alkhathlan HZ, Khan ST. Antibiotic and Antibiofilm Activities of Salvadora persica L. Essential Oils against Streptococcus mutans: A Detailed Comparative Study with Chlorhexidine Digluconate. Pathogens 2020; 9:pathogens9010066. [PMID: 31963342 PMCID: PMC7169458 DOI: 10.3390/pathogens9010066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
The use of organic components from plants as an alternative antimicrobial agent is becoming popular due to the development of drug-resistance in various pathogens. Essential oils from fresh (MF-1) and dried (MD-1) roots of Salvadora persica L. were extracted and benzyl isothiocynate was determined as their chief constituent using GC-MS and GC-FID. The antibiofilm and antimicrobial activities of MD-1 and MF-1 against Streptococcus mutans a dental caries causing bacteria were determined using multiple assays. These activities were compared with chlorhexidine digluconate (CHX) and clove oil, well known antimicrobial agents for oral hygiene. Essential oils demonstrated IC50 values (10–11 µg/mL) comparable to that of CHX, showed a significant reduction (82 ± 7–87 ± 6%) of the biofilm formation at a very low concentration. These results were supported by RT-PCR studies showing change in the expression levels of AtlE, gtfB, ymcA and sodA genes involved in autolysis, biofilm formation and oxidative stress, respectively. The results presented in this study show the robust bactericidal and antibiofilm activity of MD-1 and MF-1 against S. mutans which is comparable to Chlorhexidine digluconate. Our results suggest that these essential oils can be as effective as CHX and hence can serve as a good alternative antimicrobial agent for oral hygiene.
Collapse
Affiliation(s)
- Merajuddin Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.K.); (H.Z.A.)
| | - Hamad Z. Alkhathlan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.K.); (H.Z.A.)
| | - Shams Tabrez Khan
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh 2002002 UP, India
- Correspondence:
| |
Collapse
|
20
|
García-Cano I, Rocha-Mendoza D, Kosmerl E, Zhang L, Jiménez-Flores R. Technically relevant enzymes and proteins produced by LAB suitable for industrial and biological activity. Appl Microbiol Biotechnol 2020; 104:1401-1422. [DOI: 10.1007/s00253-019-10322-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
|
21
|
Novel Probiotic Mechanisms of the Oral Bacterium Streptococcus sp. A12 as Explored with Functional Genomics. Appl Environ Microbiol 2019; 85:AEM.01335-19. [PMID: 31420345 DOI: 10.1128/aem.01335-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
Health-associated biofilms in the oral cavity are composed of a diverse group of microbial species that can foster an environment that is less favorable for the outgrowth of dental caries pathogens, like Streptococcus mutans A novel oral bacterium, designated Streptococcus A12, was previously isolated from supragingival dental plaque of a caries-free individual and was shown to interfere potently with the growth and virulence properties of S. mutans In this study, we applied functional genomics to begin to identify molecular mechanisms used by A12 to antagonize, and to resist the antagonistic factors of, S. mutans Using bioinformatics, genes that could encode factors that enhance the ability of A12 to compete with S. mutans were identified. Selected genes, designated potential competitive factors (pcf), were deleted. Certain mutant derivatives showed a reduced capacity to compete with S. mutans compared to that of the parental strain. The A12 pcfO mutant lost the ability to inhibit comX -inducing peptide (XIP) signaling by S. mutans, while mutants with changes in the pcfFEG locus were impaired in sensing of, and were more sensitive to, the lantibiotic nisin. Loss of PcfV, annotated as a colicin V biosynthetic protein, resulted in diminished antagonism of S. mutans Collectively, the data provide new insights into the complexities and variety of factors that affect biofilm ecology and virulence. Continued exploration of the genomic and physiological factors that distinguish commensals from truly beneficial members of the oral microbiota will lead to a better understanding of the microbiome and new approaches to promote oral health.IMPORTANCE Advances in defining the composition of health-associated biofilms have highlighted the important role of beneficial species in maintaining health. Comparatively little, however, has been done to address the genomic and physiological bases underlying the probiotic mechanisms of beneficial commensals. In this study, we explored the ability of a novel oral bacterial isolate, Streptococcus A12, to compete with the dental pathogen Streptococcus mutans using various gene products with diverse functions. A12 displayed enhanced competitiveness by (i) disrupting intercellular communication pathways of S. mutans, (ii) sensing and resisting antimicrobial peptides, and (iii) producing factors involved in the production of a putative antimicrobial compound. Research on the probiotic mechanisms employed by Streptococcus A12 is providing essential insights into how beneficial bacteria may help maintain oral health, which will aid in the development of biomarkers and therapeutics that can improve the practice of clinical dentistry.
Collapse
|
22
|
Kovacs CJ, Faustoferri RC, Bischer AP, Quivey RG. Streptococcus mutans requires mature rhamnose-glucose polysaccharides for proper pathophysiology, morphogenesis and cellular division. Mol Microbiol 2019; 112:944-959. [PMID: 31210392 DOI: 10.1111/mmi.14330] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/30/2022]
Abstract
The cell wall of Gram-positive bacteria has been shown to mediate environmental stress tolerance, antibiotic susceptibility, host immune evasion and overall virulence. The majority of these traits have been demonstrated for the well-studied system of wall teichoic acid (WTA) synthesis, a common cell wall polysaccharide among Gram-positive organisms. Streptococcus mutans, a Gram-positive odontopathogen that contributes to the enamel-destructive disease dental caries, lacks the capabilities to generate WTA. Instead, the cell wall of S. mutans is highly decorated with rhamnose-glucose polysaccharides (RGP), for which functional roles are poorly defined. Here, we demonstrate that the RGP has a distinct role in protecting S. mutans from a variety of stress conditions pertinent to pathogenic capability. Mutant strains with disrupted RGP synthesis failed to properly localize cell division complexes, suffered from aberrant septum formation and exhibited enhanced cellular autolysis. Surprisingly, mutant strains of S. mutans with impairment in RGP side chain modification grew into elongated chains and also failed to properly localize the presumed cell wall hydrolase, GbpB. Our results indicate that fully mature RGP has distinct protective and morphogenic roles for S. mutans, and these structures are functionally homologous to the WTA of other Gram-positive bacteria.
