1
|
Mahdizade Ari M, Scholz KJ, Cieplik F, Al-Ahmad A. Viable but non-cultivable state in oral microbiota: a critical review of an underexplored microbial survival strategy. Front Cell Infect Microbiol 2025; 15:1533768. [PMID: 40171166 PMCID: PMC11959090 DOI: 10.3389/fcimb.2025.1533768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
The viable but non-cultivable (VBNC) state and persister cells, two dormancy phenomena in bacteria, differ in various aspects. The entry of bacteria into the VBNC state as a survival strategy under stressful conditions has gained increasing attention in recent years, largely due to the higher tolerance of VBNC cells to antibiotics and antimicrobials resulting from their low metabolic activity. The oral cavity favors biofilm growth in dental hard tissues, resulting in tooth decay and periodontitis. Despite advances in VBNC state detection in the food industry and environment, the entry capability of oral bacteria into the VBNC state remains poorly documented. Furthermore, the VBNC state has recently been observed in oral pathogens, including Porphyromonas gingivalis, which shows potential relevance in chronic systemic infections, Enterococcus faecalis, an important taxon in endodontic infections, and Helicobacter pylori, which exhibits transient presence in the oral cavity. Further research could create opportunities to develop novel therapeutic strategies to control oral pathogens. The inability of conventional culture-based methods to identify VBNC bacteria and the metabolic reactivation of dormant cells to restore susceptibility to therapies highlights a notable gap in anti-VBNC state strategies. The lack of targeted approaches tested for efficacy against VBNC bacteria underscores the need to develop novel detection methods. This review discusses the VBNC state, its importance in public health, and diagnostic techniques, with a special focus on the VBNC state in oral bacteria.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Konstantin Johannes Scholz
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Fabian Cieplik
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Gibbs RJ, Chambers AC, Hill DJ. The emerging role of Fusobacteria in carcinogenesis. Eur J Clin Invest 2024; 54 Suppl 2:e14353. [PMID: 39674881 DOI: 10.1111/eci.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
The Fusobacterium genus comprises Gram-negative, obligate anaerobic bacteria that typically reside in the periodontium of the oral cavity, gastrointestinal tract, and female genital tract. The association of Fusobacterial spp. with colorectal tumours is widely accepted, with further evidence that this pathogen may also be implicated in the development of other malignancies. Fusobacterial spp. influence malignant cell behaviours and the tumour microenvironment in various ways, which can be related to the multiple surface adhesins expressed. These adhesins include Fap2 (fibroblast-activated protein 2), CpbF (CEACAM binding protein of Fusobacteria), FadA (Fusobacterium adhesin A) and FomA (Fusobacterial outer membrane protein A). This review outlines the influence of Fusobacteria in promoting cancer initiation and progression, impacts of therapeutic outcomes and discusses potential therapeutic interventions where appropriate.
Collapse
|
3
|
Wu D, Hao L, Liu X, Li X, Zhao G. The Anti-Biofilm Properties of Phloretin and Its Analogs against Porphyromonas gingivalis and Its Complex Flora. Foods 2024; 13:1994. [PMID: 38998500 PMCID: PMC11241327 DOI: 10.3390/foods13131994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Porphyromonas gingivalis is crucial for the pathogenesis of periodontitis. This research investigated the effects of the fruit-derived flavonoid phloretin and its analogs on the growth of pure P. gingivalis and the flora of P. gingivalis mixed with the symbiotic oral pathogens Fusobacterium nucleatum and Streptococcus mitis. The results showed that the tested flavonoids had little effect on the biofilm amount of pure P. gingivalis, but significantly reduced the biofilm amount of mixed flora to 83.6~89.1%. Biofilm viability decreased to 86.7~92.8% in both the pure- and mixed-bacterial groups after naringenin and phloretin treatments. SEM showed that phloretin and phlorizin displayed a similar and remarkable destructive effect on P. gingivalis and the mixed biofilms. Transcriptome analysis confirmed that biofilm formation was inhibited by these flavonoids, and phloretin significantly regulated the transcription of quorum sensing. Phlorizin and phloretin reduced AI-2 activity to 45.9% and 55.4%, respectively, independent of the regulation of related gene transcription. This research marks the first finding that these flavonoids possess anti-biofilm properties against P. gingivalis and its intricate bacterial community, and the observed performance variations, driven by structural differences, underscore the existence of intriguing structure-activity relationships.
Collapse
Affiliation(s)
- Desheng Wu
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China; (D.W.); (L.H.); (X.L.)
| | - Lisha Hao
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China; (D.W.); (L.H.); (X.L.)
| | - Xiaohan Liu
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China; (D.W.); (L.H.); (X.L.)
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China; (D.W.); (L.H.); (X.L.)
| | - Guanglei Zhao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
4
|
Wang B, Deng J, Donati V, Merali N, Frampton AE, Giovannetti E, Deng D. The Roles and Interactions of Porphyromonas gingivalis and Fusobacterium nucleatum in Oral and Gastrointestinal Carcinogenesis: A Narrative Review. Pathogens 2024; 13:93. [PMID: 38276166 PMCID: PMC10820765 DOI: 10.3390/pathogens13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Epidemiological studies have spotlighted the intricate relationship between individual oral bacteria and tumor occurrence. Porphyromonas gingivalis and Fusobacteria nucleatum, which are known periodontal pathogens, have emerged as extensively studied participants with potential pathogenic abilities in carcinogenesis. However, the complex dynamics arising from interactions between these two pathogens were less addressed. This narrative review aims to summarize the current knowledge on the prevalence and mechanism implications of P. gingivalis and F. nucleatum in the carcinogenesis of oral squamous cell carcinoma (OSCC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). In particular, it explores the clinical and experimental evidence on the interplay between P. gingivalis and F. nucleatum in affecting oral and gastrointestinal carcinogenesis. P. gingivalis and F. nucleatum, which are recognized as keystone or bridging bacteria, were identified in multiple clinical studies simultaneously. The prevalence of both bacteria species correlated with cancer development progression, emphasizing the potential impact of the collaboration. Regrettably, there was insufficient experimental evidence to demonstrate the synergistic function. We further propose a hypothesis to elucidate the underlying mechanisms, offering a promising avenue for future research in this dynamic and evolving field.
Collapse
Affiliation(s)
- Bing Wang
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Juan Deng
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Valentina Donati
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Unit of Pathological Anatomy 2, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| | - Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Fondazione Pisana per la Scienza, 56100 Pisa, Italy
| | - Dongmei Deng
- Department of Prevention Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universitreit Amsterdam, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
5
|
Dornelas-Figueira LM, Ricomini Filho AP, Junges R, Åmdal HA, Cury AADB, Petersen FC. In Vitro Impact of Fluconazole on Oral Microbial Communities, Bacterial Growth, and Biofilm Formation. Antibiotics (Basel) 2023; 12:1433. [PMID: 37760729 PMCID: PMC10525723 DOI: 10.3390/antibiotics12091433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Antifungal agents are widely used to specifically eliminate infections by fungal pathogens. However, the specificity of antifungal agents has been challenged by a few studies demonstrating antibacterial inhibitory effects against Mycobacteria and Streptomyces species. Here, we evaluated for the first time the potential effect of fluconazole, the most clinically used antifungal agent, on a human oral microbiota biofilm model. The results showed that biofilm viability on blood and mitis salivarius agar media was increased over time in the presence of fluconazole at clinically relevant concentrations, despite a reduction in biomass. Targeted PCR revealed a higher abundance of Veillonella atypica, Veillonella dispar, and Lactobacillus spp. in the fluconazole-treated samples compared to the control, while Fusobacterium nucleatum was reduced and Streptococcus spp were not significantly affected. Further, we tested the potential impact of fluconazole using single-species models. Our results, using Streptococcus mutans and Streptococcus mitis luciferase reporters, showed that S. mutans planktonic growth was not significantly affected by fluconazole, whereas for S. mitis, planktonic growth, but not biofilm viability, was inhibited at the highest concentration. Fluconazole's effects on S. mitis biofilm biomass were concentration and time dependent. Exposure for 48 h to the highest concentration of fluconazole was associated with S. mitis biofilms with the most increased biomass. Potential growth inhibitory effects were further tested using four non-streptococcal species. Among these, the planktonic growth of both Escherichia coli and Granulicatella adiacens was inhibited by fluconazole. The data indicate bacterial responses to fluconazole that extend to a broader range of bacterial species than previously anticipated from the literature, with the potential to disturb biofilm communities.
Collapse
Affiliation(s)
- Louise Morais Dornelas-Figueira
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Antônio Pedro Ricomini Filho
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| | - Roger Junges
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Heidi Aarø Åmdal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Altair Antoninha Del Bel Cury
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| | | |
Collapse
|
6
|
Vulović S, Nikolić-Jakoba N, Radunović M, Petrović S, Popovac A, Todorović M, Milić-Lemić A. Biofilm Formation on the Surfaces of CAD/CAM Dental Polymers. Polymers (Basel) 2023; 15:polym15092140. [PMID: 37177285 PMCID: PMC10181064 DOI: 10.3390/polym15092140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Dental polymers are now available as monolithic materials which can be readily used in computer-aided design and computer-aided manufacturing (CAD/CAM) systems. Despite possessing numerous advantages over conventionally produced polymers, the polymers produced by either of these systems fail to exhibit immunity to surface microbial adhesion when introduced into the oral environment, leading to the development of oral diseases. The aim of this study was to analyze the biofilm formation of six microorganisms from the oral cavity and its correlation to the surface characteristics of CAD/CAM dental polymers. A total of ninety specimens were divided into three groups: resin-based composite, polymethyl methacrylate, and polyether ether ketone. The experimental procedure included surface roughness and water contact angle measurements, colony forming unit counting, and scanning electron microscopy analysis of biofilm formed on the surface of the tested materials. The data were analyzed using the Kruskal-Wallis test, with a Dunn's post hoc analysis, and one way analysis of variance, with a Tukey's post hoc test; the correlation between the measurements was tested using Spearman's correlation coefficient, and descriptive statistics were used to present the data. Despite using the same manufacturing procedure, as well as the identical manufacturer's finishing and polishing protocols, CAD/CAM dental polymers revealed significant differences in surface roughness and water contact angle, and the increased values of both parameters led to an increase in biofilm formation on the surface of the materials. The CAD/CAM resin-based composite showed the lowest number of adhered microorganisms compared to CAD/CAM polymethyl methacrylate and CAD/CAM polyether ether ketone.
Collapse
Affiliation(s)
- Stefan Vulović
- Department of Prosthodontics, School of Dental Medicine, University of Belgrade, Rankeova 4, 11000 Belgrade, Serbia
| | - Nataša Nikolić-Jakoba
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Dr Subotica 4, 11000 Belgrade, Serbia
| | - Milena Radunović
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Sanja Petrović
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Aleksandra Popovac
- Department of Prosthodontics, School of Dental Medicine, University of Belgrade, Rankeova 4, 11000 Belgrade, Serbia
| | - Miloš Todorović
- Department of Pediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, Dr Subotica 11, 11000 Belgrade, Serbia
| | - Aleksandra Milić-Lemić
- Department of Prosthodontics, School of Dental Medicine, University of Belgrade, Rankeova 4, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Bifidobacterium animalis subsp. lactis as adjunct to non-surgical periodontal treatment in periodontitis: a randomized controlled clinical trial. Clin Oral Investig 2023; 27:1965-1972. [PMID: 36697840 DOI: 10.1007/s00784-023-04870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The purpose of this study is to investigate the clinical and microbiological effects of Bifidobacterium animalis subsp. lactis DN-173010 containing yogurt as an adjunct to non-surgical periodontal treatment in periodontitis patients. MATERIALS AND METHODS This is a prospective randomized controlled clinical study registered with NCT05408364 under clinical trial registration. Thirty periodontitis patients were divided into 2 groups at random. As adjunctive to supra and subgingival instrumentation, the test group consumed Bifidobacterium animalis subsp. lactis DN-173010 containing yogurt while the control group consumed natural yogurt, once daily for 28 days. The plaque index (PI), gingival index (GI), bleeding on probing (BOP), probing depth (PD), and clinical attachment level (CAL) were recorded at baseline, 28th day, and 3rd month. Microbiological analysis was performed using culture method by obtaining subgingival plaque samples from 2 periodontal sites with 4≤PD≤6 mm at the same time points. RESULTS The inter-group comparisons of PI, GI, and BOP as well as the changes between the measurement time points were statistically significant in favor of the test group. There were no significant differences in terms of PD and CAL changes between the study groups at all times (∆baseline-28 days, ∆baseline-3 months) (p>0.05). The number of patients presenting subgingival Bifidobacterium species was significantly greater in the test group than the control group at the 28th day (p<0.05). CONCLUSIONS The administration of probiotics has shown beneficial effects, albeit limited, on clinical and microbiological outcomes in the management of periodontitis patients. CLINICAL RELEVANCE Daily consumption of probiotic yogurt may be supportive for supra and subgingival instrumentation.
