1
|
Fontenot CR, Hoepner T, Xiong J, Ding H, Popescu CV. Mössbauer studies of the redox state of the ferric uptake regulator [2Fe-2S] 2+ cluster in Escherichia coli. J Inorg Biochem 2025; 270:112928. [PMID: 40288001 DOI: 10.1016/j.jinorgbio.2025.112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
The Ferric uptake regulator (Fur) proteins from Haemophilus influenzae and Escherichia coli overexpressed in E. coli cells (MC4100) grown in M9 medium supplemented with 57Fe were studied with Mössbauer spectroscopy. Previous studies have shown that Fur proteins from H. influenzae and E. coli bind a [2Fe-2S]2+ cluster in response to elevation of intracellular free iron content. Here we find that when the [2Fe-2S]2+ clusters in purified Fur proteins are reduced with dithionite, the reduced clusters are quickly decomposed, forming compounds with two distinct spectral signatures of high spin Fe(II) in tetrahedral and octahedral coordination, respectively. The instability of the reduced [2Fe-2S]1+ cluster in Fur is unique, as the [2Fe-2S]2+ clusters in many other proteins can reversibly undergo one-electron reduction-oxidation. The Mössbauer spectra of whole E. coli cells overexpressing Fur proteins show a quadrupole doublet with the isomer shift of δ1 = 0.28 mm/s and ΔEQ1 = 0.52 mm/s, typical for oxidized [2Fe-2S]2+ clusters and identical with that in the purified Fur protein. The corresponding spectra in large applied magnetic fields show the diamagnetic pattern that unambiguously reveals an exchange-coupled system with a diamagnetic electronic ground state, which confirms its assignment to the oxidized [2Fe-2S]2+ cluster clusters from Fur. No reduced [2Fe-2S]1+ clusters of Fur are observed in the whole-cell E. coli spectra. The Mössbauer spectra of the whole-cell E. coli without the Fur expression do not contain the components associated with the [2Fe-2S]2+ cluster of Fur.
Collapse
Affiliation(s)
- Chelsey R Fontenot
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thomas Hoepner
- Department of Chemistry, University of St. Thomas, St. Paul, MN, 55105, USA
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Codrina V Popescu
- Department of Chemistry, University of St. Thomas, St. Paul, MN, 55105, USA.
| |
Collapse
|
2
|
Wang J, Luo Y, Jiao T, Liu S, Liang T, Mei H, Cheng S, Yang Q, He J, Su J. Functional Differentiation and Regulatory Mechanisms of Ferrochelatases HemH1 and HemH2 in Bacillus thuringiensis Under Iron and Oxidative Stress. Int J Mol Sci 2025; 26:2911. [PMID: 40243518 PMCID: PMC11988928 DOI: 10.3390/ijms26072911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Ferrochelatase is the terminal enzyme in heme biosynthesis. Bacillus thuringiensis (Bt) 97-27 contains two ferrochelatases, HemH1 and HemH2, but their regulatory mechanisms and functional differences under virous environmental stimuli remain unclear. This study confirmed that the iron uptake regulator protein (Fur) bound to the promoters of hemH1 and hemH2, with Fe2+ or Fe3+ enhancing this binding. Heterologous expression of HemH1 and HemH2 in Escherichia coli showed that pEH2/BL grew better than pEH1/BL under different 2,2'-Bipyridyl, Fe2+, and Fe3+ concentrations. Under iron limitation, the heme precursor ALA production decreased significantly in both strains. The heme production of pEH2/BL decreased sharply under iron-limited conditions, while that of pEH1/BL decreased significantly under iron-rich conditions. The H2O2 sensitivity experiment revealed that E. coli pEH1/BL was more tolerant to H2O2 than pEH2/BL. In Bt, ΔhemH2 was most sensitive to H2O2 stress, but complementation of hemH1 or hemH2 partially restored H2O2 resistance, with the overexpressed strain pHH2/Bt being most tolerant. β-galactosidase assays indicated that Fur positively regulated hemH1 and negatively regulated hemH2 under normal conditions, but this regulation reversed with 2.5 mM Fe3+. qRT-PCR showed upregulation of genes related to heme synthesis, oxidative stress, and ferrous iron transport. This study reveals the functional differentiation of HemH1 and HemH2 under the joint regulation of Fur and environmental factors, highlighting their synergistic roles in heme synthesis, heavy metal detoxification, and oxidative stress resistance to maintain bacterial physiological homeostasis.
Collapse
Affiliation(s)
- Jianghan Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (J.W.); (Y.L.); (S.L.); (T.L.); (H.M.); (S.C.); (Q.Y.)
| | - Yi Luo
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (J.W.); (Y.L.); (S.L.); (T.L.); (H.M.); (S.C.); (Q.Y.)
| | - Tian Jiao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430062, China; (T.J.); (J.H.)
| | - Shizhen Liu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (J.W.); (Y.L.); (S.L.); (T.L.); (H.M.); (S.C.); (Q.Y.)
| | - Ting Liang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (J.W.); (Y.L.); (S.L.); (T.L.); (H.M.); (S.C.); (Q.Y.)
| | - Huiting Mei
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (J.W.); (Y.L.); (S.L.); (T.L.); (H.M.); (S.C.); (Q.Y.)
| | - Shuang Cheng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (J.W.); (Y.L.); (S.L.); (T.L.); (H.M.); (S.C.); (Q.Y.)
| | - Qian Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (J.W.); (Y.L.); (S.L.); (T.L.); (H.M.); (S.C.); (Q.Y.)
| | - Jin He
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430062, China; (T.J.); (J.H.)
| | - Jianmei Su
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (J.W.); (Y.L.); (S.L.); (T.L.); (H.M.); (S.C.); (Q.Y.)
| |
Collapse
|
3
|
Zheng Y, Sun H, Wang Y, Jin C, Li X, Pang Y, Ge Q, Wang L, Liu B. CsiR-Mediated Signal Transduction Pathway in Response to Low Iron Conditions Promotes Escherichia coli K1 Invasion and Penetration of the Blood-Brain Barrier. J Infect Dis 2024; 230:e807-e817. [PMID: 38531686 PMCID: PMC11481304 DOI: 10.1093/infdis/jiae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024] Open
Abstract
Escherichia coli K1 is the leading cause of neonatal gram-negative bacterial meningitis, but the pathogenesis of E coli K1 meningitis remains unclear. Blood-brain barrier (BBB) penetration is a crucial step in E coli meningitis development. Here, we uncovered the crucial role of CsiR, a GntR family regulator, in E coli K1 virulence. During infection, csiR expression was induced due to the derepression by Fur in the blood and human brain microvascular endothelial cells (HBMECs). CsiR positively regulated ilvB expression, which is associated with branched chain amino acid synthesis. Furthermore, we revealed that IlvB activated the FAK/PI3K pathway of HBMECs to induce actin cytoskeleton rearrangements, thereby promoting the bacterial invasion and penetration of the BBB. Overall, this study reveals a CsiR-mediated virulence regulation pathway in E coli K1, which may provide a useful target for the prevention or therapy of E coli meningitis.
Collapse
Affiliation(s)
- Yangyang Zheng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Hao Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Yanling Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Chen Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Xiaoya Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Yu Pang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Qianwen Ge
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Lei Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
- Nankai International Advanced Research Institute, Shenzhen, People's Republic of China
| |
Collapse
|
4
|
Jabeen S, Siddiqui VU, Bala S, Mishra N, Mishra A, Lawrence R, Bansal P, Khan AR, Khan T. Biogenic Synthesis of Copper Oxide Nanoparticles from Aloe vera: Antibacterial Activity, Molecular Docking, and Photocatalytic Dye Degradation. ACS OMEGA 2024; 9:30190-30204. [PMID: 39035949 PMCID: PMC11256313 DOI: 10.1021/acsomega.3c10179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/12/2024] [Accepted: 05/09/2024] [Indexed: 07/23/2024]
Abstract
Green synthesis methods offer a cost-effective and environmentally friendly approach to producing nanoparticles (NPs), particularly metal-based oxides. This study explores the green synthesis of copper oxide nanoparticles using Aloe vera (Aloe barbadensis Miller) leaf extract. The characterization revealed a unique sago-shaped morphology revealed by field-emission scanning electron microscopy and X-ray diffraction analysis. Distinctive metal-oxygen bonds at 521 and 601 cm-1 were confirmed by Fourier-transform infrared (FT-IR) spectroscopy. Furthermore, UV-visible spectroscopy revealed absorbance at 248 nm, suggesting electron transitions across energy bands and varying surface conduction electrons. The band gap value indicated the presence of quantum confinement effects, which were probably caused by the distinctive morphology and surface structure of the biogenic NPs. Additionally, molecular docking studies were carried out against key proteins of Salmonella typhi and Listeria monocytogenes, namely, listeriolysin O (PDB ID: 4CDB), internalin (InlA) (PDB ID: 1O6T), Salmonella effector protein (SopB) (PDB ID: 4DID), and YfdX (PDB ID: 6A07) using AutoDock 4.2. The results revealed binding energies against S. typhi and L. monocytogenes proteins, indicating potential interactions establishing the foundation for further in-depth understanding of the molecular basis underlying the observed antibacterial effects in vitro against S. typhi, Klebsiella pneumoniae, Pseudomonas aeruginosa, and L. monocytogenes. Antibacterial activity evaluation yielded impressive results, with CuO NPs displaying significant activity against S. typhi and L. monocytogenes, exhibiting zones of inhibition values of 13 ± 0.02 and 15 ± 0.04 mm, respectively. Moreover, the CuO NPs demonstrated remarkable photocatalytic efficacy, resulting in the degradation of 77% of the methylene blue dye when exposed to UV irradiation. This study highlighted the potential of green-synthesized CuO NPs derived from A. vera with their unique morphology, interesting spectroscopic properties, and promising antibacterial and photocatalytic activities.