Collapse
Affiliation(s)
- Christopher J Kovacs
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Box 672, Rochester, NY, 14642, USA
| | - Roberta C Faustoferri
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Box 611, Rochester, NY, 14642, USA
| | - Andrew P Bischer
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Box 672, Rochester, NY, 14642, USA
| | - Robert G Quivey
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Box 672, Rochester, NY, 14642, USA.,Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Box 611, Rochester, NY, 14642, USA
| |
Collapse
|
23
|
Abstract
Entry into genetic competence in streptococci is controlled by ComX, an alternative sigma factor for genes that enable the import of exogenous DNA. In Streptococcus mutans, the immediate activator of comX is the ComRS quorum system. ComS is the precursor of XIP, a seven-residue peptide that is imported into the cell and interacts with the cytosolic receptor ComR to form a transcriptional activator for both comX and comS Although intercellular quorum signaling by ComRS has been demonstrated, observations of bimodal expression of comX suggest that comRS may also function as an intracellular feedback loop, activating comX without export or detection of extracellular XIP. Here we used microfluidic and single-cell methods to test whether ComRS induction of comX requires extracellular XIP or ComS. We found that individual comS-overexpressing cells activate their own comX, independently of the rate at which their growth medium is replaced. However, in the absence of lysis they do not activate comS-deficient mutants growing in coculture. We also found that induction of comR and comS genes introduced into Escherichia coli cells leads to activation of a comX reporter. Therefore, ComRS control of comX does not require either the import or extracellular accumulation of ComS or XIP or specific processing of ComS to XIP. We also found that endogenously and exogenously produced ComS and XIP have inequivalent effects on comX activation. These data are fully consistent with identification of intracellular positive feedback in comS transcription as the origin of bimodal comX expression in S. mutans IMPORTANCE The ComRS system can function as a quorum sensing trigger for genetic competence in S. mutans The signal peptide XIP, which is derived from the precursor ComS, enters the cell and interacts with the Rgg-type cytosolic receptor ComR to activate comX, which encodes the alternative sigma factor for the late competence genes. Previous studies have demonstrated intercellular signaling via ComRS, although release of the ComS or XIP peptide to the extracellular medium appears to require lysis of the producing cells. Here we tested the complementary hypothesis that ComRS can drive comX through a purely intracellular mechanism that does not depend on extracellular accumulation or import of ComS or XIP. By combining single-cell, coculture, and microfluidic approaches, we demonstrated that endogenously produced ComS can enable ComRS to activate comX without requiring processing, export, or import. These data provide insight into intracellular mechanisms that generate noise and heterogeneity in S. mutans competence.
Collapse
|
24
|
FtsEX-CwlO regulates biofilm formation by a plant-beneficial rhizobacterium Bacillus velezensis SQR9. Res Microbiol 2018; 169:166-176. [PMID: 29427638 DOI: 10.1016/j.resmic.2018.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 12/23/2022]
Abstract
Bacillus velezensis strain SQR9 is a well-investigated rhizobacterium with an outstanding ability to colonize roots, enhance plant growth and suppress soil-borne diseases. The recognition that biofilm formation by plant-beneficial bacteria is crucial for their root colonization and function has resulted in increased interest in understanding molecular mechanisms related to biofilm formation. Here, we report that the gene ftsE, encoding the ATP-binding protein of an FtsEX ABC transporter, is required for efficient SQR9 biofilm formation. FtsEX has been reported to regulate the atolysin CwlO. We provided evidence that FtsEX-CwlO was involved in the regulation of SQR9 biofilm formation; however, this effect has little to do with CwlO autolysin activity. We propose that regulation of biofilm formation by CwlO was exerted through the spo0A pathway, since transcription of spo0A cascade genes was altered and their downstream extracellular matrix genes were downregulated in SQR9 ftsE/cwlO deletion mutants. CwlO was also shown to interact physically with KinB/KinD. CwlO may therefore interact with KinB/KinD to interfere with the spo0A pathway. This study revealed that FtsEX-CwlO plays a previously undiscovered regulatory role in biofilm formation by SQR9 that may enhance root colonization and plant-beneficial functions of SQR9 and other beneficial rhizobacteria as well.
Collapse
|
25
|
Shields RC, Zeng L, Culp DJ, Burne RA. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. mSphere 2018; 3:e00031-18. [PMID: 29435491 PMCID: PMC5806208 DOI: 10.1128/msphere.00031-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 11/20/2022] Open
Abstract
Transposon mutagenesis coupled with next-generation DNA sequencing (Tn-seq) is a powerful tool for discovering regions of the genome that are required for the survival of bacteria in different environments. We adapted this technique to the dental caries pathogen Streptococcus mutans UA159 and identified 11% of the genome as essential, with many genes encoding products required for replication, translation, lipid metabolism, and cell wall biogenesis. Comparison of the essential genome of S. mutans UA159 with those of selected other streptococci for which such information is available revealed several metabolic pathways and genes that are required in S. mutans, but not in some Streptococcus spp. We further identified genes that are essential for sustained growth in rich or defined medium, as well as for persistence in vivo in a rodent model of oral infection. Collectively, our results provide a novel and comprehensive view of the genes required for essential processes of S. mutans, many of which could represent potential targets for therapeutics. IMPORTANCE Tooth decay (dental caries) is a common cause of pain, impaired quality of life, and tooth loss in children and adults. It begins because of a compositional change in the microorganisms that colonize the tooth surface driven by repeated and sustained carbohydrate intake. Although several bacterial species are associated with tooth decay, Streptococcus mutans is the most common cause. Therefore, it is important to identify biological processes that contribute to the survival of S. mutans in the human mouth, with the aim of disrupting the processes with antimicrobial agents. We successfully applied Tn-seq to S. mutans, discovering genes that are required for survival, growth, and persistence, both in laboratory environments and in a mouse model of tooth decay. This work highlights new avenues for the control of an important human pathogen.
Collapse
Affiliation(s)
- Robert C. Shields
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Lin Zeng
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - David J. Culp
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Robert A. Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
26
|
Khan ST, Khan M, Ahmad J, Wahab R, Abd-Elkader OH, Musarrat J, Alkhathlan HZ, Al-Kedhairy AA. Thymol and carvacrol induce autolysis, stress, growth inhibition and reduce the biofilm formation by Streptococcus mutans. AMB Express 2017; 7:49. [PMID: 28233286 PMCID: PMC5323333 DOI: 10.1186/s13568-017-0344-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023] Open
Abstract
Organic compounds from plants are an attractive alternative to conventional antimicrobial agents. Therefore, two compounds namely M-1 and M-2 were purified from Origanum vulgare L. and were identified as carvacrol and thymol, respectively. Antimicrobial and antibiofilm activities of these compounds along with chlorhexidine digluconate using various assays was determined against dental caries causing bacteria Streptococcus mutans. The IC50 values of carvacrol (M-1) and thymol (M-2) against S. mutans were 65 and 54 µg/ml, respectively. Live and dead staining and the MTT assays reveal that a concentration of 100 µg/ml of these compounds reduced the viability and the metabolic activity of S. mutans by more than 50%. Biofilm formation on the surface of polystyrene plates was significantly reduced by M-1 and M-2 at 100 µg/ml as observed under scanning electron microscope and by colorimetric assay. These results were in agreement with RT-PCR studies. Wherein exposure to 25 µg/ml of M-1 and M-2 showed a 2.2 and 2.4-fold increase in Autolysin gene (AtlE) expression level, respectively. While an increase of 1.3 and 1.4 fold was observed in the super oxide dismutase gene (sodA) activity with the same concentrations of M-1 and M-2, respectively. An increase in the ymcA gene and a decrease in the gtfB gene expression levels was observed following the treatment with M-1 and M-2. These results strongly suggest that carvacrol and thymol isolated from O. vulgare L. exhibit good bactericidal and antibiofilm activity against S. mutans and can be used as a green alternative to control dental caries.