Collapse
|
8
|
Rosca AS, Castro J, França Â, Vaneechoutte M, Cerca N. Gardnerella Vaginalis Dominates Multi-Species Biofilms in both Pre-Conditioned and Competitive In Vitro Biofilm Formation Models. MICROBIAL ECOLOGY 2022; 84:1278-1287. [PMID: 34741647 DOI: 10.1007/s00248-021-01917-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Bacterial vaginosis (BV) is one of the most common bacterial vaginal infections worldwide. Despite its high prevalence, BV etiology is still unknown. Nevertheless, a hallmark of BV is the presence of a highly structured polymicrobial biofilm on the vaginal epithelium, formed primarily by Gardnerella spp. and other anaerobic species, of which co-colonization with Fannyhessea vaginae is considered an important diagnostic marker. We previously developed an in vitro biofilm model wherein Gardnerella was first allowed to establish an early biofilm that served as a scaffold for other species to adhere to. To better understand ecological interactions between BV-associated bacteria, we compared triple-species biofilms formed using two distinct models: a pre-conditioned (wherein Gardnerella vaginalis formed the early biofilm) model and a competitive (wherein all three bacteria were co-incubated together) model. Interestingly, synergistic growth interactions were more significant in the competitive model. Furthermore, the biofilm structure and species-specific distribution, as assessed by confocal laser scanning microscopy and using peptide nucleic acid fluorescence in situ hybridization method, revealed two very different triple-species morphotypes, suggesting that different interactions occur in the different models. Interestingly, independent of the model or triple-species consortium tested, we observed that G. vaginalis represented most of the biofilm bacterial composition, further highlighting the relevance of this taxon in BV.
Collapse
Affiliation(s)
- Aliona S Rosca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, Rua da Universidade, 4710-057, Braga, Portugal
- Laboratory Bacteriology Research (LBR), Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium
| | - Joana Castro
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, Rua da Universidade, 4710-057, Braga, Portugal
| | - Ângela França
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, Rua da Universidade, 4710-057, Braga, Portugal
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research (LBR), Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, Rua da Universidade, 4710-057, Braga, Portugal.
| |
Collapse
|
9
|
Toyama N, Ekuni D, Yokoi A, Fukuhara D, Islam MM, Sawada N, Nakashima Y, Nakahara M, Sumita I, Morita M. Features of the oral microbiome in Japanese elderly people with 20 or more teeth and a non-severe periodontal condition during periodontal maintenance treatment: A cross-sectional study. Front Cell Infect Microbiol 2022; 12:957890. [PMID: 36275030 PMCID: PMC9582337 DOI: 10.3389/fcimb.2022.957890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction The aim of the present study was to characterize the profile and diversity of the oral microbiome of a periodontally non-severe group with ≥20 teeth in comparison with a severe periodontitis group of elderly Japanese people. Methods A total of 50 patients who had ≥20 teeth and aged ≥60 years were recruited, and 34 participants (13 non-severe participants) were analyzed. After oral rinse (saliva after rinsing) sample collection, the V3–V4 regions of the 16S rRNA gene were sequenced to investigate microbiome composition, alpha diversity (Shannon index, Simpson index, richness, and evenness), and beta diversity using principal coordinate analysis (PCoA) based on weighted and unweighted UniFrac distances. A linear discriminant analysis effect size was calculated to identify bacterial species in the periodontally non-severe group. Results The periodontally non-severe group showed lower alpha diversity than that of the severe periodontitis group (p <0.05); however, the beta diversities were not significantly different. A higher relative abundance of four bacterial species (Prevotella nanceiensis, Gemella sanguinis, Fusobacterium periodonticum, and Haemophilus parainfluenzae) was observed in the non-severe group than that in the severe periodontitis group. Conclusion The oral microbiome in elderly Japanese people with ≥20 teeth and a non-severe periodontal condition was characterized by low alpha diversity and the presence of four bacterial species.
Collapse
Affiliation(s)
- Naoki Toyama
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- *Correspondence: Naoki Toyama,
| | - Daisuke Ekuni
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Aya Yokoi
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daiki Fukuhara
- Department of Preventive Dentistry, Okayama University Hospital, Okayama, Japan
| | - Md Monirul Islam
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nanami Sawada
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yukiho Nakashima
- Department of Preventive Dentistry, Okayama University Hospital, Okayama, Japan
| | - Momoko Nakahara
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ichiro Sumita
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Manabu Morita
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
10
|
Wawrzyk A, Rahnama M, Sofińska-Chmiel W, Wilczyński S, Gutarowska B, Konka A, Zeljas D, Łobacz M. Analysis of the Microbiome on the Surface of Corroded Titanium Dental Implants in Patients with Periimplantitis and Diode Laser Irradiation as an Aid in the Implant Prosthetic Treatment: An Ex Vivo Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5890. [PMID: 36079272 PMCID: PMC9456760 DOI: 10.3390/ma15175890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The paper presents the optimization of diode laser irradiation of corroded dental implants in order to reduce the number of microorganisms associated peri-implantitis. The research included the identification of microorganisms on the surface of removed dental implants in patients with peri-implantitis and the assessment of the biocidal effectiveness of the diode laser against these microorganisms. Laser desorption/mass spectrometry (MALDI-TOF MS) was used to identify microorganisms and metagens were examined by next generation sequencing (NGS). Irradiation was performed with a diode laser with a wavelength of λ = 810, operating mode: 25 W/15.000 Hz/10 μs, average = 3.84 W with the number of repetitions t = 2 × 15 s and t = 3 × 15 s. The structure and surface roughness of the implants were analysed before and after laser irradiation by optical profilometry and optical microscopy with confocal fixation. In total, 16 species of Gram-positive bacteria and 23 species of Gram-negative bacteria were identified on the surface of the implants. A total of 25 species of anaerobic bacteria and 12 species with corrosive potential were detected. After diode laser irradiation, the reduction in bacteria on the implants ranged from 88.85% to 100%, and the reduction in fungi from 87.75% to 96.77%. The reduction in microorganisms in the abutment was greater than in the endosseous fixture. The applied laser doses did not damage, but only cleaned the surface of the titanium implants. After 8 years of embedding, the removed titanium implant showed greater roughness than the 25-year-old implant, which was not exposed to direct influence of the oral cavity environment. The use of a diode laser in an optimised irradiation dose safely reduces the number of microorganisms identified on corroded dental implants in patients with peri-implantitis.
Collapse
Affiliation(s)
- Anna Wawrzyk
- Silesian Park of Medical Technology Kardio-Med Silesia in Zabrze, M. Curie Skłodowskiej 10C Str., 41-800 Zabrze, Poland
| | - Mansur Rahnama
- Chair and Department of Oral Surgery, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland
| | - Weronika Sofińska-Chmiel
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University, Maria Curie Skłodowska Sq. 2, 20-031 Lublin, Poland
| | - Sławomir Wilczyński
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-205 Sosnowiec, Poland
| | - Beata Gutarowska
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland
| | - Adam Konka
- Silesian Park of Medical Technology Kardio-Med Silesia in Zabrze, M. Curie Skłodowskiej 10C Str., 41-800 Zabrze, Poland
| | - Dagmara Zeljas
- Faculty of Drilling, Oil & Gas, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland
| |
Collapse
|
11
|
Zachar I, Boza G. The Evolution of Microbial Facilitation: Sociogenesis, Symbiogenesis, and Transition in Individuality. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.798045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolic cooperation is widespread, and it seems to be a ubiquitous and easily evolvable interaction in the microbial domain. Mutual metabolic cooperation, like syntrophy, is thought to have a crucial role in stabilizing interactions and communities, for example biofilms. Furthermore, cooperation is expected to feed back positively to the community under higher-level selection. In certain cases, cooperation can lead to a transition in individuality, when freely reproducing, unrelated entities (genes, microbes, etc.) irreversibly integrate to form a new evolutionary unit. The textbook example is endosymbiosis, prevalent among eukaryotes but virtually lacking among prokaryotes. Concerning the ubiquity of syntrophic microbial communities, it is intriguing why evolution has not lead to more transitions in individuality in the microbial domain. We set out to distinguish syntrophy-specific aspects of major transitions, to investigate why a transition in individuality within a syntrophic pair or community is so rare. We review the field of metabolic communities to identify potential evolutionary trajectories that may lead to a transition. Community properties, like joint metabolic capacity, functional profile, guild composition, assembly and interaction patterns are important concepts that may not only persist stably but according to thought-provoking theories, may provide the heritable information at a higher level of selection. We explore these ideas, relating to concepts of multilevel selection and of informational replication, to assess their relevance in the debate whether microbial communities may inherit community-level information or not.
Collapse
|
12
|
Dabbah K, Perelshtein I, Gedanken A, Houri-Haddad Y, Feuerstein O. Effects of a ZnCuO-Nanocoated Ti-6Al-4V Surface on Bacterial and Host Cells. MATERIALS 2022; 15:ma15072514. [PMID: 35407847 PMCID: PMC8999654 DOI: 10.3390/ma15072514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 02/01/2023]
Abstract
This study aims to investigate the effects of a novel ZnCuO nanoparticle coating for dental implants—versus those of conventional titanium surfaces—on bacteria and host cells. A multispecies biofilm composed of Streptococcus sanguinis, Actinomyces naeslundii, Porphyromonas gingivalis, and Fusobacterium nucleatum was grown for 14 days on various titanium discs: machined, sandblasted, sandblasted and acid-etched (SLA), ZnCuO-coated, and hydroxyapatite discs. Bacterial species were quantified with qPCR, and their viability was examined via confocal microscopy. Osteoblast-like and macrophage-like cells grown on the various discs for 48 h were examined for proliferation using an XTT assay, and for activity using ALP and TNF-α assays. The CSLM revealed more dead bacteria in biofilms grown on titanium than on hydroxyapatite, and less on sandblasted than on machined and ZnCuO-coated surfaces, with the latter showing a significant decrease in all four biofilm species. The osteoblast-like cells showed increased proliferation on all of the titanium surfaces, with higher activity on the ZnCuO-coated and sandblasted discs. The macrophage-like cells showed higher proliferation on the hydroxyapatite and sandblasted discs, and lower activity on the SLA and ZnCuO-coated discs. The ZnCuO-coated titanium has anti-biofilm characteristics with desired effects on host cells, thus representing a promising candidate in the complex battle against peri-implantitis.
Collapse
Affiliation(s)
- Kamal Dabbah
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (K.D.); (Y.H.-H.)
| | - Ilana Perelshtein
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel; (I.P.); (A.G.)
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel; (I.P.); (A.G.)
| | - Yael Houri-Haddad
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (K.D.); (Y.H.-H.)
| | - Osnat Feuerstein
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (K.D.); (Y.H.-H.)
- Correspondence: ; Tel.: +972-2-6778158
| |
Collapse
|
13
|
Fixed Prosthetic Restorations and Periodontal Health: A Narrative Review. J Funct Biomater 2022; 13:jfb13010015. [PMID: 35225978 PMCID: PMC8883934 DOI: 10.3390/jfb13010015] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022] Open
Abstract
Periodontal health plays an important role in the longevity of prosthodontic restorations. The issues of comparative assessment of prosthetic constructions are complicated and not fully understood. The aim of this article is to review and present the current knowledge regarding the various technical, clinical, and molecular aspects of different prosthetic biomaterials and highlight the interactions between periodontal health and prosthetic restorations. Articles on periodontal health and fixed dental prostheses were searched using the keywords “zirconium”, “CAD/CAM”, “dental ceramics”, “metal–ceramics”, “margin fit”, “crown”, “fixed dental prostheses”, “periodontium”, and “margin gap” in PubMed/Medline, Scopus, Google Scholar, and Science Direct. Further search criteria included being published in English, and between January 1981 and September 2021. Then, relevant articles were selected, included, and critically analyzed in this review. The margin of discrepancy results in the enhanced accumulation of dental biofilm, microleakage, hypersensitivity, margin discoloration, increased gingival crevicular fluid flow (GCF), recurrent caries, pulp infection and, lastly, periodontal lesion and bone loss, which can lead to the failure of prosthetic treatment. Before starting prosthetic treatment, the condition of the periodontal tissues should be assessed for their oral hygiene status, and gingival and periodontal conditions. Zirconium-based restorations made from computer-aided design and computer-aided manufacturing (CAD/CAM) technology provide better results, in terms of marginal fit, inflammation reduction, maintenance, and the restoration of periodontal health and oral hygiene, compared to constructions made by conventional methods, and from other alloys. Compared to subgingival margins, supragingival margins offer better oral hygiene, which can be maintained and does not lead to secondary caries or periodontal disease.
Collapse
|
14
|
Zhou P, Manoil D, Belibasakis GN, Kotsakis GA. Veillonellae: Beyond Bridging Species in Oral Biofilm Ecology. FRONTIERS IN ORAL HEALTH 2022; 2:774115. [PMID: 35048073 PMCID: PMC8757872 DOI: 10.3389/froh.2021.774115] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
The genus Veillonella comprises 16 characterized species, among which eight are commonly found in the human oral cavity. The high abundance of Veillonella species in the microbiome of both supra- and sub-gingival biofilms, and their interdependent relationship with a multitude of other bacterial species, suggest veillonellae to play an important role in oral biofilm ecology. Development of oral biofilms relies on an incremental coaggregation process between early, bridging and later bacterial colonizers, ultimately forming multispecies communities. As early colonizer and bridging species, veillonellae are critical in guiding the development of multispecies communities in the human oral microenvironment. Their ability to establish mutualistic relationships with other members of the oral microbiome has emerged as a crucial factor that may contribute to health equilibrium. Here, we review the general characteristics, taxonomy, physiology, genomic and genetics of veillonellae, as well as their bridging role in the development of oral biofilms. We further discuss the role of Veillonella spp. as potential “accessory pathogens” in the human oral cavity, capable of supporting colonization by other, more pathogenic species. The relationship between Veillonella spp. and dental caries, periodontitis, and peri-implantitis is also recapitulated in this review. We finally highlight areas of future research required to better understand the intergeneric signaling employed by veillonellae during their bridging activities and interspecies mutualism. With the recent discoveries of large species and strain-specific variation within the genus in biological and virulence characteristics, the study of Veillonella as an example of highly adaptive microorganisms that indirectly participates in dysbiosis holds great promise for broadening our understanding of polymicrobial disease pathogenesis.