Collapse
Affiliation(s)
- Sabeeha Jabeen
- Department
of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
- Department
of Chemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Vasi Uddin Siddiqui
- Advanced
Engineering Materials and Composites Research Centre (AEMC), Department
of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, UPM, Serdang, Selangor Darul Ehsan 43400, Malaysia
| | - Shashi Bala
- Department
of Chemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Nidhi Mishra
- Department
of Applied Sciences, Indian Institute of
Information Technology, Allahabad 2110155, Uttar Pradesh, India
| | - Anamika Mishra
- Department
of Applied Sciences, Indian Institute of
Information Technology, Allahabad 2110155, Uttar Pradesh, India
| | - Rubina Lawrence
- Department
of Industrial Microbiology, Sam Higginbottom
University of Agriculture Technology and Sciences, Allahabad 211007, Uttar Pradesh, India
| | - Pratibha Bansal
- Department
of Chemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Abdul Rahman Khan
- Department
of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Tahmeena Khan
- Department
of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| |
Collapse
|
5
|
Schütz SD, Brackmann M, Liechti N, Moser M, Wittwer M, Bruggmann R. Functional characterization of Francisella tularensis subspecies holarctica genotypes during tick cell and macrophage infections using a proteogenomic approach. Front Cell Infect Microbiol 2024; 14:1355113. [PMID: 38500499 PMCID: PMC10944910 DOI: 10.3389/fcimb.2024.1355113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Tularemia is a vector-borne disease caused by the Gram-negative bacterium Francisella tularensis. Known hosts and vectors in Europe are hare and ticks. F. tularensis is transmitted from ticks and animals, but also from the hydrotelluric environment and the consumption of contaminated water or food. A changing climate expands the range in which ticks can live and consequently might contribute to increasing case numbers of tularemia. Two subspecies of F. tularensis are human pathogenic. Francisella tularensis tularensis (Ftt) is endemic in North America, while Francisella tularensis holarctica (Fth) is the only subspecies causing tularemia in Europe. Ft is classified as a category A bioterrorism agent due to its low infectious dose, multiple modes of transmission, high infectivity and potential for airborne transmission and has become a global public health concern. In line with the European survey and previous phylogenetic studies, Switzerland shows the co-distribution of B.6 and B.12 strains with different geographical distribution and prevalence within the country. To establish itself in different host environments of ticks and mammals, F. tularensis presumably undergoes substantial changes on the transcriptomics and proteomic level. Here we investigate the transcriptomic and proteomic differences of five strains of Fth upon infection of rabbit macrophages and tick cells.
Collapse
Affiliation(s)
- Sara Doina Schütz
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of Bioinformatics, Bern, Switzerland
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Nicole Liechti
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Michel Moser
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Matthias Wittwer
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of Bioinformatics, Bern, Switzerland
| |
Collapse
|
6
|
Zhang YQ, Song XY, Liu F. XanFur, a novel Fur protein induced by H 2O 2, positively regulated by the global transcriptional regulator Clp and required for the full virulence of Xanthomonas oryzae pv. oryzae in rice. Microbiol Spectr 2023; 11:e0118723. [PMID: 37831462 PMCID: PMC10714925 DOI: 10.1128/spectrum.01187-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Although Xanthomonas oryzae pv. oryzae (Xoo) has been found to be a bacterial pathogen causing bacterial leaf blight in rice for many years, the molecular mechanisms of the rice-Xoo interaction has not been fully understood. In this study, we found that XanFur of Xoo is a novel ferric uptake regulator (Fur) protein conserved among major pathogenic Xanthomonas species. XanFur is required for the virulence of Xoo in rice, and likely involved in regulating the virulence determinants of Xoo. The expression of xanfur is induced by H2O2, and positively regulated by the global transcriptional regulator Clp. Our results reveal the function and regulation of the novel virulence-related Fur protein XanFur in Xoo, providing new insights into the interaction mechanisms of rice-Xoo.
Collapse
Affiliation(s)
- Yu-Qiang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Li S, Liu Q, Duan C, Li J, Sun H, Xu L, Yang Q, Wang Y, Shen X, Zhang L. c-di-GMP inhibits the DNA binding activity of H-NS in Salmonella. Nat Commun 2023; 14:7502. [PMID: 37980414 PMCID: PMC10657408 DOI: 10.1038/s41467-023-43442-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a second messenger that transduces extracellular stimuli into cellular responses and regulates various biological processes in bacteria. H-NS is a global regulatory protein that represses expression of many genes, but how H-NS activity is modulated by environmental signals remains largely unclear. Here, we show that high intracellular c-di-GMP levels, induced by environmental cues, relieve H-NS-mediated transcriptional silencing in Salmonella enterica serovar Typhimurium. We find that c-di-GMP binds to the H-NS protein to inhibit its binding to DNA, thus derepressing genes silenced by H-NS. However, c-di-GMP is unable to displace H-NS from DNA. In addition, a K107A mutation in H-NS abolishes response to c-di-GMP but leaves its DNA binding activity unaffected in vivo. Our results thus suggest a mechanism by which H-NS acts as an environment-sensing regulator in Gram-negative bacteria.
Collapse
Affiliation(s)
- Shuyu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinmeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chongyi Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jialin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hengxi Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiao Yang
- ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316021, China
- Donghai Laboratory, Zhoushan, 316021, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Bharathan G, Mundra S, Darwich DM, Saeed MM, Al Hafri ASA, Alsalmi MMSM, Maqsood S, Mudgil P, Fanning S, Srikumar S. Regulation of iron metabolism is critical for the survival of Salmonella Typhimurium in pasteurized milk. Food Microbiol 2023; 115:104326. [PMID: 37567619 DOI: 10.1016/j.fm.2023.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/13/2023]
Abstract
Salmonella is known to survive in raw/pasteurized milk and cause foodborne outbreaks. Lactoferrin, present in milk from all animal sources, is an iron-binding glycoprotein that limits the availability of iron to pathogenic bacteria. Despite the presence of lactoferrins, Salmonella can grow in milk obtained from different animal sources. However, the mechanism by which Salmonella overcomes iron scarcity induced by lactoferrin in milk is not evaluated yet. Salmonella employs the DNA binding transcriptional regulator Fur (ferric update regulator) to mediate iron uptake during survival in iron deplete conditions. To understand the importance of Fur in Salmonella milk growth, we profiled the growth of Salmonella Typhimurium Δfur (ST4/74Δfur) in both bovine and camel milk. ST4/74Δfur was highly inhibited in milk compared to wild-type ST4/74, confirming the importance of Fur mediated regulation of iron metabolism in Salmonella milk growth. We further studied the biology of ST4/74Δfur to understand the importance of iron metabolism in Salmonella milk survival. Using increasing concentrations of FeCl3, and the antibiotic streptonigrin we show that iron accumulates in the cytoplasm of ST4/74Δfur. We hypothesized that the accumulated iron could activate oxidative stress via Fenton's reaction leading to growth inhibition. However, the inhibition of ST4/74Δfur in milk was not due to Fenton's reaction, but due to the 'iron scarce' conditions of milk and microaerophilic incubation conditions which made the presence of the fur gene indispensable for Salmonella milk growth. Subsequently, survival studies of 14 other transcriptional mutants of ST4/74 in milk confirmed that RpoE-mediated response to extracytoplasmic stress is also important for the survival of Salmonella in milk. Though we have data only for fur and rpoE, many other Salmonella transcriptional factors could play important roles in the growth of Salmonella in milk, a theme for future research on Salmonella milk biology. Nevertheless, our data provide early insights into the biology of milk-associated Salmonella.
Collapse
Affiliation(s)
- Greeshma Bharathan
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, 15551, United Arab Emirates
| | - Sunil Mundra
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Dania Mustafa Darwich
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, 15551, United Arab Emirates
| | - Maitha Mohammad Saeed
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, 15551, United Arab Emirates
| | - Ahad Saeed Ali Al Hafri
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, 15551, United Arab Emirates
| | | | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, 15551, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, 15551, United Arab Emirates
| | - Séamus Fanning
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin, D04 N2E5, Ireland
| | - Shabarinath Srikumar
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, 15551, United Arab Emirates.
| |
Collapse
|
9
|
Groisman EA, Choi J. Advancing evolution: Bacteria break down gene silencer to express horizontally acquired genes. Bioessays 2023; 45:e2300062. [PMID: 37533411 PMCID: PMC10530229 DOI: 10.1002/bies.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Horizontal gene transfer advances bacterial evolution. To benefit from horizontally acquired genes, enteric bacteria must overcome silencing caused when the widespread heat-stable nucleoid structuring (H-NS) protein binds to AT-rich horizontally acquired genes. This ability had previously been ascribed to both anti-silencing proteins outcompeting H-NS for binding to AT-rich DNA and RNA polymerase initiating transcription from alternative promoters. However, we now know that pathogenic Salmonella enterica serovar Typhimurium and commensal Escherichia coli break down H-NS when this silencer is not bound to DNA. Curiously, both species use the same protease - Lon - to destroy H-NS in distinct environments. Anti-silencing proteins promote the expression of horizontally acquired genes without binding to them by displacing H-NS from AT-rich DNA, thus leaving H-NS susceptible to proteolysis and decreasing H-NS amounts overall. Conserved amino acid sequences in the Lon protease and H-NS cleavage site suggest that diverse bacteria degrade H-NS to exploit horizontally acquired genes.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
- Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT, 06516, USA
| | - Jeongjoon Choi
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| |
Collapse
|
10
|
Construction of a constitutively active type III secretion system for heterologous protein secretion. Appl Microbiol Biotechnol 2023; 107:1785-1800. [PMID: 36786917 DOI: 10.1007/s00253-023-12411-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023]
Abstract
Proteins comprise a multibillion-dollar industry in enzymes and therapeutics, but bacterial protein production can be costly and inefficient. Proteins of interest (POIs) must be extracted from lysed cells and inclusion bodies, purified, and resolubilized, which adds significant time and cost to the protein-manufacturing process. The Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS) has been engineered to address these problems by secreting soluble, active proteins directly into the culture media, reducing the number of purification steps. However, the current best practices method of T3SS pathway activation is not ideal for industrial scaleup. Previously, the T3SS was activated by plasmid-based overexpression of the T3SS transcriptional regulator, hilA, which requires the addition of a small molecule inducer (IPTG) to the culture media. IPTG adds significant cost to production and plasmid-based expression is subject to instability in large-scale fermentation. Here, we modulate the upstream transcriptional regulator, hilD, to activate the T3SS via three distinct methods. In doing so, we develop a toolbox of T3SS activation methods and construct constitutively active T3SS strains capable of secreting a range of heterologous proteins at titers comparable to plasmid-based hilA overexpression. We also explore how each activation method in our toolbox impacts the SPI-1 regulatory cascade and discover an epistatic relationship between T3SS regulators, hilE and the hilD 3' untranslated region (hilD 3'UTR). Together, these findings further our goal of making an industrially competitive protein production strain that reduces the challenges associated with plasmid induction and maintenance. KEY POINTS: • Characterized 3 new type III secretion system (T3SS) activation methods for heterologous protein secretion, including 2 constitutive activation methods. • Eliminated the need for a second plasmid and a small molecule inducer to activate the system, making it more suitable for industrial production. • Discovered new regulatory insights into the SPI-1 T3SS, including an epistatic relationship between regulators hilE and the hilD 3' untranslated region.