Collapse
|
27
|
Intercellular Communication via the comX-Inducing Peptide (XIP) of Streptococcus mutans. J Bacteriol 2017; 199:JB.00404-17. [PMID: 28808131 DOI: 10.1128/jb.00404-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/08/2017] [Indexed: 12/29/2022] Open
Abstract
Gram-positive bacteria utilize exported peptides to coordinate genetic and physiological processes required for biofilm formation, stress responses, and ecological competitiveness. One example is activation of natural genetic competence by ComR and the com X -inducing peptide (XIP) in Streptococcus mutans Although the competence pathway can be activated by the addition of synthetic XIP in defined medium, the hypothesis that XIP is able to function as an intercellular signaling molecule has not been rigorously tested. Coculture model systems were developed that included a "sender" strain that overexpressed the XIP precursor (ComS) and a "responder" strain harboring a green fluorescent protein (GFP) reporter fused to a ComR-activated gene (comX) promoter. The ability of the sender strain to provide a signal to activate GFP expression was monitored at the individual cell and population levels using (i) planktonic culture systems, (ii) cells suspended in an agarose matrix, or (iii) cells growing in biofilms. XIP was shown to be freely diffusible, and XIP signaling between the S. mutans sender and responder strains did not require cell-to-cell contact. The presence of a sucrose-derived exopolysaccharide matrix diminished the efficiency of XIP signaling in biofilms, possibly by affecting the spatial distribution of XIP senders and potential responders. Intercellular signaling was greatly impaired in a strain lacking the primary autolysin, AtlA, and was substantially greater when the sender strain underwent lysis. Collectively, these data provide evidence that S. mutans XIP can indeed function as a peptide signal between cells and highlight the importance of studying signaling with an endogenously produced peptide(s) in populations in various environments and physiologic states.IMPORTANCE The comX-inducing peptide (XIP) of Streptococcus mutans is a key regulatory element in the activation of genetic competence, which allows cells to take up extracellular DNA. XIP has been found in cell culture fluids, and the addition of synthetic XIP to physiologically receptive cells can robustly induce competence gene expression. However, there is a lack of consensus as to whether XIP can function as an intercellular communication signal. Here, we show that XIP indeed signals between cells in S. mutans, but that cell lysis may be a critical factor, as opposed to a dedicated secretion/processing system, in allowing for release of XIP into the environment. The results have important implications in the context of the ecology, virulence, and evolution of a ubiquitous human pathogen and related organisms.
Collapse
|
28
|
Bacterial size matters: Multiple mechanisms controlling septum cleavage and diplococcus formation are critical for the virulence of the opportunistic pathogen Enterococcus faecalis. PLoS Pathog 2017; 13:e1006526. [PMID: 28742152 PMCID: PMC5542707 DOI: 10.1371/journal.ppat.1006526] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/03/2017] [Accepted: 07/12/2017] [Indexed: 12/02/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen frequently isolated in clinical settings. This organism is intrinsically resistant to several clinically relevant antibiotics and can transfer resistance to other pathogens. Although E. faecalis has emerged as a major nosocomial pathogen, the mechanisms underlying the virulence of this organism remain elusive. We studied the regulation of daughter cell separation during growth and explored the impact of this process on pathogenesis. We demonstrate that the activity of the AtlA peptidoglycan hydrolase, an enzyme dedicated to septum cleavage, is controlled by several mechanisms, including glycosylation and recognition of the peptidoglycan substrate. We show that the long cell chains of E. faecalis mutants are more susceptible to phagocytosis and are no longer able to cause lethality in the zebrafish model of infection. Altogether, this work indicates that control of cell separation during division underpins the pathogenesis of E. faecalis infections and represents a novel enterococcal virulence factor. We propose that inhibition of septum cleavage during division represents an attractive therapeutic strategy to control infections. Enterococcus faecalis is a commensal bacterium that colonizes the gastrointestinal tract of humans. This organism is an opportunistic pathogen that can cause a wide range of life-threatening infections in hospital settings. Despite the identification of several virulence factors, the mechanisms by which E. faecalis evades host immunity and causes infections remains poorly understood. Here, we explore how the formation of diplococci and short cell chains, a distinctive property of E. faecalis, contributes to pathogenesis. We describe several mechanisms that control the activity of AtlA, the enzyme dedicated to septum cleavage during division. Using a combination of in vitro assays and flow cytometry analyses of E. faecalis mutants, we show that AtlA activity is regulated by several mechanisms. We reveal that during pathogenesis, AtlA activity is critical for overcoming the host immune response. In the absence of AtlA, the long cell chains of E. faecalis mutants are more susceptible to phagocytosis and can no longer cause lethality in the zebrafish model of infection, thus indicating that control of cell chain length is a novel virulence factor in E. faecalis. This work highlights a link between cell division and pathogenesis and suggests that cell separation represents a step that can be targeted to control bacterial infections.
Collapse
|
29
|
Investigation of simulated microgravity effects on Streptococcus mutans physiology and global gene expression. NPJ Microgravity 2017. [PMID: 28649626 PMCID: PMC5460135 DOI: 10.1038/s41526-016-0006-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Astronauts have been previously shown to exhibit decreased salivary lysozyme and increased dental calculus and gingival inflammation in response to space flight, host factors that could contribute to oral diseases such as caries and periodontitis. However, the specific physiological response of caries-causing bacteria such as Streptococcus mutans to space flight and/or ground-based simulated microgravity has not been extensively investigated. In this study, high aspect ratio vessel S. mutans simulated microgravity and normal gravity cultures were assessed for changes in metabolite and transcriptome profiles, H2O2 resistance, and competence in sucrose-containing biofilm media. Stationary phase S. mutans simulated microgravity cultures displayed increased killing by H2O2 compared to normal gravity control cultures, but competence was not affected. RNA-seq analysis revealed that expression of 153 genes was up-regulated ≥2-fold and 94 genes down-regulated ≥2-fold during simulated microgravity high aspect ratio vessel growth. These included a number of genes located on extrachromosomal elements, as well as genes involved in carbohydrate metabolism, translation, and stress responses. Collectively, these results suggest that growth under microgravity analog conditions promotes changes in S. mutans gene expression and physiology that may translate to an altered cariogenic potential of this organism during space flight missions. The gene expression patterns, metabolism and physiology of tooth cavities-causing microbes change in a space-like gravity environment. These findings could help explain why astronauts are at a greater risk for dental diseases when in space. Kelly Rice and colleagues from the University of Florida, Gainesville, USA, cultured Streptococcus mutans bacteria under simulated microgravity and normal gravity conditions. The bacteria grown in microgravity were more susceptible to killing with hydrogen peroxide, tended to aggregate in more compact cellular structures, showed changes in their metabolite profile and expressed around 250 genes at levels that were either much higher or lower than normal gravity control cultures. These genes included many involved in carbohydrate metabolism, protein production and stress responses. The observed changes collectively suggest that space flight and microgravity could alter the cavities-causing potential of S. mutans.