Collapse
Affiliation(s)
- Peng Zhou
- Translational Periodontal Research Lab, Department of Periodontics, School of Dentistry, UT Health San Antonio, San Antonio, TX, United States
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Georgios A Kotsakis
- Translational Periodontal Research Lab, Department of Periodontics, School of Dentistry, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
15
|
Harris KB, Flynn KM, Cooper VS. Polygenic Adaptation and Clonal Interference Enable Sustained Diversity in Experimental Pseudomonas aeruginosa Populations. Mol Biol Evol 2021; 38:5359-5375. [PMID: 34410431 PMCID: PMC8662654 DOI: 10.1093/molbev/msab248] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
How biodiversity arises and can be maintained in asexual microbial populations growing on a single resource remains unclear. Many models presume that beneficial genotypes will outgrow others and purge variation via selective sweeps. Environmental structure like that found in biofilms, which are associated with persistence during infection and other stressful conditions, may oppose this process and preserve variation. We tested this hypothesis by evolving Pseudomonas aeruginosa populations in biofilm-promoting arginine media for 3 months, using both a bead model of the biofilm life cycle and planktonic serial transfer. Surprisingly, adaptation and diversification were mostly uninterrupted by fixation events that eliminate diversity, with hundreds of mutations maintained at intermediate frequencies. The exceptions included genotypes with mutator alleles that also accelerated genetic diversification. Despite the rarity of hard sweeps, a remarkable 40 genes acquired parallel mutations in both treatments and often among competing genotypes within a population. These incomplete soft sweeps include several transporters (including pitA, pntB, nosD, and pchF) suggesting adaptation to the growth media that becomes highly alkaline during growth. Further, genes involved in signal transduction (including gacS, aer2, bdlA, and PA14_71750) reflect likely adaptations to biofilm-inducing conditions. Contrary to evolution experiments that select mutations in a few genes, these results suggest that some environments may expose a larger fraction of the genome and select for many adaptations at once. Thus, even growth on a sole carbon source can lead to persistent genetic and phenotypic variation despite strong selection that would normally purge diversity.
Collapse
Affiliation(s)
- Katrina B Harris
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenneth M Flynn
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Kang MS, Park GY. In Vitro Evaluation of the Effect of Oral Probiotic Weissella cibaria on the Formation of Multi-Species Oral Biofilms on Dental Implant Surfaces. Microorganisms 2021; 9:microorganisms9122482. [PMID: 34946084 PMCID: PMC8707126 DOI: 10.3390/microorganisms9122482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Oral probiotics are beneficial bacteria that can help prevent periodontal disease. However, little is known about the effects of oral probiotics on the formation of implant biofilms. This study aimed to evaluate the effects of oral probiotics Weissella cibaria CMU and CMS1 in an in vitro complex biofilm model on titanium implant surfaces. First, it was identified through colony biofilm assay that W. cibaria CMU and CMS1 inhibit the formation of multi-species biofilms formed by eight types of bacteria. Two types of saliva-coated titanium discs inoculated with early (Streptococcus gordonii, Streptococcus oralis, Streptococcus sanguinis, Actinomyces naeslundii, and Veillonella parvula), secondary (Fusobacterium nucleatum and Prevotella intermedia), and late (Porphyromonas gingivalis) colonizers were treated with the oral probiotics and then incubated anaerobically for three days. The effects of oral probiotics on titanium disc biofilm formation were analyzed using culture methods, quantitative polymerase chain reaction (qPCR), and microscopic analysis. Both probiotics significantly inhibited the formation of biofilm, and all eight bacterial species were significantly reduced. The effectiveness of both probiotic strains was confirmed by all the methods used. Oral probiotics may have dramatically reduced the biofilm formation of secondary colonizers that act as bridges, thus inhibiting biofilm formation on the titanium surface. Our results suggest that the probiotic W. cibaria offers new possibilities for the prevention of peri-implant mucositis.
Collapse
|
17
|
Mayumi S, Kuboniwa M, Sakanaka A, Hashino E, Ishikawa A, Ijima Y, Amano A. Potential of Prebiotic D-Tagatose for Prevention of Oral Disease. Front Cell Infect Microbiol 2021; 11:767944. [PMID: 34804997 PMCID: PMC8604381 DOI: 10.3389/fcimb.2021.767944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Recent studies have shown phenotypic and metabolic heterogeneity in related species including Streptococcus oralis, a typical oral commensal bacterium, Streptococcus mutans, a cariogenic bacterium, and Streptococcus gordonii, which functions as an accessory pathogen in periodontopathic biofilm. In this study, metabolites characteristically contained in the saliva of individuals with good oral hygiene were determined, after which the effects of an identified prebiotic candidate, D-tagatose, on phenotype, gene expression, and metabolic profiles of those three key bacterial species were investigated. Examinations of the saliva metabolome of 18 systemically healthy volunteers identified salivary D-tagatose as associated with lower dental biofilm abundance in the oral cavity (Spearman’s correlation coefficient; r = -0.603, p = 0.008), then the effects of D-tagatose on oral streptococci were analyzed in vitro. In chemically defined medium (CDM) containing D-tagatose as the sole carbohydrate source, S. mutans and S. gordonii each showed negligible biofilm formation, whereas significant biofilms were formed in cultures of S. oralis. Furthermore, even in the presence of glucose, S. mutans and S. gordonii showed growth suppression and decreases in the final viable cell count in a D-tagatose concentration-dependent manner. In contrast, no inhibitory effects of D-tagatose on the growth of S. oralis were observed. To investigate species-specific inhibition by D-tagatose, the metabolomic profiles of D-tagatose-treated S. mutans, S. gordonii, and S. oralis cells were examined. The intracellular amounts of pyruvate-derived amino acids in S. mutans and S. gordonii, but not in S. oralis, such as branched-chain amino acids and alanine, tended to decrease in the presence of D-tagatose. This phenomenon indicates that D-tagatose inhibits growth of those bacteria by affecting glycolysis and its downstream metabolism. In conclusion, the present study provides evidence that D-tagatose is abundant in saliva of individuals with good oral health. Additionally, experimental results demonstrated that D-tagatose selectively inhibits growth of the oral pathogens S. mutans and S. gordonii. In contrast, the oral commensal S. oralis seemed to be negligibly affected, thus highlighting the potential of administration of D-tagatose as an oral prebiotic for its ability to manipulate the metabolism of those targeted oral streptococci.
Collapse
Affiliation(s)
- Shota Mayumi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Akito Sakanaka
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Ei Hashino
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Asuka Ishikawa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yura Ijima
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
18
|
Torralba MG, Aleti G, Li W, Moncera KJ, Lin YH, Yu Y, Masternak MM, Golusinski W, Golusinski P, Lamperska K, Edlund A, Freire M, Nelson KE. Oral Microbial Species and Virulence Factors Associated with Oral Squamous Cell Carcinoma. MICROBIAL ECOLOGY 2021; 82:1030-1046. [PMID: 33155101 PMCID: PMC8551143 DOI: 10.1007/s00248-020-01596-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/01/2020] [Indexed: 05/14/2023]
Abstract
The human microbiome has been the focus of numerous research efforts to elucidate the pathogenesis of human diseases including cancer. Oral cancer mortality is high when compared with other cancers, as diagnosis often occurs during late stages. Its prevalence has increased in the USA over the past decade and accounts for over 40,000 new cancer patients each year. Additionally, oral cancer pathogenesis is not fully understood and is likely multifactorial. To unravel the relationships that are associated with the oral microbiome and their virulence factors, we used 16S rDNA and metagenomic sequencing to characterize the microbial composition and functional content in oral squamous cell carcinoma (OSCC) tumor tissue, non-tumor tissue, and saliva from 18 OSCC patients. Results indicate a higher number of bacteria belonging to the Fusobacteria, Bacteroidetes, and Firmicutes phyla associated with tumor tissue when compared with all other sample types. Additionally, saliva metaproteomics revealed a significant increase of Prevotella in five OSCC subjects, while Corynebacterium was mostly associated with ten healthy subjects. Lastly, we determined that there are adhesion and virulence factors associated with Streptococcus gordonii as well as from known oral pathogens belonging to the Fusobacterium genera found mostly in OSCC tissues. From these results, we propose that not only will the methods utilized in this study drastically improve OSCC diagnostics, but the organisms and specific virulence factors from the phyla detected in tumor tissue may be excellent biomarkers for characterizing disease progression.
Collapse
Affiliation(s)
- Manolito G Torralba
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA.
| | - Gajender Aleti
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Weizhong Li
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Kelvin Jens Moncera
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Yi-Han Lin
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Yanbao Yu
- Department of Genomic Medicine, J. Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Central Florida Blvd, Orlando, FL, 32827, USA
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland
| | - Pawel Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland
- Department of Otolaryngology and Maxillofacial Surgery, University of Zielona Gora, Podgórna 50, 65-246, Zielona Góra, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15th Garbary Street, room 5025, 61-866, Poznan, Poland
| | - Anna Edlund
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Marcelo Freire
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Karen E Nelson
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| |
Collapse
|
19
|
Ali Mohammed MM, Pettersen VK, Nerland AH, Wiker HG, Bakken V. Label-free quantitative proteomic analysis of the oral bacteria Fusobacterium nucleatum and Porphyromonas gingivalis to identify protein features relevant in biofilm formation. Anaerobe 2021; 72:102449. [PMID: 34543761 DOI: 10.1016/j.anaerobe.2021.102449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/24/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The opportunistic pathogens Fusobacterium nucleatum and Porphyromonas gingivalis are Gram-negative bacteria associated with oral biofilm and periodontal disease. This study investigated interactions between F. nucleatum and P. gingivalis proteomes with the objective to identify proteins relevant in biofilm formation. METHODS We applied liquid chromatography-tandem mass spectrometry to determine the expressed proteome of F. nucleatum and P. gingivalis cells grown in biofilm or planktonic culture, and as mono- and dual-species models. The detected proteins were classified into functional categories and their label-free quantitative (LFQ) intensities statistically compared. RESULTS The proteomic analyses detected 1,322 F. nucleatum and 966 P. gingivalis proteins, including abundant virulence factors. Using univariate statistics, we identified significant changes between biofilm and planktonic culture (p-value ≤0.05) in 0,4% F. nucleatum, 7% P. gingivalis, and 14% of all proteins in the dual-species model. For both species, proteins involved in vitamin B2 (riboflavin) metabolism had significantly increased levels in biofilm. In both mono- and dual-species biofilms, P. gingivalis increased the production of proteins for translation, oxidation-reduction, and amino acid metabolism compared to planktonic cultures. However, when we compared LFQ intensities between mono- and dual-species, over 90% of the significantly changed P. gingivalis proteins had their levels reduced in biofilm and planktonic settings of the dual-species model. CONCLUSIONS The findings suggest that P. gingivalis reduces the production of multiple proteins because of the F. nucleatum presence. The results highlight the complex interactions of bacteria contributing to oral biofilms, which need to be considered in the design of prevention strategies.
Collapse
Affiliation(s)
| | | | - Audun H Nerland
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Harald G Wiker
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Vidar Bakken
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
20
|
Hsu SM, Fares C, Xia X, Rasel MAJ, Ketter J, Afonso Camargo SE, Haque MA, Ren F, Esquivel-Upshaw JF. In Vitro Corrosion of SiC-Coated Anodized Ti Nano-Tubular Surfaces. J Funct Biomater 2021; 12:52. [PMID: 34564201 PMCID: PMC8482235 DOI: 10.3390/jfb12030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022] Open
Abstract
Peri-implantitis leads to implant failure and decreases long-term survival and success rates of implant-supported prostheses. The pathogenesis of this disease is complex but implant corrosion is believed to be one of the many factors which contributes to progression of this disease. A nanostructured titanium dioxide layer was introduced using anodization to improve the functionality of dental implants. In the present study, we evaluated the corrosion performance of silicon carbide (SiC) on anodized titanium dioxide nanotubes (ATO) using plasma-enhanced chemical vapor deposition (PECVD). This was investigated through a potentiodynamic polarization test and bacterial incubation for 30 days. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze surface morphologies of non-coated and SiC-coated nanotubes. Energy dispersive X-ray (EDX) was used to analyze the surface composition. In conclusion, SiC-coated ATO exhibited improved corrosion resistance and holds promise as an implant coating material.
