1
|
Femi-Oloye OP, Sutton RT, Gordon HD, Ain Das A, Morenikeji GO, Odorisio MK, Francestscu OD, Myers RL, Oloye FF. An Assessment of Polycyclic Aromatic Hydrocarbons Using Estimation Programs. TOXICS 2024; 12:592. [PMID: 39195694 PMCID: PMC11360689 DOI: 10.3390/toxics12080592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
In the environment, the class of chemicals known as polycyclic aromatic hydrocarbons (PAHs) behave somewhat differently. This review covers situations where PAHs can be 'labile' and where they can be persistent. The in-silico prediction of toxicity and the properties of selected 29 PAHs were estimated using programs developed by the U.S. Environmental Protection Agency (EPA), such as the Estimation Programs Interface (E.P.I.) and the Toxicity Estimation Software Tool (version 5.1.2) (TEST), with online software such as SwissADME and SwissDock. TEST was used to estimate the LC50 of the fathead minnow (with a range of 14.53 mg/L for 1-indanone and 2.14 × 10-2 mg/L for cyclopenta[c,d]pyrene), the LC50 of Daphnia magna (with a range of 14.95 mg/L for 1-indanone and 7.53 × 10-2 mg/L for coronene), the IGC50 of Tetrahymena pyriformis (with a range of 66.14 mg/L for 1-indanone and 0.36 mg/L for coronene), the bioconcentration factor (8.36 for 1,2-acenaphthylenedione and 910.1 for coronene), the developmental toxicity (0.30 (-) for 1,2-acenaphthylenedione and 0.82 (+) for 4-hydroxy-9-fluorenone), and the mutagenicity (0.25 (-) for 2-methyl-9-fluorenone and 1.09 (+) for coronene). The carbon chain and molecular weight have a significant effect on the properties of PAHs. Overall, it was found that PAHs with a lower molecular weight (LMW) have a higher water solubility and LC50 value and a smaller LogKow value, whereas the opposite is true for heavier PAHs, with TEST predicting that PAHs with an MW of over 168.2 g/mol, with a few exceptions, are mutagenic. Hence, LMW PAHs have a higher potential to be in the environment but are less toxic.
Collapse
Affiliation(s)
- Oluwabunmi P. Femi-Oloye
- Toxicology Center, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada;
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA
| | - Ryen T. Sutton
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA (H.D.G.); (R.L.M.)
| | - Heidi D. Gordon
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA (H.D.G.); (R.L.M.)
| | - Ayush Ain Das
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA
| | - Grace O. Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA
| | - Melissa K. Odorisio
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA (H.D.G.); (R.L.M.)
- Department of Environmental Science, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA
| | - Ovidiu D. Francestscu
- Department of Environmental Science, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA
| | - Ryan L. Myers
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA (H.D.G.); (R.L.M.)
| | - Femi F. Oloye
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA (H.D.G.); (R.L.M.)
| |
Collapse
|
2
|
Sun S, Wei R, Hu S, Yang M, Ni J. Isolation and characterization of distinctive pyrene-degrading bacteria from an uncontaminated soil. Biodegradation 2024; 35:657-670. [PMID: 38279065 DOI: 10.1007/s10532-023-10065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024]
Abstract
Considerable efforts that isolate and characterize degrading bacteria for polycyclic aromatic hydrocarbons (PAHs) have focused on contaminated environments so far. Here we isolated three distinctive pyrene (PYR)-degrading bacteria from a paddy soil that was not contaminated with PAHs. These included a novel Bacillus sp. PyB-9 and efficient degraders, Shigella sp. PyB-6 and Agromyces sp. PyB-10. All three strains could utilize naphthalene, phenanthrene, anthracene, fluoranthene and PYR as sole carbon sources, and degraded PYR in a range of temperatures (27-37 °C) and pH (5-8). Strains PyB-6 and PyB-10 almost completely degraded 50 mg L-1 PYR within 15 days, and 75.5% and 98.9% of 100 mg L-1 PYR in 27 days, respectively. The kinetics of PYR biodegradation was well represented by the Gompertz model. Ten and twelve PYR metabolites were identified in PYR degradation process by strains PyB-6 and PyB-10, respectively. Chemical analyses demonstrated that the degradation mechanisms of PYR were the same for strains PyB-6 and PyB-10 with initial dioxygenation mainly on C-4,5 positions of PYR. The degradation of 4,5-phenanthrenedicarboxylic acid was branched to 4-phenanthrenecarboxylic acid pathway and 5-hydroxy-4-phenanthrenecarboxylic acid pathway, both of which played important roles in PYR degradation by strains PyB-6 and PyB-10. To our knowledge, Shigella sp. and Agromyces sp. were found for the first time to possess the capability for PAHs degradation. These findings contributed to upgrading the bank of microbial resource and knowledge on PAH biodegradation.
Collapse
Affiliation(s)
- Shanshan Sun
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, College of Geographical Science, Fujian Normal University, Fuzhou, 350007, Fujian, China
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ran Wei
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, College of Geographical Science, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| | - Siyi Hu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, College of Geographical Science, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Meiyu Yang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, College of Geographical Science, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, College of Geographical Science, Fujian Normal University, Fuzhou, 350007, Fujian, China
| |
Collapse
|
3
|
Jeon Y, Kwon YS, Noh YJ, Lee SM, Song JW, Kim JH, Seo JS. Unraveling the mechanisms of benzo[a]pyrene degradation by Pigmentiphaga kullae strain KIT-003 using a multi-omics approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116665. [PMID: 38964062 DOI: 10.1016/j.ecoenv.2024.116665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), notably benzo[a]pyrene (BaP), are environmental contaminants with multiple adverse ecological implications. Numerous studies have suggested the use of BaP biodegradation using various bacterial strains to remove BaP from the environment. This study investigates the BaP biodegradation capability of Pigmentiphaga kullae strain KIT-003, isolated from the Nak-dong River (South Korea) under specific environmental conditions. The optimum conditions of biodegradation were found to be pH 7.0, 35°C, and a salinity of 0 %. GC-MS analysis suggested alternative pathways by which KIT-003 produced catechol from BaP through several intermediate metabolites, including 4-formylchrysene-5-carboxylic acid, 5,6-dihydro-5,6-dihydroxychrysene-5-carboxylic acid (isomer: 3,4-dihydro-3,4-dihydroxychrysene-4-carboxylic acid), naphthalene-1,2-dicarboxylic acid, and 2-hydroxy-1-naphthoic acid. Proteomic profiles indicated upregulation of enzymes associated with aromatic compound degradation, such as nahAc and nahB, and of those integral to the tricarboxylic acid cycle, reflecting the strain's adaptability to and degradation of BaP. Lipidomic analysis of KIT-003 demonstrated that BaP exposure induced an accumulation of glycerolipids such as diacylglycerol and triacylglycerol, indicating their crucial role in bacterial adaptation mechanisms under BaP stress. This study provides significant scientific knowledge regarding the intricate mechanisms involved in BaP degradation by microorganisms.
