1
|
Huete SG, Leyva A, Kornobis E, Cokelaer T, Lechat P, Monot M, Duran R, Picardeau M, Benaroudj N. Revisiting oxygen toxicity: evolution and adaptation to superoxide in a SOD-deficient bacterial pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614947. [PMID: 39386525 PMCID: PMC11463549 DOI: 10.1101/2024.09.25.614947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Defenses against oxidants are crucial for the virulence of pathogens, with superoxide scavenging enzymes (SOSEs) playing a vital role for most aerobes. However, our knowledge of superoxide adaptation primarily stems from the study of SOSE-encoding bacteria. Here, we investigated the evolution of a naturally SOSE-deficient pathogen ( Leptospira spp.), along with the alternative mechanisms it recruits to combat superoxide stress. We demonstrate that emergence of pathogenic Leptospira correlated with SOD loss, but that a long-lasting adaptation to superoxide remains possible. We reveal that cysteine and leucine biosynthesis are the most induced pathways in response to superoxide and demonstrate the importance of sulfur metabolism in superoxide adaptation in this SOSE-deficient model. We also propose cysteine oxidation as a key mediator of superoxide toxicity in the absence of SOSEs. This study challenges our conventional understanding of the oxygen toxicity theory and proposes a new model of superoxide adaptation through metabolic rewiring in bacteria.
Collapse
|
2
|
Liu S, Laman P, Jensen S, van der Wel NN, Kramer G, Zaat SA, Brul S. Isolation and characterization of persisters of the pathogenic microorganism Staphylococcus aureus. iScience 2024; 27:110002. [PMID: 38868179 PMCID: PMC11166702 DOI: 10.1016/j.isci.2024.110002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
The presence of antibiotic persisters is one of the leading causes of recurrent and chronic diseases. One challenge in mechanistic research on persisters is the enrichment of pure persisters. In this work, we validated a proposed method to isolate persisters with notorious Staphylococcus aureus cultures. With this, we analyzed the proteome profile of pure persisters and revealed the distinct mechanisms associated with vancomycin and enrofloxacin induced persisters. Furthermore, morphological and metabolic characterizations were performed, indicating further differences between these two persister populations. Finally, we assessed the effect of ATP repression, protein synthesis inhibition, and reactive oxygen species (ROS) level on persister formation. In conclusion, this work provides a comprehensive understanding of S. aureus vancomycin and enrofloxacin induced persisters, facilitating a better mechanistic understanding of persisters and the development of effective strategies to combat them.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Paul Laman
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Sean Jensen
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Nicole N. van der Wel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Gertjan Kramer
- Department of Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
3
|
Maydaniuk DT, Martens B, Iqbal S, Hogan AM, Lorente Cobo N, Motnenko A, Truong D, Liyanage SH, Yan M, Prehna G, Cardona ST. The mechanism of action of auranofin analogs in B. cenocepacia revealed by chemogenomic profiling. Microbiol Spectr 2024; 12:e0320123. [PMID: 38206016 PMCID: PMC10846046 DOI: 10.1128/spectrum.03201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Drug repurposing efforts led to the discovery of bactericidal activity in auranofin, a gold-containing drug used to treat rheumatoid arthritis. Auranofin kills Gram-positive bacteria by inhibiting thioredoxin reductase, an enzyme that scavenges reactive oxygen species (ROS). Despite the presence of thioredoxin reductase in Gram-negative bacteria, auranofin is not always active against them. It is not clear whether the lack of activity in several Gram-negative bacteria is due to the cell envelope barrier or the presence of other ROS protective enzymes such as glutathione reductase (GOR). We previously demonstrated that chemical analogs of auranofin (MS-40 and MS-40S), but not auranofin, are bactericidal against the Gram-negative Burkholderia cepacia complex. Here, we explore the targets of auranofin, MS-40, and MS-40S in Burkholderia cenocepacia and elucidate the mechanism of action of the auranofin analogs by a genome-wide, randomly barcoded transposon screen (BarSeq). Auranofin and its analogs inhibited the B. cenocepacia thioredoxin reductase and induced ROS but did not inhibit the bacterial GOR. Genome-wide, BarSeq analysis of cells exposed to MS-40 and MS-40S compared to the ROS inducers arsenic trioxide, diamide, hydrogen peroxide, and paraquat revealed common and unique mediators of drug susceptibility. Furthermore, deletions of gshA and gshB that encode enzymes in the glutathione biosynthetic pathway led to increased susceptibility to MS-40 and MS-40S. Overall, our data suggest that the auranofin analogs kill B. cenocepacia by inducing ROS through inhibition of thioredoxin reductase and that the glutathione system has a role in protecting B. cenocepacia against these ROS-inducing compounds.IMPORTANCEThe Burkholderia cepacia complex is a group of multidrug-resistant bacteria that can cause infections in the lungs of people with the autosomal recessive disease, cystic fibrosis. Specifically, the bacterium Burkholderia cenocepacia can cause severe infections, reducing lung function and leading to a devastating type of sepsis, cepacia syndrome. This bacterium currently does not have an accepted antibiotic treatment plan because of the wide range of antibiotic resistance. Here, we further the research on auranofin analogs as antimicrobials by finding the mechanism of action of these potent bactericidal compounds, using a powerful technique called BarSeq, to find the global response of the cell when exposed to an antimicrobial.
Collapse
Affiliation(s)
| | - Brielle Martens
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Sarah Iqbal
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Andrew M. Hogan
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Neil Lorente Cobo
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Dang Truong
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts, USA
| | - Sajani H. Liyanage
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts, USA
- Department of Medical Microbiology & Infectious Disease, University of Manitoba, Winnipeg, Canada
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts, USA
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Silvia T. Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology & Infectious Disease, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
4
|
Tikhomirova A, Rahman MM, Kidd SP, Ferrero RL, Roujeinikova A. Cysteine and resistance to oxidative stress: implications for virulence and antibiotic resistance. Trends Microbiol 2024; 32:93-104. [PMID: 37479622 DOI: 10.1016/j.tim.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/23/2023]
Abstract
Reactive oxygen species (ROS), including the superoxide radical anion (O2•-), hydrogen peroxide (H2O2), and the hydroxyl radical (•HO), are inherent components of bacterial metabolism in an aerobic environment. Bacteria also encounter exogenous ROS, such as those produced by the host cells during the respiratory burst. As ROS have the capacity to damage bacterial DNA, proteins, and lipids, detoxification of ROS is critical for bacterial survival. It has been recently recognised that low-molecular-weight (LMW) thiols play a central role in this process. Here, we review the emerging role of cysteine in bacterial resistance to ROS with a link to broader elements of bacterial lifestyle closely associated with cysteine-mediated oxidative stress response, including virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Mohammad M Rahman
- University of Kentucky, Department of Microbiology, Immunology and Molecular Genetics, Lexington, KY, USA
| | - Stephen P Kidd
- University of Adelaide, Department of Molecular and Biomedical Sciences, School of Biological Sciences, Adelaide, SA 5005, Australia; University of Adelaide, Research Centre for Infectious Disease (RCID) and Australian Centre for Antimicrobial Resistance Ecology (ACARE), Adelaide, SA 5005, Australia
| | - Richard L Ferrero
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Hudson Institute of Medical Research, Centre for Innate Immunity and Infectious Diseases, Melbourne, VIC 3168, Australia; Monash University, Department of Molecular and Translational Science, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Anna Roujeinikova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Monash University, Department of Biochemistry and Molecular Biology, Melbourne, VIC 3800, Australia.
| |
Collapse
|
5
|
Walgraeve J, Ferrero-Bordera B, Maaß S, Becher D, Schwerdtfeger R, van Dijl JM, Seefried M. Diamide-based screening method for the isolation of improved oxidative stress tolerance phenotypes in Bacillus mutant libraries. Microbiol Spectr 2023; 11:e0160823. [PMID: 37819171 PMCID: PMC10714788 DOI: 10.1128/spectrum.01608-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE During their life cycle, bacteria are exposed to a range of different stresses that need to be managed appropriately in order to ensure their growth and viability. This applies not only to bacteria in their natural habitats but also to bacteria employed in biotechnological production processes. Oxidative stress is one of these stresses that may originate either from bacterial metabolism or external factors. In biotechnological settings, it is of critical importance that production strains are resistant to oxidative stresses. Accordingly, this also applies to the major industrial cell factory Bacillus subtilis. In the present study, we, therefore, developed a screen for B. subtilis strains with enhanced oxidative stress tolerance. The results show that our approach is feasible and time-, space-, and resource-efficient. We, therefore, anticipate that it will enhance the development of more robust industrial production strains with improved robustness under conditions of oxidative stress.
Collapse
Affiliation(s)
| | | | - Sandra Maaß
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | | | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | |
Collapse
|
6
|
Rohrbacher C, Zscherp R, Weck SC, Klahn P, Ducho C. Synthesis of an Antimicrobial Enterobactin-Muraymycin Conjugate for Improved Activity Against Gram-Negative Bacteria. Chemistry 2023; 29:e202202408. [PMID: 36222466 PMCID: PMC10107792 DOI: 10.1002/chem.202202408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 12/12/2022]
Abstract
Overcoming increasing antibiotic resistance requires the development of novel antibacterial agents that address new targets in bacterial cells. Naturally occurring nucleoside antibiotics (such as muraymycins) inhibit the bacterial membrane protein MraY, a clinically unexploited essential enzyme in peptidoglycan (cell wall) biosynthesis. Even though a range of synthetic muraymycin analogues has already been reported, they generally suffer from limited cellular uptake and a lack of activity against Gram-negative bacteria. We herein report an approach to overcome these hurdles: a synthetic muraymycin analogue has been conjugated to a siderophore, i. e. the enterobactin derivative EntKL , to increase the cellular uptake into Gram-negative bacteria. The resultant conjugate showed significantly improved antibacterial activity against an efflux-deficient E. coli strain, thus providing a proof-of-concept of this novel approach and a starting point for the future optimisation of such conjugates towards potent agents against Gram-negative pathogens.