Collapse
Affiliation(s)
- Shu-Min Hsu
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.-M.H.); (S.E.A.C.)
| | - Chaker Fares
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32610, USA; (C.F.); (X.X.); (F.R.)
| | - Xinyi Xia
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32610, USA; (C.F.); (X.X.); (F.R.)
| | - Md Abu Jafar Rasel
- Department of Mechanical Engineering, Penn State University, University Park, PA 16802, USA; (M.A.J.R.); (M.A.H.)
| | | | - Samira Esteves Afonso Camargo
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.-M.H.); (S.E.A.C.)
| | - Md Amanul Haque
- Department of Mechanical Engineering, Penn State University, University Park, PA 16802, USA; (M.A.J.R.); (M.A.H.)
| | - Fan Ren
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32610, USA; (C.F.); (X.X.); (F.R.)
| | - Josephine F. Esquivel-Upshaw
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.-M.H.); (S.E.A.C.)
| |
Collapse
|
21
|
Gross M, Ashqar F, Sionov RV, Friedman M, Eliashar R, Zaks B, Gati I, Duanis-Assaf D, Feldman M, Steinberg D. Sustained release varnish containing chlorhexidine for prevention of Streptococcus mutans biofilm formation on voice prosthesis surface: an in vitro study. Int Microbiol 2021; 25:177-187. [PMID: 34505216 DOI: 10.1007/s10123-021-00205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES In this study, we aimed to develop a novel, sustained release varnish (SRV) for voice prostheses (VP) releasing chlorhexidine (CHX), for the prevention of biofilm formation caused by the common oral bacteria Streptococcus mutans on VP surfaces. METHODS This study was performed in an in vitro model as a step towards future in vivo trials. VPs were coated with a SRV containing CHX (SRV-CHX) or SRV alone (placebo-SRV) that were daily exposed to S. mutans. The polymeric materials of SRV were composed of ethylcellulose and PEG-400. Biofilm formation was assessed by DNA quantification (qPCR), crystal violet staining, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and kinetics experiments. RESULTS The amount of DNA in the biofilms formed by S. mutans on VP surfaces coated once with SRV-CHX (1.024 ± 0.218 ng DNA/piece) was 58.5 ± 8.8% lower than that of placebo-SRV-coated VPs (2.465 ± 0.198 ng DNA/piece) after a 48-h exposure to S. mutans (p = 0.038). Reduced biofilm mass on SRV-CHX-coated VPs was visually confirmed by CLSM and SEM. CV staining of SRV-CHX single-coated VPs that have been exposed to S. mutans nine times showed a 98.1 ± 0.2% reduction in biofilm mass compared to placebo-SRV-coated VPs (p = 0.003). Kinetic experiments revealed that SRV-CHX triple-coated VPs could delay bacterial growth for 23 days. CONCLUSIONS Coating VPs with SRV-CHX has an inhibitory effect on biofilm formation and prevents bacterial growth in their vicinities. This study is a proof-of-principle that paves the way for developing new clinical means for reducing both VPs' bacterial biofilm formation and device failure.
Collapse
Affiliation(s)
- Menachem Gross
- Department of Otolaryngology - Head and Neck Surgery, Hadassah Hebrew University Medical Center, P.O.Box 12000, 91120, Jerusalem, Israel. .,Biofilm Research Laboratory, Institute of Dental Sciences, Hebrew University, 91120, Jerusalem, Israel. .,School of Medicine, Hebrew University, Jerusalem, Israel.
| | - Fadi Ashqar
- Department of Otolaryngology - Head and Neck Surgery, Hadassah Hebrew University Medical Center, P.O.Box 12000, 91120, Jerusalem, Israel
| | - Ronit Vogt Sionov
- Biofilm Research Laboratory, Institute of Dental Sciences, Hebrew University, 91120, Jerusalem, Israel
| | - Michael Friedman
- School of Medicine, Hebrew University, Jerusalem, Israel.,School of Pharmacy, Hebrew University, Jerusalem, Israel
| | - Ron Eliashar
- Department of Otolaryngology - Head and Neck Surgery, Hadassah Hebrew University Medical Center, P.O.Box 12000, 91120, Jerusalem, Israel.,School of Medicine, Hebrew University, Jerusalem, Israel
| | - Batya Zaks
- Biofilm Research Laboratory, Institute of Dental Sciences, Hebrew University, 91120, Jerusalem, Israel
| | - Irith Gati
- School of Pharmacy, Hebrew University, Jerusalem, Israel
| | - Danielle Duanis-Assaf
- Biofilm Research Laboratory, Institute of Dental Sciences, Hebrew University, 91120, Jerusalem, Israel
| | - Mark Feldman
- Biofilm Research Laboratory, Institute of Dental Sciences, Hebrew University, 91120, Jerusalem, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Dental Sciences, Hebrew University, 91120, Jerusalem, Israel
| |
Collapse
|
22
|
Abstract
Our understanding of the host component of sepsis has made significant progress. However, detailed study of the microorganisms causing sepsis, either as single pathogens or microbial assemblages, has received far less attention. Metagenomic data offer opportunities to characterize the microbial communities found in septic and healthy individuals. In this study we apply gradient-boosted tree classifiers and a novel computational decontamination technique built upon SHapley Additive exPlanations (SHAP) to identify microbial hallmarks which discriminate blood metagenomic samples of septic patients from that of healthy individuals. Classifiers had high performance when using the read assignments to microbial genera [area under the receiver operating characteristic (AUROC=0.995)], including after removal of species ‘culture-confirmed’ as the cause of sepsis through clinical testing (AUROC=0.915). Models trained on single genera were inferior to those employing a polymicrobial model and we identified multiple co-occurring bacterial genera absent from healthy controls. While prevailing diagnostic paradigms seek to identify single pathogens, our results point to the involvement of a polymicrobial community in sepsis. We demonstrate the importance of the microbial component in characterising sepsis, which may offer new biological insights into the aetiology of sepsis, and ultimately support the development of clinical diagnostic or even prognostic tools.
Collapse
Affiliation(s)
- Cedric Chih Shen Tan
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK.,Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Mislav Acman
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Francois Balloux
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
23
|
Heboyan A, Manrikyan M, Zafar MS, Rokaya D, Nushikyan R, Vardanyan I, Vardanyan A, Khurshid Z. Bacteriological Evaluation of Gingival Crevicular Fluid in Teeth Restored Using Fixed Dental Prostheses: An In Vivo Study. Int J Mol Sci 2021; 22:ijms22115463. [PMID: 34067261 PMCID: PMC8196846 DOI: 10.3390/ijms22115463] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The present in vivo study determined the microbiological counts of the gingival crevicular fluid (GCF) among patients with fixed dental prostheses fabricated using three different techniques. A total of 129 subjects were divided into three study groups: first, cobalt-chrome-based, metal-ceramic prostheses fabricated by the conventional method (MC, n = 35); the second group consisted of cobalt-chrome-based, metal-ceramic prostheses fabricated by the computer-aided design and computer-aided manufacturing (CAD/CAM) technique (CC-MC, n = 35); the third group comprised zirconia-based ceramic prostheses fabricated using the CAD/CAM technique (CC-Zr, n = 35). The control consisted of 24 patients using prostheses fabricated with either MC, CC-MC, or CC-Zr. The GCF was obtained from the subjects before treatment, and 6 and 12 months after the prosthetic treatment. Bacteriological and bacterioscopic analysis of the GCF was performed to analyze the patients’ GCF. The data were analyzed using SPSS V20 (IBM Company, Chicago, IL, USA). The number of microorganisms of the gingival crevicular fluid in all groups at 12 months of prosthetic treatment reduced dramatically compared with the data obtained before prosthetic treatment. Inflammatory processes in the periodontium occurred slowly in the case of zirconium oxide-based ceramic constructions due to their biocompatibility with the mucous membranes and tissues of the oral cavity as well as a reduced risk of dental biofilm formation. This should be considered by dentists and prosthodontists when choosing restoration materials for subjects with periodontal pathology.
Collapse
Affiliation(s)
- Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University, Str. Koryun 2, Yerevan 0025, Armenia;
- Correspondence: (A.H.); (D.R.); Tel.: +374-93211221 (A.H.)
| | - Mikayel Manrikyan
- Department of Pediatric Dentistry and Orthodontics, Faculty of Stomatology, Yerevan State Medical University, Str. Koryun 2, Yerevan 0025, Armenia; (M.M.); (I.V.)
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Dinesh Rokaya
- Department of Clinical Dentistry, Walailak University International College of Dentistry, Walailak University, Bangkok 10400, Thailand
- Correspondence: (A.H.); (D.R.); Tel.: +374-93211221 (A.H.)
| | - Ruzan Nushikyan
- Davidyants Laboratories, Department of Microbiology, GYSANE Limited Liability Company, Yerevan 0054, Armenia;
| | - Izabella Vardanyan
- Department of Pediatric Dentistry and Orthodontics, Faculty of Stomatology, Yerevan State Medical University, Str. Koryun 2, Yerevan 0025, Armenia; (M.M.); (I.V.)
| | - Anna Vardanyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University, Str. Koryun 2, Yerevan 0025, Armenia;
| | - Zohaib Khurshid
- Department of Prosthodontics and Implantology, College of Dentistry, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
24
|
Wei J, Zhang X, Li Y, Ding X, Zhang Y, Jiang X, Lai H, Shi J. Novel application of bergapten and quercetin with anti-bacterial, osteogenesis-potentiating, and anti-inflammation tri-effects. Acta Biochim Biophys Sin (Shanghai) 2021; 53:683-696. [PMID: 33772282 DOI: 10.1093/abbs/gmab037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 01/02/2023] Open
Abstract
The bacteria-mediated inflammatory conditions adversely affect the osseointegration process of endosseous implants, which can even lead to implant malfunction or failure. Local drug delivery has been designed to exert anti-inflammatory and antibacterial activities, but whether this strategy has an effect on the compromised osseointegration under inflammation has rarely been studied. The present study focused on the osteoinductive efficacy of two known phytoestrogens [bergapten (BP) and quercetin (QE)] on implant sites under multiple bacteria-infected conditions in situ. Furthermore, the gene expression profiles of rat bone mesenchymal stem cells (rBMSCs) treated with BP and QE in the presence of Porphyromonas gingivalis-derived lipopolysaccharide were identified. The results showed that both drugs, especially QE, had significant potentiating effects on promoting osteogenic differentiation of rBMSCs, resisting multiple pathogens, and reducing inflammatory activity. Meanwhile, RNA sequencing analysis highlighted the enriched gene ontology terms and the differentially expressed genes (Vps25, Il1r2, Csf3, Efemp1, and Ccl20) that might play essential roles in regulating the above tri-effects, which provided the basis for the drug delivery system to be used as a novel therapeutic strategy for integrating peri-implant health. Overall, our study confirmed that QE appeared to outperform BP in osteogenesis and bacterial killing but not in anti-inflammation. Moreover, both drugs possess favorable tri-effects and can serve as the pivotal agents for the drug delivery system to boost osseointegration at inflammatory implant sites.
Collapse
Affiliation(s)
- Jianxu Wei
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xiaomeng Zhang
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yuan Li
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xinxin Ding
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yi Zhang
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xue Jiang
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Hongchang Lai
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Junyu Shi
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
25
|
Verspecht T, Van Holm W, Boon N, Bernaerts K, Daep CA, Masters JG, Zayed N, Quirynen M, Teughels W. Potential prebiotic substrates modulate composition, metabolism, virulence and inflammatory potential of an in vitro multi-species oral biofilm. J Oral Microbiol 2021; 13:1910462. [PMID: 33968313 PMCID: PMC8079042 DOI: 10.1080/20002297.2021.1910462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Modulation of the commensal oral microbiota constitutes a promising preventive/therapeutic approach in oral healthcare. The use of prebiotics for maintaining/restoring the health-associated homeostasis of the oral microbiota has become an important research topic. Aims: This study hypothesised that in vitro 14-species oral biofilms can be modulated by (in)direct stimulation of beneficial/commensal bacteria with new potential prebiotic substrates tested at 1 M and 1%(w/v), resulting in more host-compatible biofilms with fewer pathogens, decreased virulence and less inflammatory potential. Methods: Established biofilms were repeatedly rinsed with N-acetyl-D-glucosamine, α-D-lactose, D-(+)-trehalose or D-(+)-raffinose at 1 M or 1%(w/v). Biofilm composition, metabolic profile, virulence and inflammatory potential were eventually determined. Results: Repeated rinsing caused a shift towards a more health-associated microbiological composition, an altered metabolic profile, often downregulated virulence gene expression and decreased the inflammatory potential on oral keratinocytes. At 1 M, the substrates had pronounced effects on all biofilm aspects, whereas at 1%(w/v) they had a pronounced effect on virulence gene expression and a limited effect on inflammatory potential. Conclusion: Overall, this study identified four new potential prebiotic substrates that exhibit different modulatory effects at two different concentrations that cause in vitro multi-species oral biofilms to become more host-compatible.
Collapse
Affiliation(s)
- Tim Verspecht
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Wannes Van Holm
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Nico Boon
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven Chem & Tech, Leuven, Belgium
| | - Carlo A Daep
- Colgate-Palmolive Technology Center, Piscataway, NJ USA
| | | | - Naiera Zayed
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium.,Faculty of Pharmacy, Menoufia University, Egypt
| | - Marc Quirynen
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Wei J, Qiao S, Zhang X, Li Y, Zhang Y, Wei S, Shi J, Lai H. Graphene-Reinforced Titanium Enhances Soft Tissue Seal. Front Bioeng Biotechnol 2021; 9:665305. [PMID: 33928075 PMCID: PMC8076685 DOI: 10.3389/fbioe.2021.665305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
The integrity of soft tissue seal is essential for preventing peri-implant infection, mainly induced by established bacterial biofilms around dental implants. Nowadays, graphene is well-known for its potential in biocompatibility and antisepsis. Herein, a new titanium biomaterial containing graphene (Ti-0.125G) was synthesized using the spark plasma sintering (SPS) technique. After material characteristics detection, the subsequent responses of human gingival fibroblasts (HGFs) and multiple oral pathogens (including Streptococci mutans, Fusobacterium nucleatum, and Porphyromonas gingivalis) to the graphene-reinforced sample were assessed, respectively. Also, the dynamic change of the bacterial multispecies volume in biofilms was evaluated using absolute quantification PCR combined with Illumina high-throughput sequencing. Ti-0.125G, in addition to its particularly pronounced inhibitory effect on Porphyromonas gingivalis at 96 h, was broadly effective against multiple pathogens rather than just one strain. The reinforced material’s selective responses were also evaluated by a co-culture model involving HGFs and multiple strains. The results disclosed that the graphene-reinforced samples were highly effective in keeping a balance between the favorable fibroblast responses and the suppressive microbial growth, which could account for the optimal soft tissue seal in the oral cavity. Furthermore, the underlying mechanism regarding new material’s bactericidal property in the current study has been elucidated as the electron transfer, which disturbed the bacterial respiratory chain and resulted in a decrease of microbial viability. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the PICRUSt tool was conducted for the prediction of microbial metabolism functions. Consequently, it is inferred that Ti-0.125G has promising potentials for application in implant dentistry, especially in enhancing the integrity of soft tissue and improving its resistance against bacterial infections around oral implants.