Collapse
|
11
|
Díaz-Torres O, Lugo-Melchor OY, de Anda J, Orozco-Nunnelly DA, Gradilla-Hernández MS, Senés-Guerrero C. Characterizing a subtropical hypereutrophic lake: From physicochemical variables to shotgun metagenomic data. Front Microbiol 2022; 13:1037626. [DOI: 10.3389/fmicb.2022.1037626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Lake Cajititlán is a subtropical and endorheic lake, which is heavily impacted by nutrient pollution. Agricultural runoff and poorly treated wastewater have entered this reservoir at alarming rates during past rainy seasons, causing the cultural eutrophication of this body of water and resulting in several massive fish kill events. In this study, shotgun metagenomic sequencing was used to examine the taxonomic and functional structure of microbial communities in Lake Cajititlán during the rainy season. Several water quality features and their interactions with microbial communities were also assessed to identify the major factors affecting the water quality and biota, specifically fish species. According to current water quality regulations, most of the physicochemical variables analyzed (dissolved oxygen, pH, Secchi disk, NH4+, NO3−, blue-green algae, total phosphorus, and chlorophyll-a) were outside of the permissible limits. Planktothrix agardhii and Microcystis aeruginosa were the most abundant phytoplankton species, and the dominant bacterial genera were Pseudomonas, Streptomyces, and Flavobacterium, with Pseudomonas fluorescens, Stenotrophomonas maltophilia, and Aeromonas veronii representing the most abundant bacterial species. All of these microorganisms have been reported to be potentially harmful to fish, and the latter three (P. fluorescens, S. maltophilia, A. veronii) also contain genes associated with pathogenicity in fish mortality (fur, luxS, aer, act, aha, exu, lip, ser). Genetic evidence from the microbial communities analyzed herein reveals that anthropogenic sources of nutrients in the lake altered genes involved in nitrogen, phosphorus, sulfur, and carbon metabolism, mainly at the beginning of the rainy season. These findings suggest that abiotic factors influence the structure of the microbial communities, along with the major biogeochemical cycles of Lake Cajititlán, resulting in temporal variations and an excess of microorganisms that can thrive in high-nutrient and low-oxygen environments. After reviewing the literature, this appears to be the first study that focuses on characterizing the water quality of a subtropical hypereutrophic lake through associations between physicochemical variables and shotgun metagenomic data. In addition, there are few studies that have coupled the metabolism of aquatic ecosystems with nutrient cycles.
Collapse
|
12
|
Gao ZY, Song YL, Li XT, Li TH, Lu CH, Shen YM. Effects of hydrolysable tannins from Terminalia citrina on type III secretion system (T3SS) and their intestinal metabolite urolithin B represses Salmonella T3SS through Hha–H-NS–HilD–HilC–RtsA–HilA regulatory pathway. Microb Pathog 2022; 173:105837. [DOI: 10.1016/j.micpath.2022.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
|
13
|
Interrelation between Stress Management and Secretion Systems of Ralstonia solanacearum: An In Silico Assessment. Pathogens 2022; 11:pathogens11070730. [PMID: 35889976 PMCID: PMC9325324 DOI: 10.3390/pathogens11070730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ralstonia solanacearum (Rs), the causative agent of devastating wilt disease in several major and minor economic crops, is considered one of the most destructive bacterial plant pathogens. However, the mechanism(s) by which Rs counteracts host-associated environmental stress is still not clearly elucidated. To investigate possible stress management mechanisms, orthologs of stress-responsive genes in the Rs genome were searched using a reference set of known genes. The genome BLAST approach was used to find the distributions of these orthologs within different Rs strains. BLAST results were first confirmed from the KEGG Genome database and then reconfirmed at the protein level from the UniProt database. The distribution pattern of these stress-responsive factors was explored through multivariate analysis and STRING analysis. STRING analysis of stress-responsive genes in connection with different secretion systems of Rs was also performed. Initially, a total of 28 stress-responsive genes of Rs were confirmed in this study. STRING analysis revealed an additional 7 stress-responsive factors of Rs, leading to the discovery of a total of 35 stress-responsive genes. The segregation pattern of these 35 genes across 110 Rs genomes was found to be almost homogeneous. Increasing interactions of Rs stress factors were observed in six distinct clusters, suggesting six different types of stress responses: membrane stress response (MSR), osmotic stress response (OSR), oxidative stress response (OxSR), nitrosative stress response (NxSR), and DNA damage stress response (DdSR). Moreover, a strong network of these stress responses was observed with type 3 secretion system (T3SS), general secretory proteins (GSPs), and different types of pili (T4P, Tad, and Tat). To the best of our knowledge, this is the first report on overall stress response management by Rs and the potential connection with secretion systems.
Collapse
|
14
|
Niu L, Cai W, Cheng X, Li Z, Ruan J, Li F, Qi K, Tu J. Fur Protein Regulates the Motility of Avian Pathogenic Escherichia coli AE17 Through Promoter Regions of the Flagella Key Genes flhD. Front Vet Sci 2022; 9:854916. [PMID: 35518642 PMCID: PMC9062578 DOI: 10.3389/fvets.2022.854916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is an important pathogen causing several diseases in birds. It is responsible for local and systemic infections in poultry, seriously impeding the development of the poultry industry, and poses a potential risk to public health. The iron absorption regulatory protein Fur and the noncoding RNA, RyhB, that it negatively regulates are important factors in bacterial iron uptake, but the regulation of bacterial virulence genes varies greatly among different bacteria. We found that Fur is very important for the mobility of APEC. The expression of fur and RyhB is extensively regulated in APEC, and RyhB expression is also negatively regulated by Fur. A transcriptomic analysis showed that the genes significantly differentially regulated by Fur are related to cell movement, including pilus- or flagellum-dependent cell motility. To verify these results, we examined the effects of fur knockdown on cell movement by measuring the diameter of the bacteria colonies. Consistent with the RNA sequencing results, the mobility of AE17Δfur was significantly reduced compared with that of the wild type, and it had almost lost its ability to move. Using an electrophoretic mobility assay, we confirmed that the Fur protein directly binds to the promoter region of the key flagellum-related gene flhD, thereby affecting the assembly and synthesis of the APEC flagellum. This study extends our understanding of gene regulation in APEC.
Collapse
Affiliation(s)
- Lulu Niu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Weizhen Cai
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xi Cheng
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhe Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jianming Ruan
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Fangguo Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
15
|
Grassmann AA, Zavala-Alvarado C, Bettin EB, Picardeau M, Benaroudj N, Caimano MJ. The FUR-like regulators PerRA and PerRB integrate a complex regulatory network that promotes mammalian host-adaptation and virulence of Leptospira interrogans. PLoS Pathog 2021; 17:e1009078. [PMID: 34855918 PMCID: PMC8638967 DOI: 10.1371/journal.ppat.1009078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Leptospira interrogans, the causative agent of most cases of human leptospirosis, must respond to myriad environmental signals during its free-living and pathogenic lifestyles. Previously, we compared L. interrogans cultivated in vitro and in vivo using a dialysis membrane chamber (DMC) peritoneal implant model. From these studies emerged the importance of genes encoding the Peroxide responsive regulators PerRA and PerRB. First described in in Bacillus subtilis, PerRs are widespread in Gram-negative and -positive bacteria, where regulate the expression of gene products involved in detoxification of reactive oxygen species and virulence. Using perRA and perRB single and double mutants, we establish that L. interrogans requires at least one functional PerR for infectivity and renal colonization in a reservoir host. Our finding that the perRA/B double mutant survives at wild-type levels in DMCs is noteworthy as it demonstrates that the loss of virulence is not due to a metabolic lesion (i.e., metal starvation) but instead reflects dysregulation of virulence-related gene products. Comparative RNA-Seq analyses of perRA, perRB and perRA/B mutants cultivated within DMCs identified 106 genes that are dysregulated in the double mutant, including ligA, ligB and lvrA/B sensory histidine kinases. Decreased expression of LigA and LigB in the perRA/B mutant was not due to loss of LvrAB signaling. The majority of genes in the perRA and perRB single and double mutant DMC regulons were differentially expressed only in vivo, highlighting the importance of host signals for regulating gene expression in L. interrogans. Importantly, the PerRA, PerRB and PerRA/B DMC regulons each contain multiple genes related to environmental sensing and/or transcriptional regulation. Collectively, our data suggest that PerRA and PerRB are part of a complex regulatory network that promotes host adaptation by L. interrogans within mammals.