Collapse
Affiliation(s)
- Christian Rohrbacher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Stefanie C Weck
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.,Department of Chemistry and Molecular Biology, Division of Organic and Medicinal Chemistry, University of Gothenburg, Kemigården 4, 412 96, Göteborg, Sweden
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| |
Collapse
|
7
|
Environmental complexity is more important than mutation in driving the evolution of latent novel traits in E. coli. Nat Commun 2022; 13:5904. [PMID: 36202805 PMCID: PMC9537139 DOI: 10.1038/s41467-022-33634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Recent experiments show that adaptive Darwinian evolution in one environment can lead to the emergence of multiple new traits that provide no immediate benefit in this environment. Such latent non-adaptive traits, however, can become adaptive in future environments. We do not know whether mutation or environment-driven selection is more important for the emergence of such traits. To find out, we evolve multiple wild-type and mutator E. coli populations under two mutation rates in simple (single antibiotic) environments and in complex (multi-antibiotic) environments. We then assay the viability of evolved populations in dozens of new environments and show that all populations become viable in multiple new environments different from those they had evolved in. The number of these new environments increases with environmental complexity but not with the mutation rate. Genome sequencing demonstrates the reason: Different environments affect pleiotropic mutations differently. Our experiments show that the selection pressure provided by an environment can be more important for the evolution of novel traits than the mutational supply experienced by a wild-type and a mutator strain of E. coli. Novel traits without immediate fitness benefit evolve frequently but we don’t know whether mutation or environment-driven selection drives this evolution. Here, using experimental evolution of E. coli populations, the authors demonstrate the importance of selection in the evolution of latent novel traits.
Collapse
|
8
|
Karve S, Wagner A. Multiple novel traits without immediate benefits originate in bacteria evolving on single antibiotics. Mol Biol Evol 2021; 39:6448767. [PMID: 34865131 PMCID: PMC8789282 DOI: 10.1093/molbev/msab341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
How new traits originate in evolution is a fundamental question of evolutionary biology. When such traits arise, they can either be immediately beneficial in their environment of origin, or they may become beneficial only in a future environment. Compared to immediately beneficial novel traits, novel traits without immediate benefits remain poorly studied. Here we use experimental evolution to study novel traits that are not immediately beneficial but that allow bacteria to survive in new environments. Specifically, we evolved multiple E. coli populations in five antibiotics with different mechanisms of action, and then determined their ability to grow in more than 200 environments that are different from the environment in which they evolved. Our populations evolved viability in multiple environments that contain not just clinically relevant antibiotics, but a broad range of antimicrobial molecules, such as surfactants, organic and inorganic salts, nucleotide analogues and pyridine derivatives. Genome sequencing of multiple evolved clones shows that pleiotropic mutations are important for the origin of these novel traits. Our experiments, which lasted fewer than 250 generations, demonstrate that evolution can readily create an enormous reservoir of latent traits in microbial populations. These traits can facilitate adaptive evolution in a changing world.
Collapse
Affiliation(s)
- Shraddha Karve
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland.,The Santa Fe Institute, Santa Fe, New Mexico, USA.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
9
|
Goff JL, Boyanov MI, Kemner KM, Yee N. The role of cysteine in tellurate reduction and toxicity. Biometals 2021; 34:937-946. [PMID: 34255250 DOI: 10.1007/s10534-021-00319-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022]
Abstract
The tellurium oxyanion tellurate is toxic to living organisms even at low concentrations; however, its mechanism of toxicity is poorly understood. Here, we show that exposure of Escherichia coli K-12 to tellurate results in reduction to elemental tellurium (Te[0]) and the formation of intracellular reactive oxygen species (ROS). Toxicity assays performed with E. coli indicated that pre-oxidation of the intracellular thiol pools increases cellular resistance to tellurate-suggesting that intracellular thiols are important in tellurate toxicity. X-ray absorption spectroscopy experiments demonstrated that cysteine reduces tellurate to elemental tellurium. This redox reaction was found to generate superoxide anions. These results indicate that tellurate reduction to Te(0) by cysteine is a source of ROS in the cytoplasm of tellurate-exposed cells.
Collapse
Affiliation(s)
- Jennifer L Goff
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Maxim I Boyanov
- Bulgarian Academy of Sciences, Institute of Chemical Engineering, 1113, Sofia, Bulgaria.,Biosciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Nathan Yee
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, 08854, USA.,Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
10
|
Tye BW, Churchman LS. Hsf1 activation by proteotoxic stress requires concurrent protein synthesis. Mol Biol Cell 2021; 32:1800-1806. [PMID: 34191586 PMCID: PMC8684711 DOI: 10.1091/mbc.e21-01-0014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Heat shock factor 1 (Hsf1) activation is responsible for increasing the abundance of protein-folding chaperones and degradation machinery in response to proteotoxic conditions that give rise to misfolded or aggregated proteins. Here we systematically explored the link between concurrent protein synthesis and proteotoxic stress in the budding yeast, Saccharomyces cerevisiae. Consistent with prior work, inhibiting protein synthesis before inducing proteotoxic stress prevents Hsf1 activation, which we demonstrated across a broad array of stresses and validate using orthogonal means of blocking protein synthesis. However, other stress-dependent transcription pathways remained activatable under conditions of translation inhibition. Titrating the protein denaturant ethanol to a higher concentration results in Hsf1 activation in the absence of translation, suggesting extreme protein-folding stress can induce proteotoxicity independent of protein synthesis. Furthermore, we demonstrate this connection under physiological conditions where protein synthesis occurs naturally at reduced rates. We find that disrupting the assembly or subcellular localization of newly synthesized proteins is sufficient to activate Hsf1. Thus, new proteins appear to be especially sensitive to proteotoxic conditions, and we propose that their aggregation may represent the bulk of the signal that activates Hsf1 in the wake of these insults.
Collapse
Affiliation(s)
- Blake W Tye
- Department of Genetics, Harvard Medical School, Boston, MA 02115.,Program in Chemical Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
11
|
Martin HA, Sundararajan A, Ermi TS, Heron R, Gonzales J, Lee K, Anguiano-Mendez D, Schilkey F, Pedraza-Reyes M, Robleto EA. Mfd Affects Global Transcription and the Physiology of Stressed Bacillus subtilis Cells. Front Microbiol 2021; 12:625705. [PMID: 33603726 PMCID: PMC7885715 DOI: 10.3389/fmicb.2021.625705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
For several decades, Mfd has been studied as the bacterial transcription-coupled repair factor. However, recent observations indicate that this factor influences cell functions beyond DNA repair. Our lab recently described a role for Mfd in disulfide stress that was independent of its function in nucleotide excision repair and base excision repair. Because reports showed that Mfd influenced transcription of single genes, we investigated the global differences in transcription in wild-type and mfd mutant growth-limited cells in the presence and absence of diamide. Surprisingly, we found 1,997 genes differentially expressed in Mfd– cells in the absence of diamide. Using gene knockouts, we investigated the effect of genetic interactions between Mfd and the genes in its regulon on the response to disulfide stress. Interestingly, we found that Mfd interactions were complex and identified additive, epistatic, and suppressor effects in the response to disulfide stress. Pathway enrichment analysis of our RNASeq assay indicated that major biological functions, including translation, endospore formation, pyrimidine metabolism, and motility, were affected by the loss of Mfd. Further, our RNASeq findings correlated with phenotypic changes in growth in minimal media, motility, and sensitivity to antibiotics that target the cell envelope, transcription, and DNA replication. Our results suggest that Mfd has profound effects on the modulation of the transcriptome and on bacterial physiology, particularly in cells experiencing nutritional and oxidative stress.
Collapse
Affiliation(s)
- Holly Anne Martin
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | | | - Tatiana S Ermi
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Robert Heron
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jason Gonzales
- West Career and Technical Academy, Las Vegas, NV, United States
| | - Kaiden Lee
- The College of Idaho, Caldwell, ID, United States
| | - Diana Anguiano-Mendez
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Faye Schilkey
- National Center for Genome Resources, Santa Fe, NM, United States
| | - Mario Pedraza-Reyes
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | - Eduardo A Robleto
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
12
|
Harnagel A, Lopez Quezada L, Park SW, Baranowski C, Kieser K, Jiang X, Roberts J, Vaubourgeix J, Yang A, Nelson B, Fay A, Rubin E, Ehrt S, Nathan C, Lupoli TJ. Nonredundant functions of Mycobacterium tuberculosis chaperones promote survival under stress. Mol Microbiol 2020; 115:272-289. [PMID: 32996193 DOI: 10.1111/mmi.14615] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Bacterial chaperones ClpB and DnaK, homologs of the respective eukaryotic heat shock proteins Hsp104 and Hsp70, are essential in the reactivation of toxic protein aggregates that occur during translation or periods of stress. In the pathogen Mycobacterium tuberculosis (Mtb), the protective effect of chaperones extends to survival in the presence of host stresses, such as protein-damaging oxidants. However, we lack a full understanding of the interplay of Hsps and other stress response genes in mycobacteria. Here, we employ genome-wide transposon mutagenesis to identify the genes that support clpB function in Mtb. In addition to validating the role of ClpB in Mtb's response to oxidants, we show that HtpG, a homolog of Hsp90, plays a distinct role from ClpB in the proteotoxic stress response. While loss of neither clpB nor htpG is lethal to the cell, loss of both through genetic depletion or small molecule inhibition impairs recovery after exposure to host-like stresses, especially reactive nitrogen species. Moreover, defects in cells lacking clpB can be complemented by overexpression of other chaperones, demonstrating that Mtb's stress response network depends upon finely tuned chaperone expression levels. These results suggest that inhibition of multiple chaperones could work in concert with host immunity to disable Mtb.
Collapse
Affiliation(s)
- Alexa Harnagel
- Department of Chemistry, New York University, New York, NY, USA
| | - Landys Lopez Quezada
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Catherine Baranowski
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karen Kieser
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Yang
- Department of Chemistry, New York University, New York, NY, USA
| | - Brock Nelson
- Department of Chemistry, New York University, New York, NY, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric Rubin
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
13
|
Dickerhof N, Paton L, Kettle AJ. Oxidation of bacillithiol by myeloperoxidase-derived oxidants. Free Radic Biol Med 2020; 158:74-83. [PMID: 32629107 DOI: 10.1016/j.freeradbiomed.2020.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
Bacillithiol is a major low-molecular-weight thiol in gram-positive firmicutes including the human pathogen Staphylococcus aureus. Bacillithiol is regarded as an important defence mechanism against oxidants produced by the immune system, especially myeloperoxidase-derived hypochlorous acid (HOCl). However, it is unknown how fast BSH reacts with HOCl and what products are formed in the reaction. In the present study, we used sensitive MRM-based LC-MS methods to characterize the reaction of BSH with HOCl in cell-free solutions and in S. aureus. In the cell-free system, BSH formed predominantly the disulfide dimer (BSSB) at low mole ratios of HOCl and the sulfinic and sulfonic acids at higher oxidant concentrations. HOCl also promoted the formation of bacillithiol sulfonamide. In S. aureus, the oxidation pattern was similar except that a small proportion of BSH also formed mixed disulfides with protein thiols. Using competition with methionine, we determined the second-order rate constant for the reaction of HOCl with BSH to be 6 × 107 M-1s-1, which indicated a fast, near diffusion-controlled reaction. Other reactive halogen species, including hypothiocyanous acid (HOSCN), also produced bacillithiol sulfonamide, albeit to a smaller extent than HOCl. The sulfonamide was not produced by hydrogen peroxide, which instead formed BSSB. This study helps our understanding of BSH redox biology and provides tools for gauging the exposure of BSH-producing bacteria to oxidative stress.