Collapse
Affiliation(s)
- Yoonjeong Jeon
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Young Sang Kwon
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Young Ji Noh
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Seung-Min Lee
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Jong-Wook Song
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea.
| | - Jong-Su Seo
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea.
| |
Collapse
|
4
|
Anju VT, Busi S, Mohan MS, Salim SA, Ar S, Imchen M, Kumavath R, Dyavaiah M, Prasad R. Surveillance and mitigation of soil pollution through metagenomic approaches. Biotechnol Genet Eng Rev 2024; 40:589-622. [PMID: 36881114 DOI: 10.1080/02648725.2023.2186330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Soil pollution is one of the serious global threats causing risk to environment and humans. The major cause of accumulation of pollutants in soil are anthropogenic activities and some natural processes. There are several types of soil pollutants which deteriorate the quality of human life and animal health. They are recalcitrant hydrocarbon compounds, metals, antibiotics, persistent organic compounds, pesticides and different kinds of plastics. Due to the detrimental properties of pollutants present in soil on human life and ecosystem such as carcinogenic, genotoxic and mutagenic effects, alternate and effective methods to degrade the pollutants are recommended. Bioremediation is an effective and inexpensive method of biological degradation of pollutants using plants, microorganisms and fungi. With the advent of new detection methods, the identification and degradation of soil pollutants in different ecosystems were made easy. Metagenomic approaches are a boon for the identification of unculturable microorganisms and to explore the vast bioremediation potential for different pollutants. Metagenomics is a power tool to study the microbial load in polluted or contaminated land and its role in bioremediation. In addition, the negative ecosystem and health effect of pathogens, antibiotic and metal resistant genes found in the polluted area can be studied. Also, the identification of novel compounds/genes/proteins involved in the biotechnology and sustainable agriculture practices can be performed with the integration of metagenomics.
Collapse
Affiliation(s)
- V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Mahima S Mohan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Simi Asma Salim
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sabna Ar
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Ranjith Kumavath
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Bihar, India
| |
Collapse
|
5
|
Walton JL, Buchan A. Evidence for novel polycyclic aromatic hydrocarbon degradation pathways in culturable marine isolates. Microbiol Spectr 2024; 12:e0340923. [PMID: 38084970 PMCID: PMC10783047 DOI: 10.1128/spectrum.03409-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Polycyclic aromatic hydrocarbon (PAH) pollution is widespread throughout marine environments and significantly affects native flora and fauna. Investigating microbes responsible for degrading PAHs in these environments provides a greater understanding of natural attenuation in these systems. In addition, the use of culture-based approaches to inform bioinformatic and omics-based approaches is useful in identifying novel mechanisms of PAH degradation that elude genetic biomarker-based investigations. Furthermore, culture-based approaches allow for the study of PAH co-metabolism, which increasingly appears to be a prominent mechanism for PAH degradation in marine microbes.
Collapse
Affiliation(s)
- Jillian L. Walton
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
6
|
Tarigholizadeh S, Sushkova S, Rajput VD, Ranjan A, Arora J, Dudnikova T, Barbashev A, Mandzhieva S, Minkina T, Wong MH. Transfer and Degradation of PAHs in the Soil-Plant System: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:46-64. [PMID: 38108272 DOI: 10.1021/acs.jafc.3c05589] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic, persistent organic pollutants that threaten ecosystems and human health. Consistent monitoring is essential to minimize the entry of PAHs into plants and reduce food chain contamination. PAHs infiltrate plants through multiple pathways, causing detrimental effects and triggering diverse plant responses, ultimately increasing either toxicity or tolerance. Primary plant detoxification processes include enzymatic transformation, conjugation, and accumulation of contaminants in cell walls/vacuoles. Plants also play a crucial role in stimulating microbial PAHs degradation by producing root exudates, enhancing bioavailability, supplying nutrients, and promoting soil microbial diversity and activity. Thus, synergistic plant-microbe interactions efficiently decrease PAHs uptake by plants and, thereby, their accumulation along the food chain. This review highlights PAHs uptake pathways and their overall fate as contaminants of emerging concern (CEC). Understanding plant uptake mechanisms, responses to contaminants, and interactions with rhizosphere microbiota is vital for addressing PAH pollution in soil and ensuring food safety and quality.
Collapse
Affiliation(s)
| | - Svetlana Sushkova
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Vishnu D Rajput
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Anuj Ranjan
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Jayati Arora
- Amity Institute of Environmental Science, Amity University, Noida 201301, India
| | - Tamara Dudnikova
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Andrey Barbashev
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | | | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Hong Kong, China; Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| |
Collapse
|
7
|
Jiang J, Tian W, Lu Z, Chu M, Cao H, Zhang D. Cometabolic degradation of pyrene with phenanthrene as substrate: assisted by halophilic Pseudomonas stutzeri DJP1. Biodegradation 2023; 34:519-532. [PMID: 37354271 DOI: 10.1007/s10532-023-10035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
At present, cometabolic degradation is an extensive method for the biological removal of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in the marine environment. However, due to the refractory to degradation and high toxicity, there are few studies on pyrene (PYR) cometabolic degradation with phenanthrene (PHE) as substrate. In this study, a Pseudomonas stutzeri DJP1 strain isolated from sediments was used in the cometabolic system of PHE and PYR. The biomass and the activity of key enzymes such as dehydrogenase and catechol 12 dioxygenase of strain were improved, but the enhancement of biotoxicity resulted in the inhibition of cometabolism simultaneously. Seven metabolites were identified respectively in PYR, PHE degradation cultures. It was speculated that the cometabolism of PHE and PYR had a common phthalic acid pathway, and the degradation pathway of PHE was included in the downstream pathway of PYR. The functional genes such as PhdF, NidD and CatA involved in DJP1 degradation were revealed by Genome analysis. This study provides a reference for the biodegradation of PYR and PHE in real marine environment.
Collapse
Affiliation(s)
- Junfeng Jiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China.
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, People's Republic of China.
| | - Zhiyang Lu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Meile Chu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Huimin Cao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Dantong Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| |
Collapse
|
8
|
Kaur R, Gupta S, Tripathi V, Chauhan A, Parashar D, Shankar P, Kashyap V. Microbiome based approaches for the degradation of polycyclic aromatic hydrocarbons (PAHs): A current perception. CHEMOSPHERE 2023; 341:139951. [PMID: 37652248 DOI: 10.1016/j.chemosphere.2023.139951] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Globally, polycyclic aromatic hydrocarbons (PAHs) pollution is primarily driven by their release into the air through various combustion processes, including burning fossil fuels such as coal, oil, and gas in motor vehicles, power plants, and industries, as well as burning organic matter like wood, tobacco, and food in fireplaces, cigarettes, and grills. Apart from anthropogenic pollution sources, PAHs also occur naturally in crude oil, and their potential release during oil extraction, refining processes, and combustion further contributes to contamination and pollution concerns. PAHs are resistant and persistent in the environment because of their inherent features, viz., heterocyclic aromatic ring configurations, hydrophobicity, and thermostability. A wide range of microorganisms have been found to be effective degraders of these recalcitrant contaminants. The presence of hydrocarbons as a result of numerous anthropogenic activities is one of the primary environmental concerns. PAHs are found in soil, water, and the air, making them ubiquitous in nature. The presence of PAHs in the environment creates a problem, as their presence has a detrimental effect on humans and animals. For a variety of life forms, PAH pollutants are reported to be toxic, carcinogenic, mutation-inducing, teratogenic, and immune toxicogenics. Degradation of PAHs via biological activity is an extensively used approach in which diverse microorganisms (fungal, algal, clitellate, and protozoan) and plant species and their derived composites are utilized as biocatalysts and biosurfactants. Some microbes have the ability to transform and degrade these PAHs, allowing them to be removed from the environment. The goal of this review is to provide a critical overview of the existing understanding of PAH biodegradation. It also examines current advances in diverse methodologies for PAH degradation in order to shed light on fundamental challenges and future potential.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun 248002, Uttarakhand, India
| | - Arjun Chauhan
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Deepak Parashar
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Prem Shankar
- Department of Neurobiology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX-77555, USA
| | - Vivek Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
9
|
Bai B, Zhang L, Dong H, Huang Y. Coupled Fe(III) reduction and phenanthrene degradation by marine-derived Kocuria oceani FXJ8.057 under aerobic condition. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132237. [PMID: 37595472 DOI: 10.1016/j.jhazmat.2023.132237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Diverse aerobic actinobacteria possess the capacity to degrade polycyclic aromatic hydrocarbons (PAHs) and have recently been shown to reduce Fe(III). However, the coupling of the two processes under oxic conditions remains unclear. Here, the co-metabolism of phenanthrene (PHE) and Fe(III) by marine-derived Kocuria oceani FXJ8.057 was realized under aerobic condition. In the presence of both PHE and Fe(III), the rates of PHE degradation (83.91 %) and Fe(III) reduction (50.00 %) were synchronously enhanced, compared to those with PHE (67.34 %) or Fe(III) (38.00 %) alone. Transcriptome analysis detected upregulation of PHE biodegradation and riboflavin biosynthesis in the strain cultured with both PHE and Fe(III) compared to that with PHE alone. Metabolite analysis indicated that, with the addition of Fe(III), the strain could efficiently degrade PHE via three pathways. Moreover, the strain secreted riboflavin, which acted as a shuttle to promote electron transfer from PHE to Fe(III). It also secreted organic acids that could delay Fe(II) reoxidation. Finally, H2O2 secreted by the strain caused extracellular Fenton reaction to generate •OH, which also played a minor role in the PHE degradation. These findings provide the first example of an aerobic bacterium that couples PAH degradation to Fe(III) reduction and extend our understanding of Fe(III)-reducing microorganisms.