Collapse
Affiliation(s)
- André A. Grassmann
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, United States of America
| | - Crispin Zavala-Alvarado
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Communauté d’universités et d’établissements (COMUE), Bio Sorbonne Paris Cité (BioSPC), Paris, France
| | - Everton B. Bettin
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, United States of America
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sol, Brazil
| | - Mathieu Picardeau
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Nadia Benaroudj
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, University of Connecticut Health, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut, United States of America
| |
Collapse
|
16
|
The Molecular Basis of Acinetobacter baumannii Cadmium Toxicity and Resistance. Appl Environ Microbiol 2021; 87:e0171821. [PMID: 34495707 DOI: 10.1128/aem.01718-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acinetobacter species are ubiquitous Gram-negative bacteria that can be found in water, in soil, and as commensals of the human skin. The successful inhabitation of Acinetobacter species in diverse environments is primarily attributable to the expression of an arsenal of stress resistance determinants, which includes an extensive repertoire of metal ion efflux systems. Metal ion homeostasis in the hospital pathogen Acinetobacter baumannii contributes to pathogenesis; however, insights into its metal ion transporters for environmental persistence are lacking. Here, we studied the impact of cadmium stress on A. baumannii. Our functional genomics and independent mutant analyses revealed a primary role for CzcE, a member of the cation diffusion facilitator (CDF) superfamily, in resisting cadmium stress. We also show that the CzcCBA heavy metal efflux system contributes to cadmium efflux. Collectively, these systems provide A. baumannii with a comprehensive cadmium translocation pathway from the cytoplasm to the periplasm and subsequently the extracellular space. Furthermore, analysis of the A. baumannii metallome under cadmium stress showed zinc depletion, as well as copper enrichment, both of which are likely to influence cellular fitness. Overall, this work provides new knowledge on the role of a broad arsenal of membrane transporters in A. baumannii metal ion homeostasis. IMPORTANCE Cadmium toxicity is a widespread problem, yet the interaction of this heavy metal with biological systems is poorly understood. Some microbes have evolved traits to proactively counteract cadmium toxicity, including Acinetobacter baumannii, which is notorious for persisting in harsh environments. Here, we show that A. baumannii utilizes a dedicated cadmium efflux protein in concert with a system that is primarily attuned to zinc efflux to efficiently overcome cadmium stress. The molecular characterization of A. baumannii under cadmium stress revealed how active cadmium efflux plays a key role in preventing the dysregulation of bacterial metal ion homeostasis, which appeared to be a primary means by which cadmium exerts toxicity upon the bacterium.
Collapse
|
17
|
Powers TR, Haeberle AL, Predeus AV, Hammarlöf DL, Cundiff JA, Saldaña-Ahuactzi Z, Hokamp K, Hinton JCD, Knodler LA. Intracellular niche-specific profiling reveals transcriptional adaptations required for the cytosolic lifestyle of Salmonella enterica. PLoS Pathog 2021; 17:e1009280. [PMID: 34460873 PMCID: PMC8432900 DOI: 10.1371/journal.ppat.1009280] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/10/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes diarrheal disease in humans and animals. During salmonellosis, S. Typhimurium colonizes epithelial cells lining the gastrointestinal tract. S. Typhimurium has an unusual lifestyle in epithelial cells that begins within an endocytic-derived Salmonella-containing vacuole (SCV), followed by escape into the cytosol, epithelial cell lysis and bacterial release. The cytosol is a more permissive environment than the SCV and supports rapid bacterial growth. The physicochemical conditions encountered by S. Typhimurium within the epithelial cytosol, and the bacterial genes required for cytosolic colonization, remain largely unknown. Here we have exploited the parallel colonization strategies of S. Typhimurium in epithelial cells to decipher the two niche-specific bacterial virulence programs. By combining a population-based RNA-seq approach with single-cell microscopic analysis, we identified bacterial genes with cytosol-induced or vacuole-induced expression signatures. Using these genes as environmental biosensors, we defined that Salmonella is exposed to oxidative stress and iron and manganese deprivation in the cytosol and zinc and magnesium deprivation in the SCV. Furthermore, iron availability was critical for optimal S. Typhimurium replication in the cytosol, as well as entC, fepB, soxS, mntH and sitA. Virulence genes that are typically associated with extracellular bacteria, namely Salmonella pathogenicity island 1 (SPI1) and SPI4, showed increased expression in the cytosol compared to vacuole. Our study reveals that the cytosolic and vacuolar S. Typhimurium virulence gene programs are unique to, and tailored for, residence within distinct intracellular compartments. This archetypical vacuole-adapted pathogen therefore requires extensive transcriptional reprogramming to successfully colonize the mammalian cytosol.
Collapse
Affiliation(s)
- TuShun R. Powers
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Alexander V. Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Disa L. Hammarlöf
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jennifer A. Cundiff
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Leigh A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
18
|
Abdelsattar AS, Dawoud A, Helal MA. Interaction of nanoparticles with biological macromolecules: a review of molecular docking studies. Nanotoxicology 2020; 15:66-95. [PMID: 33283572 DOI: 10.1080/17435390.2020.1842537] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The high frequency of using engineered nanoparticles in various medical applications entails a deep understanding of their interaction with biological macromolecules. Molecular docking simulation is now widely used to study the binding of different types of nanoparticles with proteins and nucleic acids. This helps not only in understanding the mechanism of their biological action but also in predicting any potential toxicity. In this review, the computational techniques used in studying the nanoparticles interaction with biological macromolecules are covered. Then, a comprehensive overview of the docking studies performed on various types of nanoparticles will be offered. The implication of these predicted interactions in the biological activity and/or toxicity is also discussed for each type of nanoparticles.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza, Egypt
| | - Alyaa Dawoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed A Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
19
|
Sousa Gerós A, Simmons A, Drakesmith H, Aulicino A, Frost JN. The battle for iron in enteric infections. Immunology 2020; 161:186-199. [PMID: 32639029 PMCID: PMC7576875 DOI: 10.1111/imm.13236] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element for almost all living organisms, but can be extremely toxic in high concentrations. All organisms must therefore employ homeostatic mechanisms to finely regulate iron uptake, usage and storage in the face of dynamic environmental conditions. The critical step in mammalian systemic iron homeostasis is the fine regulation of dietary iron absorption. However, as the gastrointestinal system is also home to >1014 bacteria, all of which engage in their own programmes of iron homeostasis, the gut represents an anatomical location where the inter-kingdom fight for iron is never-ending. Here, we explore the molecular mechanisms of, and interactions between, host and bacterial iron homeostasis in the gastrointestinal tract. We first detail how mammalian systemic and cellular iron homeostasis influences gastrointestinal iron availability. We then focus on two important human pathogens, Salmonella and Clostridia; despite their differences, they exemplify how a bacterial pathogen must navigate and exploit this web of iron homeostasis interactions to avoid host nutritional immunity and replicate successfully. We then reciprocally explore how iron availability interacts with the gastrointestinal microbiota, and the consequences of this on mammalian physiology and pathogen iron acquisition. Finally, we address how understanding the battle for iron in the gastrointestinal tract might inform clinical practice and inspire new treatments for important diseases.
Collapse
Affiliation(s)
- Ana Sousa Gerós
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Alison Simmons
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Hal Drakesmith
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Anna Aulicino
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Joe N. Frost
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
20
|
Control of Francisella tularensis Virulence at Gene Level: Network of Transcription Factors. Microorganisms 2020; 8:microorganisms8101622. [PMID: 33096715 PMCID: PMC7588896 DOI: 10.3390/microorganisms8101622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023] Open
Abstract
Regulation of gene transcription is the initial step in the complex process that controls gene expression within bacteria. Transcriptional control involves the joint effort of RNA polymerases and numerous other regulatory factors. Whether global or local, positive or negative, regulators play an essential role in the bacterial cell. For instance, some regulators specifically modify the transcription of virulence genes, thereby being indispensable to pathogenic bacteria. Here, we provide a comprehensive overview of important transcription factors and DNA-binding proteins described for the virulent bacterium Francisella tularensis, the causative agent of tularemia. This is an unexplored research area, and the poorly described networks of transcription factors merit additional experimental studies to help elucidate the molecular mechanisms of pathogenesis in this bacterium, and how they contribute to disease.
Collapse
|
21
|
Singh AK, Wang X, Sun W. Oral vaccination with live attenuated Yersinia pseudotuberculosis strains delivering a FliC180-LcrV fusion antigen confers protection against pulmonary Y. Pestis infection. Vaccine 2020; 38:3720-3728. [PMID: 32278523 PMCID: PMC7285849 DOI: 10.1016/j.vaccine.2020.03.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
We incorporated the ΔPfur::TT araC PBADfur deletion-insertion mutation on top of a previous Yersinia pseudotuberculosis mutant (Δasd ΔyopJ ΔyopK) to construct a new mutant designated as Yptb5, which manifests the arabinose-dependent regulated delayed fur (encoding ferric uptake regulator) shut-off. The Yptb5 strain was used to deliver an adjuvanted fusion protein, FliC180-LcrV. Levels of FliC180-LcrV synthesis were same in Yptb5 either harboring pSMV4, a p15A ori plasmid or pSMV8, a pSC101 ori plasmid containing the fliC180-lcrV fusion gene driven by Ptrc promoter. Tissue burdens of both Yptb5(pSMV4) and Yptb5(pSMV8) in mice had similar patterns. Mice vaccinated orally with 5 × 108 CFU of either Yptb5(pSMV4) or Yptb5(pSMV8) strain were primed high antibody titers with a balanced Th1/Th2 response, also developed potent T-cell responses with significant productions of IFN-γ, IL-17A and TNF-α. Immunization with each mutant strain conferred complete protection against pulmonary challenge with 5.5 × 103 CFU (55 LD50) of Y. pestis, but partial protection (50% survival) against 100 LD50 of Y. pestis. Our results demonstrate that arabinose-dependent regulated delayed fur shut-off is an effective strategy to develop live attenuated bacterial vaccines while retaining strong immunogenicity.
Collapse
Affiliation(s)
- Amit K Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Xiuran Wang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
22
|
Staes I, Passaris I, Cambré A, Aertsen A. Population heterogeneity tactics as driving force in Salmonella virulence and survival. Food Res Int 2019; 125:108560. [DOI: 10.1016/j.foodres.2019.108560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 01/28/2023]
|
23
|
The Ferric Uptake Regulator Represses Type VI Secretion System Function by Binding Directly to the clpV Promoter in Salmonella enterica Serovar Typhimurium. Infect Immun 2019; 87:IAI.00562-19. [PMID: 31383745 DOI: 10.1128/iai.00562-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
Type VI secretion systems (T6SSs) are highly conserved and complex protein secretion systems that deliver effector proteins into eukaryotic hosts or other bacteria. T6SSs are regulated precisely by a variety of regulatory systems, which enables bacteria to adapt to varied environments. A T6SS within Salmonella pathogenicity island 6 (SPI-6) is activated during infection, and it contributes to the pathogenesis, as well as interbacterial competition, of Salmonella enterica serovar Typhimurium (S. Typhimurium). However, the regulation of the SPI-6 T6SS in S. Typhimurium is not well understood. In this study, we found that the SPI-6 T6SS core gene clpV was significantly upregulated in response to the iron-depleted condition and during infection. The global ferric uptake regulator (Fur) was shown to repress the clpV expression in the iron-replete medium. Moreover, electrophoretic mobility shift and DNase I footprinting assays revealed that Fur binds directly to the clpV promoter region at multiple sites spanning the transcriptional start site. We also observed that the relieving of Fur-mediated repression on clpV contributed to the interbacterial competition activity and pathogenicity of S. Typhimurium. These findings provide insights into the direct regulation of Fur in the expression and functional activity of SPI-6 T6SS in S. Typhimurium and thus help to elucidate the mechanisms of bacterial adaptability and virulence.