Collapse
Affiliation(s)
- Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.
| | - Louise Paton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
14
|
Schäfer H, Beckert B, Frese CK, Steinchen W, Nuss AM, Beckstette M, Hantke I, Driller K, Sudzinová P, Krásný L, Kaever V, Dersch P, Bange G, Wilson DN, Turgay K. The alarmones (p)ppGpp are part of the heat shock response of Bacillus subtilis. PLoS Genet 2020; 16:e1008275. [PMID: 32176689 PMCID: PMC7098656 DOI: 10.1371/journal.pgen.1008275] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 03/26/2020] [Accepted: 02/26/2020] [Indexed: 11/24/2022] Open
Abstract
Bacillus subtilis cells are well suited to study how bacteria sense and adapt to proteotoxic stress such as heat, since temperature fluctuations are a major challenge to soil-dwelling bacteria. Here, we show that the alarmones (p)ppGpp, well known second messengers of nutrient starvation, are also involved in the heat stress response as well as the development of thermo-resistance. Upon heat-shock, intracellular levels of (p)ppGpp rise in a rapid but transient manner. The heat-induced (p)ppGpp is primarily produced by the ribosome-associated alarmone synthetase Rel, while the small alarmone synthetases RelP and RelQ seem not to be involved. Furthermore, our study shows that the generated (p)ppGpp pulse primarily acts at the level of translation, and only specific genes are regulated at the transcriptional level. These include the down-regulation of some translation-related genes and the up-regulation of hpf, encoding the ribosome-protecting hibernation-promoting factor. In addition, the alarmones appear to interact with the activity of the stress transcription factor Spx during heat stress. Taken together, our study suggests that (p)ppGpp modulates the translational capacity at elevated temperatures and thereby allows B. subtilis cells to respond to proteotoxic stress, not only by raising the cellular repair capacity, but also by decreasing translation to concurrently reduce the protein load on the cellular protein quality control system.
Collapse
Affiliation(s)
- Heinrich Schäfer
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Bertrand Beckert
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | | | - Wieland Steinchen
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Marburg, Germany
| | - Aaron M. Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ingo Hantke
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | | | - Petra Sudzinová
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Libor Krásný
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Volkhard Kaever
- Hannover Medical School, Research Core Unit Metabolomics, Hannover, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Infectiology, University of Münster, Münster, Germany
| | - Gert Bange
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Marburg, Germany
| | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Kürşad Turgay
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| |
Collapse
|
15
|
Ribič U, Jakše J, Toplak N, Koren S, Kovač M, Klančnik A, Jeršek B. Transporters and Efflux Pumps Are the Main Mechanisms Involved in Staphylococcus epidermidis Adaptation and Tolerance to Didecyldimethylammonium Chloride. Microorganisms 2020; 8:E344. [PMID: 32121333 PMCID: PMC7143832 DOI: 10.3390/microorganisms8030344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 01/28/2023] Open
Abstract
Staphylococcus epidermidis cleanroom strains are often exposed to sub-inhibitory concentrations of disinfectants, including didecyldimethylammonium chloride (DDAC). Consequently, they can adapt or even become tolerant to them. RNA-sequencing was used to investigate adaptation and tolerance mechanisms of S. epidermidis cleanroom strains (SE11, SE18), with S. epidermidis SE11Ad adapted and S. epidermidis SE18To tolerant to DDAC. Adaptation to DDAC was identified with up-regulation of genes mainly involved in transport (thioredoxin reductase [pstS], the arsenic efflux pump [gene ID, SE0334], sugar phosphate antiporter [uhpT]), while down-regulation was seen for the Agr system (agrA, arC, agrD, psm, SE1543), for enhanced biofilm formation. Tolerance to DDAC revealed the up-regulation of genes associated with transporters (L-cysteine transport [tcyB]; uracil permease [SE0875]; multidrug transporter [lmrP]; arsenic efflux pump [arsB]); the down-regulation of genes involved in amino-acid biosynthesis (lysine [dapE]; histidine [hisA]; methionine [metC]), and an enzyme involved in peptidoglycan, and therefore cell wall modifications (alanine racemase [SE1079]). We show for the first time the differentially expressed genes in DDAC-adapted and DDAC-tolerant S. epidermidis strains, which highlight the complexity of the responses through the involvement of different mechanisms.
Collapse
Affiliation(s)
- Urška Ribič
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (U.R.); (A.K.)
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
| | - Nataša Toplak
- Omega d.o.o., Dolinškova 8, SI-1000 Ljubljana, Slovenia; (N.T.); (S.K.); (M.K.)
| | - Simon Koren
- Omega d.o.o., Dolinškova 8, SI-1000 Ljubljana, Slovenia; (N.T.); (S.K.); (M.K.)
| | - Minka Kovač
- Omega d.o.o., Dolinškova 8, SI-1000 Ljubljana, Slovenia; (N.T.); (S.K.); (M.K.)
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (U.R.); (A.K.)
| | - Barbara Jeršek
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (U.R.); (A.K.)
| |
Collapse
|
16
|
Antimicrobial garlic-derived diallyl polysulfanes: Interactions with biological thiols in Bacillus subtilis. Biochim Biophys Acta Gen Subj 2019; 1863:1050-1058. [DOI: 10.1016/j.bbagen.2019.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
|
17
|
Nzungize L, Ali MK, Wang X, Huang X, Yang W, Duan X, Yan S, Li C, Abdalla AE, Jeyakkumar P, Xie J. Mycobacterium tuberculosis metC (Rv3340) derived hydrogen sulphide conferring bacteria stress survival. J Drug Target 2019; 27:1004-1016. [DOI: 10.1080/1061186x.2019.1579820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lambert Nzungize
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Md Kaisar Ali
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaoyu Wang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xue Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenmin Yang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiangke Duan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Shuangquan Yan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Chunyan Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Abualgasim Elgaili Abdalla
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
- Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman, Islamic University, Omdurman, Sudan
| | - Ponmani Jeyakkumar
- Institute of Bioorganic and Medical Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
18
|
Schäfer H, Turgay K. Spx, a versatile regulator of the Bacillus subtilis stress response. Curr Genet 2019; 65:871-876. [DOI: 10.1007/s00294-019-00950-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/16/2023]
|
19
|
Martin HA, Porter KE, Vallin C, Ermi T, Contreras N, Pedraza-Reyes M, Robleto EA. Mfd protects against oxidative stress in Bacillus subtilis independently of its canonical function in DNA repair. BMC Microbiol 2019; 19:26. [PMID: 30691388 PMCID: PMC6350366 DOI: 10.1186/s12866-019-1394-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Previous reports showed that mutagenesis in nutrient-limiting conditions is dependent on Mfd in Bacillus subtilis. Mfd initiates one type of transcription-coupled repair (TCR); this type of repair is known to target bulky lesions, like those associated with UV exposure. Interestingly, the roles of Mfd in repair of oxidative-promoted DNA damage and regulation of transcription differ. Here, we used a genetic approach to test whether Mfd protected B. subtilis from exposure to two different oxidants. RESULTS Wild-type cells survived tert-butyl hydroperoxide (t-BHP) exposure significantly better than Mfd-deficient cells. This protective effect was independent of UvrA, a component of the canonical TCR/nucleotide excision repair (NER) pathway. Further, our results suggest that Mfd and MutY, a DNA glycosylase that processes 8-oxoG DNA mismatches, work together to protect cells from lesions generated by oxidative damage. We also tested the role of Mfd in mutagenesis in starved cells exposed to t-BHP. In conditions of oxidative stress, Mfd and MutY may work together in the formation of mutations. Unexpectedly, Mfd increased survival when cells were exposed to the protein oxidant diamide. Under this type of oxidative stress, cells survival was not affected by MutY or UvrA. CONCLUSIONS These results are significant because they show that Mfd mediates error-prone repair of DNA and protects cells against oxidation of proteins by affecting gene expression; Mfd deficiency resulted in increased gene expression of the OhrR repressor which controls the cellular response to organic peroxide exposure. These observations point to Mfd functioning beyond a DNA repair factor in cells experiencing oxidative stress.
Collapse
Affiliation(s)
- Holly Anne Martin
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA
| | - Katelyn E Porter
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA
| | - Carmen Vallin
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA
| | - Tatiana Ermi
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA
| | - Natalie Contreras
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA
| | - Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, P.O. Box 187, Gto. 36050, Guanajuato, Mexico
| | - Eduardo A Robleto
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA.
| |
Collapse
|
20
|
Physiological Studies of Chlorobiaceae Suggest that Bacillithiol Derivatives Are the Most Widespread Thiols in Bacteria. mBio 2018; 9:mBio.01603-18. [PMID: 30482829 PMCID: PMC6282198 DOI: 10.1128/mbio.01603-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Low-molecular-weight thiols are key metabolites that participate in many basic cellular processes: central metabolism, detoxification, and oxidative stress resistance. Here we describe a new thiol, N-methyl-bacillithiol, found in an anaerobic phototrophic bacterium and identify a gene that is responsible for its synthesis from bacillithiol, the main thiol metabolite in many Gram-positive bacteria. We show that the presence or absence of this gene in a sequenced genome accurately predicts thiol content in distantly related bacteria. On the basis of these results, we analyzed genome data and predict that bacillithiol and its derivatives are the most widely distributed thiol metabolites in biology. Low-molecular-weight (LMW) thiols mediate redox homeostasis and the detoxification of chemical stressors. Despite their essential functions, the distribution of LMW thiols across cellular life has not yet been defined. LMW thiols are also thought to play a central role in sulfur oxidation pathways in phototrophic bacteria, including the Chlorobiaceae. Here we show that Chlorobaculum tepidum synthesizes a novel LMW thiol with a mass of 412 ± 1 Da corresponding to a molecular formula of C14H24N2O10S, which suggests that the new LMW thiol is closely related to bacillithiol (BSH), the major LMW thiol of low-G+C Gram-positive bacteria. The Cba. tepidum LMW thiol structure was N-methyl-bacillithiol (N-Me-BSH), methylated on the cysteine nitrogen, the fourth instance of this modification in metabolism. Orthologs of bacillithiol biosynthetic genes in the Cba. tepidum genome and the CT1040 gene product, N-Me-BSH synthase, were required for N-Me-BSH synthesis. N-Me-BSH was found in all Chlorobiaceae examined as well as Polaribacter sp. strain MED152, a member of the Bacteroidetes. A comparative genomic analysis indicated that BSH/N-Me-BSH is synthesized not only by members of the Chlorobiaceae, Bacteroidetes, Deinococcus-Thermus, and Firmicutes but also by Acidobacteria, Chlamydiae, Gemmatimonadetes, and Proteobacteria. Thus, BSH and derivatives appear to be the most broadly distributed LMW thiols in biology.