Collapse
Affiliation(s)
- Bingbing Bai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limin Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Deng Y, Mou T, Wang J, Su J, Yan Y, Zhang YQ. Characterization of three rapidly growing novel Mycobacterium species with significant polycyclic aromatic hydrocarbon bioremediation potential. Front Microbiol 2023; 14:1225746. [PMID: 37744919 PMCID: PMC10517868 DOI: 10.3389/fmicb.2023.1225746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Mycobacterium species exhibit high bioremediation potential for the degradation of polycyclic aromatic hydrocarbons (PAHs) that are significant environmental pollutants. In this study, three Gram-positive, rapidly growing strains (YC-RL4T, MB418T, and HX176T) were isolated from petroleum-contaminated soils and were classified as Mycobacterium within the family Mycobacteriaceae. Genomic average nucleotide identity (ANI; < 95%) and digital DNA-DNA hybridization (dDDH; < 70%) values relative to other Mycobacterium spp. indicated that the strains represented novel species. The morphological, physiological, and chemotaxonomic characteristics of the isolates also supported their affiliation with Mycobacterium and their delineation as novel species. The strains were identified as Mycobacterium adipatum sp. nov. (type strain YC-RL4T = CPCC 205684T = CGMCC 1.62027T), Mycobacterium deserti sp. nov. (type strain MB418T = CPCC 205710T = KCTC 49782T), and Mycobacterium hippophais sp. nov. (type strain HX176T = CPCC 205372T = KCTC 49413T). Genes encoding enzymes involved in PAH degradation and metal resistance were present in the genomes of all three strains. Specifically, genes encoding alpha subunits of aromatic ring-hydroxylating dioxygenases were encoded by the genomes. The genes were also identified as core genes in a pangenomic analysis of the three strains along with 70 phylogenetically related mycobacterial strains that were previously classified as Mycolicibacterium. Notably, strain YC-RL4T could not only utilize phthalates as their sole carbon source for growth, but also convert di-(2-ethylhexyl) phthalate into phthalic acid. These results indicated that strains YC-RL4T, MB418T, and HX176T were important resources with significant bioremediation potential in soils contaminated by PAHs and heavy metals.
Collapse
Affiliation(s)
- Yang Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Dao-di Herbs, Beijing, China
| | - Tong Mou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Dao-di Herbs, Beijing, China
| | - Junhuan Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanchun Yan
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Dao-di Herbs, Beijing, China
| |
Collapse
|
11
|
Wojtowicz K, Steliga T, Kapusta P, Brzeszcz J. Oil-Contaminated Soil Remediation with Biodegradation by Autochthonous Microorganisms and Phytoremediation by Maize ( Zea mays). Molecules 2023; 28:6104. [PMID: 37630356 PMCID: PMC10459520 DOI: 10.3390/molecules28166104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Biological methods are currently the most commonly used methods for removing hazardous substances from land. This research work focuses on the remediation of oil-contaminated land. The biodegradation of aliphatic hydrocarbons and PAHs as a result of inoculation with biopreparations B1 and B2 was investigated. Biopreparation B1 was developed on the basis of autochthonous bacteria, consisting of strains Dietzia sp. IN118, Gordonia sp. IN101, Mycolicibacterium frederiksbergense IN53, Rhodococcus erythropolis IN119, Rhodococcus globerulus IN113 and Raoultella sp. IN109, whereas biopreparation B2 was enriched with fungi, such as Aspergillus sydowii, Aspergillus versicolor, Candida sp., Cladosporium halotolerans, Penicillium chrysogenum. As a result of biodegradation tests conducted under ex situ conditions for soil inoculated with biopreparation B1, the concentrations of TPH and PAH were reduced by 31.85% and 27.41%, respectively. Soil inoculation with biopreparation B2 turned out to be more effective, as a result of which the concentration of TPH was reduced by 41.67% and PAH by 34.73%. Another issue was the phytoremediation of the pre-treated G6-3B2 soil with the use of Zea mays. The tests were carried out in three systems (system 1-soil G6-3B2 + Zea mays; system 2-soil G6-3B2 + biopreparation B2 + Zea mays; system 3-soil G6-3B2 + biopreparation B2 with γ-PGA + Zea mays) for 6 months. The highest degree of TPH and PAH reduction was obtained in system 3, amounting to 65.35% and 60.80%, respectively. The lowest phytoremediation efficiency was recorded in the non-inoculated system 1, where the concentration of TPH was reduced by 22.80% and PAH by 18.48%. Toxicological tests carried out using PhytotoxkitTM, OstracodtoxkitTM and Microtox® Solid Phase tests confirmed the effectiveness of remediation procedures and showed a correlation between the concentration of petroleum hydrocarbons in the soil and its toxicity. The results obtained during the research indicate the great potential of bioremediation practices with the use of microbial biopreparations and Zea mays in the treatment of soils contaminated with petroleum hydrocarbons.
Collapse
Affiliation(s)
- Katarzyna Wojtowicz
- Oil and Gas Institute—National Research Institute, ul. Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | | | | | | |
Collapse
|
12
|
Silva NM, Romagnoli CL, Santiago CRDN, de Lacerda JPA, Leão SC, Digiampietri LA, Viana-Niero C. Multi-Approach Characterization of Novel Pyrene-Degrading Mycolicibacterium austroafricanum Isolates Lacking nid Genes. Microorganisms 2023; 11:1413. [PMID: 37374915 DOI: 10.3390/microorganisms11061413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are chemical compounds that are widespread in the environment, arising from the incomplete combustion of organic material, as well as from human activities involving petrol exploitation, petrochemical industrial waste, gas stations, and environmental disasters. PAHs of high molecular weight, such as pyrene, have carcinogenic and mutagenic effects and are considered pollutants. The microbial degradation of PAHs occurs through the action of multiple dioxygenase genes (nid), which are localized in genomic island denominate region A, and cytochrome P450 monooxygenases genes (cyp) dispersed in the bacterial genome. This study evaluated pyrene degradation by five isolates of Mycolicibacterium austroafricanum using 2,6-dichlorophenol indophenol (DCPIP assay), gas chromatography/mass spectrometry (CG/MS), and genomic analyses. Two isolates (MYC038 and MYC040) exhibited pyrene degradation indexes of 96% and 88%, respectively, over a seven-day incubation period. Interestingly, the genomic analyses showed that the isolates do not have nid genes, which are involved in PAH biodegradation, despite their ability to degrade pyrene, suggesting that degradation may occur due to the presence of cyp150 genes, or even genes that have not yet been described. To the best of our knowledge, this is the first report of isolates without nid genes demonstrating the ability to degrade pyrene.