Collapse
|
30
|
Haghighat S, Siadat SD, Sorkhabadi SMR, Sepahi AA, Mahdavi M. Cloning, expression and purification of autolysin from methicillin-resistant Staphylococcus aureus: potency and challenge study in Balb/c mice. Mol Immunol 2016; 82:10-18. [PMID: 28006655 DOI: 10.1016/j.molimm.2016.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
Staphylococcus aureus (MRSA) is an opportunistic pathogen which causes a variety of clinical diseases and leads to high rates of morbidity and mortality. Development of an effective vaccine appears to be a useful strategy to control the infection. Here, the internal region of atl was cloned into the pET24a plasmid and expressed in E. coli BL21 (DE3). Cloning of atl was confirmed by colony-PCR, enzymatic digestion and sequencing. Protein expressed in E coli, BL21 DE3 and was confirmed with SDS-PAGE and western blot analysis. Subsequently, BALB/c mice were injected subcutaneously three times with 20μg of the recombinant autolysin. After Bleeding, autolysin-specific total IgG antibodies and isotypes were evaluated using ELISA. Opsonophagocytic killing assay was performed and experimental challenge was done by intraperitoneal injection with sub lethal doses of MRSA in mice and also survival rate was regularly monitored. Results showed that vaccinated mice could exhibit higher levels of autolysin-specific antibodies (P<0.0001) with a predominant IgG1 response versus control group. Results from in vitro experiments indicated that S. aureus opsonized with immunized-mice sera displayed significantly increased phagocytic uptake and effective intracellular killing versus non-immunized mice. The number of viable bacteria in the kidney of immunized mice showed 1000 times less than the control mice; additionally, an increased survival rate was found after immunization with the candidate vaccine versus control group. Results from this study demonstrated that the autolysin is a valuable target for the development of immunotherapeutic strategies against S. aureus and candidate vaccines.
Collapse
Affiliation(s)
- Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran.
| | - Seyed Davar Siadat
- Department of Mycobacteriology & Pulmonary Research, Microbiology Research center, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Mehdi Rezayat Sorkhabadi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
31
|
Li H, Hu P, Zhao X, Yu Z, Li L. Bacillus thuringiensis peptidoglycan hydrolase SleB171 involved in daughter cell separation during cell division. Acta Biochim Biophys Sin (Shanghai) 2016; 48:354-62. [PMID: 26922318 DOI: 10.1093/abbs/gmw004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/02/2015] [Indexed: 01/05/2023] Open
Abstract
Whole-genome analyses have revealed a putative cell wall hydrolase gene (sleB171) that constitutes an operon with two other genes (ypeBandyhcN) of unknown function inBacillus thuringiensisBMB171. The putative SleB171 protein consists of 259 amino acids and has a molecular weight of 28.3 kDa. Gene disruption ofsleB171in the BMB171 genome causes the formation of long cell chains during the vegetative growth phase and delays spore formation and spore release, although it has no significant effect on cell growth and the ultimate release of the spores. The inseparable vegetative cells were nearly restored through the complementation ofsleB171expression. Real-time quantitative polymerase chain reaction analysis revealed thatsleB171is mainly active in the vegetative growth phase, with a maximum activity at the early stationary growth phase. Western blot analysis also confirmed thatsleB171is preferentially expressed during the vegetative growth phase. These results demonstrated that SleB171 plays an essential role in the daughter cell separation during cell division.
Collapse
Affiliation(s)
- Hua Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Penggao Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuyun Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
32
|
Crowley PJ, Brady LJ. Evaluation of the effects of Streptococcus mutans chaperones and protein secretion machinery components on cell surface protein biogenesis, competence, and mutacin production. Mol Oral Microbiol 2015; 31:59-77. [PMID: 26386361 DOI: 10.1111/omi.12130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 11/29/2022]
Abstract
The respective contributions of components of the protein translocation/maturation machinery to cell surface biogenesis in Streptococcus mutans are not fully understood. Here we used a genetic approach to characterize the effects of deletion of genes encoding the ribosome-associated chaperone RopA (Trigger Factor), the surface-localized foldase PrsA, and the membrane-localized chaperone insertases YidC1 and YidC2, both singly and in combination, on bacterial growth, chain length, self-aggregation, cell surface hydrophobicity, autolysis, and antigenicity of surface proteins P1 (AgI/II, PAc), WapA, GbpC, and GtfD. The single and double deletion mutants, as well as additional mutant strains lacking components of the signal recognition particle pathway, were also evaluated for their effects on mutacin production and genetic competence.
Collapse
Affiliation(s)
- P J Crowley
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - L J Brady
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
33
|
Shields RC, Burne RA. Conserved and divergent functions of RcrRPQ in Streptococcus gordonii and S. mutans. FEMS Microbiol Lett 2015; 362:fnv119. [PMID: 26229070 DOI: 10.1093/femsle/fnv119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2015] [Indexed: 01/18/2023] Open
Abstract
In the dental caries pathogen Streptococcus mutans, an MarR-like transcriptional regulator (RcrR), two ABC efflux pumps (RcrPQ) and two effector peptides encoded in the rcrRPQ operon provide molecular connections between stress tolerance, (p)ppGpp metabolism and genetic competence. Here, we examined the role of RcrRPQ in the oral commensal S. gordonii. Unlike in S. mutans, introduction of polar or non-polar rcrR mutations into S. gordonii elicited no significant changes in transformation efficiency. However, S. gordonii rcrR mutants were markedly impaired in their ability to grow in the presence of hydrogen peroxide, paraquat, low pH or elevated temperature. Sensitivity to paraquat could also be conferred by mutation of cysteine residues that are present in the RcrR protein of S. gordonii, but not in S. mutans RcrR. Thus, stress tolerance is a conserved function of RcrRPQ in a commensal and pathogenic streptococcus, but the study reveals additional differences in regulation of genetic competence development between S. mutans and S. gordonii.