Collapse
|
24
|
The Small RNA PinT Contributes to PhoP-Mediated Regulation of the Salmonella Pathogenicity Island 1 Type III Secretion System in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00312-19. [PMID: 31262841 DOI: 10.1128/jb.00312-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium induces inflammatory diarrhea and bacterial uptake into intestinal epithelial cells using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). HilA activates transcription of the SPI1 structural components and effector proteins. Expression of hilA is activated by HilD, HilC, and RtsA, which act in a complex feed-forward regulatory loop. Many environmental signals and other regulators are integrated into this regulatory loop, primarily via HilD. After the invasion of Salmonella into host intestinal epithelial cells or during systemic replication in macrophages, the SPI T3SS is no longer required or expressed. We have shown that the two-component regulatory system PhoPQ, required for intracellular survival, represses the SPI1 T3SS mostly by controlling the transcription of hilA and hilD Here we show that PinT, one of the PhoPQ-regulated small RNAs (sRNAs), contributes to this regulation by repressing hilA and rtsA translation. PinT base pairs with both the hilA and rtsA mRNAs, resulting in translational inhibition of hilA, but also induces degradation of the rts transcript. PinT also indirectly represses expression of FliZ, a posttranslational regulator of HilD, and directly represses translation of ssrB, encoding the primary regulator of the SPI2 T3SS. Our in vivo mouse competition assays support the concept that PinT controls a series of virulence genes at the posttranscriptional level in order to adapt Salmonella from the invasion stage to intracellular survival.IMPORTANCE Salmonella is one of the most important food-borne pathogens, infecting over one million people in the United States every year. These bacteria use a needle-like device to interact with intestinal epithelial cells, leading to invasion of the cells and induction of inflammatory diarrhea. A complex regulatory network controls expression of the invasion system in response to numerous environmental signals. Here we explore the molecular mechanisms by which the small RNA PinT contributes to this regulation, facilitating inactivation of the system after invasion. PinT controls several important virulence systems in Salmonella, tuning the transition between different stages of infection.
Collapse
|
25
|
Khajanchi BK, Xu J, Grim CJ, Ottesen AR, Ramachandran P, Foley SL. Global transcriptomic analyses of Salmonella enterica in Iron-depleted and Iron-rich growth conditions. BMC Genomics 2019; 20:490. [PMID: 31195964 PMCID: PMC6567447 DOI: 10.1186/s12864-019-5768-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background Salmonella enterica possess several iron acquisition systems, encoded on the chromosome and plasmids. Recently, we demonstrated that incompatibility group (Inc) FIB plasmid-encoded iron acquisition systems (Sit and aerobactin) likely play an important role in persistence of Salmonella in human intestinal epithelial cells (Caco-2). In this study, we sought to determine global transcriptome analyses of S. enterica in iron-rich (IR) and iron-depleted (ID) growth conditions. Results The number of differentially-expressed genes were substantially higher for recipient (SE819) (n = 966) and transconjugant (TC) (n = 945) compared to the wild type (WT) (SE163A) (n = 110) strain in ID as compared to IR growth conditions. Several virulence-associated factors including T3SS, flagellin, cold-shock protein (cspE), and regulatory genes were upregulated in TC in ID compared to IR conditions. Whereas, IS1 and acrR/tetR transposases located on the IncFIB plasmid, ferritin and several regulatory genes were downregulated in TC in ID conditions. Enterobactin transporter (entS), iron ABC transporter (fepCD), colicin transporter, IncFIB-encoded enolase, cyclic di-GMP regulator (cdgR) and other regulatory genes of the WT strain were upregulated in ID compared to IR conditions. Conversely, ferritin, ferrous iron transport protein A (feoA), IncFIB-encoded IS1 and acrR/tetR transposases and ArtA toxin of WT were downregulated in ID conditions. SDS-PAGE coupled with LC-MS/MS analyses revealed that siderophore receptor proteins such as chromosomally-encoded IroN and, IncFIB-encoded IutA were upregulated in WT and TC in ID growth conditions. Both chromosome and IncFIB plasmid-encoded SitA was overexpressed in WT, but not in TC or recipient in ID conditions. Increased expression of flagellin was detected in recipient and TC, but not in WT in ID conditions. Conclusion Iron concentrations in growth media influenced differential gene expressions both at transcriptional and translational levels, including genes encoded on the IncFIB plasmid. Limited iron availability within the host may promote pathogenic Salmonella to differentially express subsets of genes encoded by chromosome and/or plasmids, facilitating establishment of successful infection. Electronic supplementary material The online version of this article (10.1186/s12864-019-5768-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bijay K Khajanchi
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, USA.
| | - Joshua Xu
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, USA
| | - Christopher J Grim
- Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, USA
| | - Andrea R Ottesen
- Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, College Park, MD, USA
| | - Padmini Ramachandran
- Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, College Park, MD, USA
| | - Steven L Foley
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, USA.
| |
Collapse
|
26
|
|
27
|
Regulation of Iron Uptake by Fine-Tuning the Iron Responsiveness of the Iron Sensor Fur. Appl Environ Microbiol 2019; 85:AEM.03026-18. [PMID: 30824449 DOI: 10.1128/aem.03026-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/23/2019] [Indexed: 02/07/2023] Open
Abstract
Iron is one of most abundant environmental metal ions but is highly limited in organisms. It is an important metal ion as it facilitates various biological processes, including catalysis of metabolic enzymes and DNA biogenesis. In bacteria, the ferric uptake regulator (Fur) protein controls iron uptake by regulating genes coding for iron transporters in response to iron concentration. This iron response is ascribed to Fur's intrinsic affinity for iron because its binding to iron dictates its regulatory function. However, we now report that the pathogen Salmonella achieves a proper response of Fur to changes in environmental iron concentrations via EIIANtr (a nitrogen metabolic phosphotransferase system component). We establish that EIIANtr increases expression of iron transporter-coding genes under low-iron conditions (i.e., nanomolar ranges) in a Fur-dependent manner, which promotes Salmonella growth under such conditions. EIIANtr directly hampers Fur binding to DNA, thereby inducing expression of those genes. This regulation allows Salmonella to express Fur-regulated genes under low-iron conditions. Our findings reveal a potentially widespread control mechanism of bacterial iron uptake systems operating in response to iron availability.IMPORTANCE Iron is a fundamental metal ion for living organisms as it facilitates various biological processes. The ferric uptake regulator (Fur) protein controls iron homeostasis in various bacterial species. It is believed that Fur's iron-dependent regulatory action is sufficient for it to function as an iron sensor. However, we now establish that the bacterial pathogen Salmonella enables Fur to properly reflect changes in surrounding iron availability by fine-tuning its responsiveness to iron. This process requires a protein that hampers Fur DNA binding at low iron concentrations. In this way, Salmonella broadens the range of iron concentrations that Fur responds to. Our findings reveal a potentially widespread control mechanism of bacterial iron homeostasis.
Collapse
|
28
|
Mutz YDS, Rosario DKA, Paschoalin VMF, Conte-Junior CA. Salmonella enterica: A hidden risk for dry-cured meat consumption? Crit Rev Food Sci Nutr 2019; 60:976-990. [DOI: 10.1080/10408398.2018.1555132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yhan da Silva Mutz
- Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Technology, Federal Fluminense University, Vital Brazil Filho, Niterói, RJ, Brazil
| | - Denes Kaic Alves Rosario
- Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Technology, Federal Fluminense University, Vital Brazil Filho, Niterói, RJ, Brazil
| | | | - Carlos Adam Conte-Junior
- Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Technology, Federal Fluminense University, Vital Brazil Filho, Niterói, RJ, Brazil
- National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
29
|
Qin X, He S, Zhou X, Cheng X, Huang X, Wang Y, Wang S, Cui Y, Shi C, Shi X. Quantitative proteomics reveals the crucial role of YbgC for Salmonella enterica serovar Enteritidis survival in egg white. Int J Food Microbiol 2019; 289:115-126. [DOI: 10.1016/j.ijfoodmicro.2018.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
|
30
|
Kim K, Golubeva YA, Vanderpool CK, Slauch JM. Oxygen-dependent regulation of SPI1 type three secretion system by small RNAs in Salmonella enterica serovar Typhimurium. Mol Microbiol 2018; 111:570-587. [PMID: 30484918 DOI: 10.1111/mmi.14174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 01/31/2023]
Abstract
Salmonella Typhimurium induces inflammatory diarrhea and uptake into intestinal epithelial cells using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Three AraC-like regulators, HilD, HilC and RtsA, form a feed-forward regulatory loop that activates transcription of hilA, encoding the activator of the T3SS structural genes. Many environmental signals and regulatory systems are integrated into this circuit to precisely regulate SPI1 expression. A subset of these regulatory factors affects translation of hilD, but the mechanisms are poorly understood. Here, we identified two sRNAs, FnrS and ArcZ, which repress hilD translation, leading to decreased production of HilA. FnrS and ArcZ are oppositely regulated in response to oxygen, one of the key environmental signals affecting expression of SPI1. Mutational analysis demonstrates that FnrS and ArcZ bind to the hilD mRNA 5' UTR, resulting in translational repression. Deletion of fnrS led to increased HilD production under low-aeration conditions, whereas deletion of arcZ abolished the regulatory effect on hilD translation aerobically. The fnrS arcZ double mutant has phenotypes in a mouse oral infection model consistent with increased expression of SPI1. Together, these results suggest that coordinated regulation by these two sRNAs maximizes HilD production at an intermediate level of oxygen.