Collapse
Affiliation(s)
- Natalia Maria Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-901, Brazil
| | - Camila Lopes Romagnoli
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-901, Brazil
| | | | - João Paulo Amorim de Lacerda
- Laboratory of Chemistry and Manufactured Products, Institute of Technological Research, São Paulo 05508-901, Brazil
| | - Sylvia Cardoso Leão
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-901, Brazil
| | | | - Cristina Viana-Niero
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-901, Brazil
| |
Collapse
|
13
|
Ahmad M, Ling J, Yin J, Chen L, Yang Q, Zhou W, Zhang Y, Huang X, Khan I, Dong J. Evaluation of the Different Nutritional and Environmental Parameters on Microbial Pyrene Degradation by Mangrove Culturable Bacteria. Int J Mol Sci 2023; 24:ijms24098282. [PMID: 37175988 PMCID: PMC10179275 DOI: 10.3390/ijms24098282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Mangrove ecosystems play curial roles in providing many ecological services and alleviating global climate change. However, they are in decline globally, mainly threatened by human activities and global warming, and organic pollutants, especially PAHs, are among the crucial reasons. Microbial remediation is a cost-effective and environmentally friendly way of alleviating PAH contamination. Therefore, understanding the effects of environmental and nutritional parameters on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) is significant for the bioremediation of PAH contamination. In the present study, five bacterial strains, designated as Bp1 (Genus Rhodococcus), Sp8 (Genus Nitratireductor), Sp13 (Genus Marinobacter), Sp23 (Genus Pseudonocardia), and Sp24 (Genus Mycolicibacterium), have been isolated from mangrove sediment and their ring hydroxylating dioxygenase (RHD) genes have been successfully amplified. Afterward, their degradation abilities were comprehensively evaluated under normal cultural (monoculture and co-culture) and different nutritional (tryptone, yeast extract, peptone, glucose, sucrose, and NPK fertilizer) and environmental (cetyl trimethyl ammonium bromide (CTAB), sodium dodecyl sulfate (SDS)) parameters, as well with different co-contaminants (phenanthrene and naphthalene) and heavy metals (Cd2+, Cu2+, Fe3+, Ni2+, Mg2+, Mn2+, and Co2+). The results showed that strain Sp24 had the highest pyrene degradation rate (85%) in the monoculture experiment after being cultured for 15 days. Adding nitrogen- and carbon-rich sources, including tryptone, peptone, and yeast extract, generally endorsed pyrene degradation. In contrast, the effects of carbon sources (glucose and sucrose) on pyrene degradation were distinct for different bacterial strains. Furthermore, the addition of NPK fertilizer, SDS, Tween-80, phenanthrene, and naphthalene enhanced the bacterial abilities of pyrene removal significantly (p < 0.05). Heavy metals significantly reduced all bacterial isolates' degradation potentials (p < 0.05). The bacterial consortia containing high bio-surfactant-producing strains showed substantially higher pyrene degradation. Moreover, the consortia of three and five bacterial strains showed more degradation efficiency than those of two bacterial strains. These results provide helpful microbial resources for mangrove ecological remediation and insight into optimized culture strategies for the microbial degradation of PAHs.
Collapse
Affiliation(s)
- Manzoor Ahmad
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou 515041, China
| | - Jianping Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Luxiang Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou 515041, China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Yuhang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Xiaofang Huang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Imran Khan
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou 515041, China
| |
Collapse
|
14
|
Morales-Blancas GY, Reyna-Terán JD, Hernández-Eligio JA, Ortuño-Pineda C, Toribio-Jiménez J, Rodríguez-Barrera MÁ, Toledo-Hernández E, Rojas-Aparicio A, Romero-Ramírez Y. The catE gene of Bacillus licheniformis M2-7 is essential for growth in benzopyrene, and its expression is regulated by the Csr system. World J Microbiol Biotechnol 2023; 39:177. [PMID: 37115273 DOI: 10.1007/s11274-023-03630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023]
Abstract
Benzopyrene is a high-molecular-weight polycyclic aromatic hydrocarbon that is highly recalcitrant and induces carcinogenic effects. CsrA is a conserved regulatory protein that controls the translation and stability of its target transcripts, having negative or positive effects depending on the target mRNAs. It is known that Bacillus licheniformis M2-7 has the ability to grow and survive in certain concentrations of hydrocarbons such as benzopyrene, prompted in part by CsrA, as is present in gasoline. However, there are a few studies that reveal the genes involved in that process. To identify the genes involved in the Bacillus licheniformis M2-7 degradation pathway, the plasmid pCAT-sp containing a mutation in the catE gene was constructed and used to transform B. licheniformis M2-7 and generate a CAT1 strain. We determined the capacity of the mutant B. licheniformis (CAT1) to grow in the presence of glucose or benzopyrene as a carbon source. We observed that the CAT1 strain presented increased growth in the presence of glucose but a statistically considerable decrease in the presence of benzopyrene compared with the wild-type parental strain. Additionally, we demonstrated that the Csr system positively regulates its expression since it was observed that the expression of the gene in the mutant strain LYA12 (M2-7 csrA:: Sp, SpR) was considerably lower than that in the wild-type strain. We were thus able to propose a putative regulation model for catE gene in B. licheniformis M2-7 strain by CsrA regulator in the presence of benzopyrene.
Collapse
Affiliation(s)
- Giselle Yamilet Morales-Blancas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Unidad Académica de Ciencias Químico- Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas sin número, Ciudad Universitaria, Chilpancingo, Guerrero, C. P. 39070, México
| | - José Daniel Reyna-Terán
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Unidad Académica de Ciencias Químico- Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas sin número, Ciudad Universitaria, Chilpancingo, Guerrero, C. P. 39070, México
| | - José Alberto Hernández-Eligio
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, C. P. 62210, México
| | - Carlos Ortuño-Pineda
- Laboratorio de Ácidos Nucleicos y Proteínas, Universidad Autónoma de Guerrero, 16 México. Av. Lázaro Cárdenas. Ciudad Universitaria, Chilpancingo, Guerrero, C. P. 39070, México
| | - Jeiry Toribio-Jiménez
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Unidad Académica de Ciencias Químico- Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas sin número, Ciudad Universitaria, Chilpancingo, Guerrero, C. P. 39070, México
| | - Miguel Ángel Rodríguez-Barrera
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Unidad Académica de Ciencias Químico- Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas sin número, Ciudad Universitaria, Chilpancingo, Guerrero, C. P. 39070, México
| | - Erubiel Toledo-Hernández
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Unidad Académica de Ciencias Químico- Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas sin número, Ciudad Universitaria, Chilpancingo, Guerrero, C. P. 39070, México
| | - Augusto Rojas-Aparicio
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Unidad Académica de Ciencias Químico- Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas sin número, Ciudad Universitaria, Chilpancingo, Guerrero, C. P. 39070, México
| | - Yanet Romero-Ramírez
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Unidad Académica de Ciencias Químico- Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas sin número, Ciudad Universitaria, Chilpancingo, Guerrero, C. P. 39070, México.
| |
Collapse
|
15
|
Distribution and source assignments of polycyclic aromatic and aliphatic hydrocarbons in sediments and biota of the Lafayette River, VA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47527-47543. [PMID: 36740615 DOI: 10.1007/s11356-023-25563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023]
Abstract
The Lafayette River comprises a tidal sub-estuary constrained by an urban watershed that is bounded by residential areas at its upper reaches and port activity at its mouth. We determined the concentrations and distributions of polycyclic aromatic hydrocarbons (PAHs) and aliphatic n-alkanes across 19 sites from headwaters to river mouth in surface sediments (0-2 cm). Potential atmospheric sources were investigated through the analysis of wet and dry deposition samples and intact coals from a major export terminal nearby. The potential consequences for human consumption were examined through analysis of native oyster (Crassostrea virginica) and blue crab tissues (Callinectes sapidus). A suite of up to 66 parent and alkyl-substituted PAHs were detected in Lafayette sediments with total concentrations ranging from 0.75 to 39.00 µg g-1 dry wt. Concentrations of aliphatic n-alkanes (n-C16 - n-C31) ranged from 4.94 to 40.83 μg g-1 dry wt. Source assignment using diagnostic ratios and multivariate source analysis suggests multiple sources contribute to the hydrocarbon signature in this metropolitan system with automotive and atmospheric transport of coal dust as the major contributors. Oyster tissues showed similar trends as PAHs observed in sediments indicating similar sources to water column particles which ultimately accumulate in sediments with crabs showing altered distributions as a consequence of metabolism.