Collapse
|
21
|
From the genome sequence via the proteome to cell physiology – Pathoproteomics and pathophysiology of Staphylococcus aureus. Int J Med Microbiol 2018; 308:545-557. [DOI: 10.1016/j.ijmm.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 02/01/2023] Open
|
22
|
Abstract
SIGNIFICANCE Since the discovery and structural characterization of bacillithiol (BSH), the biochemical functions of BSH-biosynthesis enzymes (BshA/B/C) and BSH-dependent detoxification enzymes (FosB, Bst, GlxA/B) have been explored in Bacillus and Staphylococcus species. It was shown that BSH plays an important role in detoxification of reactive oxygen and electrophilic species, alkylating agents, toxins, and antibiotics. Recent Advances: More recently, new functions of BSH were discovered in metal homeostasis (Zn buffering, Fe-sulfur cluster, and copper homeostasis) and virulence control in Staphylococcus aureus. Unexpectedly, strains of the S. aureus NCTC8325 lineage were identified as natural BSH-deficient mutants. Modern mass spectrometry-based approaches have revealed the global reach of protein S-bacillithiolation in Firmicutes as an important regulatory redox modification under hypochlorite stress. S-bacillithiolation of OhrR, MetE, and glyceraldehyde-3-phosphate dehydrogenase (Gap) functions, analogous to S-glutathionylation, as both a redox-regulatory device and in thiol protection under oxidative stress. CRITICAL ISSUES Although the functions of the bacilliredoxin (Brx) pathways in the reversal of S-bacillithiolations have been recently addressed, significantly more work is needed to establish the complete Brx reduction pathway, including the major enzyme(s), for reduction of oxidized BSH (BSSB) and the targets of Brx action in vivo. FUTURE DIRECTIONS Despite the large number of identified S-bacillithiolated proteins, the physiological relevance of this redox modification was shown for only selected targets and should be a subject of future studies. In addition, many more BSH-dependent detoxification enzymes are evident from previous studies, although their roles and biochemical mechanisms require further study. This review of BSH research also pin-points these missing gaps for future research. Antioxid. Redox Signal. 28, 445-462.
Collapse
Affiliation(s)
- Pete Chandrangsu
- 1 Department of Microbiology, Cornell University , Ithaca, New York
| | - Vu Van Loi
- 2 Institute for Biology-Microbiology , Freie Universität Berlin, Berlin, Germany
| | - Haike Antelmann
- 2 Institute for Biology-Microbiology , Freie Universität Berlin, Berlin, Germany
| | - John D Helmann
- 1 Department of Microbiology, Cornell University , Ithaca, New York
| |
Collapse
|
23
|
Kashyap DR, Kuzma M, Kowalczyk DA, Gupta D, Dziarski R. Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism. Mol Microbiol 2017. [PMID: 28621879 DOI: 10.1111/mmi.13733] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mammalian Peptidoglycan Recognition Proteins (PGRPs) kill both Gram-positive and Gram-negative bacteria through simultaneous induction of oxidative, thiol and metal stress responses in bacteria. However, metabolic pathways through which PGRPs induce these bactericidal stress responses are unknown. We screened Keio collection of Escherichia coli deletion mutants and revealed that deleting genes for respiratory chain flavoproteins or for tricarboxylic acid (TCA) cycle resulted in increased resistance of E. coli to PGRP killing. PGRP-induced killing depended on the production of hydrogen peroxide, which required increased supply of NADH for respiratory chain oxidoreductases from central carbon catabolism (glycolysis and TCA cycle), and was controlled by cAMP-Crp. Bactericidal PGRP induced a rapid decrease in respiration, which suggested that the main source of increased production of hydrogen peroxide was a block in respiratory chain and diversion of electrons from NADH oxidoreductases to oxygen. CpxRA two-component system was a negative regulator of PGRP-induced oxidative stress. By contrast, PGRP-induced thiol stress (depletion of thiols) and metal stress (increase in intracellular free Zn2+ through influx of extracellular Zn2+ ) were mostly independent of oxidative stress. Thus, manipulating pathways that induce oxidative, thiol and metal stress in bacteria could be a useful strategy to design new approaches to antibacterial therapy.
Collapse
Affiliation(s)
- Des R Kashyap
- Indiana University, School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Marcin Kuzma
- Indiana University, School of Medicine-Northwest, Gary, IN, 46408, USA
| | | | - Dipika Gupta
- Indiana University, School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Roman Dziarski
- Indiana University, School of Medicine-Northwest, Gary, IN, 46408, USA
| |
Collapse
|
24
|
Cheng C, Dong Z, Han X, Wang H, Jiang L, Sun J, Yang Y, Ma T, Shao C, Wang X, Chen Z, Fang W, Freitag NE, Huang H, Song H. Thioredoxin A Is Essential for Motility and Contributes to Host Infection of Listeria monocytogenes via Redox Interactions. Front Cell Infect Microbiol 2017; 7:287. [PMID: 28702378 PMCID: PMC5487381 DOI: 10.3389/fcimb.2017.00287] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/12/2017] [Indexed: 12/17/2022] Open
Abstract
Microbes employ the thioredoxin system to defend against oxidative stress and ensure correct disulfide bonding to maintain protein function. Listeria monocytogenes has been shown to encode a putative thioredoxin, TrxA, but its biological roles and underlying mechanisms remain unknown. Here, we showed that expression of L. monocytogenes TrxA is significantly induced in bacteria treated with the thiol-specific oxidizing agent, diamide. Deletion of trxA markedly compromised tolerance of the pathogen to diamide, and mainly impaired early stages of infection in human intestinal epithelial Caco-2 cells. In addition, most trxA mutant bacteria were not associated with polymerized actin, and the rare bacteria that were associated with polymerized actin displayed very short tails or clouds during infection. Deletion or constitutive overexpression of TrxA, which was regulated by SigH, severely attenuated the virulence of the pathogen. Transcriptome analysis of L. monocytogenes revealed over 270 genes that were differentially transcribed in the ΔtrxA mutant compared to the wild-type, especially for the virulence-associated genes plcA, mpl, hly, actA, and plcB. Particularly, deletion of TrxA completely reduced LLO expression, and thereby led to a thoroughly impaired hemolytic activity. Expression of these virulence factors are positively regulated by the master regulator PrfA that was found here to use TrxA to maintain its reduced forms for activation. Interestingly, the trxA deletion mutant completely lacked flagella and was non-motile. We further confirmed that this deficiency is attributable to TrxA in maintaining the reduced intracellular monomer status of MogR, the key regulator for flagellar formation, to ensure correct dimerization. In summary, we demonstrated for the first time that L. monocytogenes thioredoxin A as a vital cellular reductase is essential for maintaining a highly reducing environment in the bacterial cytosol, which provides a favorable condition for protein folding and activation, and therefore contributes to bacterial virulence and motility.
Collapse
Affiliation(s)
- Changyong Cheng
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Zhimei Dong
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Xiao Han
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Hang Wang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Li Jiang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Jing Sun
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Yongchun Yang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Tiantian Ma
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Chunyan Shao
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Xiaodu Wang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Zhongwei Chen
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Weihuan Fang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China.,Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary MedicineHangzhou, China
| | - Nancy E Freitag
- Department of Microbiology and Immunology, University of Illinois at ChicagoChicago, IL, United States
| | - Huarong Huang
- Institute of Developmental and Regenerative Biology, College of Biological and Environmental Science, Hangzhou Normal UniversityZhejiang, China
| | - Houhui Song
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| |
Collapse
|
25
|
Terakawa A, Natsume A, Okada A, Nishihata S, Kuse J, Tanaka K, Takenaka S, Ishikawa S, Yoshida KI. Bacillus subtilis 5'-nucleotidases with various functions and substrate specificities. BMC Microbiol 2016; 16:249. [PMID: 27784292 PMCID: PMC5080769 DOI: 10.1186/s12866-016-0866-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Escherichia coli, nagD, yrfG, yjjG, yieH, yigL, surE, and yfbR encode 5'-nucleotidases that hydrolyze the phosphate group of 5'-nucleotides. In Bacillus subtilis, genes encoding 5'-nucleotidase have remained to be identified. RESULTS We found that B. subtilis ycsE, araL, yutF, ysaA, and yqeG show suggestive similarities to nagD. Here, we expressed them in E. coli to purify the respective His6-tagged proteins. YcsE exhibited significant 5'-nucleotidase activity with a broader specificity, whereas the other four enzymes had rather weak but suggestive activities with various capacities and substrate specificities. In contrast, B. subtilis yktC shares high similarity with E. coli suhB encoding an inositol monophosphatase. YktC exhibited inositol monophosphatase activity as well as 5'-nucleotidase activity preferential for GMP and IMP. The ycsE, yktC, and yqeG genes are induced by oxidative stress and were dispensable, although yqeG was required to maintain normal growth on solid medium. In the presence of diamide, only mutants lacking yktC exhibited enhanced growth defects, whereas the other mutants without ycsE or yqeG did not. CONCLUSIONS Accordingly, in B. subtilis, at least YcsE and YktC acted as major 5'-nucleotidases and the four minor enzymes might function when the intracellular concentrations of substrates are sufficiently high. In addition, YktC is involved in resistance to oxidative stress caused by diamide, while YqeG is necessary for normal colony formation on solid medium.