Collapse
Affiliation(s)
- Jianxu Wei
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shichong Qiao
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomeng Zhang
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Li
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zhang
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shimin Wei
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junyu Shi
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongchang Lai
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Sánchez MC, Alonso-Español A, Ribeiro-Vidal H, Alonso B, Herrera D, Sanz M. Relevance of Biofilm Models in Periodontal Research: From Static to Dynamic Systems. Microorganisms 2021; 9:428. [PMID: 33669562 PMCID: PMC7922797 DOI: 10.3390/microorganisms9020428] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
Microbial biofilm modeling has improved in sophistication and scope, although only a limited number of standardized protocols are available. This review presents an example of a biofilm model, along with its evolution and application in studying periodontal and peri-implant diseases. In 2011, the ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) research group at the University Complutense of Madrid developed an in vitro biofilm static model using representative bacteria from the subgingival microbiota, demonstrating a pattern of bacterial colonization and maturation similar to in vivo subgingival biofilms. When the model and its methodology were standardized, the ETEP research group employed the validated in vitro biofilm model for testing in different applications. The evolution of this model is described in this manuscript, from the mere observation of biofilm growth and maturation on static models on hydroxyapatite or titanium discs, to the evaluation of the impact of dental implant surface composition and micro-structure using the dynamic biofilm model. This evolution was based on reproducing the ideal microenvironmental conditions for bacterial growth within a bioreactor and reaching the target surfaces using the fluid dynamics mimicking the salivary flow. The development of this relevant biofilm model has become a powerful tool to study the essential processes that regulate the formation and maturation of these important microbial communities, as well as their behavior when exposed to different antimicrobial compounds.
Collapse
Affiliation(s)
- María Carmen Sánchez
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
- Medicine Department, Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain
| | - Andrea Alonso-Español
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| | - Honorato Ribeiro-Vidal
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| | - Bettina Alonso
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| |
Collapse
|
28
|
Manipulation of Saliva-Derived Microcosm Biofilms To Resemble Dysbiotic Subgingival Microbiota. Appl Environ Microbiol 2021; 87:AEM.02371-20. [PMID: 33158898 PMCID: PMC7848911 DOI: 10.1128/aem.02371-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
In line with the new paradigm of the etiology of periodontitis, an inflammatory disorder initiated by dysbiotic subgingival microbiota, novel therapeutic strategies have been proposed targeting reversing dysbiosis and restoring host-compatible microbiota rather than eliminating the biofilms unselectively. Thus, appropriate laboratory models are required to evaluate the efficacy of potential microbiome modulators. Periodontitis is a highly prevalent oral inflammatory disease triggered by dysbiotic subgingival microbiota. For the development of microbiome modulators that can reverse the dysbiotic state and reestablish a health-associated microbiota, a high-throughput in vitro multispecies biofilm model is needed. Our aim is to establish a model that resembles a dysbiotic subgingival microbial biofilm by incorporating the major periodontal pathogen Porphyromonas gingivalis into microcosm biofilms cultured from pooled saliva of healthy volunteers. The biofilms were grown for 3, 7, and 10 days and analyzed for their microbial composition by 16S rRNA gene amplicon sequencing as well as measurement of dipeptidyl peptidase IV (DPP4) activity and butyric acid production. The addition of P. gingivalis increased its abundance in saliva-derived microcosm biofilms from 2.7% on day 3 to >50% on day 10, which significantly reduced the Shannon diversity but did not affect the total number of operational taxonomic units (OTUs). The P. gingivalis-enriched biofilms displayed altered microbial composition as revealed by principal-component analysis and reduced interactions among microbial species. Moreover, these biofilms exhibited enhanced DPP4 activity and butyric acid production. In conclusion, by adding P. gingivalis to saliva-derived microcosm biofilms, we established an in vitro pathogen-enriched dysbiotic microbiota which resembles periodontitis-associated subgingival microbiota in terms of increased P. gingivalis abundance and higher DPP4 activity and butyric acid production. This model may allow for investigating factors that accelerate or hinder a microbial shift from symbiosis to dysbiosis and for developing microbiome modulation strategies. IMPORTANCE In line with the new paradigm of the etiology of periodontitis, an inflammatory disorder initiated by dysbiotic subgingival microbiota, novel therapeutic strategies have been proposed targeting reversing dysbiosis and restoring host-compatible microbiota rather than eliminating the biofilms unselectively. Thus, appropriate laboratory models are required to evaluate the efficacy of potential microbiome modulators. In the present study, we used the easily obtainable saliva as an inoculum, spiked the microcosm biofilms with the periodontal pathogen Porphyromonas gingivalis, and obtained a P. gingivalis-enriched microbiota, which resembles the in vivo pathogen-enriched subgingival microbiota in severe periodontitis. This biofilm model circumvents the difficulties encountered when using subgingival plaque as the inoculum and achieves microbiota in a dysbiotic state in a controlled and reproducible manner, which is required for high-throughput and large-scale evaluation of strategies that can potentially modulate microbial ecology.
Collapse
|
29
|
Ebersole JL, Kirakodu SS, Gonzalez OA. Oral microbiome interactions with gingival gene expression patterns for apoptosis, autophagy and hypoxia pathways in progressing periodontitis. Immunology 2021; 162:405-417. [PMID: 33314069 DOI: 10.1111/imm.13292] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022] Open
Abstract
Oral mucosal tissues must react with and respond to microbes comprising the oral microbiome ecology. This study examined the interaction of the microbiome with transcriptomic footprints of apoptosis, autophagy and hypoxia pathways during periodontitis. Adult Macaca mulatta (n = 18; 12-23 years of age) exhibiting a healthy periodontium at baseline were used to induce progressing periodontitis through ligature placement around premolar/molar teeth. Gingival tissue samples collected at baseline, 0·5, 1 and 3 months of disease and at 5 months for disease resolution were analysed via microarray. Bacterial samples were collected at identical sites to the host tissues and analysed using MiSeq. Significant changes in apoptosis and hypoxia gene expression occurred with initiation of disease, while autophagy gene changes generally emerged later in disease progression samples. These interlinked pathways contributing to cellular homeostasis showed significant correlations between altered gene expression profiles in apoptosis, autophagy and hypoxia with groups of genes correlated in different directions across health and disease samples. Bacterial complexes were identified that correlated significantly with profiles of host genes in health, disease and resolution for each pathway. These relationships were more robust in health and resolution samples, with less bacterial complex diversity during disease. Using these pathways as cellular responses to stress in the local periodontal environment, the data are consistent with the concept of dysbiosis at the functional genomics level. It appears that the same bacteria in a healthy microbiome may be interfacing with host cells differently than in a disease lesion site and contributing to the tissue destructive processes.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA.,Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Sreenatha S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA.,Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
30
|
Candida albicans as an Essential "Keystone" Component within Polymicrobial Oral Biofilm Models? Microorganisms 2020; 9:microorganisms9010059. [PMID: 33379333 PMCID: PMC7823588 DOI: 10.3390/microorganisms9010059] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Existing standardized biofilm assays focus on simple mono-species or bacterial-only models. Incorporating Candida albicans into complex biofilm models can offer a more appropriate and relevant polymicrobial biofilm for the development of oral health products. Aims: This study aimed to assess the importance of interkingdom interactions in polymicrobial oral biofilm systems with or without C. albicans, and test how these models respond to oral therapeutic challenges in vitro. Materials and Methods: Polymicrobial biofilms (two models containing 5 and 10 bacterial species, respectively) were created in parallel in the presence and absence of C. albicans and challenged using clinically relevant antimicrobials. The metabolic profiles and biomasses of these complex biofilms were estimated using resazurin dye and crystal violet stain, respectively. Quantitative PCR was utilized to assess compositional changes in microbial load. Additional assays, for measurements of pH and lactate, were included to monitor fluctuations in virulence "biomarkers." Results: An increased level of metabolic activity and biomass in the presence of C. albicans was observed. Bacterial load was increased by more than a factor of 10 in the presence of C. albicans. Assays showed inclusion of C. albicans impacted the biofilm virulence profiles. C. albicans did not affect the biofilms' responses to the short-term incubations with different treatments. Conclusions: The interkingdom biofilms described herein are structurally robust and exhibit all the hallmarks of a reproducible model. To our knowledge, these data are the first to test the hypothesis that yeasts may act as potential "keystone" components of oral biofilms.
Collapse
|
31
|
Nitride-Coated and Anodic-Oxidized Titanium Promote a Higher Fibroblast and Reduced Streptococcus gordonii Proliferation Compared to the Uncoated Titanium. PROSTHESIS 2020. [DOI: 10.3390/prosthesis2040031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Titanium shows optimal biocompatibility properties; however, its gray color may be a limit for aesthetic results of dental rehabilitations. Some surface treatments that change the color of the material have been proposed. The aim of this study is to, in vitro, investigate the biocompatibility of the surfaces subjected to titanium nitride (NiT) coating and anodic-oxidized (AO) treatment and their propensity to impair bacterial proliferation. The viability of primary human gingival fibroblasts (HGFs) has been evaluated through a methyl thiazolyl tetrazolium (MTT) assay in three experimental groups: uncoated titanium (UNCOATED), titanium nitride (NiT)-coated surface, and anodic-oxidized (AO) titanium. Bacterial proliferation experiments were performed using a Streptococcus gordonii clinical isolate in contact with the three different above-mentioned materials. The treated surfaces (NiT and AO) showed a significantly higher fibroblast proliferation than the uncoated titanium alloy (p < 0.05). In contrast, Streptococcus gordonii growth was significantly higher on the untreated titanium (p < 0.05).
Collapse
|
32
|
Cong S, Tong Q, Peng Q, Shen T, Zhu X, Xu Y, Qi S. In vitro anti‑bacterial activity of diosgenin on Porphyromonas gingivalis and Prevotella intermedia. Mol Med Rep 2020; 22:5392-5398. [PMID: 33174005 PMCID: PMC7647021 DOI: 10.3892/mmr.2020.11620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022] Open
Abstract
Diosgenin (Dios), a natural steroidal sapogenin, is a bioactive compound extracted from dietary fenugreek seeds. It has a wide range of applications, exhibiting anti-oxidant, anti-inflammatory and anti-cancer activities. However, whether the extracts have beneficial effects on periodontal pathogens has so far remained elusive. The aim of the present study was to investigate the anti-bacterial effects of Dios on Porphyromonas gingivalis (P. gingivalis) and Prevotella intermedia (P. intermedia) in vitro. The anti-microbial effect of Dios on P. gingivalis and P. intermedia was assessed by a direct contact test (DCT) and the Cell Counting Kit (CCK)-8 assay at 60, 90 and 120 min. In addition, counting of colony-forming units (CFU) and live/dead cell staining were used to evaluate the anti-bacterial effects. The results of the DCT and CCK-8 assays indicated that Dios had beneficial dose-dependent inhibitory effects on P. gingivalis and P. intermedia. The CFU counting results also indicated that Dios had dose-dependent anti-bacterial effects on P. gingivalis and P. intermedia. Of note, Dios had significant anti-bacterial effects on the biofilms of P. gingivalis and P. intermedia in vitro as visualized by the live/dead cell staining method. In conclusion, the present results demonstrated that Dios had a marked anti-bacterial activity against P. gingivalis and P. intermedia in vitro, both in suspension and on biofilms. The present study highlighted the potential applications of Dios as a novel natural agent to prevent and treat periodontitis through its anti-bacterial effects.
Collapse
Affiliation(s)
- Shaohua Cong
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Qingchun Tong
- Department of Stomatology, Jiading Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Qian Peng
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Tao Shen
- School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xueqin Zhu
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Shengcai Qi
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
33
|
Ng ZJ, Zarin MA, Lee CK, Tan JS. Application of bacteriocins in food preservation and infectious disease treatment for humans and livestock: a review. RSC Adv 2020; 10:38937-38964. [PMID: 35518417 PMCID: PMC9057404 DOI: 10.1039/d0ra06161a] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases caused by bacteria that can be transmitted via food, livestock and humans are always a concern to the public, as majority of them may cause severe illnesses and death. Antibacterial agents have been investigated for the treatment of bacterial infections. Antibiotics are the most successful antibacterial agents that have been used widely for decades to ease human pain caused by bacterial infections. Nevertheless, the emergence of antibiotic-resistant bacteria has raised awareness amongst public about the downside of using antibiotics. The threat of antibiotic resistance to global health, food security and development has been emphasized by the World Health Organization (WHO), and research studies have been focused on alternative antimicrobial agents. Bacteriocin, a natural antimicrobial peptide, has been chosen to replace antibiotics for its application in food preservation and infectious disease treatment for livestock and humans, as it is less toxic.