Collapse
|
16
|
Built-in electric field enabled in carbon-doped Bi3O4Br nanocrystals for excellent photodegradation of PAHs. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Synthetic metabolic transducers in Saccharomyces cerevisiae as sensors for aromatic permeant acids and bioreporters of hydrocarbon metabolism. Biosens Bioelectron 2022; 220:114897. [DOI: 10.1016/j.bios.2022.114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/18/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
|
18
|
Zhao X, Miao R, Guo M, Shang X, Zhou Y, Zhu J. Biochar enhanced polycyclic aromatic hydrocarbons degradation in soil planted with ryegrass: Bacterial community and degradation gene expression mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156076. [PMID: 35597344 DOI: 10.1016/j.scitotenv.2022.156076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Biochar and ryegrass have been used in the remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils; however, the effects of different biochar application levels on the dissipation of PAHs, bacterial communities, and PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes in rhizosphere soil remain unclear. In this study, enzyme activity tests, real-time quantitative polymerase chain reaction (PCR), and high-throughput sequencing were performed to investigate the effects of different proportions of rape straw biochar (1%, 2%, and 4% (w/w)) on the degradation of PAHs, as well as the associated changes in the soil bacterial community and PAH-RHDα gene expression. The results revealed that biochar enhanced the rhizoremediation of PAH-contaminated soil and that 2% biochar-treated rhizosphere soil was the most effective in removing PAHs. Furthermore, urease activity, abundance and activity of total bacteria, and PAH-degrading bacteria were enhanced in soil that was amended with biochar and ryegrass. Additionally, the activity of 16S rDNA and PAH-RHDα gram-negative (GN) genes increased with increasing biochar dosage and had a positive correlation with the removal of PAHs. Biochar changed the rhizosphere soil bacterial composition and α-diversity, and promoted the growth of Pseudomonas and Zeaxanthinibacter. In addition, the relative abundance of Pseudomonas was positively correlated with PAH removal. These findings imply that rape straw biochar can enhance the rhizoremediation of PAH-contaminated soil by changing soil bacterial communities and stimulating the expression of PAH-RHDα GN genes. The 2% of rape straw biochar combined with ryegrass would be an effective method to remediate the PAH-contaminated soil.
Collapse
Affiliation(s)
- Xuyang Zhao
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Renhui Miao
- International Joint Research Laboratory for Global Change Ecology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Meixia Guo
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Xingtian Shang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
19
|
Parthipan P, Cheng L, Dhandapani P, Elumalai P, Huang M, Rajasekar A. Impact of biosurfactant and iron nanoparticles on biodegradation of polyaromatic hydrocarbons (PAHs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119384. [PMID: 35504349 DOI: 10.1016/j.envpol.2022.119384] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hazardous toxic contaminants and considered as primary pollutants due to their persistent nature and most of them are carcinogenic and mutagenic. The key challenge in PAHs degradation is their hydrophobic nature, which makes them one of the most complex materials and inaccessible by a broad range of microorganisms. This bioavailability can be increased by using a biosurfactant. In the present study mixed PAHs were degraded using the biosurfactant producing bacterial strains. In addition, iron nanoparticles were synthesized and the impact of iron nanoparticles on the growth of the mixed bacterial strains (Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3) was optimized. The mixed PAHs (anthracene, pyrene, and benzo(a)pyrene) degradation was enhanced by addition of biosurfactant (produced by Bacillus subtilis A1) and iron nanoparticles, resulting in 85% of degradation efficiency. The addition of the biosurfactant increased the bioavailability of the PAHs in the aqueous environment, which might help bacterial cells for the initial settlement and development. The addition of iron nanoparticles increased both bacterial biomass and PAHs adsorption over their surface. These overall interactions assisted in the utilization of PAHs by the mixed bacterial consortia. This study illustrates that this integrated approach can be elaborated for the removal of the complex PAHs pollutants from soil and aqueous environments.
Collapse
Affiliation(s)
- Punniyakotti Parthipan
- School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Liang Cheng
- School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Institute of Materials Engineering Nanjing University, Nantong, 226000, China.
| | - Perumal Dhandapani
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| | - Punniyakotti Elumalai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| |
Collapse
|
20
|
Imam A, Suman SK, Vempatapu BP, Tripathi D, Ray A, Kanaujia PK. Pyrene remediation by Trametes maxima: an insight into secretome response and degradation pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44135-44147. [PMID: 35122201 DOI: 10.1007/s11356-022-18888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The rapid pace of economic development has resulted in the release of several polycyclic aromatic hydrocarbons (PAHs) into the environment. Microbial degradation using white-rot fungi is a promising method for the removal of PAHs from the environment. In the present study, biodegradation of recalcitrant PAH by a white-rot fungus, Trametes maxima IIPLC-32, was investigated using pyrene. The pyrene concentration decreased by 79.80%, 65.37%, and 56.37% within 16 days from the initial levels of 10 mg L-1, 25 mg L-1, and 50 mg L-1, respectively. Gas chromatographic-mass spectrometric identification of prominent metabolites 1-hydroxypyrene, 2-methyl-1-naphthyl acetic acid, di-n-butyl phthalate, and diethyl phthalate helped in determining the pyrene degradation pathway. The presence of 81 extracellular proteins was revealed by secretome analysis. The identified proteins up-regulated in response to pyrene degradation were classified into detoxification proteins (6.12%), redox proteins (6.12%), stress proteins (4.08%), metabolic-related proteins (26.53%), translation and transcriptional proteins (49%), catalytic proteins (49%), and other proteins (8.16%). Knowledge of secretome analysis in pyrene degradation helped to understand the degradation mechanism of pyrene. Also, the study suggests that T. maxima IIPLC-32 has the potential to be used in the bioremediation of PAH contaminated aquatic environment.
Collapse
Affiliation(s)
- Arfin Imam
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India.
| | - Bhanu Prasad Vempatapu
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
| | - Deependra Tripathi
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
| | - Anjan Ray
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India
| | - Pankaj K Kanaujia
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India.
| |
Collapse
|
21
|
A Review of Pyrene Bioremediation Using Mycobacterium Strains in a Different Matrix. FERMENTATION 2022. [DOI: 10.3390/fermentation8060260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polycyclic aromatic hydrocarbons are compounds with 2 or more benzene rings, and 16 of them have been classified as priority pollutants. Among them, pyrene has been found in higher concentrations than recommended, posing a threat to the ecosystem. Many bacterial strains have been identified as pyrene degraders. Most of them belong to Gram-positive strains such as Mycobacterium sp. and Rhodococcus sp. These strains were enriched and isolated from several sites contaminated with petroleum products, such as fuel stations. The bioremediation of pyrene via Mycobacterium strains is the main objective of this review. The scattered data on the degradation efficiency, formation of pyrene metabolites, bio-toxicity of pyrene and its metabolites, and proposed degradation pathways were collected in this work. The study revealed that most of the Mycobacterium strains were capable of degrading pyrene efficiently. The main metabolites of pyrene were 4,5-dihydroxy pyrene, phenanthrene-4,5-dicarboxylate, phthalic acid, and pyrene-4,5-dihydrodiol. Some metabolites showed positive results for the Ames mutagenicity prediction test, such as 1,2-phenanthrenedicarboxylic acid, 1-hydroxypyrene, 4,5-dihydropyrene, 4-phenanthrene-carboxylic acid, 3,4-dihydroxyphenanthrene, monohydroxy pyrene, and 9,10-phenanthrenequinone. However, 4-phenanthrol showed positive results for experimental and prediction tests. This study may contribute to enhancing the bioremediation of pyrene in a different matrix.