Collapse
Affiliation(s)
- Ayako Terakawa
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Ayane Natsume
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Atsushi Okada
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Shogo Nishihata
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Junko Kuse
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Kosei Tanaka
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Shinji Takenaka
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan.,Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Ken-Ichi Yoshida
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan. .,Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
26
|
Rifampin Resistance rpoB Alleles or Multicopy Thioredoxin/Thioredoxin Reductase Suppresses the Lethality of Disruption of the Global Stress Regulator spx in Staphylococcus aureus. J Bacteriol 2016; 198:2719-31. [PMID: 27432833 DOI: 10.1128/jb.00261-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/14/2016] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Staphylococcus aureus is capable of causing a remarkable spectrum of disease, ranging from mild skin eruptions to life-threatening infections. The survival and pathogenic potential of S. aureus depend partly on its ability to sense and respond to changes in its environment. Spx is a thiol/oxidative stress sensor that interacts with the C-terminal domain of the RNA polymerase RpoA subunit, leading to changes in gene expression that help sustain viability under various conditions. Using genetic and deep-sequencing methods, we show that spx is essential in S. aureus and that a previously reported Δspx strain harbored suppressor mutations that allowed it to grow without spx One of these mutations is a single missense mutation in rpoB (a P-to-L change at position 519 encoded by rpoB [rpoB-P519L]) that conferred high-level resistance to rifampin. This mutation alone was found to be sufficient to bypass the requirement for spx The generation of rifampin resistance libraries led to the discovery of an additional rpoB mutation, R484H, which supported strains with the spx disruption. Other rifampin resistance mutations either failed to support the Δspx mutant or were recovered at unexpectedly low frequencies in genetic transduction experiments. The amino acid residues encoded by rpoB-P519L and -R484H map in close spatial proximity and comprise a highly conserved region of RpoB. We also discovered that multicopy expression of either trxA (encoding thioredoxin) or trxB (encoding thioredoxin reductase) supports strains with the deletion of spx Our results reveal intriguing properties, especially of RNA polymerase, that compensate for the loss of an essential gene that is a key mediator of diverse processes in S. aureus, including redox and thiol homeostasis, antibiotic resistance, growth, and metabolism. IMPORTANCE The survival and pathogenicity of S. aureus depend on complex genetic programs. An objective for combating this insidious organism entails dissecting genetic regulatory circuits and discovering promising new targets for therapeutic intervention. In this study, we discovered that Spx, an RNA polymerase-interacting stress regulator implicated in many stress responses in S. aureus, including responses to oxidative and cell wall antibiotics, is essential. We describe two mechanisms that suppress the lethality of spx disruption. One mechanism highlights how only certain rifampin resistance-encoding alleles of RpoB confer new properties on RNA polymerase, with important mechanistic implications. We describe additional stress conditions where the loss of spx is deleterious, thereby highlighting Spx as a multifaceted regulator and attractive drug discovery target.
Collapse
|
27
|
Overexpression of Mycothiol Disulfide Reductase Enhances Corynebacterium glutamicum Robustness by Modulating Cellular Redox Homeostasis and Antioxidant Proteins under Oxidative Stress. Sci Rep 2016; 6:29491. [PMID: 27383057 PMCID: PMC4935862 DOI: 10.1038/srep29491] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/17/2016] [Indexed: 01/30/2023] Open
Abstract
Mycothiol (MSH) is the dominant low-molecular-weight thiol (LMWT) unique to high-(G+C)-content Gram-positive Actinobacteria, such as Corynebacterium glutamicum, and is oxidised into its disulfide form mycothiol disulfide (MSSM) under oxidative conditions. Mycothiol disulfide reductase (Mtr), an NADPH-dependent enzyme, reduces MSSM to MSH, thus maintaining intracellular redox homeostasis. In this study, a recombinant plasmid was constructed to overexpress Mtr in C. glutamicum using the expression vector pXMJ19-His6. Mtr-overexpressing C. glutamicum cells showed increased tolerance to ROS induced by oxidants, bactericidal antibiotics, alkylating agents, and heavy metals. The physiological roles of Mtr in resistance to oxidative stresses were corroborated by decreased ROS levels, reduced carbonylation damage, decreased loss of reduced protein thiols, and a massive increase in the levels of reversible protein thiols in Mtr-overexpressing cells exposed to stressful conditions. Moreover, overexpression of Mtr caused a marked increase in the ratio of reduced to oxidised mycothiol (MSH:MSSM), and significantly enhanced the activities of a variety of antioxidant enzymes, including mycothiol peroxidase (MPx), mycoredoxin 1 (Mrx1), thioredoxin 1 (Trx1), and methionine sulfoxide reductase A (MsrA). Taken together, these results indicate that the Mtr protein functions in C. glutamicum by protecting cells against oxidative stress.
Collapse
|
28
|
Mukhopadyay R, Sudasinghe N, Schaub T, Yukl ET. Heme-independent Redox Sensing by the Heme-Nitric Oxide/Oxygen-binding Protein (H-NOX) from Vibrio cholerae. J Biol Chem 2016; 291:17547-56. [PMID: 27358409 DOI: 10.1074/jbc.m116.733337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 11/06/2022] Open
Abstract
Heme nitric oxide/oxygen (H-NOX)-binding proteins act as nitric oxide (NO) sensors among various bacterial species. In several cases, they act to mediate communal behavior such as biofilm formation, quorum sensing, and motility by influencing the activity of downstream signaling proteins such as histidine kinases (HisKa) in a NO-dependent manner. An H-NOX/HisKa regulatory circuit was recently identified in Vibrio cholerae, and the H-NOX protein has been spectroscopically characterized. However, the influence of the H-NOX protein on HisKa autophosphorylation has not been evaluated. This process may be important for persistence and pathogenicity in this organism. Here, we have expressed and purified the V. cholerae HisKa (HnoK) and H-NOX in its heme-bound (holo) and heme-free (apo) forms. Autophosphorylation assays of HnoK in the presence of H-NOX show that the holoprotein in the Fe(II)-NO and Fe(III) forms is a potent inhibitor of HnoK. Activity of the Fe(III) form and aerobic instability of the Fe(II) form suggested that Vibrio cholerae H-NOX may act as a sensor of the redox state as well as NO. Remarkably, the apoprotein also showed robust HnoK inhibition that was dependent on the oxidation of cysteine residues to form disulfide bonds at a highly conserved zinc site. The importance of cysteine in this process was confirmed by mutagenesis, which also showed that holo Fe(III), but not Fe(II)-NO, H-NOX relied heavily upon cysteine for activation. These results highlight a heme-independent mechanism for activation of V. cholerae H-NOX that implicates this protein as a dual redox/NO sensor.
Collapse
Affiliation(s)
| | - Nilusha Sudasinghe
- Chemical Analysis and Instrumentation Laboratory, New Mexico State University, Las Cruces, New Mexico 88003
| | - Tanner Schaub
- Chemical Analysis and Instrumentation Laboratory, New Mexico State University, Las Cruces, New Mexico 88003
| | - Erik T Yukl
- From the Department of Chemistry and Biochemistry and
| |
Collapse
|
29
|
Beavers WN, Skaar EP. Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus. Pathog Dis 2016; 74:ftw060. [PMID: 27354296 DOI: 10.1093/femspd/ftw060] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a ubiquitous, versatile and dangerous pathogen. It colonizes over 30% of the human population, and is one of the leading causes of death by an infectious agent. During S. aureus colonization and invasion, leukocytes are recruited to the site of infection. To combat S. aureus, leukocytes generate an arsenal of reactive species including superoxide, hydrogen peroxide, nitric oxide and hypohalous acids that modify and inactivate cellular macromolecules, resulting in growth defects or death. When S. aureus colonization cannot be cleared by the immune system, antibiotic treatment is necessary and can be effective. Yet, this organism quickly gains resistance to each new antibiotic it encounters. Therefore, it is in the interest of human health to acquire a deeper understanding of how S. aureus evades killing by the immune system. Advances in this field will have implications for the design of future S. aureus treatments that complement and assist the host immune response. In that regard, this review focuses on how S. aureus avoids host-generated oxidative stress, and discusses the mechanisms used by S. aureus to survive oxidative damage including antioxidants, direct repair of damaged proteins, sensing oxidant stress and transcriptional changes. This review will elucidate areas for studies to identify and validate future antimicrobial targets.
Collapse
Affiliation(s)
- William N Beavers
- Department of Pathology, Microbiology and Immunology, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Medical Center North, Nashville, TN 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Medical Center North, Nashville, TN 37232, USA Tennessee Valley Healthcare System, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA
| |
Collapse
|
30
|
Song S, Lee B, Yeom JH, Hwang S, Kang I, Cho JC, Ha NC, Bae J, Lee K, Kim YH. MdsABC-Mediated Pathway for Pathogenicity in Salmonella enterica Serovar Typhimurium. Infect Immun 2015; 83:4266-76. [PMID: 26283336 PMCID: PMC4598412 DOI: 10.1128/iai.00653-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/11/2015] [Indexed: 12/20/2022] Open
Abstract
MdsABC is a Salmonella-specific tripartite efflux pump that has been implicated in the virulence of Salmonella enterica serovar Typhimurium; however, little is known about the virulence factors associated with this pump. We observed MdsABC expression-dependent alterations in the degree of resistance to extracellular oxidative stress and macrophage-mediated killing. Thin-layer chromatography and tandem mass spectrometry analyses revealed that overexpression of MdsABC led to increased secretion of 1-palmitoyl-2-stearoyl-phosphatidylserine (PSPS), affecting the ability of the bacteria to invade and survive in host cells. Overexpression of MdsABC and external addition of PSPS similarly rendered the mdsABC deletion strain resistant to diamide. Diagonal gel analysis showed that PSPS treatment reduced the diamide-mediated formation of disulfide bonds, particularly in the membrane fraction of the bacteria. Salmonella infection of macrophages induced the upregulation of MdsABC expression and led to an increase of intracellular bacterial number and host cell death, similar to the effects of MdsABC overexpression and PSPS pretreatment on the mdsABC deletion strain. Our study shows that MdsABC mediates a previously uncharacterized pathway that involves PSPS as a key factor for the survival and virulence of S. Typhimurium in phagocytic cells.