Collapse
Affiliation(s)
- Robert C Shields
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
34
|
Distinct SagA from Hospital-Associated Clade A1 Enterococcus faecium Strains Contributes to Biofilm Formation. Appl Environ Microbiol 2015. [PMID: 26209668 DOI: 10.1128/aem.01716-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Enterococcus faecium is an important nosocomial pathogen causing biofilm-mediated infections. Elucidation of E. faecium biofilm pathogenesis is pivotal for the development of new strategies to treat these infections. In several bacteria, extracellular DNA (eDNA) and proteins act as matrix components contributing to biofilm development. In this study, we investigated biofilm formation capacity and the roles of eDNA and secreted proteins for 83 E. faecium strains with different phylogenetic origins that clustered in clade A1 and clade B. Although there was no significant difference in biofilm formation between E. faecium strains from these two clades, the addition of DNase I or proteinase K to biofilms demonstrated that eDNA is essential for biofilm formation in most E. faecium strains, whereas proteolysis impacted primarily biofilms of E. faecium clade A1 strains. Secreted antigen A (SagA) was the most abundant protein in biofilms from E. faecium clade A1 and B strains, although its localization differed between the two groups. sagA was present in all sequenced E. faecium strains, with a consistent difference in the repeat region between the clades, which correlated with the susceptibility of biofilms to proteinase K. This indicates an association between the SagA variable repeat profile and the localization and contribution of SagA in E. faecium biofilms.
Collapse
|
35
|
Kaspar J, Ahn SJ, Palmer SR, Choi SC, Stanhope MJ, Burne RA. A unique open reading frame within the comX gene of Streptococcus mutans regulates genetic competence and oxidative stress tolerance. Mol Microbiol 2015; 96:463-82. [PMID: 25620525 DOI: 10.1111/mmi.12948] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 01/19/2023]
Abstract
Streptococcus mutans displays complex regulation of genetic competence, with ComX controlling late competence gene transcription. The rcrRPQ operon has been shown to link oxidative stress tolerance, (p)ppGpp metabolism and competence in S. mutans. Importantly, an rcrR polar (ΔrcrR-P) mutant is hyper-transformable, but an rcrR non-polar (ΔrcrR-NP) mutant cannot be transformed. Transcriptome comparisons of the rcrR mutants using RNA-Seq and quantitative real-time polymerase chain reaction revealed little expression in the 5' region of comX in ΔrcrR-NP, but high level expression in the 3' region. Northern blotting with comX probes revealed two distinct transcripts in the ΔrcrR-P and ΔrcrR-NP strains, and 5' Rapid Amplification of cDNA Ends mapped the 5' terminus of the shorter transcript to nt +140 of the comX structural gene, where a unique 69-aa open reading frame, termed XrpA, was encoded in a different reading frame than ComX. Two single-nucleotide substitution mutants (comX::T162C; comX::T210A) were introduced to disrupt XrpA without affecting the sequence of ComX. When the mutations were in the ΔrcrR-NP genetic background, ComX production and transformation were restored. Overexpression of xrpA led to impaired growth in aerobic conditions and decreased transformability. These results reveal an unprecedented mechanism for competence regulation and stress tolerance by a gene product encoded within the comX gene that appears unique to S. mutans.
Collapse
Affiliation(s)
- Justin Kaspar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA
| | | | | | | | | | | |
Collapse
|
36
|
Min L, Jiawei Y, Yaling L, Yuqing H. [Effects of growth stages and pH value on the expression of autolytic enzyme atIS gene of Streptococcus gordonii]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2015; 33:80-83. [PMID: 25872305 PMCID: PMC7030257 DOI: 10.7518/hxkq.2015.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/21/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE This study aimed to detect the difference in the expression levels of autolysin atIS gene of Streptococcus gordonii (S. gordonii) at different growth stages and pH values, as well as to analyze the factors regulating atlS gene expression in S. gordonii. METHODS S. gordonii wild strains (ATCC 35105) were collected at different growth stages (early exponential phase, mid-exponential phase, late exponential stage, and platform stage) and pH values (pH 7 and pH 5.5), and total RNA was extracted by using a conventional method. Fluorescence quantitative polymerase chain reaction (FQ-PCR) was used to measure the relative mRNA expression of atlS gene, with bacterial 16S rRNA as internal reference, for a comparison of the mRNA levels of atlS gene expression in S.gordonii at different growth stages and pH values. RESULTS FQ-PCR results showed that atlS gene expression increased with gradually increasing growth stage under neutral conditions and was higher than that under acidic conditions (P < 0.05). CONCLUSION The atlS gene expression in S. gordonii is influenced by growth stage and pH value factors.
Collapse
|
37
|
Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol 2014; 196:2355-66. [PMID: 24748612 DOI: 10.1128/jb.01493-14] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA.
Collapse
|
38
|
Signoretto C, Marchi A, Bertoncelli A, Burlacchini G, Papetti A, Pruzzo C, Zaura E, Lingström P, Ofek I, Pratten J, Spratt DA, Wilson M, Canepari P. The anti-adhesive mode of action of a purified mushroom (Lentinus edodes) extract with anticaries and antigingivitis properties in two oral bacterial phatogens. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:75. [PMID: 24564835 PMCID: PMC3938644 DOI: 10.1186/1472-6882-14-75] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/18/2014] [Indexed: 11/12/2022]
Abstract
Background In previous works we have shown that a low-molecular-mass (LMM) fraction from mushroom (Lentinus edodes) homogenate interferes with binding of Streptococcus mutans to hydroxyapatite and Prevotella intermedia to gingival cells. Additionally, inhibition of biofilm formation of both odonto- and periodonto-pathogenic bacteria and detachment from preformed biofilms have been described for this compound. Further purification of mushroom extract has been recently achieved and a sub-fraction (i.e. # 5) has been identified as containing the majority of the mentioned biological activities. The aim of this study was to characterise the bacterial receptors for the purified mushroom sub-fraction #5 in order to better elucidate the mode of action of this compound when interfering with bacterial adhesion to host surfaces or with bacteria-bacteria interactions in the biofilm state. Methods Candidate bacterial molecules to act as target of this compound were bacterial surface molecules involved in cell adhesion and biofilm formation, and, thus, we have considered cell wall associated proteins (CWPs), teichoic acid (TA) and lipoteichoic acid (LTA) of S. mutans, and outer membrane proteins (OMPs) and lipopolysaccharide (LPS) of P. intermedia. Results Fifteen S. mutans CWPs and TA were capable of binding sub-fraction #5, while LTA did not. As far as P. intermedia is concerned, we show that five OMPs interact with sub-fraction # 5. Capacity of binding to P. intermedia LPS was also studied but in this case negative results were obtained. Conclusions Binding sub-fraction # 5 to surface molecules of S. mutans or P. intermedia may result in inactivation of their physiological functions. As a whole, these results indicate, at molecular level, the bacterial surface alterations affecting adhesion and biofim formation. For these antimicrobial properties, the compound may find use in daily oral hygiene.