Collapse
|
22
|
Prekrasna I, Pavlovska M, Oleinik I, Dykyi E, Slobodnik J, Alygizakis N, Solomenko L, Stoica E. Bacterial communities of the Black Sea exhibit activity against persistent organic pollutants in the water column and sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113367. [PMID: 35272192 DOI: 10.1016/j.ecoenv.2022.113367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The ability of bacteria to degrade organic pollutants influences their fate in the environment, impact on the other biota and accumulation in the food web. The aim of this study was to evaluate abundance and expression activity of the catabolic genes targeting widespread pollutants, such as polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and hexachloro-cyclohexane (HCH) in the Black Sea water column and sediments. Concentrations of PAHs, PCBs and HCH were determined by gas chromatography (GC) coupled to mass spectrometry (MS) and electron capture (ECD) detectors. bphA1, PAH-RHDα, nahAc, linA and linB that encode biphenyl 2,3 dioxygenase, α-subunits of ring hydroxylating dioxygenases, naphthalene dioxygenase, dehydrochlorinase and halidohydrolase correspondently were quantified by quantitative PCR. More recalcitrant PAHs, PCBs and HCH tended to accumulate in the Black Sea environments. In water samples, 3- and 4-ringed PAHs outnumbered naphthalene, while PAHs with > 4 rings prevailed in the sediments. Congeners with 4-8 chlorines with ortho-position of the substituents were the most abundant among the PCBs. β-HCH was determined at highest concentration in water samples, and total amount of HCH exceeded its legacy Environmental Quality Standard value. bphA1, was the most numerous gene in water layers (105 copies/mL) and sediments (105 copies/mg), followed by linB and PAH-RHDα genes (103 copies/mL; 105 copies/mg). The least abundant genes were linA (103 copies/mL; 104 copies/mg) and nahAc (102 copies/mL; 104 copies/mg). The most widely distributed gene bphА1 was one of the least expressed (10-3-10-2 copies/mL; 10-1 copies/mg). The most actively expressed genes were linB (101-102 copies/mL; 103 copies/mg), PAH-RHDα (101 copies/mL; 102 copies/mg) and linA (10-1-100 copies/mL; 100 copies/mg). Interaction of bacteria with PAHs, PCBs and HCH is evidenced by high copy numbers of the catabolic genes that initiate their degradation. More persistent compounds, such as high-molecular weight PAHs or β-HCH are accumulating in the Black Sea water and sediments, albeit microbial activity is directed against them.
Collapse
Affiliation(s)
- Ievgeniia Prekrasna
- State Institution National Antarctic Scientific Center, Taras Shevchenko Blvd., 16, 01601 Kyiv, Ukraine
| | - Mariia Pavlovska
- State Institution National Antarctic Scientific Center, Taras Shevchenko Blvd., 16, 01601 Kyiv, Ukraine; National University of Life and Environmental Sciences of Ukraine, 15, Heroiv Oborony Str., 03041 Kyiv, Ukraine
| | - Iurii Oleinik
- Ukrainian Scientific Center of Ecology of the Sea, 89 Frantsuzsky Blvd., 65009 Odessa, Ukraine
| | - Evgen Dykyi
- State Institution National Antarctic Scientific Center, Taras Shevchenko Blvd., 16, 01601 Kyiv, Ukraine
| | | | - Nikiforos Alygizakis
- Environmental Institute, Okruzna 784/42, 97241 Kos, Slovak Republic; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens Greece
| | - Liudmyla Solomenko
- National University of Life and Environmental Sciences of Ukraine, 15, Heroiv Oborony Str., 03041 Kyiv, Ukraine
| | - Elena Stoica
- National Institute for Marine Research and Development "Grigore Antipa", Blvd. Mamaia no. 300, RO-900581 Constanţa 3, Romania.
| |
Collapse
|
23
|
Ibrar M, Khan S, Hasan F, Yang X. Biosurfactants and chemotaxis interplay in microbial consortium-based hydrocarbons degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24391-24410. [PMID: 35061186 DOI: 10.1007/s11356-022-18492-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Hydrocarbons are routinely detected at low concentrations, despite the degrading metabolic potential of ubiquitous microorganisms. The potential drivers of hydrocarbons persistence are lower bioavailability and mass transfer limitation. Recently, bioremediation strategies have developed rapidly, but still, the solution is not resilient. Biosurfactants, known to increase bioavailability and augment biodegradation, are tightly linked to bacterial surface motility and chemotaxis, while chemotaxis help bacteria to locate aromatic compounds and increase the mass transfer. Harassing the biosurfactant production and chemotaxis properties of degrading microorganisms could be a possible approach for the complete degradation of hydrocarbons. This review provides an overview of interplay between biosurfactants and chemotaxis in bioremediation. Besides, we discuss the chemical surfactants and biosurfactant-mediated biodegradation by microbial consortium.
Collapse
Affiliation(s)
- Muhammad Ibrar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Hubei, People's Republic of China
| | - Salman Khan
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Fariha Hasan
- Department of Microbiology, Applied, Environmental and Geomicrobiology Laboratory, Quaid-I-Azam University, Islamabad, Pakistan
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
24
|
Wojtowicz K, Steliga T, Kapusta P, Brzeszcz J, Skalski T. Evaluation of the Effectiveness of the Biopreparation in Combination with the Polymer γ-PGA for the Biodegradation of Petroleum Contaminants in Soil. MATERIALS (BASEL, SWITZERLAND) 2022; 15:400. [PMID: 35057118 PMCID: PMC8778143 DOI: 10.3390/ma15020400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Abstract
Biodegradation is a method of effectively removing petroleum hydrocarbons from the natural environment. This research focuses on the biodegradation of aliphatic hydrocarbons, monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) and polycyclic aromatic hydrocarbons (PAHs) as a result of soil inoculation with a biopreparation A1 based on autochthonous microorganisms and a biopreparation A1 with the addition of γ-PGA. The research used biopreparation A1 made of the following strains: Dietzia sp. IN133, Gordonia sp. IN138 Mycolicibacterium frederiksbergense IN53, Rhodococcus erythropolis IN119, Rhodococcus sp. IN136 and Pseudomonas sp. IN132. The experiments were carried out in laboratory conditions (microbiological tests, respirometric tests, and in semi-technical conditions (ex-situ prism method). The biodegradation efficiency was assessed on the basis of respirometric tests, chromatographic analyses and toxicological tests. As a result of inoculation of AB soil with the biopreparation A1 within 6 months, a reduction of total petroleum hydrocarbons (TPH) (66.03%), BTEX (80.08%) and PAHs (38.86%) was achieved and its toxicity was reduced. Inoculation of AB soil with the biopreparation A1 with the addition of γ-PGA reduced the concentration of TPH, BTEX and PAHs by 79.21%, 90.19%, and 51.18%, respectively, and reduced its toxicity. The conducted research has shown that the addition of γ-PGA affects the efficiency of the biodegradation process of petroleum pollutants, increasing the degree of TPH biodegradation by 13.18%, BTEX by 10.11% and PAHs by 12.32% compared to pure biopreparation A1.