Collapse
Affiliation(s)
- Zhang Jin Ng
- School of Industrial Technology, Universiti Sains Malaysia 11800 Gelugor Pulau Pinang Malaysia +604 6536375 +604 6536376
| | - Mazni Abu Zarin
- School of Industrial Technology, Universiti Sains Malaysia 11800 Gelugor Pulau Pinang Malaysia +604 6536375 +604 6536376
| | - Chee Keong Lee
- School of Industrial Technology, Universiti Sains Malaysia 11800 Gelugor Pulau Pinang Malaysia +604 6536375 +604 6536376
| | - Joo Shun Tan
- School of Industrial Technology, Universiti Sains Malaysia 11800 Gelugor Pulau Pinang Malaysia +604 6536375 +604 6536376
| |
Collapse
|
34
|
Ebersole JL, Kirakodu SS, Neumann E, Orraca L, Gonzalez Martinez J, Gonzalez OA. Oral Microbiome and Gingival Tissue Apoptosis and Autophagy Transcriptomics. Front Immunol 2020; 11:585414. [PMID: 33193408 PMCID: PMC7604357 DOI: 10.3389/fimmu.2020.585414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023] Open
Abstract
Objective: This study focused on documenting characteristics of the gingival transcriptome during various stages of periodontitis targeting genes associated with apoptotic and autophagic pathways and changes that specifically associate with features of the oral microbiome. Methods:Macaca mulatta (n = 18; 12–23 years) were examined at baseline and 0.5, 1, and 3 months of disease progression, as well as 5 months with clinical disease resolution. 16S sequencing and microarray analyses examined changes in the microbiome and gingival transcriptome, respectively, at each time point from every animal. Results: Specific patterns of apoptotic and autophagic genes were identified related to the initiation and progression of disease. The analysis also provided insights on the principal bacteria within the complex microbiome whose abundance was significantly correlated with differences in apoptotic and autophagic gene expression. Bacteria were identified that formed associated complexes with similar effects on the host gene expression profiles. A complex of Leptotrichia_unclassifed, Capnocytophaga_unclassified, Prevotella sp. 317, and Veillonellaceae_[G-1] sp. 155 were significantly negatively correlated with both apoptosis and autophagy. Whereas, Veillonellaceae_[G-1], Porphyromonadaceae, and F. alocis 539 were significantly positively correlated with both pathways, albeit this relationship was primarily associated with pro-apoptotic genes. Conclusions: The findings provide evidence for specific bacteria/bacterial complexes within the oral microbiome that appear to have a more substantive effect on regulating apoptotic and autophagic pathways in the gingival tissues with periodontitis.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Science, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States.,Center for Oral Health Research, University of Kentucky, Lexington, KY, United States
| | - Sreenatha S Kirakodu
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States
| | - Elliot Neumann
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Luis Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Janis Gonzalez Martinez
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico.,Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Octavio A Gonzalez
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States.,Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
35
|
Aqawi M, Gallily R, Sionov RV, Zaks B, Friedman M, Steinberg D. Cannabigerol Prevents Quorum Sensing and Biofilm Formation of Vibrio harveyi. Front Microbiol 2020; 11:858. [PMID: 32457724 PMCID: PMC7221000 DOI: 10.3389/fmicb.2020.00858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/09/2020] [Indexed: 11/30/2022] Open
Abstract
Cannabigerol (CBG) is a non-psychoactive cannabinoid naturally present in trace amounts in the Cannabis plant. So far, CBG has been shown to exert diverse activities in eukaryotes. However, much less is known about its effects on prokaryotes. In this study, we investigated the potential role of CBG as an anti-biofilm and anti-quorum sensing agent against Vibrio harveyi. Quorum sensing (QS) is a cell-to-cell communication system among bacteria that involves small signaling molecules called autoinducers, enabling bacteria to sense the surrounding environment. The autoinducers cause alterations in gene expression and induce bioluminescence, pigment production, motility and biofilm formation. The effect of CBG was tested on V. harveyi grown under planktonic and biofilm conditions. CBG reduced the QS-regulated bioluminescence and biofilm formation of V. harveyi at concentrations not affecting the planktonic bacterial growth. CBG also reduced the motility of V. harveyi in a dose-dependent manner. We further observed that CBG increased LuxO expression and activity, with a concomitant 80% downregulation of the LuxR gene. Exogenous addition of autoinducers could not overcome the QS-inhibitory effect of CBG, suggesting that CBG interferes with the transmission of the autoinducer signals. In conclusion, our study shows that CBG is a potential anti-biofilm agent via inhibition of the QS cascade.
Collapse
Affiliation(s)
- Muna Aqawi
- The Biofilm Research Laboratory, The Faculty of Dental Medicine, The Institute of Dental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Gallily
- The Lautenberg Center for General and Tumor Immunology, The Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Faculty of Dental Medicine, The Institute of Dental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Batya Zaks
- The Biofilm Research Laboratory, The Faculty of Dental Medicine, The Institute of Dental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Friedman
- The Department of Pharmaceutics, The Faculty of Medicine, The Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Steinberg
- The Biofilm Research Laboratory, The Faculty of Dental Medicine, The Institute of Dental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
36
|
Duanis-Assaf D, Kenan E, Sionov R, Steinberg D, Shemesh M. Proteolytic Activity of Bacillus subtilis upon κ-Casein Undermines Its "Caries-Safe" Effect. Microorganisms 2020; 8:microorganisms8020221. [PMID: 32041335 PMCID: PMC7074799 DOI: 10.3390/microorganisms8020221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Milk is believed to be a relatively “caries-safe” food. This belief relies on the fact that caseins, which constitute around 80% of milk’s protein content, were found to inhibit the adhesion of Streptococcus mutans to enamel and, therefore, decrease biofilm formation. While S. mutans is considered a leading cause of dental disorders, Bacillus subtilis is a non-pathogenic foodborne bacterium, frequently contaminating milk and its products. This study aimed to investigate the effects of dairy-associated foodborne bacteria such as B. subtilis on biofilm formation by S. mutans in the presence of casein proteins. Our results indicate that there is a significant decrease in total biofilm formation by S. mutans exposed to a casein protein mixture in a mono-species culture, whereas, in the co-culture with B. subtilis, an inhibitory effect of the caseins mixture on S. mutans biofilm formation was observed. Proteolytic activity analysis suggested that B. subtilis is capable of breaking down milk proteins, especially κ-casein, which enables biofilm formation by S. mutans in the presence of milk caseins. Therefore, these findings may challenge the assumption that milk is “caries-safe”, especially in a complex microbial environment.
Collapse
Affiliation(s)
- Danielle Duanis-Assaf
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel;
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem 9112001, Israel; (E.K.); (R.S.); (D.S.)
| | - Eli Kenan
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem 9112001, Israel; (E.K.); (R.S.); (D.S.)
| | - Ronit Sionov
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem 9112001, Israel; (E.K.); (R.S.); (D.S.)
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem 9112001, Israel; (E.K.); (R.S.); (D.S.)
| | - Moshe Shemesh
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel;
- Correspondence: ; Tel.: +972-3-968-3868
| |
Collapse
|
37
|
Abstract
The etiopathogenesis of severe periodontitis includes herpesvirus-bacteria coinfection. This article evaluates the pathogenicity of herpesviruses (cytomegalovirus and Epstein-Barr virus) and periodontopathic bacteria (Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) and coinfection of these infectious agents in the initiation and progression of periodontitis. Cytomegalovirus and A. actinomycetemcomitans/P. gingivalis exercise synergistic pathogenicity in the development of localized ("aggressive") juvenile periodontitis. Cytomegalovirus and Epstein-Barr virus are associated with P. gingivalis in adult types of periodontitis. Periodontal herpesviruses that enter the general circulation may also contribute to disease development in various organ systems. A 2-way interaction is likely to occur between periodontal herpesviruses and periodontopathic bacteria, with herpesviruses promoting bacterial upgrowth, and bacterial factors reactivating latent herpesviruses. Bacterial-induced gingivitis may facilitate herpesvirus colonization of the periodontium, and herpesvirus infections may impede the antibacterial host defense and alter periodontal cells to predispose for bacterial adherence and invasion. Herpesvirus-bacteria synergistic interactions, are likely to comprise an important pathogenic determinant of aggressive periodontitis. However, mechanistic investigations into the molecular and cellular interaction between periodontal herpesviruses and bacteria are still scarce. Herpesvirus-bacteria coinfection studies may yield significant new discoveries of pathogenic determinants, and drug and vaccine targets to minimize or prevent periodontitis and periodontitis-related systemic diseases.
Collapse
Affiliation(s)
- Casey Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
38
|
Sha Q, Chen C. Effect of different Aggregatibacter actinomycetemcomitans strains on dual-species biofilms formed with Porphyromonas gingivalis or Dialister pneumosintes. Eur J Oral Sci 2020; 128:136-144. [PMID: 31977126 DOI: 10.1111/eos.12682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 11/29/2022]
Abstract
There are five evolutionarily divergent clades of Aggregatibacter actinomycetemcomitans, with possible differences in phenotype and virulence potential among strains. This study examined the formation of biofilm by each of 11 distinct strains of A. actinomycetemcomitans, alone or after coculture with two species of oral bacteria (Porphyromonas gingivalis ATCC33277 or Dialister pneumosintes ATCC33048). Confocal laser scanning microscopy (CLSM) and electron microscopy were used to characterize the dual-species biofilms of interest. A reduction in dual-species A. actinomycetemcomitans-P. gingivalis biofilms was observed for A. actinomycetemcomitans RHAA1, suggesting an antagonistic relationship. The amounts of dual-species A. actinomycetemcomitans-D. pneumosintes biofilms were either increased or decreased in some - but not all - strains, indicative of strain-specific phenotypes. The CLSM analyses confirmed the existence of an antagonistic relationship between A. actinomycetemcomitans D7S-1 and P. gingivalis ATCC33277, and a synergistic relationship between A. actinomycetemcomitans D7S-1 and D. pneumosintes ATCC33048. The electron microscopy analyses revealed distinct morphological features of A. actinomycetemcomitans D7S-1 and D. pneumosintes ATCC33048 dual-species biofilms. The results indicate that the relationship between A. actinomycetemcomitans and oral bacteria may vary among strains, which could lead to distinct strain-specific patterns of niche sharing in subgingival microbiota.
Collapse
Affiliation(s)
- Qiong Sha
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Hajishengallis G, Diaz PI. Porphyromonas gingivalis: Immune subversion activities and role in periodontal dysbiosis. ACTA ACUST UNITED AC 2020; 7:12-21. [PMID: 33344104 DOI: 10.1007/s40496-020-00249-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose of review This review summarizes mechanisms by which Porphyromonas gingivalis interacts with community members and the host so that it can persist in the periodontium under inflammatory conditions that drive periodontal disease. Recent findings Recent advances indicate that, in great part, the pathogenicity of P. gingivalis is dependent upon its ability to establish residence in the subgingival environment and to subvert innate immunity in a manner that uncouples the nutritionally favorable (for the bacteria) inflammatory response from antimicrobial pathways. While the initial establishment of P. gingivalis is dependent upon interactions with early colonizing bacteria, the immune subversion strategies of P. gingivalis in turn benefit co-habiting species. Summary Specific interspecies interactions and subversion of the host response contribute to the emergence and persistence of dysbiotic communities and are thus targets of therapeutic approaches for the treatment of periodontitis.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40 Street, Philadelphia, PA 19104, USA
| | - Patricia I Diaz
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
40
|
Slomka V, Herrero ER, Boon N, Bernaerts K, Trivedi HM, Daep C, Quirynen M, Teughels W. Oral prebiotics and the influence of environmental conditions in vitro. J Periodontol 2019; 89:708-717. [PMID: 29577296 DOI: 10.1002/jper.17-0437] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/26/2017] [Accepted: 12/20/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Only recently the concept of prebiotics has been introduced in oral health. Few potential oral prebiotics have already been identified in dual species competition assays, showing a stimulatory effect on beneficial bacteria and by this suppressing the outgrowth of pathogenic species. This study aimed to validate the effect of previously identified potential prebiotic substrates on multispecies cultures by shifting the biofilm composition towards a more beneficial species dominated microbiota. METHODS A chemostat culture containing 14 model oral bacterial species was used to grow biofilms for 24 hours which subsequently were treated with prebiotic solutions three times a day for 3 consecutive days. Further the influence of environmental factors such as pH, nutrient availability, oxygen concentration and prebiotic dose on the efficacy of the prebiotic substances was investigated. RESULTS Three potential prebiotic substrates N-acetyl-D-mannosamine, succinic acid and Met-Pro were able to bring the beneficial proportion to > 95%. While the pH of the prebiotic solution did not have an influence on the prebiotic effect, the interplay of nutrient availability, oxygen concentration and prebiotic treatment resulted in significant changes of the microbial composition identifying N-acetyl-D-mannosamine as the most promising oral prebiotic substrate. Showing a clear dose dependent effect, concentrations of N-acetyl-D-mannosamine of 1.0 and 1.5 M resulted in a biofilm composition of 97% beneficial species. CONCLUSION Introducing the prebiotic concept in oral health might reveal a valid approach for treatment and prevention of oral diseases and promote oral health.
Collapse
Affiliation(s)
- Vera Slomka
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Esteban Rodriguez Herrero
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure links 653, 9000, Gent, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety Section, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F (bus 2424), 3001, Leuven, Belgium
| | | | - Carlo Daep
- Colgate-Palmolive Technology Center, Piscataway, NJ
| | - Marc Quirynen
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| |
Collapse
|
41
|
Exposure of Streptococcus mutans and Streptococcus sanguinis to blue light in an oral biofilm model. Lasers Med Sci 2019; 35:709-718. [PMID: 31713778 DOI: 10.1007/s10103-019-02903-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
Abstract
The potential anti-cariogenic effect of blue light was evaluated using an oral biofilm model. Two species, Streptococcus mutans and Streptococcus sanguinis, were cultivated ex vivo on bovine enamel blocks for 24 h, either separately or mixed together, then exposed to blue light (wavelengths 400-500 nm) using 112 J/cm2. Twenty four or 48 h after exposure to light the biofilm structure and biomass were characterized and quantified using SEM and qPCR, respectively. Bacterial viability was analyzed by CLSM using live/dead bacterial staining. Gene expression was examined by RT-qPCR. After exposure to light, S. mutans biomass in mono-species biofilm was increased mainly by dead bacteria, relative to control. However, the bacterial biomass of S. mutans when grown in mixed biofilm and of S. sanguinis in mono-species biofilm was reduced after light exposure, with no significant change in viability when compared to control. Furthermore, when grown separately, an upregulation of gene expression related to biofilm formation of S. mutans, and downregulation of similar genes of S. sanguinis, were measured 24 h after exposure to blue light. However, in mixed biofilm, a downregulation of those genes in both species was observed, although not significant in S. mutans. In conclusion, blue light seems to effectively alter the bacterial biomass by reducing the viability and virulence characteristics in both bacterial species and may promote the anti-cariogenic balance between them, when grown in a mixed biofilm. Therefore, exposure of oral biofilm to blue light has the potential to serve as a complementary approach in preventive dentistry.