Collapse
Affiliation(s)
- Kyungsub Kim
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Yekaterina A Golubeva
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - James M Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| |
Collapse
|
31
|
Sarvan S, Charih F, Askoura M, Butcher J, Brunzelle JS, Stintzi A, Couture JF. Functional insights into the interplay between DNA interaction and metal coordination in ferric uptake regulators. Sci Rep 2018; 8:7140. [PMID: 29739988 PMCID: PMC5940780 DOI: 10.1038/s41598-018-25157-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
Ferric uptake regulators (Fur) are a family of transcription factors coupling gene regulatory events to metal concentration. Recent evidence has expanded the mechanistic repertoires employed by Fur to activate or repress gene expression in the presence or absence of regulatory metals. However, the mechanistic basis underlying this extended repertoire has remained largely unexplored. In this study, we used an extensive set of mutations to demonstrate that Campylobacter jejuni Fur (CjFur) employs the same surface to positively and negatively control gene expression regardless of the presence or absence of metals. Moreover, the crystal structure determination of a CjFur devoid of any regulatory metals shows that subtle reorientation of the transcription factor DNA binding domain negatively impacts DNA binding, gene expression and gut colonization in chickens. Overall, these results highlight the versatility of the CjFur DNA binding domain in mediating all gene regulatory events controlled by the metalloregulator and that the full metalation of CjFur is critical to the Campylobacter jejuni life cycle in vivo.
Collapse
Affiliation(s)
- Sabina Sarvan
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - François Charih
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - Momen Askoura
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - Joseph S Brunzelle
- Feinberg School of Medicine, Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois, 60611, USA
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.
| |
Collapse
|
32
|
Abstract
This chapter provides an overview of current knowledge of how anaerobic bacteria protect themselves against nitrosative stress. Nitric oxide (NO) is the primary source of this stress. Aerobically its removal is an oxidative process, whereas reduction is required anaerobically. Mechanisms required to protect aerobic and anaerobic bacteria are therefore different. Several themes recur in the review. First, how gene expression is regulated often provides clues to the physiological function of the gene products. Second, the physiological significance of reports based upon experiments under extreme conditions that bacteria do not encounter in their natural environment requires reassessment. Third, responses to the primary source of stress need to be distinguished from secondary consequences of chemical damage due to failure of repair mechanisms to cope with extreme conditions. NO is generated by many mechanisms, some of which remain undefined. An example is the recent demonstration that the hybrid cluster protein combines with YtfE (or RIC protein, for repair of iron centres damaged by nitrosative stress) in a new pathway to repair key iron-sulphur proteins damaged by nitrosative stress. The functions of many genes expressed in response to nitrosative stress remain either controversial or are completely unknown. The concentration of NO that accumulates in the bacterial cytoplasm is essentially unknown, so dogmatic statements cannot be made that damage to transcription factors (Fur, FNR, SoxRS, MelR, OxyR) occurs naturally as part of a physiologically relevant signalling mechanism. Such doubts can be resolved by simple experiments to meet six proposed criteria.
Collapse
|
33
|
The Biochemistry of Sensing: Enteric Pathogens Regulate Type III Secretion in Response to Environmental and Host Cues. mBio 2018; 9:mBio.02122-17. [PMID: 29339429 PMCID: PMC5770552 DOI: 10.1128/mbio.02122-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enteric pathogens employ sophisticated strategies to colonize and infect mammalian hosts. Gram-negative bacteria, such as Escherichia coli, Salmonella, and Campylobacter jejuni, are among the leading causes of gastrointestinal tract infections worldwide. The virulence strategies of many of these Gram-negative pathogens rely on type III secretion systems (T3SSs), which are macromolecular syringes that translocate bacterial effector proteins directly into the host cytosol. However, synthesis of T3SS proteins comes at a cost to the bacterium in terms of growth rate and fitness, both in the environment and within the host. Therefore, expression of the T3SS must be tightly regulated to occur at the appropriate time and place during infection. Enteric pathogens have thus evolved regulatory mechanisms to control expression of their T3SSs in response to specific environmental and host cues. These regulatory cascades integrate multiple physical and chemical signals through complex transcriptional networks. Although the power of bacterial genetics has allowed elucidation of many of these networks, the biochemical interactions between signal and sensor that initiate the signaling cascade are often poorly understood. Here, we review the physical and chemical signals that Gram-negative enteric pathogens use to regulate T3SS expression during infection. We highlight the recent structural and functional studies that have elucidated the biochemical properties governing both the interaction between sensor and signal and the mechanisms of signal transduction from sensor to downstream transcriptional networks.
Collapse
|
34
|
Leclerc JM, Dozois CM, Daigle F. Salmonella enterica serovar Typhi siderophore production is elevated and Fur inactivation causes cell filamentation and attenuation in macrophages. FEMS Microbiol Lett 2017; 364:3958796. [PMID: 28859315 DOI: 10.1093/femsle/fnx147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovars Typhi and Typhimurium are two closely related bacteria causing different types of infection in humans. Iron acquisition is considered essential for virulence. Siderophores are important iron chelators and production of enterobactin and salmochelins by these serovars was quantified. Overall, Salmonella Typhi produced higher levels of siderophores than Salmonella Typhimurium. The role of the global regulator Fur, involved in iron homeostasis, present and conserved in both these serovars, was then investigated. Deletion of the fur gene led to distinct phenotypes in these serovars. Defective growth in iron-rich and iron-limiting conditions and formation of filamentous cells was only observed in the S. Typhi fur mutant. Furthermore, Fur was required for optimal motility in both serovars, but motility was more reduced for the fur mutant of S. Typhi compared to S. Typhimurium. During interaction with human-cultured macrophages, Fur was more important for S. Typhi, as the fur mutant had severe defects in uptake and survival. Globally, these results demonstrate that Fur differentially affects the physiology and the virulence phenotypes of the two strains and is more critical for S. Typhi growth, morphology, motility and interaction with host cells than it is for S. Typhimurium.
Collapse
Affiliation(s)
- Jean-Mathieu Leclerc
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - Charles M Dozois
- INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - France Daigle
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
35
|
Zhang Q, Wan C, Li C, Bai X, Liu M, Liu S, Zhang Y. Evaluation of a quantitative real-time PCR for rapid detection of Riemerella Anatipestifer infection in birds. J Vet Med Sci 2017; 79:2057-2062. [PMID: 28781328 PMCID: PMC5745191 DOI: 10.1292/jvms.17-0227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To establish an accurate, rapid, and a quantifiable method for the detection of
Riemerella anatipestifer infection, a widespread infectious disease in
birds, we developed a TaqMan-based real-time PCR assay by using DtxR
gene-specific primers and a TaqMan probe. The standard curve established with a linear
correlation (R2) of 0.998 and efficiency of 99% between the Ct
value and the logarithm of the plasmid copy number. The reproducibility and specificity of
the real-time PCR assay were confirmed by using plasmids containing DtxR
genes or DNAs extracted from well-known bacteria or viruses causing duck diseases. The
real-time PCR assay was 100 times more sensitive than the conventional PCR. The results
reveal that the established real-time PCR assay might be a useful method for diagnosis and
quantitative detection of Riemerella anatipestifer in birds.
Collapse
Affiliation(s)
- Qingshan Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chenxi Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaofei Bai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Ming Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yun Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| |
Collapse
|
36
|
Colgan AM, Kröger C, Diard M, Hardt WD, Puente JL, Sivasankaran SK, Hokamp K, Hinton JCD. The Impact of 18 Ancestral and Horizontally-Acquired Regulatory Proteins upon the Transcriptome and sRNA Landscape of Salmonella enterica serovar Typhimurium. PLoS Genet 2016; 12:e1006258. [PMID: 27564394 PMCID: PMC5001712 DOI: 10.1371/journal.pgen.1006258] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/25/2016] [Indexed: 11/24/2022] Open
Abstract
We know a great deal about the genes used by the model pathogen Salmonella enterica serovar Typhimurium to cause disease, but less about global gene regulation. New tools for studying transcripts at the single nucleotide level now offer an unparalleled opportunity to understand the bacterial transcriptome, and expression of the small RNAs (sRNA) and coding genes responsible for the establishment of infection. Here, we define the transcriptomes of 18 mutants lacking virulence-related global regulatory systems that modulate the expression of the SPI1 and SPI2 Type 3 secretion systems of S. Typhimurium strain 4/74. Using infection-relevant growth conditions, we identified a total of 1257 coding genes that are controlled by one or more regulatory system, including a sub-class of genes that reflect a new level of cross-talk between SPI1 and SPI2. We directly compared the roles played by the major transcriptional regulators in the expression of sRNAs, and discovered that the RpoS (σ38) sigma factor modulates the expression of 23% of sRNAs, many more than other regulatory systems. The impact of the RNA chaperone Hfq upon the steady state levels of 280 sRNA transcripts is described, and we found 13 sRNAs that are co-regulated with SPI1 and SPI2 virulence genes. We report the first example of an sRNA, STnc1480, that is subject to silencing by H-NS and subsequent counter-silencing by PhoP and SlyA. The data for these 18 regulatory systems is now available to the bacterial research community in a user-friendly online resource, SalComRegulon. The transcriptional networks and the functions of small regulatory RNAs of Salmonella enterica serovar Typhimurium are being studied intensively. S. Typhimurium is becoming the ideal model pathogen for linking transcriptional and post-transcriptional gene regulation to bacterial virulence. Here, we systematically defined the regulatory factors responsible for controlling the expression of S. Typhimurium coding genes and sRNAs under infection-relevant growth conditions. As well as confirming published regulatory inputs for Salmonella pathogenicity islands, such as the positive role played by Fur in the expression of SPI1, we report, for the first time, the global impact of the FliZ, HilE and PhoB/R transcription factors and identify 124 sRNAs that belong to virulence-associated regulons. We found a subset of genes of known and unknown function that are regulated by both HilD and SsrB, highlighting the cross-talk mechanisms that control Salmonella virulence. An integrative analysis of the regulatory datasets revealed 5 coding genes of unknown function that may play novel roles in virulence. We hope that the SalComRegulon resource will be a dynamic database that will be constantly updated to inspire new hypothesis-driven experimentation, and will contribute to the construction of a comprehensive transcriptional network for S. Typhimurium.