Collapse
Affiliation(s)
- Katarzyna Wojtowicz
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Teresa Steliga
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Piotr Kapusta
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Joanna Brzeszcz
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Tomasz Skalski
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland;
| |
Collapse
|
25
|
Wu D, Kan H, Zhang Y, Wang T, Qu G, Zhang P, Jia H, Sun H. Pyrene contaminated soil remediation using microwave/magnetite activated persulfate oxidation. CHEMOSPHERE 2022; 286:131787. [PMID: 34365168 DOI: 10.1016/j.chemosphere.2021.131787] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are important mutagen prevalent in the contaminated sites, bringing potential risks to human health. Iron oxides are important natural components in soils. Pyrene removal in soil using persulfate (PS) oxidation activated by microwave (MW) and magnetite (Fe3O4) was investigated. Fe3O4 significantly promoted pyrene removal in the soil; 91.7 % of pyrene was degraded within 45 min treatment. Pyrene removal rate in the Fe3O4/MW/PS system was 5.18 and 3.00 times higher than that in the Fe3O4/PS and MW/PS systems. Increasing in Fe3O4 dosage, PS concentration, MW temperature, and soil moisture content in the selected range were conducive for pyrene degradation. SO4•-, •OH, O2•-, and 1O2 were responsible for pyrene degradation, and the conversion of Fe (Ⅱ) in the Fe3O4 to Fe (Ⅲ) contributed to the formation of O2•- and 1O2. Characteristic bands of pyrene were more obviously destroyed by the Fe3O4/MW/PS oxidation, in comparison with MW/PS oxidation. Ring hydroxylation and ring-opening reactions were the main degradation pathways of pyrene. The toxicities of the formed byproducts were significantly reduced after treatment. This study provided a promising option for pyrene contaminated soil remediation.
Collapse
Affiliation(s)
- Dan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Hongshuai Kan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Ying Zhang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Peng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
26
|
Méndez García M, García de Llasera MP. A review on the enzymes and metabolites identified by mass spectrometry from bacteria and microalgae involved in the degradation of high molecular weight PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149035. [PMID: 34303250 DOI: 10.1016/j.scitotenv.2021.149035] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
High molecular weight PAHs (HMW PAHs) are dangerous pollutants widely distributed in the environment. The use of microorganisms represents an important tool for HMW PAHs bioremediation, so, the understanding of their biochemical pathways facilitates the development of biodegradation strategies. For this reason, the potential role of species of microalgae, bacteria, and microalga-bacteria consortia in the degradation of HMW PAHs is discussed. The identification of their metabolites, mostly by GC-MS and LC-MS, allows a better approach to the enzymes involved in the key steps of the metabolic pathways of HMW PAHs biodegradation. So, this review intends to address the proteomic research on enzyme activities and their involvement in regulating essential biochemical functions that help bacteria and microalgae in the biodegradation processes of HMW PAHs. It is noteworthy that, given that to the best of our knowledge, this is the first review focused on the mass spectrometry identification of the HMW PAHs metabolites; whereby and due to the great concern of the presence of HMW PAHs in the environment, this material could help the urgency of developing new bioremediation methods. The elucidation of the metabolic pathways of persistent pollutant degrading microorganisms should lead to a better knowledge of the enzymes involved, which could contribute to a very ecological route to the control of environmental contamination in the future.
Collapse
Affiliation(s)
- Manuel Méndez García
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D. F. 04510, Mexico
| | - Martha Patricia García de Llasera
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D. F. 04510, Mexico.
| |
Collapse
|
27
|
Ahmad M, Wang P, Li JL, Wang R, Duan L, Luo X, Irfan M, Peng Z, Yin L, Li WJ. Impacts of bio-stimulants on pyrene degradation, prokaryotic community compositions, and functions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117863. [PMID: 34352636 DOI: 10.1016/j.envpol.2021.117863] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Bio-stimulation of the indigenous microbial community is considered as an effective strategy for the bioremediation of polluted environments. This examination explored the near effects of various bio-stimulants on pyrene degradation, prokaryotic community compositions, and functions using 16S rRNA amplicon sequencing and qPCR. At first, the results displayed significant differences (p < 0.05) between the prokaryotic community structures of the control group, PYR (contains pyrene only), and bio-stimulants amended groups. Among the bio-stimulants, biochar, oxalic acid, salicylate, NPK, and ammonium sulfate augmented the pyrene degradation potential of microbial communities. Moreover, the higher abundance of genera, such as Flavobacterium, Hydrogenophaga, Mycobacterium, Rhodococcus, Flavihumibacter, Pseudomonas, Novosphingobium, etc., across the treatments indicated that these genera play a vital role in pyrene metabolism. Based on the higher abundance of GP-RHD and nidA genes, we speculated that Gram-positive prokaryotic communities are more competent in pyrene dissipation than Gram-negative. Furthermore, the marked abundance of nifH, and pqqC genes in the NPK and SA treatments, respectively, suggested that different bio-stimulants might enrich certain bacterial assemblages. Besides, the significant distinctions (p < 0.05) between the bacterial consortia of HA (humic acid) and SA (sodium acetate) groups from NPK, OX (oxalic acid), UR (urea), NH4, and SC (salicylate) groups also suggested that different bio-stimulants might induce distinct ecological impacts influencing the succession of prokaryotic communities in distinct directions. This work provides new insight into the bacterial degradation of pyrene using the bio-stimulation technique. It suggests that it is equally important to investigate the community structure and functions along with studying their impacts on degradation when devising a bio-stimulation technology.
Collapse
Affiliation(s)
- Manzoor Ahmad
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jia-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Renfei Wang
- Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Li Duan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xiaoqing Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Ziqi Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lingzi Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.
| |
Collapse
|
28
|
Gu H, Yan K, You Q, Chen Y, Pan Y, Wang H, Wu L, Xu J. Soil indigenous microorganisms weaken the synergy of Massilia sp. WF1 and Phanerochaete chrysosporium in phenanthrene biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146655. [PMID: 33798893 DOI: 10.1016/j.scitotenv.2021.146655] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Biodegradation is a promising way to reduce phenanthrene (PHE) in environment. PHE biodegradation by bioaugmentation of axenic and mixed cultures of Massilia sp. WF1 (a highly efficient PHE-degrading bacteria) and Phanerochaete chrysosporium (P. chrysosporium, an extensively researched model fungus in organic pollutant bioremediation) was investigated in aqueous and autoclaved/un-autoclaved soil cultures. In the liquid cultures, the strain WF1 could use PHE (ca. 10 mg L-1) as the sole carbon source, and the presence of d-fructose (500 mg L-1) had no obvious effect on its PHE degradation; while the opposite was observed for P. chrysosporium. The bioaugmentation of strain WF1 and P. chrysosporium co-culture showed the highest PHE-degradation efficiency, especially in the aqueous and the autoclaved soil (PHE, ca. 50 mg kg-1) cultures, indicating a synergistic interaction of the co-culture during PHE dissipation. It was further observed that the indigenous microorganisms (mainly the Gram-positive bacteria) played a dominant role during PHE biodegradation and showed an antagonistic action against the strain WF1-P. chrysosporium co-culture, which weakened the synergistic action of the co-culture in the un-autoclaved soil. Besides, the abundances of PAH-RHDα GP and nidA genes were negatively correlated with residual PHE in the soil. Our findings provide the scientific support for bioremediation of PAHs in environment.
Collapse
Affiliation(s)
- Haiping Gu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China; Department of Environmental Sciences, College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Kang Yan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Qi You
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Yuanzhi Chen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China; Beihai Tieshangang District Human Resources and Social Security Bureau, Beihai, China
| | - Yunhui Pan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China.