Collapse
|
39
|
Davey L, Ng CKW, Halperin SA, Lee SF. Functional analysis of paralogous thiol-disulfide oxidoreductases in Streptococcus gordonii. J Biol Chem 2013; 288:16416-16429. [PMID: 23615907 DOI: 10.1074/jbc.m113.464578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Disulfide bonds are important for the stability of many extracellular proteins, including bacterial virulence factors. Formation of these bonds is catalyzed by thiol-disulfide oxidoreductases (TDORs). Little is known about their formation in Gram-positive bacteria, particularly among facultative anaerobic Firmicutes, such as streptococci. To investigate disulfide bond formation in Streptococcus gordonii, we identified five putative TDORs from the sequenced genome. Each of the putative TDOR genes was insertionally inactivated with an erythromycin resistance cassette, and the mutants were analyzed for autolysis, extracellular DNA release, biofilm formation, bacteriocin production, and genetic competence. This analysis revealed a single TDOR, SdbA, which exhibited a pleiotropic mutant phenotype. Using an in silico analysis approach, we identified the major autolysin AtlS as a natural substrate of SdbA and showed that SdbA is critical to the formation of a disulfide bond that is required for autolytic activity. Analysis by BLAST search revealed homologs to SdbA in other Gram-positive species. This study provides the first in vivo evidence of an oxidoreductase, SdbA, that affects multiple phenotypes in a Gram-positive bacterium. SdbA shows low sequence homology to previously identified oxidoreductases, suggesting that it may belong to a different class of enzymes. Our results demonstrate that SdbA is required for disulfide bond formation in S. gordonii and indicate that this enzyme may represent a novel type of oxidoreductase in Gram-positive bacteria.
Collapse
Affiliation(s)
- Lauren Davey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Crystal K W Ng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Scott A Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Song F Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
40
|
Palmer SR, Miller JH, Abranches J, Zeng L, Lefebure T, Richards VP, Lemos JA, Stanhope MJ, Burne RA. Phenotypic heterogeneity of genomically-diverse isolates of Streptococcus mutans. PLoS One 2013; 8:e61358. [PMID: 23613838 PMCID: PMC3628994 DOI: 10.1371/journal.pone.0061358] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/07/2013] [Indexed: 11/18/2022] Open
Abstract
High coverage, whole genome shotgun (WGS) sequencing of 57 geographically- and genetically-diverse isolates of Streptococcus mutans from individuals of known dental caries status was recently completed. Of the 57 sequenced strains, fifteen isolates, were selected based primarily on differences in gene content and phenotypic characteristics known to affect virulence and compared with the reference strain UA159. A high degree of variability in these properties was observed between strains, with a broad spectrum of sensitivities to low pH, oxidative stress (air and paraquat) and exposure to competence stimulating peptide (CSP). Significant differences in autolytic behavior and in biofilm development in glucose or sucrose were also observed. Natural genetic competence varied among isolates, and this was correlated to the presence or absence of competence genes, comCDE and comX, and to bacteriocins. In general strains that lacked the ability to become competent possessed fewer genes for bacteriocins and immunity proteins or contained polymorphic variants of these genes. WGS sequence analysis of the pan-genome revealed, for the first time, components of a Type VII secretion system in several S. mutans strains, as well as two putative ORFs that encode possible collagen binding proteins located upstream of the cnm gene, which is associated with host cell invasiveness. The virulence of these particular strains was assessed in a wax-worm model. This is the first study to combine a comprehensive analysis of key virulence-related phenotypes with extensive genomic analysis of a pathogen that evolved closely with humans. Our analysis highlights the phenotypic diversity of S. mutans isolates and indicates that the species has evolved a variety of adaptive strategies to persist in the human oral cavity and, when conditions are favorable, to initiate disease.
Collapse
Affiliation(s)
- Sara R. Palmer
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - James H. Miller
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jacqueline Abranches
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Lin Zeng
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Tristan Lefebure
- Université de Lyon, CNRS, Ecologie des Hydrosystèmes Naturels et Anthropisés; Université Lyon, Villeurbanne, France
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Vincent P. Richards
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - José A. Lemos
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Michael J. Stanhope
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Robert A. Burne
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
41
|
Enterococcus faecium biofilm formation: identification of major autolysin AtlAEfm, associated Acm surface localization, and AtlAEfm-independent extracellular DNA Release. mBio 2013; 4:e00154. [PMID: 23592262 PMCID: PMC3634606 DOI: 10.1128/mbio.00154-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enterococcus faecium is an important multidrug-resistant nosocomial pathogen causing biofilm-mediated infections in patients with medical devices. Insight into E. faecium biofilm pathogenesis is pivotal for the development of new strategies to prevent and treat these infections. In several bacteria, a major autolysin is essential for extracellular DNA (eDNA) release in the biofilm matrix, contributing to biofilm attachment and stability. In this study, we identified and functionally characterized the major autolysin of E. faecium E1162 by a bioinformatic genome screen followed by insertional gene disruption of six putative autolysin genes. Insertional inactivation of locus tag EfmE1162_2692 resulted in resistance to lysis, reduced eDNA release, deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and significant chaining compared to that of the wild type. Therefore, locus tag EfmE1162_2692 was considered the major autolysin in E. faecium and renamed atlAEfm. In addition, AtlAEfm was implicated in cell surface exposure of Acm, a virulence factor in E. faecium, and thereby facilitates binding to collagen types I and IV. This is a novel feature of enterococcal autolysins not described previously. Furthermore, we identified (and localized) autolysin-independent DNA release in E. faecium that contributes to cell-cell interactions in the atlAEfm mutant and is important for cell separation. In conclusion, AtlAEfm is the major autolysin in E. faecium and contributes to biofilm stability and Acm localization, making AtlAEfm a promising target for treatment of E. faecium biofilm-mediated infections. Nosocomial infections caused by Enterococcus faecium have rapidly increased, and treatment options have become more limited. This is due not only to increasing resistance to antibiotics but also to biofilm-associated infections. DNA is released in biofilm matrix via cell lysis, caused by autolysin, and acts as a matrix stabilizer. In this study, we identified and characterized the major autolysin in E. faecium, which we designated AtlAEfm. atlAEfm disruption resulted in resistance to lysis, reduced extracellular DNA (eDNA), deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and chaining. Furthermore, AtlAEfm is associated with Acm cell surface localization, resulting in less binding to collagen types I and IV in the atlAEfm mutant. We also identified AtlAEfm-independent eDNA release that contributes to cell-cell interactions in the atlAEfm mutant. These findings indicate that AtlAEfm is important in biofilm and collagen binding in E. faecium, making AtlAEfm a promising target for treatment of E. faecium infections.