Collapse
Affiliation(s)
- Aoife M. Colgan
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Médéric Diard
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | - José L. Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Sathesh K. Sivasankaran
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
| | - Jay C. D. Hinton
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Abstract
Pathogenic bacteria must withstand diverse host environments during infection. Environmental signals, such as pH, temperature, nutrient limitation, etc., not only trigger adaptive responses within bacteria to these specific stress conditions but also direct the expression of virulence genes at an appropriate time and place. An appreciation of stress responses and their regulation is therefore essential for an understanding of bacterial pathogenesis. This review considers specific stresses in the host environment and their relevance to pathogenesis, with a particular focus on the enteric pathogen Salmonella.
Collapse
Affiliation(s)
- Ferric C Fang
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195-7735, USA; Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195-7735, USA.
| | - Elaine R Frawley
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195-7735, USA
| | - Timothy Tapscott
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
38
|
Porcheron G, Schouler C, Dozois CM. Survival games at the dinner table: regulation of Enterobacterial virulence through nutrient sensing and acquisition. Curr Opin Microbiol 2016; 30:98-106. [PMID: 26871481 DOI: 10.1016/j.mib.2016.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
The ability of bacterial pathogens to colonize specific host niches is largely dependent on acquisition of essential metabolites and co-factors for growth and sensing and adapting in response to specific environmental cues. Nutrient availability in host environments is strongly influenced by host physiology and immunity, diet, and competition with other members of the host microbiota. Rapid adaptation to environmental cues and nutrient availability is a hallmark of bacterial fitness and virulence. This adaptability requires complex regulatory networks that tightly link sensing of nutrient availability to expression of virulence genes accordingly. This review focuses on recent findings highlighting the ability of bacterial pathogens to compete for nutrient acquisition in the host-microbiota environment, and emphasizes key aspects mediating the multi-tiered regulatory cascades that coordinately control nutrient sensing and expression of virulence genes in pathogenic Enterobacteria.
Collapse
Affiliation(s)
- Gaëlle Porcheron
- INRS-Institut Armand Frappier, Laval, Québec, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, Québec, Canada
| | - Catherine Schouler
- INRA, UMR1282 Infectiologie et Santé Publique, 37 380 Nouzilly, France; Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, 37 000 Tours, France
| | - Charles M Dozois
- INRS-Institut Armand Frappier, Laval, Québec, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, Québec, Canada.
| |
Collapse
|
39
|
Campos-Galvão MEM, Ribon AOB, Araújo EF, Vanetti MCD. Changes in the Salmonella enterica Enteritidis phenotypes in presence of acyl homoserine lactone quorum sensing signals. J Basic Microbiol 2015; 56:493-501. [PMID: 26662614 DOI: 10.1002/jobm.201500471] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022]
Abstract
Quorum sensing is used by bacteria to coordinate gene expression in response to population density and involves the production, detection and response to extracellular signaling molecules known as autoinducers (AIs). Salmonella does not synthesize the AI-1, acyl homoserine lactone (AHL) common to gram-negative bacteria; however, it has a receptor for AI-1, the SdiA protein. The effect of SdiA in modulating phenotypes of Salmonella has not been elucidated. In this report, we provide evidence that the AIs-1 affect Salmonella enterica serovar Enteritidis behavior by enhancing the biofilm formation and expression of virulence genes under anaerobic conditions. Biofilm formation by Salmonella was detected by the crystal violet method and by scanning electron microscopy. The presence of AHLs, particularly C12-HSL, increased biofilm formation and promoted expression of biofilm formation genes (lpfA, fimF, fliF, glgC) and virulence genes (hilA, invA, invF). Our results demonstrated that AHLs produced by other organisms played an important role in virulence phenotypes of Salmonella Enteritidis.
Collapse
Affiliation(s)
| | | | - Elza Fernandes Araújo
- Department of Microbiology, Laboratory of Food Microbiology, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | | |
Collapse
|
40
|
Fitzgerald S, Dillon SC, Chao TC, Wiencko HL, Hokamp K, Cameron ADS, Dorman CJ. Re-engineering cellular physiology by rewiring high-level global regulatory genes. Sci Rep 2015; 5:17653. [PMID: 26631971 PMCID: PMC4668568 DOI: 10.1038/srep17653] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/30/2015] [Indexed: 01/10/2023] Open
Abstract
Knowledge of global regulatory networks has been exploited to rewire the gene control programmes of the model bacterium Salmonella enterica serovar Typhimurium. The product is an organism with competitive fitness that is superior to that of the wild type but tuneable under specific growth conditions. The paralogous hns and stpA global regulatory genes are located in distinct regions of the chromosome and control hundreds of target genes, many of which contribute to stress resistance. The locations of the hns and stpA open reading frames were exchanged reciprocally, each acquiring the transcription control signals of the other. The new strain had none of the compensatory mutations normally associated with alterations to hns expression in Salmonella; instead it displayed rescheduled expression of the stress and stationary phase sigma factor RpoS and its regulon. Thus the expression patterns of global regulators can be adjusted artificially to manipulate microbial physiology, creating a new and resilient organism.
Collapse
Affiliation(s)
- Stephen Fitzgerald
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.,Department of Biology, University of Regina, Saskatchewan, Canada
| | - Shane C Dillon
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Tzu-Chiao Chao
- Department of Biology, University of Regina, Saskatchewan, Canada
| | - Heather L Wiencko
- Department of Genetics, Smurfit Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Karsten Hokamp
- Department of Genetics, Smurfit Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
41
|
Powell DA, Roberts LM, Ledvina HE, Sempowski GD, Curtiss R, Frelinger JA. Distinct innate responses are induced by attenuated Salmonella enterica serovar Typhimurium mutants. Cell Immunol 2015; 299:42-9. [PMID: 26546408 DOI: 10.1016/j.cellimm.2015.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 02/04/2023]
Abstract
Upon bacterial infection the host cells generate a wide variety of cytokines. Genetic attenuation of bacterial physiological pathogens can be accomplished not only by disruption of normal bacterial processes, but also by the loss of the ability to redirect the host immune system. We examined nine attenuated Salmonella Typhimurium mutants for their ability to replicate as well as the cytokines produced after infection of Bone Marrow Derived Macrophages (BMDM). Infection of BMDM with attenuated Salmonella mutants led to host cytokine patterns distinct from those that followed WT infection. Surprisingly, each bacterial mutant had a unique cytokine signature. Because some of the mutants induced an IL-10 response not seen in WT, we examined the role of IL-10 on Salmonella replication. Surprisingly, addition of IL-10 before or concurrent with infection restricted growth of WT Salmonella in BMDM. Bacterial attenuation is not a single process and results in attenuated host responses, which result in unique patterns for each attenuated mutants.
Collapse
Affiliation(s)
- Daniel A Powell
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, United States.
| | - Lydia M Roberts
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, United States
| | - Hannah E Ledvina
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, United States
| | | | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85281, United States
| | - Jeffrey A Frelinger
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, United States
| |
Collapse
|
42
|
Poultry body temperature contributes to invasion control through reduced expression of Salmonella pathogenicity island 1 genes in Salmonella enterica serovars Typhimurium and Enteritidis. Appl Environ Microbiol 2015; 81:8192-201. [PMID: 26386070 DOI: 10.1128/aem.02622-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/15/2015] [Indexed: 01/17/2023] Open
Abstract
Salmonella enterica serovars Typhimurium (S. Typhimurium) and Enteritidis (S. Enteritidis) are foodborne pathogens, and outbreaks are often associated with poultry products. Chickens are typically asymptomatic when colonized by these serovars; however, the factors contributing to this observation are uncharacterized. Whereas symptomatic mammals have a body temperature between 37°C and 39°C, chickens have a body temperature of 41°C to 42°C. Here, in vivo experiments using chicks demonstrated that numbers of viable S. Typhimurium or S. Enteritidis bacteria within the liver and spleen organ sites were ≥4 orders of magnitude lower than those within the ceca. When similar doses of S. Typhimurium or S. Enteritidis were given to C3H/HeN mice, the ratio of the intestinal concentration to the liver/spleen concentration was 1:1. In the avian host, this suggested poor survival within these tissues or a reduced capacity to traverse the host epithelial layer and reach liver/spleen sites or both. Salmonella pathogenicity island 1 (SPI-1) promotes localization to liver/spleen tissues through invasion of the epithelial cell layer. Following in vitro growth at 42°C, SPI-1 genes sipC, invF, and hilA and the SPI-1 rtsA activator were downregulated compared to expression at 37°C. Overexpression of the hilA activators fur, fliZ, and hilD was capable of inducing hilA-lacZ at 37°C but not at 42°C despite the presence of similar levels of protein at the two temperatures. In contrast, overexpression of either hilC or rtsA was capable of inducing hilA and sipC at 42°C. These data indicate that physiological parameters of the poultry host, such as body temperature, have a role in modulating expression of virulence.
Collapse
|
43
|
Erhardt M, Dersch P. Regulatory principles governing Salmonella and Yersinia virulence. Front Microbiol 2015; 6:949. [PMID: 26441883 PMCID: PMC4563271 DOI: 10.3389/fmicb.2015.00949] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/27/2015] [Indexed: 11/13/2022] Open
Abstract
Enteric pathogens such as Salmonella and Yersinia evolved numerous strategies to survive and proliferate in different environmental reservoirs and mammalian hosts. Deciphering common and pathogen-specific principles for how these bacteria adjust and coordinate spatiotemporal expression of virulence determinants, stress adaptation, and metabolic functions is fundamental to understand microbial pathogenesis. In order to manage sudden environmental changes, attacks by the host immune systems and microbial competition, the pathogens employ a plethora of transcriptional and post-transcriptional control elements, including transcription factors, sensory and regulatory RNAs, RNAses, and proteases, to fine-tune and control complex gene regulatory networks. Many of the contributing global regulators and the molecular mechanisms of regulation are frequently conserved between Yersinia and Salmonella. However, the interplay, arrangement, and composition of the control elements vary between these closely related enteric pathogens, which generate phenotypic differences leading to distinct pathogenic properties. In this overview we present common and different regulatory networks used by Salmonella and Yersinia to coordinate the expression of crucial motility, cell adhesion and invasion determinants, immune defense strategies, and metabolic adaptation processes. We highlight evolutionary changes of the gene regulatory circuits that result in different properties of the regulatory elements and how this influences the overall outcome of the infection process.