Collapse
|
42
|
Miller DP, Fitzsimonds ZR, Lamont RJ. Metabolic Signaling and Spatial Interactions in the Oral Polymicrobial Community. J Dent Res 2019; 98:1308-1314. [PMID: 31356756 DOI: 10.1177/0022034519866440] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oral supra- and subgingival biofilms are complex communities in which hundreds of bacteria, viruses, and fungi reside and interact. In these social environments, microbes compete and cooperate for resources, such as living space and nutrients. The metabolic activities of bacteria can transform their microenvironment and dynamically influence the fitness and growth of cohabitating organisms. Biofilm communities are temporally and spatially organized largely due to cell-to-cell communication, which promotes synergistic interactions. Metabolic interactions maintain biofilm homeostasis through mutualistic cross-feeding, metabolic syntrophy, and cross-respiration. These interactions include reciprocal metabolite exchanges that promote the growth of physiologically compatible bacteria, processive catabolism of complex substrates, and unidirectional interactions that are globally important for the polymicrobial community. Additionally, oral bacterial interactions can lead to detoxification of oxidative compounds, which will provide protection to the community at large. It has also been established that specific organisms provide terminal electron acceptors to partner species that result in a shift from fermentation to respiration, thus increasing ATP yields and improving fitness. Indeed, many interspecies relationships are multidimensional, and the net outcome can be spatially and temporally dependent. Cross-kingdom interactions also occur as oral yeast are antagonistic to some oral bacteria, while numerous mutualistic interactions contribute to yeast-bacterial colonization, fitness in the oral community, and the pathogenesis of caries. Consideration of this social environment reveals behaviors and phenotypes that are not apparent through the study of microbes in isolation. Here, we provide a comprehensive overview of the metabolic interactions that shape the oral microbial community.
Collapse
Affiliation(s)
- D P Miller
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Z R Fitzsimonds
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - R J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
43
|
Shany-Kdoshim S, Polak D, Houri-Haddad Y, Feuerstein O. Killing mechanism of bacteria within multi-species biofilm by blue light. J Oral Microbiol 2019; 11:1628577. [PMID: 31275529 PMCID: PMC6598489 DOI: 10.1080/20002297.2019.1628577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Objectives: The aim of the study was to characterize the immediate and delayed effects of non-coherent blue-light treatment on the composition and viability of an in vitro biofilm composed of anaerobic multispecies, as well as the mechanisms involved. Methods: A multispecies biofilm was constructed of Streptococcus sanguinis, Actinomyces naeslundii, Porphyromonas gingivalis and Fusobacterium nucleatum, test groups were exposed to blue light. The multispecies biofilm was explored with a newly developed method based on flow cytometry and confocal microscopy. The involvement of the paracrine pathway in the phototoxic mechanism was investigated by a crossover of the supernatants between mono-species P. gingivalis and F. nucleatum biofilms. Results: Blue light led to a reduction of about 50% in the viable pathogenic bacteria P. gingivalis and F. nucleatum, vs that in the non-exposed biofilm. Biofilm thickness was also reduced by 50%. The phototoxic effect of blue light on mono-species biofilm was observed in P. gingivalis, whereas F. nucleatum biofilm was unaffected. A lethal effect was obtained when the supernatant of P. gingivalis biofilm previously exposed to blue light was added to the F. nucleatum biofilm. The effect was circumvented by the addition of reactive oxygen species (ROS) scavengers to the supernatant. Conclusion: Blue-light has an impact on the bacterial composition and viability of the multispecies biofilm. The phototoxic effect of blue light on P. gingivalis in biofilm was induced directly and on F. nucleatum via ROS mediators of the paracrine pathway. This phenomenon may lead to a novel approach for 'replacement therapy,' resulting in a less periodonto-pathogenic biofilm.
Collapse
Affiliation(s)
- Sharon Shany-Kdoshim
- Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - David Polak
- Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Yael Houri-Haddad
- Department of Prosthodontics, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Osnat Feuerstein
- Department of Prosthodontics, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
44
|
Effects of single species versus multispecies periodontal biofilms on the antibacterial efficacy of a novel bioactive Class-V nanocomposite. Dent Mater 2019; 35:847-861. [DOI: 10.1016/j.dental.2019.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
|
45
|
Transcriptional profiling of coaggregation interactions between Streptococcus gordonii and Veillonella parvula by Dual RNA-Seq. Sci Rep 2019; 9:7664. [PMID: 31113978 PMCID: PMC6529473 DOI: 10.1038/s41598-019-43979-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
Many oral bacteria form macroscopic clumps known as coaggregates when mixed with a different species. It is thought that these cell-cell interactions are critical for the formation of mixed-species biofilms such as dental plaque. Here, we assessed the impact of coaggregation between two key initial colonizers of dental plaque, Streptococcus gordonii and Veillonella parvula, on gene expression in each partner. These species were shown to coaggregate in buffer or human saliva. To monitor gene regulation, coaggregates were formed in human saliva and, after 30 minutes, whole-transcriptomes were extracted for sequencing and Dual RNA-Seq analysis. In total, 272 genes were regulated in V. parvula, including 39 genes in oxidoreductase processes. In S. gordonii, there was a high degree of inter-sample variation. Nevertheless, 69 genes were identified as potentially regulated by coaggregation, including two phosphotransferase system transporters and several other genes involved in carbohydrate metabolism. Overall, these data indicate that responses of V. parvula to coaggregation with S. gordonii are dominated by oxidative stress-related processes, whereas S. gordonii responses are more focussed on carbohydrate metabolism. We hypothesize that these responses may reflect changes in the local microenvironment in biofilms when S. gordonii or V. parvula immigrate into the system.
Collapse
|
46
|
Poklepovic Pericic T, Worthington HV, Johnson TM, Sambunjak D, Imai P, Clarkson JE, Tugwell P. WITHDRAWN: Interdental brushing for the prevention and control of periodontal diseases and dental caries in adults. Cochrane Database Syst Rev 2019; 4:CD009857. [PMID: 31017680 PMCID: PMC6481275 DOI: 10.1002/14651858.cd009857.pub3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Effective oral hygiene is a crucial factor in maintaining good oral health, which is associated with overall health and health-related quality of life. Dental floss has been used for many years in conjunction with toothbrushing for removing dental plaque in between teeth, however, interdental brushes have been developed which many people find easier to use than floss, providing there is sufficient space between the teeth. OBJECTIVES To evaluate the effects of interdental brushing in addition to toothbrushing, as compared with toothbrushing alone or toothbrushing and flossing for the prevention and control of periodontal diseases, dental plaque and dental caries. SEARCH METHODS We searched the following electronic databases: the Cochrane Oral Health Group's Trials Register (to 7 March 2013), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 2), MEDLINE via OVID (1946 to 7 March 2013), EMBASE via OVID (1980 to 7 March 2013), CINAHL via EBSCO (1980 to 7 March 2013), LILACS via BIREME (1982 to 7 March 2013), ZETOC Conference Proceedings (1980 to 7 March 2013) and Web of Science Conference Proceedings (1990 to 7 March 2013). We searched the US National Institutes of Health Trials Register (http://clinicaltrials.gov) and the metaRegister of Controlled Trials (http://www.controlled-trials.com/mrct/) for ongoing trials to 7 March 2013. No restrictions were placed on the language or date of publication when searching the electronic databases. SELECTION CRITERIA We included randomised controlled trials (including split-mouth design, cross-over and cluster-randomised trials) of dentate adult patients. The interventions were a combination of toothbrushing and any interdental brushing procedure compared with toothbrushing only or toothbrushing and flossing. DATA COLLECTION AND ANALYSIS At least two review authors assessed each of the included studies to confirm eligibility, assessed risk of bias and extracted data using a piloted data extraction form. We calculated standardised mean difference (SMD) and 95% confidence interval (CI) for continuous outcomes where different scales were used to assess an outcome. We attempted to extract data on adverse effects of interventions. Where data were missing or unclear we attempted to contact study authors to obtain further information. MAIN RESULTS There were seven studies (total 354 participants analysed) included in this review. We assessed one study as being low, three studies as being high and three studies as being at unclear risk of bias. Studies only reported the clinical outcome gingivitis and plaque data, with no studies providing data on many of the outcomes: periodontitis, caries, halitosis and quality of life. Three studies reported that no adverse events were observed or reported during the study. Two other studies provided some data on adverse events but we were unable to pool the data due to lack of detail. Two studies did not report whether adverse events occurred.Interdental brushing in addition to toothbrushing, as compared with toothbrushing aloneOnly one high risk of bias study (62 participants in analysis) looked at this comparison and there was very low-quality evidence for a reduction in gingivitis (0 to 4 scale, mean in control): mean difference (MD) 0.53 (95% CI 0.23 to 0.83) and plaque (0 to 5 scale): MD 0.95 (95% CI 0.56 to 1.34) at one month, favouring of use of interdental brushes. This represents a 34% reduction in gingivitis and a 32% reduction in plaque.Interdental brushing in addition to toothbrushing, as compared with toothbrushing and flossingSeven studies provided data showing a reduction in gingivitis in favour of interdental brushing at one month: SMD -0.53 (95% CI -0.81 to -0.24, seven studies, 326 participants, low-quality evidence). This translates to a 52% reduction in gingivitis (Eastman Bleeding Index). Although a high effect size in the same direction was observed at three months (SMD -1.98, 95% CI -5.42 to 1.47, two studies, 107 participants, very low quality), the confidence interval was wide and did not exclude the possibility of no difference. There was insufficient evidence to claim a benefit for either interdental brushing or flossing for reducing plaque (SMD at one month 0.10, 95% CI -0.13 to 0.33, seven studies, 326 participants, low-quality evidence) and insufficient evidence at three months (SMD -2.14, 95% CI -5.25 to 0.97, two studies, 107 participants very low-quality evidence). AUTHORS' CONCLUSIONS Only one study looked at whether toothbrushing with interdental brushing was better than toothbrushing alone, and there was very low-quality evidence for a reduction in gingivitis and plaque at one month. There is also low-quality evidence from seven studies that interdental brushing reduces gingivitis when compared with flossing, but these results were only found at one month. There was insufficient evidence to determine whether interdental brushing reduced or increased levels of plaque when compared to flossing.
Collapse
Affiliation(s)
- Tina Poklepovic Pericic
- School of Medicine, University of SplitCochrane CroatiaSoltanska 2SplitSplitsko‐dalmatinska CountyCroatia21 000
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthCoupland Building 3Oxford RoadManchesterUKM13 9PL
| | - Trevor M Johnson
- RCS EnglandFaculty of General Dental Practice (UK)35‐43 Lincoln's Inn FieldsLondonUKWC2A 3PE
| | - Dario Sambunjak
- Catholic University of CroatiaCenter for Evidence‐Based Medicine and Health CareIlica 242ZagrebCroatia10000
| | - Pauline Imai
- MTI Community CollegeHealthcare FacultySuite 2004980 KingswayBurnabyBCCanadaV5H 4K7
| | - Janet E Clarkson
- Dundee Dental School, University of DundeeDivision of Oral Health SciencesPark PlaceDundeeScotlandUKDD1 4HR
| | - Peter Tugwell
- University of OttawaDepartment of Medicine, Faculty of MedicineOttawaONCanadaK1H 8M5
| | | |
Collapse
|
47
|
Sambunjak D, Nickerson JW, Poklepovic Pericic T, Johnson TM, Imai P, Tugwell P, Worthington HV. WITHDRAWN: Flossing for the management of periodontal diseases and dental caries in adults. Cochrane Database Syst Rev 2019; 4:CD008829. [PMID: 31013348 PMCID: PMC6478368 DOI: 10.1002/14651858.cd008829.pub3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Good oral hygiene is thought to be important for oral health. This review is to determine the effectiveness of flossing in addition to toothbrushing for preventing gum disease and dental caries in adults. OBJECTIVES To assess the effects of flossing in addition to toothbrushing, as compared with toothbrushing alone, in the management of periodontal diseases and dental caries in adults. SEARCH METHODS We searched the following electronic databases: the Cochrane Oral Health Group Trials Register (to 17 October 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 4), MEDLINE via OVID (1950 to 17 October 2011), EMBASE via OVID (1980 to 17 October 2011), CINAHL via EBSCO (1980 to 17 October 2011), LILACS via BIREME (1982 to 17 October 2011), ZETOC Conference Proceedings (1980 to 17 October 2011), Web of Science Conference Proceedings (1990 to 17 October 2011), Clinicaltrials.gov (to 17 October 2011) and the metaRegister of Controlled Clinical Trials (to 17 October 2011). We imposed no restrictions regarding language or date of publication. We contacted manufacturers of dental floss to identify trials. SELECTION CRITERIA We included randomised controlled trials conducted comparing toothbrushing and flossing with only toothbrushing, in adults. DATA COLLECTION AND ANALYSIS Two review authors independently assessed risk of bias for the included studies and extracted data. We contacted trial authors for further details where these were unclear. The effect measure for each meta-analysis was the standardised mean difference (SMD) with 95% confidence intervals (CI) using random-effects models. We examined potential sources of heterogeneity, along with sensitivity analyses omitting trials at high risk of bias. MAIN RESULTS Twelve trials were included in this review, with a total of 582 participants in flossing plus toothbrushing (intervention) groups and 501 participants in toothbrushing (control) groups. All included trials reported the outcomes of plaque and gingivitis. Seven of the included trials were assessed as at unclear risk of bias and five were at high risk of bias.Flossing plus toothbrushing showed a statistically significant benefit compared to toothbrushing in reducing gingivitis at the three time points studied, the SMD being -0.36 (95% CI -0.66 to -0.05) at 1 month, SMD -0.41 (95% CI -0.68 to -0.14) at 3 months and SMD -0.72 (95% CI -1.09 to -0.35) at 6 months. The 1-month estimate translates to a 0.13 point reduction on a 0 to 3 point scale for Loe-Silness gingivitis index, and the 3 and 6 month results translate to 0.20 and 0.09 reductions on the same scale.Overall there is weak, very unreliable evidence which suggests that flossing plus toothbrushing may be associated with a small reduction in plaque at 1 or 3 months.None of the included trials reported data for the outcomes of caries, calculus, clinical attachment loss, or quality of life. There was some inconsistent reporting of adverse effects. AUTHORS' CONCLUSIONS There is some evidence from twelve studies that flossing in addition to toothbrushing reduces gingivitis compared to toothbrushing alone. There is weak, very unreliable evidence from 10 studies that flossing plus toothbrushing may be associated with a small reduction in plaque at 1 and 3 months. No studies reported the effectiveness of flossing plus toothbrushing for preventing dental caries.