Collapse
|
42
|
Bitoun JP, Liao S, McKey BA, Yao X, Fan Y, Abranches J, Beatty WL, Wen ZT. Psr is involved in regulation of glucan production, and double deficiency of BrpA and Psr is lethal in Streptococcus mutans. MICROBIOLOGY-SGM 2013; 159:493-506. [PMID: 23288544 DOI: 10.1099/mic.0.063032-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus mutans, the primary causative agent of dental caries, contains two paralogues of the LytR-CpsA-Psr family proteins encoded by brpA and psr, respectively. Previous studies have shown that BrpA plays an important role in cell envelope biogenesis/homeostasis and affects stress responses and biofilm formation by Strep. mutans, traits critical to cariogenicity of this bacterium. In this study, a Psr-deficient mutant, TW251, was constructed. Characterization of TW251 showed that deficiency of Psr did not have any major impact on growth rate. However, when subjected to acid killing at pH 2.8, the survival rate of TW251 was decreased dramatically compared with the parent strain UA159. In addition, TW251 also displayed major defects in biofilm formation, especially during growth with sucrose. When compared to UA159, the biofilms of TW251 were mainly planar and devoid of extracellular glucans. Real-time-PCR and Western blot analyses revealed that deficiency of Psr significantly decreased the expression of glucosyltransferase C, a protein known to play a major role in biofilm formation by Strep. mutans. Transmission electron microscopy analysis showed that deficiency of BrpA caused alterations in cell envelope and cell division, and the most significant defects were observed in TW314, a Psr-deficient and BrpA-down mutant. No such effects were observed with Psr mutant TW251 under similar conditions. These results suggest that while there are similarities in functions between BrpA and Psr, distinctive differences also exist between these two paralogues. Like Bacillus subtilis but different from Staphylococcus aureus, a functional BrpA or Psr is required for viability in Strep. mutans.
Collapse
Affiliation(s)
- Jacob P Bitoun
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Sumei Liao
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Briggs A McKey
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Xin Yao
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Yuwei Fan
- Department of Comprehensive Dentistry and Biomaterials, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jacqueline Abranches
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Zezhang T Wen
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
43
|
Identification and characterization of an autolysin gene, atlA, from Streptococcus criceti. J Microbiol 2012; 50:777-84. [PMID: 23124745 DOI: 10.1007/s12275-012-2187-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/29/2012] [Indexed: 10/27/2022]
Abstract
AtlA of Streptococcus mutans is a major autolysin and belongs to glycoside hydrolase family 25 with cellosyl of Streptomyces coelicolor. The autolysin gene (atlA) encoding AtlA was identified from S. criceti. AtlA of S. criceti comprises the signal sequence in the N-terminus, the putative cell-wall-binding domain in the middle, and the catalytic domain in the C-terminus. Homology modeling analysis of the catalytic domain of AtlA showed the resemblance of the spatial arrangement of five amino acids around the predicted catalytic cavity to that of cellosyl. Recombinant AtlA and its four point mutants, D655A, D747A, W831A, and D849A, were evaluated on zymogram of S. criceti cells. Lytic activity was destroyed in the mutants D655A and D747A and diminished in the mutants W831A and D849A. These results suggest that Asp655 and Asp747 residues are critical for lytic activity and Trp831 and Asp849 residues are also associated with enzymatic activity.
Collapse
|
44
|
Cell death of Streptococcus mutans induced by a quorum-sensing peptide occurs via a conserved streptococcal autolysin. J Bacteriol 2012; 195:105-14. [PMID: 23104806 DOI: 10.1128/jb.00926-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Streptococcus mutans, a member of the human indigenous oral microbiome, produces a quorum-sensing peptide called the competence-stimulating peptide (CSP) pheromone. We previously demonstrated that S. mutans expresses its CSP pheromone under specific stresses and responds to high levels of CSP by inducing cell death in a fraction of the bacterial population. Streptococci lack the classical SOS response, and the induction of the SigX regulon has been proposed to act as a general stress response in Gram-positive bacteria. We show here that inactivation of SigX abolished the CSP-induced cell death phenotype. Among SigX-regulated genes, SMU.836 (now named lytF(Sm)), encoding a conserved streptococcal protein, is a functional peptidoglycan hydrolase involved in CSP-induced cell lysis. We also demonstrated that LytF(Sm) is most likely a self-acting autolysin, since LytF(Sm) produced by attacker cells cannot trigger CSP-induced lysis of LytF(Sm)-deficient target cells present in the same environment. Electron microscopy revealed important morphological changes accompanying autolysis of CSP-induced wild-type cultures that were absent in the LytF(Sm)-deficient mutant. The LytF(Sm) promoter was activated in the physiological context of elevated concentrations of the CSP pheromone under stress conditions, such as exposure to heat, hydrogen peroxide, and acid. In a long-term survival assay, the viability of a mutant deficient in LytF(Sm) autolysin was significantly lower than that observed for the wild-type strain. The results of this study suggest that cell death of S. mutans induced by its quorum-sensing CSP pheromone may represent a kind of altruistic act that provides a way for the species to survive environmental stresses at the expense of some of its cells.
Collapse
|
45
|
Muscariello L, Marino C, Capri U, Vastano V, Marasco R, Sacco M. CcpA and three newly identified proteins are involved in biofilm development in Lactobacillus plantarum. J Basic Microbiol 2012; 53:62-71. [PMID: 22585750 DOI: 10.1002/jobm.201100456] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/24/2011] [Indexed: 12/17/2022]
Abstract
The aim of this study was to identify genes involved in biofilm development in the probiotic lactic acid bacterium Lactobacillus plantarum. The ability of L. plantarum LM3 and of some derivative mutant strains to form biofilm has been investigated. Biofilm microtitre plate assays showed that L. plantarum LM3-2, carrying a null mutation in the ccpA gene, coding the CcpA master regulator, was partially impaired in biofilm production compared to wild type (LM3). Moreover, we found three genes in the L. plantarum genome, hereby named flmA, flmB, and flmC, whose deduced amino acid sequences show significant identity with the Streptococcus mutans BrpA (biofilm regulatory protein A). We investigated the role of FlmA, FlmB, and FlmC in biofilm formation by isolating strains carrying null mutations in the corresponding genes. Our results suggest involvement of the Flm proteins in biofilm development. Moreover, transcriptional studies show that expression of flmA, flmB, and flmC is under the control of CcpA. These results, together with the reduced ability of LM3-2 (ccpA1) to form biofilm, strongly suggest a positive role of the master regulator CcpA in biofilm development.