Collapse
Affiliation(s)
- Marc Erhardt
- Young Investigator Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research Braunschweig, Germany
| |
Collapse
|
44
|
Liu L, Chi H, Sun L. Pseudomonas fluorescens: identification of Fur-regulated proteins and evaluation of their contribution to pathogenesis. DISEASES OF AQUATIC ORGANISMS 2015; 115:67-80. [PMID: 26119301 DOI: 10.3354/dao02874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pseudomonas fluorescens is a Gram-negative bacterium and a common pathogen to a wide range of farmed fish. In a previous study, we found that the ferric uptake regulator gene (fur) is essential to the infectivity of a pathogenic fish isolate of P. fluorescens (wild-type strain TSS). In the present work, we conducted comparative proteomic analysis to examine the global protein profiles of TSS and the P. fluorescens fur knockout mutant TFM. Twenty-eight differentially produced proteins were identified, which belong to different functional categories. Four of these proteins, viz. TssP (a type VI secretion protein), PspA (a serine protease), OprF (an outer membrane porin), and ClpP (the proteolytic subunit of an ATP-dependent Clp protease), were assessed for virulence participation in a model of turbot Scophthalmus maximus. The results showed that the oprF and clpP knockouts exhibited significantly reduced capacities in (1) resistance against the bactericidal effect of host serum, (2) dissemination into and colonization of host tissues, and (3) inducing host mortality. In contrast, mutation of tssP and pspA had no apparent effect on the pathogenicity of TSS. Purified recombinant OprF, when used as a subunit vaccine, induced production of specific serum antibodies in immunized fish and elicited significant protection against lethal TSS challenge. Antibody blocking of the OprF in TSS significantly impaired the ability of the bacteria to invade host tissues. Taken together, these results indicate for the first time that in pathogenic P. fluorescens, Fur regulates the expression of diverse proteins, some of which are required for optimal infection.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | |
Collapse
|
45
|
Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity. Vet Microbiol 2015; 179:2-14. [PMID: 25888312 DOI: 10.1016/j.vetmic.2015.03.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/21/2022]
Abstract
In bacteria-host interactions, competition for iron is critical for the outcome of the infection. As a result of its redox properties, this metal is essential for the growth and proliferation of most living organisms, including pathogenic bacteria. This metal is also potentially toxic, making the precise maintenance of iron homeostasis necessary for survival. Iron acquisition and storage control is mediated in most bacteria by the global ferric uptake regulator (Fur) and iron-responsive small regulatory non-coding RNAs (RyhB in the model organism Escherichia coli). While the role of these regulators in iron homeostasis is well documented in both pathogenic and non-pathogenic bacteria, many recent studies also demonstrate that these regulators are involved in the virulence of pathogenic bacteria. By sensing iron availability in the environment, Fur and RyhB are able to regulate, either directly or indirectly via other transcriptional regulators or modulation of intracellular iron concentration, many virulence determinants of pathogenic bacteria. Iron is thus both a nutritional and regulatory element, allowing bacteria to adapt to various host environments by adjusting expression of virulence factors. In this review, we present evidences that Fur and RyhB are the major regulators of this adaptation, as they are involved in diverse functions ranging from iron homeostasis to regulation of virulence by mediating key pathogen responses such as invasion of eukaryotic cells, toxin production, motility, quorum sensing, stress resistance or biofilm formation. Therefore, Fur and RyhB play a major role in regulating an adaptative response during bacterial infections, making them important targets in the fight against pathogenic bacteria.
Collapse
|
46
|
Two-component regulators control hilA expression by controlling fimZ and hilE expression within Salmonella enterica serovar Typhimurium. Infect Immun 2014; 83:978-85. [PMID: 25547794 DOI: 10.1128/iai.02506-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonellae initiate disease through the invasion of host cells within the intestine. This ability to invade requires the coordinated action of numerous genes, many of which are found within Salmonella pathogenicity island 1 (SPI-1). The key to this process is the ability of the bacteria to respond to the environment, thereby upregulating the necessary genes under optimal conditions. Central to the control of SPI-1 is the transcriptional activator hilA. Work has identified at least 10 different activators and 8 different repressors responsible for the control of hilA. We have previously shown that hilE is a Salmonella-specific negative regulator that is able to repress hilA expression and invasion. Additionally, fimZ, a transcriptional activator responsible for the expression of type I fimbriae as well as flagellar genes, has also been implicated in this process. fimZ is homologous to response regulators from other two-component regulatory systems, although a sensor for the system has not been identified. The phoPQ and phoBR regulons are both two-component systems that negatively affect hilA expression, although the mechanism of action has not been determined. Our results show that PhoBR is capable of inducing fimZ expression, whereas PhoPQ does not affect fimZ expression but does upregulate hilE in an FimZ-dependent manner. Therefore, phosphate (sensed by PhoBR) and magnesium (sensed by PhoPQ) levels are important in controlling hilA expression levels when Salmonella is in the intestinal environment.
Collapse
|
47
|
Kortman GAM, Raffatellu M, Swinkels DW, Tjalsma H. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol Rev 2014; 38:1202-34. [PMID: 25205464 DOI: 10.1111/1574-6976.12086] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022] Open
Abstract
Iron is abundantly present on earth, essential for most microorganisms and crucial for human health. Human iron deficiency that is nevertheless highly prevalent in developing regions of the world can be effectively treated by oral iron administration. Accumulating evidence indicates that excess of unabsorbed iron that enters the colonic lumen causes unwanted side effects at the intestinal host-microbiota interface. The chemical properties of iron, the luminal environment and host iron withdrawal mechanisms, especially during inflammation, can turn the intestine in a rather stressful milieu. Certain pathogenic enteric bacteria can, however, deal with this stress at the expense of other members of the gut microbiota, while their virulence also seems to be stimulated in an iron-rich intestinal environment. This review covers the multifaceted aspects of nutritional iron stress with respect to growth, composition, metabolism and pathogenicity of the gut microbiota in relation to human health. We aim to present an unpreceded view on the dynamic effects and impact of oral iron administration on intestinal host-microbiota interactions to provide leads for future research and other applications.
Collapse
Affiliation(s)
- Guus A M Kortman
- Department of Laboratory Medicine, The Radboud Institute for Molecular Life Sciences (RIMLS) of the Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
48
|
Evaluation of protective efficacy of live attenuated Salmonella enterica serovar Gallinarum vaccine strains against fowl typhoid in chickens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1267-76. [PMID: 24990908 DOI: 10.1128/cvi.00310-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Salmonella enterica serovar Gallinarum is the etiological agent of fowl typhoid, which constitutes a considerable economic problem for poultry growers in developing countries. The vaccination of chickens seems to be the most effective strategy to control the disease in those areas. We constructed S. Gallinarum strains with a deletion of the global regulatory gene fur and evaluated their virulence and protective efficacy in Rhode Island Red chicks and Brown Leghorn layers. The fur deletion mutant was avirulent and, when delivered orally to chicks, elicited excellent protection against lethal S. Gallinarum challenge. It was not as effective when given orally to older birds, although it was highly immunogenic when delivered by intramuscular injection. We also examined the effect of a pmi mutant and a combination of fur deletions with mutations in the pmi and rfaH genes, which affect O-antigen synthesis, and ansB, whose product inhibits host T-cell responses. The S. Gallinarum Δpmi mutant was only partially attenuated, and the ΔansB mutant was fully virulent. The Δfur Δpmi and Δfur ΔansB double mutants were attenuated but not protective when delivered orally to the chicks. However, a Δpmi Δfur strain was highly immunogenic when administered intramuscularly. All together, our results show that the fur gene is essential for the virulence of S. Gallinarum, and the fur mutant is effective as a live recombinant vaccine against fowl typhoid.
Collapse
|
49
|
Ammendola S, Cerasi M, Battistoni A. Deregulation of transition metals homeostasis is a key feature of cadmium toxicity in Salmonella. Biometals 2014; 27:703-14. [DOI: 10.1007/s10534-014-9763-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
|
50
|
Bertrand RL. Lag phase-associated iron accumulation is likely a microbial counter-strategy to host iron sequestration: role of the ferric uptake regulator (fur). J Theor Biol 2014; 359:72-9. [PMID: 24929040 DOI: 10.1016/j.jtbi.2014.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 01/26/2023]
Abstract
Iron is an essential metal for almost all forms of life, but potentiates oxidative stress via Fenton catalysis. During microbial lag phase there is a rapid influx of iron with concomitant oxidative hypersensitivity. How and why iron accumulation occurs remains to be elucidated. Iron homeostasis in prokaryotes is mediated by the ferric uptake regulator (Fur), an iron-activated global regulator that controls intracellular iron levels by feedback inhibition with the metal. Herein it is postulated, based on the expression profiles of antioxidant enzymes within the Fur regulon as observed in wild type and Δfur mutants, that iron accumulation is mediated by a transitively low concentration of the Fur protein during lag phase. Vertebrate hosts sequester iron upon 'sensing' an infection in order to retard microbial proliferation through a process known as 'nutritional immunity'. It is herein argued that the purpose of iron accumulation is not principally a preparative step for the replicative phase, as suggested elsewhere, but an evolved behavior that counteracts host iron sequestration. This interpretation is supported by multiple clinical and animal studies that demonstrate that iron surplus in hosts advances progression and susceptibility to infection, and vice versa. Contextualizing iron accumulation as a counter-immune behavior adds impetus to the development of antibiotics targeting pathogenic modes of iron acquisition.
Collapse
Affiliation(s)
- Robert L Bertrand
- Department of Chemistry, University of Winnipeg, Winnipeg, MB, Canada R3B 2E9.
| |
Collapse
|