Collapse
Affiliation(s)
- Saemee Song
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Boeun Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Soonhye Hwang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea
| | - Nam-Chul Ha
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jeehyeon Bae
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yong-Hak Kim
- Department of Microbiology, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
31
|
Perera VR, Newton GL, Pogliano K. Bacillithiol: a key protective thiol in Staphylococcus aureus. Expert Rev Anti Infect Ther 2015; 13:1089-107. [PMID: 26184907 DOI: 10.1586/14787210.2015.1064309] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacillithiol is a low-molecular-weight thiol analogous to glutathione and is found in several Firmicutes, including Staphylococcus aureus. Since its discovery in 2009, bacillithiol has been a topic of interest because it has been found to contribute to resistance during oxidative stress and detoxification of electrophiles, such as the antibiotic fosfomycin, in S. aureus. The rapid increase in resistance of methicillin-resistant Staphylococcus aureus (MRSA) to available therapeutic agents is a great health concern, and many research efforts are focused on identifying new drugs and targets to combat this organism. This review describes the discovery of bacillithiol, studies that have elucidated the physiological roles of this molecule in S. aureus and other Bacilli, and the contribution of bacillithiol to S. aureus fitness during pathogenesis. Additionally, the bacillithiol biosynthesis pathway is evaluated as a novel drug target that can be utilized in combination with existing therapies to treat S. aureus infections.
Collapse
Affiliation(s)
- Varahenage R Perera
- Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, Natural Sciences Building 4113, La Jolla, CA 92093-0377, USA
| | | | | |
Collapse
|
32
|
Luebke JL, Giedroc DP. Cysteine sulfur chemistry in transcriptional regulators at the host-bacterial pathogen interface. Biochemistry 2015; 54:3235-49. [PMID: 25946648 DOI: 10.1021/acs.biochem.5b00085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hosts employ myriad weapons to combat invading microorganisms as an integral feature of the host-bacterial pathogen interface. This interface is dominated by highly reactive small molecules that collectively induce oxidative stress. Successful pathogens employ transcriptional regulatory proteins that sense these small molecules directly or indirectly via a change in the ratio of reduced to oxidized low-molecular weight (LMW) thiols that collectively comprise the redox buffer in the cytoplasm. These transcriptional regulators employ either a prosthetic group or reactive cysteine residue(s) to effect changes in the transcription of genes that encode detoxification and repair systems that is driven by regulator conformational switching between high-affinity and low-affinity DNA-binding states. Cysteine harbors a highly polarizable sulfur atom that readily undergoes changes in oxidation state in response to oxidative stress to produce a range of regulatory post-translational modifications (PTMs), including sulfenylation (S-hydroxylation), mixed disulfide bond formation with LMW thiols (S-thiolation), di- and trisulfide bond formation, S-nitrosation, and S-alkylation. Here we discuss several examples of structurally characterized cysteine thiol-specific transcriptional regulators that sense changes in cellular redox balance, focusing on the nature of the cysteine PTM itself and the interplay of small molecule oxidative stressors in mediating a specific transcriptional response.
Collapse
Affiliation(s)
- Justin L Luebke
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
33
|
Anaganti N, Basu B, Gupta A, Joseph D, Apte SK. Depletion of reduction potential and key energy generation metabolic enzymes underlies tellurite toxicity inDeinococcus radiodurans. Proteomics 2014; 15:89-97. [DOI: 10.1002/pmic.201400113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/05/2014] [Accepted: 10/14/2014] [Indexed: 01/25/2023]
Affiliation(s)
| | - Bhakti Basu
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| | - Alka Gupta
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| | - Daisy Joseph
- Nuclear Physics Division; Bhabha Atomic Research Centre; Mumbai India
| | - Shree Kumar Apte
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| |
Collapse
|
34
|
Engman J, von Wachenfeldt C. Regulated protein aggregation: a mechanism to control the activity of the ClpXP adaptor protein YjbH. Mol Microbiol 2014; 95:51-63. [PMID: 25353645 DOI: 10.1111/mmi.12842] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2014] [Indexed: 11/28/2022]
Abstract
Bacteria use stress response pathways to activate diverse target genes to react to a variety of stresses. The Bacillus subtilis Spx protein is a global transcriptional regulator that controls expression of more than 140 genes and operons in response to thiol-specific oxidative stress. Under nonstress conditions the concentration of Spx is kept low by proteolysis catalyzed by the ClpXP complex. Spx protein levels increase in response to disulfide stress and decrease when the cells cope with the stress. The cytosolic adaptor protein YjbH is required to target Spx for efficient proteolysis by ClpXP. We demonstrate that YjbH aggregates in response to disulfide stress, that is, the YjbH protein is soluble under nonstressed conditions and destabilized during stress leading to aggregation. Stress conditions (heat and ethanol) that cause severe perturbations in protein stability/folding also induced aggregation of YjbH and led to induction of Spx. By heterologous expression of a less aggregation prone YjbH homolog Spx induction was abolished. Thus we show that moderation of YjbH solubility is an important mechanism of signal transduction and represents a new mechanism of controlling the activity of adaptor proteins.
Collapse
Affiliation(s)
- Jakob Engman
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | | |
Collapse
|
35
|
Luebke JL, Shen J, Bruce KE, Kehl-Fie TE, Peng H, Skaar EP, Giedroc DP. The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in Staphylococcus aureus. Mol Microbiol 2014; 94:1343-60. [PMID: 25318663 DOI: 10.1111/mmi.12835] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 12/20/2022]
Abstract
How cells regulate the bioavailability of utilizable sulfur while mitigating the effects of hydrogen sulfide toxicity is poorly understood. CstR [Copper-sensing operon repressor (CsoR)-like sulfurtransferase repressor] represses the expression of the cst operon encoding a putative sulfide oxidation system in Staphylococcus aureus. Here, we show that the cst operon is strongly and transiently induced by cellular sulfide stress in an acute phase and specific response and that cst-encoded genes are necessary to mitigate the effects of sulfide toxicity. Growth defects are most pronounced when S. aureus is cultured in chemically defined media with thiosulfate (TS) as a sole sulfur source, but are also apparent when cystine is used or in rich media. Under TS growth conditions, cells fail to grow as a result of either unregulated expression of the cst operon in a ΔcstR strain or transformation with a non-inducible C31A/C60A CstR that blocks cst induction. This suggests that the cst operon contributes to cellular sulfide homeostasis. Tandem high-resolution mass spectrometry reveals derivatization of CstR by both inorganic tetrasulfide and an organic persulfide, glutathione persulfide, to yield a mixture of Cys31-Cys60' interprotomer cross-links, including di-, tri- and tetrasulfide bonds, which allosterically inhibit cst operator DNA binding by CstR.
Collapse
Affiliation(s)
- Justin L Luebke
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Chardonnet S, Sakr S, Cassier-Chauvat C, Le Maréchal P, Chauvat F, Lemaire SD, Decottignies P. First proteomic study of S-glutathionylation in cyanobacteria. J Proteome Res 2014; 14:59-71. [PMID: 25208982 DOI: 10.1021/pr500625a] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glutathionylation, the reversible post-translational formation of a mixed disulfide between a cysteine residue and glutathione (GSH), is a crucial mechanism for signal transduction and regulation of protein function. Until now this reversible redox modification was studied mainly in eukaryotic cells. Here we report a large-scale proteomic analysis of glutathionylation in a photosynthetic prokaryote, the model cyanobacterium Synechocystis sp. PCC6803. Treatment of acellular extracts with N,N-biotinyl glutathione disulfide (BioGSSG) induced glutathionylation of numerous proteins, which were subsequently isolated by affinity chromatography on streptavidin columns and identified by nano LC-MS/MS analysis. Potential sites of glutathionylation were also determined for 125 proteins following tryptic cleavage, streptavidin-affinity purification, and mass spectrometry analysis. Taken together the two approaches allowed the identification of 383 glutathionylatable proteins that participate in a wide range of cellular processes and metabolic pathways such as carbon and nitrogen metabolisms, cell division, stress responses, and H2 production. In addition, the glutathionylation of two putative targets, namely, peroxiredoxin (Sll1621) involved in oxidative stress tolerance and 3-phosphoglycerate dehydrogenase (Sll1908) acting on amino acids metabolism, was confirmed by biochemical studies on the purified recombinant proteins. These results suggest that glutathionylation constitutes a major mechanism of global regulation of the cyanobacterial metabolism under oxidative stress conditions.