Collapse
Affiliation(s)
- Lidia Muscariello
- Dipartimento di Scienze Ambientali, Seconda Università di Napoli, Caserta, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Geng J, Chiu CH, Tang P, Chen Y, Shieh HR, Hu S, Chen YYM. Complete genome and transcriptomes of Streptococcus parasanguinis FW213: phylogenic relations and potential virulence mechanisms. PLoS One 2012; 7:e34769. [PMID: 22529932 PMCID: PMC3329508 DOI: 10.1371/journal.pone.0034769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/05/2012] [Indexed: 01/13/2023] Open
Abstract
Streptococcus parasanguinis, a primary colonizer of the tooth surface, is also an opportunistic pathogen for subacute endocarditis. The complete genome of strain FW213 was determined using the traditional shotgun sequencing approach and further refined by the transcriptomes of cells in early exponential and early stationary growth phases in this study. The transcriptomes also discovered 10 transcripts encoding known hypothetical proteins, one pseudogene, five transcripts matched to the Rfam and additional 87 putative small RNAs within the intergenic regions defined by the GLIMMER analysis. The genome contains five acquired genomic islands (GIs) encoding proteins which potentially contribute to the overall pathogenic capacity and fitness of this microbe. The differential expression of the GIs and various open reading frames outside the GIs at the two growth phases suggested that FW213 possess a range of mechanisms to avoid host immune clearance, to colonize host tissues, to survive within oral biofilms and to overcome various environmental insults. Furthermore, the comparative genome analysis of five S. parasanguinis strains indicates that albeit S. parasanguinis strains are highly conserved, variations in the genome content exist. These variations may reflect differences in pathogenic potential between the strains.
Collapse
Affiliation(s)
- Jianing Geng
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Molecular Infectious Disease Research Center, Chang Gung Children's Hospital, Tao-Yuan, Taiwan
- Graduate Institute of Basic Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | - Petrus Tang
- Graduate Institute of Basic Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan
- Bioinformatics Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Yaping Chen
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hui-Ru Shieh
- Graduate Institute of Basic Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan, Taiwan
| | - Songnian Hu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi-Ywan M. Chen
- Graduate Institute of Basic Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
47
|
BrpA is involved in regulation of cell envelope stress responses in Streptococcus mutans. Appl Environ Microbiol 2012; 78:2914-22. [PMID: 22327589 DOI: 10.1128/aem.07823-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that BrpA plays a major role in acid and oxidative stress tolerance and biofilm formation by Streptococcus mutans. Mutant strains lacking BrpA also display increased autolysis and decreased viability, suggesting a role for BrpA in cell envelope integrity. In this study, we examined the impact of BrpA deficiency on cell envelope stresses induced by envelope-active antimicrobials. Compared to the wild-type strain UA159, the BrpA-deficient mutant (TW14D) was significantly more susceptible to antimicrobial agents, especially lipid II inhibitors. Several genes involved in peptidoglycan synthesis were identified by DNA microarray analysis as downregulated in TW14D. Luciferase reporter gene fusion assays also revealed that expression of brpA is regulated in response to environmental conditions and stresses induced by exposure to subinhibitory concentrations of cell envelope antimicrobials. In a Galleria mellonella (wax worm) model, BrpA deficiency was shown to diminish the virulence of S. mutans OMZ175, which, unlike S. mutans UA159, efficiently kills the worms. Collectively, these results suggest that BrpA plays a role in the regulation of cell envelope integrity and that deficiency of BrpA adversely affects the fitness and diminishes the virulence of OMZ175, a highly invasive strain of S. mutans.
Collapse
|
48
|
Characterization and functional analysis of atl, a novel gene encoding autolysin in Streptococcus suis. J Bacteriol 2012; 194:1464-73. [PMID: 22228730 DOI: 10.1128/jb.06231-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis serotype 2 (S. suis 2) is an important swine and human pathogen responsible for septicemia and meningitis. A novel gene, designated atl and encoding a major autolysin of S. suis 2 virulent strain HA9801, was identified and characterized in this study. The Atl protein contains 1,025 amino acids with a predicted molecular mass of 113 kDa and has a conserved N-acetylmuramoyl-l-alanine amidase domain. Recombinant Atl was expressed in Escherichia coli, and its bacteriolytic and fibronectin-binding activities were confirmed by zymography and Western affinity blotting. Two bacteriolytic bands were shown in the sodium dodecyl sulfate extracts of HA9801, while both were absent from the atl inactivated mutant. Cell chains of the mutant strain became longer than that of the parental strain. In the autolysis assay, HA9801 decreased to 20% of the initial optical density (OD) value, while the mutant strain had almost no autolytic activity. The biofilm capacity of the atl mutant was reduced ∼30% compared to the parental strain. In the zebrafish infection model, the 50% lethal dose of the mutant strain was increased up to 5-fold. Furthermore, the adherence to HEp-2 cells of the atl mutant was 50% less than that of the parental strain. Based on the functional analysis of the recombinant Atl and observed effects of atl inactivation on HA9801, we conclude that Atl is a major autolysin of HA9801. It takes part in cell autolysis, separation of daughter cells, biofilm formation, fibronectin-binding activity, cell adhesion, and pathogenesis of HA9801.
Collapse
|
49
|
Regulation of biofilm components in Salmonella enterica serovar Typhimurium by lytic transglycosylases involved in cell wall turnover. J Bacteriol 2011; 193:6443-51. [PMID: 21965572 DOI: 10.1128/jb.00425-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium, a biofilm mode of growth known as the rdar morphotype is regulated by several networks which sense multiple environmental signals. The transcriptional regulator CsgD is the major target for these regulatory pathways. In this study, we show that two lytic transglycosylases of family I, MltE and MltC, in combination increase CsgD expression and rdar morphotype. MltE and MltC, which share a highly similar transglycosylase SLT domain, work redundantly to regulate CsgD at the transcriptional and posttranscriptional levels. The effect of MltE and MltC on CsgD levels was independent of the known regulatory pathways that sense cell envelope stress. These findings reveal, for the first time, a specific function of lytic transglycosylases in S. Typhimurium and suggest the existence of a new signaling pathway that links cell wall turnover to biofilm formation.
Collapse
|
50
|
The biofilm inhibitor carolacton disturbs membrane integrity and cell division of Streptococcus mutans through the serine/threonine protein kinase PknB. J Bacteriol 2011; 193:5692-706. [PMID: 21840978 DOI: 10.1128/jb.05424-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Carolacton, a secondary metabolite isolated from the myxobacterium Sorangium cellulosum, disturbs Streptococcus mutans biofilm viability at nanomolar concentrations. Here we show that carolacton causes leakage of cytoplasmic content (DNA and proteins) in growing cells at low pH and provide quantitative data on the membrane damage. Furthermore, we demonstrate that the biofilm-specific activity of carolacton is due to the strong acidification occurring during biofilm growth. The chemical conversion of the ketocarbonic function of the molecule to a carolacton methylester did not impact its activity, indicating that carolacton is not functionally activated at low pH by a change of its net charge. A comparative time series microarray analysis identified the VicKRX and ComDE two-component signal transduction systems and genes involved in cell wall metabolism as playing essential roles in the response to carolacton treatment. A sensitivity testing of mutants with deletions of all 13 viable histidine kinases and the serine/threonine protein kinase PknB of S. mutans identified only the ΔpknB deletion mutant as being insensitive to carolacton treatment. A strong overlap between the regulon of PknB in S. mutans and the genes affected by carolacton treatment was found. The data suggest that carolacton acts by interfering with PknB-mediated signaling in growing cells. The resulting altered cell wall morphology causes membrane damage and cell death at low pH.
Collapse
|