Collapse
Affiliation(s)
- Dario Sambunjak
- Center for Evidence-Based Medicine and Health Care, Catholic University of Croatia, Ilica 242, Zagreb, Croatia, 10000
| | | | | | | | | | | | | |
Collapse
|
48
|
Worthington HV, MacDonald L, Poklepovic Pericic T, Sambunjak D, Johnson TM, Imai P, Clarkson JE. Home use of interdental cleaning devices, in addition to toothbrushing, for preventing and controlling periodontal diseases and dental caries. Cochrane Database Syst Rev 2019; 4:CD012018. [PMID: 30968949 PMCID: PMC6953268 DOI: 10.1002/14651858.cd012018.pub2] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dental caries (tooth decay) and periodontal diseases (gingivitis and periodontitis) affect the majority of people worldwide, and treatment costs place a significant burden on health services. Decay and gum disease can cause pain, eating and speaking difficulties, low self-esteem, and even tooth loss and the need for surgery. As dental plaque is the primary cause, self-administered daily mechanical disruption and removal of plaque is important for oral health. Toothbrushing can remove supragingival plaque on the facial and lingual/palatal surfaces, but special devices (such as floss, brushes, sticks, and irrigators) are often recommended to reach into the interdental area. OBJECTIVES To evaluate the effectiveness of interdental cleaning devices used at home, in addition to toothbrushing, compared with toothbrushing alone, for preventing and controlling periodontal diseases, caries, and plaque. A secondary objective was to compare different interdental cleaning devices with each other. SEARCH METHODS Cochrane Oral Health's Information Specialist searched: Cochrane Oral Health's Trials Register (to 16 January 2019), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2018, Issue 12), MEDLINE Ovid (1946 to 16 January 2019), Embase Ovid (1980 to 16 January 2019) and CINAHL EBSCO (1937 to 16 January 2019). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on the language or date of publication. SELECTION CRITERIA Randomised controlled trials (RCTs) that compared toothbrushing and a home-use interdental cleaning device versus toothbrushing alone or with another device (minimum duration four weeks). DATA COLLECTION AND ANALYSIS At least two review authors independently screened searches, selected studies, extracted data, assessed studies' risk of bias, and assessed evidence certainty as high, moderate, low or very low, according to GRADE. We extracted indices measured on interproximal surfaces, where possible. We conducted random-effects meta-analyses, using mean differences (MDs) or standardised mean differences (SMDs). MAIN RESULTS We included 35 RCTs (3929 randomised adult participants). Studies were at high risk of performance bias as blinding of participants was not possible. Only two studies were otherwise at low risk of bias. Many participants had a low level of baseline gingival inflammation.Studies evaluated the following devices plus toothbrushing versus toothbrushing: floss (15 trials), interdental brushes (2 trials), wooden cleaning sticks (2 trials), rubber/elastomeric cleaning sticks (2 trials), oral irrigators (5 trials). Four devices were compared with floss: interdental brushes (9 trials), wooden cleaning sticks (3 trials), rubber/elastomeric cleaning sticks (9 trials) and oral irrigators (2 trials). Another comparison was rubber/elastomeric cleaning sticks versus interdental brushes (3 trials).No trials assessed interproximal caries, and most did not assess periodontitis. Gingivitis was measured by indices (most commonly, Löe-Silness, 0 to 3 scale) and by proportion of bleeding sites. Plaque was measured by indices, most often Quigley-Hein (0 to 5). PRIMARY OBJECTIVE comparisons against toothbrushing aloneLow-certainty evidence suggested that flossing, in addition to toothbrushing, may reduce gingivitis (measured by gingival index (GI)) at one month (SMD -0.58, 95% confidence interval (CI) -1.12 to -0.04; 8 trials, 585 participants), three months or six months. The results for proportion of bleeding sites and plaque were inconsistent (very low-certainty evidence).Very low-certainty evidence suggested that using an interdental brush, plus toothbrushing, may reduce gingivitis (measured by GI) at one month (MD -0.53, 95% CI -0.83 to -0.23; 1 trial, 62 participants), though there was no clear difference in bleeding sites (MD -0.05, 95% CI -0.13 to 0.03; 1 trial, 31 participants). Low-certainty evidence suggested interdental brushes may reduce plaque more than toothbrushing alone (SMD -1.07, 95% CI -1.51 to -0.63; 2 trials, 93 participants).Very low-certainty evidence suggested that using wooden cleaning sticks, plus toothbrushing, may reduce bleeding sites at three months (MD -0.25, 95% CI -0.37 to -0.13; 1 trial, 24 participants), but not plaque (MD -0.03, 95% CI -0.13 to 0.07).Very low-certainty evidence suggested that using rubber/elastomeric interdental cleaning sticks, plus toothbrushing, may reduce plaque at one month (MD -0.22, 95% CI -0.41 to -0.03), but this was not found for gingivitis (GI MD -0.01, 95% CI -0.19 to 0.21; 1 trial, 12 participants; bleeding MD 0.07, 95% CI -0.15 to 0.01; 1 trial, 30 participants).Very-low certainty evidence suggested oral irrigators may reduce gingivitis measured by GI at one month (SMD -0.48, 95% CI -0.89 to -0.06; 4 trials, 380 participants), but not at three or six months. Low-certainty evidence suggested that oral irrigators did not reduce bleeding sites at one month (MD -0.00, 95% CI -0.07 to 0.06; 2 trials, 126 participants) or three months, or plaque at one month (SMD -0.16, 95% CI -0.41 to 0.10; 3 trials, 235 participants), three months or six months, more than toothbrushing alone. SECONDARY OBJECTIVE comparisons between devicesLow-certainty evidence suggested interdental brushes may reduce gingivitis more than floss at one and three months, but did not show a difference for periodontitis measured by probing pocket depth. Evidence for plaque was inconsistent.Low- to very low-certainty evidence suggested oral irrigation may reduce gingivitis at one month compared to flossing, but very low-certainty evidence did not suggest a difference between devices for plaque.Very low-certainty evidence for interdental brushes or flossing versus interdental cleaning sticks did not demonstrate superiority of either intervention.Adverse eventsStudies that measured adverse events found no severe events caused by devices, and no evidence of differences between study groups in minor effects such as gingival irritation. AUTHORS' CONCLUSIONS Using floss or interdental brushes in addition to toothbrushing may reduce gingivitis or plaque, or both, more than toothbrushing alone. Interdental brushes may be more effective than floss. Available evidence for tooth cleaning sticks and oral irrigators is limited and inconsistent. Outcomes were mostly measured in the short term and participants in most studies had a low level of baseline gingival inflammation. Overall, the evidence was low to very low-certainty, and the effect sizes observed may not be clinically important. Future trials should report participant periodontal status according to the new periodontal diseases classification, and last long enough to measure interproximal caries and periodontitis.
Collapse
Affiliation(s)
- Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthCoupland Building 3Oxford RoadManchesterUKM13 9PL
| | - Laura MacDonald
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthCoupland Building 3Oxford RoadManchesterUKM13 9PL
| | - Tina Poklepovic Pericic
- School of Medicine, University of SplitCochrane CroatiaSoltanska 2SplitSplitsko‐dalmatinska CountyCroatia21 000
| | - Dario Sambunjak
- Catholic University of CroatiaCenter for Evidence‐Based Medicine and Health CareIlica 242ZagrebCroatia10000
| | - Trevor M Johnson
- RCS EnglandFaculty of General Dental Practice (UK)35‐43 Lincoln's Inn FieldsLondonUKWC2A 3PE
| | - Pauline Imai
- MTI Community CollegeHealthcare FacultySuite 2004980 KingswayBurnabyBCCanadaV5H 4K7
| | - Janet E Clarkson
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthCoupland Building 3Oxford RoadManchesterUKM13 9PL
- Dundee Dental School, University of DundeeDivision of Oral Health SciencesPark PlaceDundeeScotlandUKDD1 4HR
| | | |
Collapse
|
49
|
Silva PHF, Oliveira LFF, Cardoso RS, Ricoldi MST, Figueiredo LC, Salvador SL, Palioto DB, Furlaneto FAC, Messora MR. The impact of predatory bacteria on experimental periodontitis. J Periodontol 2019; 90:1053-1063. [PMID: 30828815 DOI: 10.1002/jper.18-0485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND This study evaluated the effects of topical administration of Bdellovibrio bacteriovorus HD100 on experimental periodontitis (EP) in rats. METHODS Thirty-two rats were divided into groups C (control), EP, C-HD100, and EP-HD100. At day 0, animals of groups EP and EP-HD100 received cotton ligatures around mandibular first molars (MFM). In groups C-HD100 and EP-HD100, 1 mL of suspensions containing B. bacteriovorus HD100 was topically administered in the subgingival region of MFMs at days 0, 3, and 7. Animals were euthanized at day 14. Gingival tissue, hemimandibles, and oral biofilm were collected. Data were statistically analyzed. RESULTS Group EP-HD100 presented greater bone volume and lower connective tissue attachment loss (CTAL) than group EP (P < 0.05). Group EP-HD100 presented greater proportions of Actinomyces and Streptococcus-like species and lower proportions of Prevotella intermedia, Peptostreptococcus micros, Fusobacterium nucleatum, Fusobacterium polymorphum, Eikenella corrodens, Eubacterium nodatum, Campylobacter gracilis, Capnocytophaga sputigena, and Veillonella parvula-like species than group EP. Group EP-HD100 presented greater levels of osteoprotegerin and gene expression of interleukin (IL)-17, IL-10, and forkhead box P3 than group EP (P < 0.05). CONCLUSION Topical use of B. bacteriovorus HD100 promotes a protective effect against alveolar bone loss and CTAL in rats with EP.
Collapse
Affiliation(s)
- Pedro H F Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Luiz F F Oliveira
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Renata S Cardoso
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Milla S T Ricoldi
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Luciene C Figueiredo
- Department of Periodontology, Dental Research Division, Guarulhos University, São Paulo, Brazil
| | - Sérgio L Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Daniela B Palioto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Flávia A C Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Michel R Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| |
Collapse
|
50
|
Reinhardt B, Klocke A, Neering SH, Selbach S, Peters U, Flemmig TF, Beikler T. Microbiological dynamics of red complex bacteria following full-mouth air polishing in periodontally healthy subjects-a randomized clinical pilot study. Clin Oral Investig 2019; 23:3905-3914. [PMID: 30729346 DOI: 10.1007/s00784-019-02821-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Suppression of periodontal pathogens in the oral cavity of periodontally healthy individuals may lower the risk for periodontal or periimplant diseases. Therefore, the present study aimed to analyze the effect of supragingival debridement (SD) with adjunctive full mouth glycine powder air polishing (FM-GPAP) on the prevalence of periodontal pathogens in periodontally healthy individuals. MATERIALS AND METHODS Eighty-seven systemically and periodontally healthy intraoral carriers of red complex bacteria, i.e., Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola or other periodontal pathogens including Aggregatibacter actinomycetemcomitans, Prevotella intermedia, and Eikenella corrodens were enrolled into the study and randomly assigned to receive SD with adjunctive FM-GPAP (test, n = 42) or SD alone (control, n = 45). In the first observation period, microbiological samples were obtained prior to, and 2, 5, and 9 days following intervention. If one of these periodontal pathogens could still not be identified, additional microbial sampling was performed after 6 and 12 weeks. RESULTS The prevalence of red complex bacteria was significantly reduced in the test compared to the control group following treatment (p = 0.004) and at day 9 (p = 0.031). Intragroup comparison showed a significant (test, p < 0.001; control, p ≤ 0.01) reduction in the mean prevalence in both groups from BL through day 9 with an additional significant intergroup difference (p = 0.048) at day 9. However, the initial strong reduction returned to baseline values after 6 and 12 weeks. CONCLUSION In periodontally healthy carriers of periodontal pathogens, FM-GPAP as an adjunct to SD transiently enhances the suppression of red complex bacteria. CLINICAL RELEVANCE Whether the enhanced suppression of red complex bacteria by adjunctive FM-GPAP prevents the development of periodontitis in periodontally healthy carriers requires further investigations.
Collapse
Affiliation(s)
| | | | | | | | - Ulrike Peters
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center of Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | | | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center of Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany.
| |
Collapse
|