Collapse
|
37
|
Kashyap DR, Rompca A, Gaballa A, Helmann JD, Chan J, Chang CJ, Hozo I, Gupta D, Dziarski R. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress. PLoS Pathog 2014; 10:e1004280. [PMID: 25032698 PMCID: PMC4102600 DOI: 10.1371/journal.ppat.1004280] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
Mammalian Peptidoglycan Recognition Proteins (PGRPs) are a family of evolutionary conserved bactericidal innate immunity proteins, but the mechanism through which they kill bacteria is unclear. We previously proposed that PGRPs are bactericidal due to induction of reactive oxygen species (ROS), a mechanism of killing that was also postulated, and later refuted, for several bactericidal antibiotics. Here, using whole genome expression arrays, qRT-PCR, and biochemical tests we show that in both Escherichia coli and Bacillus subtilis PGRPs induce a transcriptomic signature characteristic of oxidative stress, as well as correlated biochemical changes. However, induction of ROS was required, but not sufficient for PGRP killing. PGRPs also induced depletion of intracellular thiols and increased cytosolic concentrations of zinc and copper, as evidenced by transcriptome changes and supported by direct measurements. Depletion of thiols and elevated concentrations of metals were also required, but by themselves not sufficient, for bacterial killing. Chemical treatment studies demonstrated that efficient bacterial killing can be recapitulated only by the simultaneous addition of agents leading to production of ROS, depletion of thiols, and elevation of intracellular metal concentrations. These results identify a novel mechanism of bacterial killing by innate immunity proteins, which depends on synergistic effect of oxidative, thiol, and metal stress and differs from bacterial killing by antibiotics. These results offer potential targets for developing new antibacterial agents that would kill antibiotic-resistant bacteria. Bacterial infections are still a major cause of morbidity and mortality because of increasing antibiotic resistance. New targets for developing new approaches to antibacterial therapy are needed, because discovering new or improving current antibiotics have become increasingly difficult. One such approach is developing new antibacterial agents based on the antibacterial mechanisms of bactericidal innate immunity proteins, such as human peptidoglycan recognition proteins (PGRPs). Thus, our aim was to determine how PGRPs kill bacteria. We previously proposed that PGRPs kill bacteria by inducing toxic oxygen by-products (“reactive oxygen species”, ROS) in bacteria. It was also previously proposed, but recently refuted, that bactericidal antibiotics kill bacteria by inducing ROS production in bacteria. These findings prompted us to evaluate in greater detail the mechanism of PGRP-induced bacterial killing, including the role of ROS in PGRP killing. We show here that PGRPs kill bacteria through synergistic induction of ROS, depletion of thiols, and increasing intracellular concentration of metals, which are all required, but individually not sufficient for bacterial killing. Our results reveal a novel bactericidal mechanism of innate immunity proteins, which differs from killing by antibiotics and offers alternative targets for developing new antibacterial therapies for antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Des Raj Kashyap
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
| | - Annemarie Rompca
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
| | - Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Jefferson Chan
- Departments of Chemistry and Molecular and Cell Biology and the Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Christopher J. Chang
- Departments of Chemistry and Molecular and Cell Biology and the Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Iztok Hozo
- Department of Mathematics, Indiana University Northwest, Gary, Indiana, United States of America
| | - Dipika Gupta
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
| | - Roman Dziarski
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
- * E-mail:
| |
Collapse
|
38
|
The transcriptional response of Lactobacillus sanfranciscensis DSM 20451T and its tcyB mutant lacking a functional cystine transporter to diamide stress. Appl Environ Microbiol 2014; 80:4114-25. [PMID: 24795368 DOI: 10.1128/aem.00367-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a result of its strong adaptation to wheat and rye sourdoughs, Lactobacillus sanfranciscensis has the smallest genome within the genus Lactobacillus. The concomitant absence of some important antioxidative enzymes and the inability to synthesize glutathione suggest a role of cystine transport in maintenance of an intracellular thiol balance. Diamide [synonym 1,1'-azobis(N,N-dimethylformamide)] disturbs intracellular and membrane thiol levels in oxidizing protein thiols depending on its initial concentration. In this study, RNA sequencing was used to reveal the transcriptional response of L. sanfranciscensis DSM 20451(T) (wild type [WT]) and its ΔtcyB mutant with a nonfunctional cystine transporter after thiol stress caused by diamide. Along with the different expression of genes involved in amino acid starvation, pyrimidine synthesis, and energy production, our results show that thiol stress in the wild type can be compensated through activation of diverse chaperones and proteases whereas the ΔtcyB mutant shifts its metabolism in the direction of survival. Only a small set of genes are significantly differentially expressed between the wild type and the mutant. In the WT, mainly genes which are associated with a heat shock response are upregulated whereas glutamine import and synthesis genes are downregulated. In the ΔtcyB mutant, the whole opp operon was more highly expressed, as well as a protein which probably includes enzymes for methionine transport. The two proteins encoded by spxA and nrdH, which are involved in direct or indirect oxidative stress responses, are also upregulated in the mutant. This work emphasizes that even in the absence of definitive antioxidative enzymes, bacteria with a small genome and a high frequency of gene inactivation and elimination use small molecules such as the cysteine/cystine couple to overcome potential cell damage resulting from oxidative stress.
Collapse
|
39
|
|
40
|
Handtke S, Schroeter R, Jürgen B, Methling K, Schlüter R, Albrecht D, van Hijum SAFT, Bongaerts J, Maurer KH, Lalk M, Schweder T, Hecker M, Voigt B. Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress. PLoS One 2014; 9:e85625. [PMID: 24465625 PMCID: PMC3896406 DOI: 10.1371/journal.pone.0085625] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/05/2013] [Indexed: 12/16/2022] Open
Abstract
Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/proteins belonging to regulons, which are known to have important functions in the oxidative stress response of other organisms, were found to be upregulated, such as the Fur, Spx, SOS or CtsR regulon. Strikingly, parts of the fundamental PerR regulon responding to peroxide stress in B. subtilis are not encoded in the B. pumilus genome. Thus, B. pumilus misses the catalase KatA, the DNA-protection protein MrgA or the alkyl hydroperoxide reductase AhpCF. Data of this study suggests that the catalase KatX2 takes over the function of the missing KatA in the oxidative stress response of B. pumilus. The genome-wide expression analysis revealed an induction of bacillithiol (Cys-GlcN-malate, BSH) relevant genes. An analysis of the intracellular metabolites detected high intracellular levels of this protective metabolite, which indicates the importance of bacillithiol in the peroxide stress resistance of B. pumilus.
Collapse
Affiliation(s)
- Stefan Handtke
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Rebecca Schroeter
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Britta Jürgen
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Karen Methling
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Dirk Albrecht
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Sacha A. F. T. van Hijum
- Centre for Molecular and Biomolecular Informatics (CMBI), Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and Division Processing and Safety, NIZO Food Research B.V., Ede, The Netherlands
| | - Johannes Bongaerts
- Department of Chemistry and Biotechnology, Aachen University of Applied Sciences, Jülich, Germany
| | | | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Michael Hecker
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Birgit Voigt
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| |
Collapse
|
41
|
Saleh M, Bartual SG, Abdullah MR, Jensch I, Asmat TM, Petruschka L, Pribyl T, Gellert M, Lillig CH, Antelmann H, Hermoso JA, Hammerschmidt S. Molecular architecture of Streptococcus pneumoniae surface thioredoxin-fold lipoproteins crucial for extracellular oxidative stress resistance and maintenance of virulence. EMBO Mol Med 2013; 5:1852-70. [PMID: 24136784 PMCID: PMC3914529 DOI: 10.1002/emmm.201202435] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 08/15/2013] [Accepted: 09/10/2013] [Indexed: 01/27/2023] Open
Abstract
The respiratory pathogen Streptococcus pneumoniae has evolved efficient mechanisms to resist oxidative stress conditions and to displace other bacteria in the nasopharynx. Here we characterize at physiological, functional and structural levels two novel surface-exposed thioredoxin-family lipoproteins, Etrx1 and Etrx2. The impact of both Etrx proteins and their redox partner methionine sulfoxide reductase SpMsrAB2 on pneumococcal pathogenesis was assessed in mouse virulence studies and phagocytosis assays. The results demonstrate that loss of function of either both Etrx proteins or SpMsrAB2 dramatically attenuated pneumococcal virulence in the acute mouse pneumonia model and that Etrx proteins compensate each other. The deficiency of Etrx proteins or SpMsrAB2 further enhanced bacterial uptake by macrophages, and accelerated pneumococcal killing by H2O2 or free methionine sulfoxides (MetSO). Moreover, the absence of both Etrx redox pathways provokes an accumulation of oxidized SpMsrAB2 in vivo. Taken together our results reveal insights into the role of two extracellular electron pathways required for reduction of SpMsrAB2 and surface-exposed MetSO. Identification of this system and its target proteins paves the way for the design of novel antimicrobials.
Collapse
Affiliation(s)
- Malek Saleh
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Top-down proteomics reveals a unique protein S-thiolation switch in Salmonella Typhimurium in response to infection-like conditions. Proc Natl Acad Sci U S A 2013; 110:10153-8. [PMID: 23720318 DOI: 10.1073/pnas.1221210110] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Characterization of the mature protein complement in cells is crucial for a better understanding of cellular processes on a systems-wide scale. Toward this end, we used single-dimension ultra-high-pressure liquid chromatography mass spectrometry to investigate the comprehensive "intact" proteome of the Gram-negative bacterial pathogen Salmonella Typhimurium. Top-down proteomics analysis revealed 563 unique proteins including 1,665 proteoforms generated by posttranslational modifications (PTMs), representing the largest microbial top-down dataset reported to date. We confirmed many previously recognized aspects of Salmonella biology and bacterial PTMs, and our analysis also revealed several additional biological insights. Of particular interest was differential utilization of the protein S-thiolation forms S-glutathionylation and S-cysteinylation in response to infection-like conditions versus basal conditions. This finding of a S-glutathionylation-to-S-cysteinylation switch in a condition-specific manner was corroborated by bottom-up proteomics data and further by changes in corresponding biosynthetic pathways under infection-like conditions and during actual infection of host cells. This differential utilization highlights underlying metabolic mechanisms that modulate changes in cellular signaling, and represents a report of S-cysteinylation in Gram-negative bacteria. Additionally, the functional relevance of these PTMs was supported by protein structure and gene deletion analyses. The demonstrated utility of our simple proteome-wide intact protein level measurement strategy for gaining biological insight should promote broader adoption and applications of top-down proteomics approaches.
Collapse
|
43
|
Pöther DC, Gierok P, Harms M, Mostertz J, Hochgräfe F, Antelmann H, Hamilton CJ, Borovok I, Lalk M, Aharonowitz Y, Hecker M. Distribution and infection-related functions of bacillithiol in Staphylococcus aureus. Int J Med Microbiol 2013; 303:114-23. [PMID: 23517692 DOI: 10.1016/j.ijmm.2013.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/24/2013] [Accepted: 01/27/2013] [Indexed: 12/17/2022] Open
Abstract
Bacillithiol (Cys-GlcN-malate, BSH) serves as a major low molecular weight thiol in low GC Gram-positive bacteria including Bacillus species and a variety of Staphylococcus aureus strains. These bacteria do not produce glutathione (GSH). In this study, HPLC analyses were used to determine BSH levels in different S. aureus strains. Furthermore, the role of BSH in the resistance against oxidants and antibiotics and its function in virulence was investigated. We and others (Newton, G.L., Fahey, R.C., Rawat, M., 2012. Microbiology 158, 1117-1126) found that BSH is not produced by members of the S. aureus NCTC8325 lineage, such as strains 8325-4 and SH1000. Using bioinformatics we show that the BSH-biosynthetic gene bshC is disrupted by an 8-bp duplication in S. aureus NCTC8325. The functional bshC-gene from BSH-producing S. aureus Newman (NWMN_1087) was expressed in S. aureus 8325-4 to reconstitute BSH-synthesis. Comparison of the BSH-producing and BSH-minus strains revealed higher resistance of the BSH-producing strain against the antibiotic fosfomycin and the oxidant hypochlorite but not against hydrogen peroxide or diamide. In addition, a higher bacterial load of the BSH-producing strain was detected in human upper-airway epithelial cells and murine macrophages. This indicates a potential role of BSH in protection of S. aureus during infection.
Collapse
Affiliation(s)
- Dierk-Christoph Pöther
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, 17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chavarría M, Nikel PI, Pérez-Pantoja D, de Lorenzo V. The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ Microbiol 2013; 15:1772-85. [PMID: 23301697 DOI: 10.1111/1462-2920.12069] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 11/27/2022]
Abstract
Glucose catabolism of Pseudomonas putida is carried out exclusively through the Entner-Doudoroff (ED) pathway due to the absence of 6-phosphofructokinase. In order to activate the Embden-Meyerhof-Parnas (EMP) route we transferred the pfkA gene from Escherichia coli to a P. putida wild-type strain as well as to an eda mutant, i.e. lacking 2-keto-3-deoxy-6-phosphogluconate aldolase. PfkA(E. coli) failed to redirect the carbon flow from the ED route towards the EMP pathway, suggesting that ED was essential for sugar catabolism. The presence of PfkA(E. coli) was detrimental for growth, which could be traced to the reduction of ATP and NAD(P)H pools along with alteration of the NAD(P)H/NADP(+) ratio. Pseudomonas putida cells carrying PfkA(E. coli) became highly sensitive to diamide and hydrogen peroxide, the response to which is very demanding of NADPH. The inhibitory effect of PfkA(E. coli) could in part be relieved by methionine, the synthesis of which relies much on NADPH. These results expose the role of the ED pathway for generating the redox currency (NADPH) that is required for counteracting oxidative stress. It is thus likely that environmental bacteria that favour the ED pathway over the EMP pathway do so in order to gear their aerobic metabolism to endure oxidative-related insults.
Collapse
Affiliation(s)
- Max Chavarría
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología CNB-CSIC, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
45
|
Fahey RC. Glutathione analogs in prokaryotes. Biochim Biophys Acta Gen Subj 2012; 1830:3182-98. [PMID: 23075826 DOI: 10.1016/j.bbagen.2012.10.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/25/2012] [Accepted: 10/08/2012] [Indexed: 01/17/2023]
Abstract
BACKGROUND Oxygen is both essential and toxic to all forms of aerobic life and the chemical versatility and reactivity of thiols play a key role in both aspects. Cysteine thiol groups have key catalytic functions in enzymes but are readily damaged by reactive oxygen species (ROS). Low-molecular-weight thiols provide protective buffers against the hazards of ROS toxicity. Glutathione is the small protective thiol in nearly all eukaryotes but in prokaryotes the situation is far more complex. SCOPE OF REVIEW This review provides an introduction to the diversity of low-molecular-weight thiol protective systems in bacteria. The topics covered include the limitations of cysteine as a protector, the multiple origins and distribution of glutathione biosynthesis, mycothiol biosynthesis and function in Actinobacteria, recent discoveries involving bacillithiol found in Firmicutes, new insights on the biosynthesis and distribution of ergothioneine, and the potential protective roles played by coenzyme A and other thiols. MAJOR CONCLUSIONS Bacteria have evolved a diverse collection of low-molecular-weight protective thiols to deal with oxygen toxicity and environmental challenges. Our understanding of how many of these thiols are produced and utilized is still at an early stage. GENERAL SIGNIFICANCE Extensive diversity existed among prokaryotes prior to evolution of the cyanobacteria and the development of an oxidizing atmosphere. Bacteria that managed to adapt to life under oxygen evolved, or acquired, the ability to produce a variety of small thiols for protection against the hazards of aerobic metabolism. Many pathogenic prokaryotes depend upon novel thiol protection systems that may provide targets for new antibacterial agents. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Robert C Fahey
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
46
|
Ji Q, Zhang L, Sun F, Deng X, Liang H, Bae T, He C. Staphylococcus aureus CymR is a new thiol-based oxidation-sensing regulator of stress resistance and oxidative response. J Biol Chem 2012; 287:21102-9. [PMID: 22553203 DOI: 10.1074/jbc.m112.359737] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As a human pathogen, Staphylococcus aureus must cope with oxidative stress generated by the human immune system. Here, we report that CymR utilizes its sole Cys-25 to sense oxidative stress. Oxidation followed by thiolation of this cysteine residue leads to dissociation of CymR from its cognate promoter DNA. In contrast, the DNA binding of the CymRC25S mutant was insensitive to oxidation and thiolation, suggesting that CymR senses oxidative stress through oxidation of its sole cysteine to form a mixed disulfide with low molecular weight thiols. The determined crystal structures of the reduced and oxidized forms of CymR revealed that Cys-25 is oxidized to Cys-25-SOH in the presence of H(2)O(2). Deletion of cymR reduced the resistance of S. aureus to oxidative stresses, and the resistance was restored by expressing a C25S mutant copy of cymR. In a C25S substitution mutant, the expression of two genes, tcyP and mccB, was constitutively repressed and did not respond to hydrogen peroxide stress, whereas the expression of the genes were highly induced under oxidative stress in a wild-type strain, indicating the critical role of Cys-25 in redox signaling in vivo. Thus, CymR is another master regulator that senses oxidative stress and connects stress responses to virulence regulation in S. aureus.
Collapse
Affiliation(s)
- Quanjiang Ji
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Gaupp R, Ledala N, Somerville GA. Staphylococcal response to oxidative stress. Front Cell Infect Microbiol 2012; 2:33. [PMID: 22919625 PMCID: PMC3417528 DOI: 10.3389/fcimb.2012.00033] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/29/2012] [Indexed: 12/23/2022] Open
Abstract
Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria's interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.
Collapse
Affiliation(s)
- Rosmarie Gaupp
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln NE, USA
| | | | | |
Collapse
|
48
|
Palm GJ, Khanh Chi B, Waack P, Gronau K, Becher D, Albrecht D, Hinrichs W, Read RJ, Antelmann H. Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR. Nucleic Acids Res 2012; 40:4178-92. [PMID: 22238377 PMCID: PMC3351151 DOI: 10.1093/nar/gkr1316] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bacillus subtilis encodes redox-sensing MarR-type regulators of the OhrR and DUF24-families that sense organic hydroperoxides, diamide, quinones or aldehydes via thiol-based redox-switches. In this article, we characterize the novel redox-sensing MarR/DUF24-family regulator HypR (YybR) that is activated by disulphide stress caused by diamide and NaOCl in B. subtilis. HypR controls positively a flavin oxidoreductase HypO that confers protection against NaOCl stress. The conserved N-terminal Cys14 residue of HypR has a lower pK(a) of 6.36 and is essential for activation of hypO transcription by disulphide stress. HypR resembles a 2-Cys-type regulator that is activated by Cys14-Cys49' intersubunit disulphide formation. The crystal structures of reduced and oxidized HypR proteins were resolved revealing structural changes of HypR upon oxidation. In reduced HypR a hydrogen-bonding network stabilizes the reactive Cys14 thiolate that is 8-9 Å apart from Cys49'. HypR oxidation breaks these H-bonds, reorients the monomers and moves the major groove recognition α4 and α4' helices ∼4 Å towards each other. This is the first crystal structure of a redox-sensing MarR/DUF24 family protein in bacteria that is activated by NaOCl stress. Since hypochloric acid is released by activated macrophages, related HypR-like regulators could function to protect pathogens against the host immune defense.
Collapse
Affiliation(s)
- Gottfried J Palm
- Institute for Biochemistry, Ernst-Moritz-Arndt-University of Greifswald, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chi BK, Gronau K, Mäder U, Hessling B, Becher D, Antelmann H. S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics. Mol Cell Proteomics 2011; 10:M111.009506. [PMID: 21749987 DOI: 10.1074/mcp.m111.009506] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein S-thiolation is a post-translational thiol-modification that controls redox-sensing transcription factors and protects active site cysteine residues against irreversible oxidation. In Bacillus subtilis the MarR-type repressor OhrR was shown to sense organic hydroperoxides via formation of mixed disulfides with the redox buffer bacillithiol (Cys-GlcN-Malate, BSH), termed as S-bacillithiolation. Here we have studied changes in the transcriptome and redox proteome caused by the strong oxidant hypochloric acid in B. subtilis. The expression profile of NaOCl stress is indicative of disulfide stress as shown by the induction of the thiol- and oxidative stress-specific Spx, CtsR, and PerR regulons. Thiol redox proteomics identified only few cytoplasmic proteins with reversible thiol-oxidations in response to NaOCl stress that include GapA and MetE. Shotgun-liquid chromatography-tandem MS analyses revealed that GapA, Spx, and PerR are oxidized to intramolecular disulfides by NaOCl stress. Furthermore, we identified six S-bacillithiolated proteins in NaOCl-treated cells, including the OhrR repressor, two methionine synthases MetE and YxjG, the inorganic pyrophosphatase PpaC, the 3-D-phosphoglycerate dehydrogenase SerA, and the putative bacilliredoxin YphP. S-bacillithiolation of the OhrR repressor leads to up-regulation of the OhrA peroxiredoxin that confers together with BSH specific protection against NaOCl. S-bacillithiolation of MetE, YxjG, PpaC and SerA causes hypochlorite-induced methionine starvation as supported by the induction of the S-box regulon. The mechanism of S-glutathionylation of MetE has been described in Escherichia coli also leading to enzyme inactivation and methionine auxotrophy. In summary, our studies discover an important role of the bacillithiol redox buffer in protection against hypochloric acid by S-bacillithiolation of the redox-sensing regulator OhrR and of four enzymes of the methionine biosynthesis pathway.
Collapse
Affiliation(s)
- Bui Khanh Chi
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487 Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Bacillithiol (BSH), the α-anomeric glycoside of l-cysteinyl-d-glucosamine with l-malic acid, plays a dominant role in the cytosolic thiol redox chemistry of the low guanine and cytosine (GC) Gram-positive bacteria (phylum Firmicutes). BSH is functionally analogous to glutathione (GSH) but differs sufficiently in chemical structure that cells have evolved a distinct set of enzymes that use BSH as cofactor. BSH was discovered in Bacillus subtilis as a mixed disulfide with the redox-sensing repressor OhrR and in B. anthracis by biochemical analysis of pools of labeled thiols. The structure of BSH was determined after purification from Deinococcus radiodurans. Similarities in structure between BSH and mycothiol (MSH) facilitated the identification of biosynthetic genes for BSH in the model organism B. subtilis. Phylogenomic analyses have identified several candidate BSH-using or associated proteins, including a BSH reductase, glutaredoxin-like thiol-dependent oxidoreductases (bacilliredoxins), and a BSH-S-transferase (FosB) involved in resistance to the epoxide antibiotic fosfomycin. Preliminary results implicate BSH in cellular processes to maintain cytosolic redox balance and for adaptation to reactive oxygen, nitrogen, and electrophilic species. BSH also is predicted to chelate metals avidly, in part due to the appended malate moiety, although the implications of BSH for metal ion homeostasis have yet to be explored in detail.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA.
| |
Collapse
|