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China; Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Elyamine AM, Kan J, Meng S, Tao P, Wang H, Hu Z. Aerobic and Anaerobic Bacterial and Fungal Degradation of Pyrene: Mechanism Pathway Including Biochemical Reaction and Catabolic Genes. Int J Mol Sci 2021; 22:8202. [PMID: 34360967 PMCID: PMC8347714 DOI: 10.3390/ijms22158202] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
Microbial biodegradation is one of the acceptable technologies to remediate and control the pollution by polycyclic aromatic hydrocarbon (PAH). Several bacteria, fungi, and cyanobacteria strains have been isolated and used for bioremediation purpose. This review paper is intended to provide key information on the various steps and actors involved in the bacterial and fungal aerobic and anaerobic degradation of pyrene, a high molecular weight PAH, including catabolic genes and enzymes, in order to expand our understanding on pyrene degradation. The aerobic degradation pathway by Mycobacterium vanbaalenii PRY-1 and Mycobactetrium sp. KMS and the anaerobic one, by the facultative bacteria anaerobe Pseudomonas sp. JP1 and Klebsiella sp. LZ6 are reviewed and presented, to describe the complete and integrated degradation mechanism pathway of pyrene. The different microbial strains with the ability to degrade pyrene are listed, and the degradation of pyrene by consortium is also discussed. The future studies on the anaerobic degradation of pyrene would be a great initiative to understand and address the degradation mechanism pathway, since, although some strains are identified to degrade pyrene in reduced or total absence of oxygen, the degradation pathway of more than 90% remains unclear and incomplete. Additionally, the present review recommends the use of the combination of various strains of anaerobic fungi and a fungi consortium and anaerobic bacteria to achieve maximum efficiency of the pyrene biodegradation mechanism.
Collapse
Affiliation(s)
- Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
- Department of Life Science, Faculty of Science and Technology, University of Comoros, Moroni 269, Comoros
| | - Jie Kan
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| | - Shanshan Meng
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| | - Peng Tao
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| | - Hui Wang
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| | - Zhong Hu
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| |
Collapse
|
30
|
Effect of pyrene and phenanthrene in shaping bacterial communities in seagrass meadows sediments. Arch Microbiol 2021; 203:4259-4272. [PMID: 34100100 DOI: 10.1007/s00203-021-02410-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), originating from anthropogenic and natural sources, are highly concerned environmental pollutants. This study investigated the impact of two model PAHs (pyrene and phenanthrene) on bacterial community succession in the seagrass meadows sediment in a lab-scale microcosm. Halophila ovalis sediment slurry microcosms were established, one group was placed as a control, and the other two were treated with pyrene and phenanthrene. Bacterial community succession in response to respective PAHs was investigated by 16S rRNA amplicon sequencing. The results demonstrated that bacterial diversity decrease in each microcosm during the incubation process; however, the composition of bacterial communities in each microcosm was significantly different. Proteobacteria (37-89%), Firmicutes (9-41%), and Bacteroides (7-21%) were the predominant group at the phylum levels. Their abundance varies during the incubation process. Several previously reported hydrocarbon-degrading genera, such as Pseudomonas, Spinghobium, Sphingobacterium, Mycobacterium, Pseudoxanthomonas, Idiomarina, Stenotrophomonas, were detected in higher abundance in pyrene- and phenanthrene-treated microcosms. However, these genera were distinctly distributed in the pyrene and phenanthrene treatments, suggesting that certain bacterial groups favorably degrade different PAHs. Statistical analyses, such as ANOSIM and PERMANOVA, also revealed that significant differences existed among the treatments' bacterial consortia (P < 0.05). This work showed that polycyclic aromatic hydrocarbon significantly affects bacterial community succession, and different PAHs might influence the bacterial community succession differently.
Collapse
|
31
|
Laothamteep N, Kawano H, Vejarano F, Suzuki-Minakuchi C, Shintani M, Nojiri H, Pinyakong O. Effects of environmental factors and coexisting substrates on PAH degradation and transcriptomic responses of the defined bacterial consortium OPK. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116769. [PMID: 33676341 DOI: 10.1016/j.envpol.2021.116769] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 05/12/2023]
Abstract
The present study showed that syntrophic associations in a defined bacterial consortium, named OPK, containing Mycolicibacterium strains PO1 and PO2, Novosphingobium pentaromativorans PY1 and Bacillus subtilis FW1, led to effective pyrene degradation over a wide range of pH values, temperatures and salinities, as well as in the presence of a second polycyclic aromatic hydrocarbon (PAH). Anthracene, phenanthrene or fluorene facilitated complete pyrene degradation within 9 days, while fluoranthene delayed pyrene degradation. Interestingly, fluoranthene degradation was enhanced in the presence of pyrene. Transcriptome analysis confirmed that Mycolicibacterium strains were the key PAH-degraders during the cometabolism of pyrene and fluoranthene. Notably, the transcription of genes encoding pyrene-degrading enzymes were shown to be important for enhanced fluoranthene degradation. NidAB was the major initial oxygenase involved in the degradation of pyrene and fluoranthene mixture. Other functional genes encoding ribosomal proteins, an iron transporter, ABC transporters and stress response proteins were induced in strains PO1 and PO2. Furthermore, an intermediate pyrene-degrading Novosphingobium strain contributed to protocatechuate degradation. The results demonstrated that synergistic interactions among the bacterial members (PO1, PO2 and PY1) of the consortium OPK promoted the simultaneous degradation of two high molecular weight (HMW) PAHs.
Collapse
Affiliation(s)
- Natthariga Laothamteep
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Microbial Technology for Marine Pollution Treatment Research Unit, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hibiki Kawano
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Felipe Vejarano
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8561, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Onruthai Pinyakong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Microbial Technology for Marine Pollution Treatment Research Unit, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
32
|
Rathour R, Medhi K, Gupta J, Thakur IS. Integrated approach of whole-genome analysis, toxicological evaluation and life cycle assessment for pyrene biodegradation by a psychrophilic strain, Shewanella sp. ISTPL2. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116176. [PMID: 33307397 DOI: 10.1016/j.envpol.2020.116176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) such as pyrene are universal contaminants existing in the environment which have known cancer-causing and mutagenic characteristics. A psychrophilic bacterial strain Shewanella sp. ISTPL2 was isolated from the sediment sample collected from the Pangong lake, Jammu & Kashmir, India. In our previous study, the pyrene degradation potential of the ISTPL2 strain was studied in both mineral salt media as well as in soil artificially spiked with different concentrations of pyrene. Whole-genome sequencing of ISTPL2 strain in the current study highlighted the key genes of pyrene metabolism, including alcohol dehydrogenase and ring hydroxylating dioxygenase alpha-subunit. Pyrene cytotoxicity was evaluated on HepG2, a human hepato-carcinoma cell line. The cytotoxicity of the organic extract decreased with the increasing duration of bacterial treatment. To develop a more sustainable biodegradation approach, the potential impacts were evaluated for human health and ecosystem using life-cycle assessment (LCA) following the ReCiPe methodology for the considered PAH. The results implemented that global warming potential (GWP) had the highest impact, whereas both ecotoxicity and human toxicity had least from this study.
Collapse
Affiliation(s)
- Rashmi Rathour
- School of Environmental Sciences, Jawaharlal Nehru University, Delhi, 110067, India.
| | - Kristina Medhi
- School of Environmental Sciences, Jawaharlal Nehru University, Delhi, 110067, India; Central Pollution Control Board (CPCB), Regional Directorate (North), PICUP Bhawan, Lucknow, Uttar Pradesh, 226010, India.
| | - Juhi Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, Delhi, 110067, India.
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, Delhi, 110067, India.
| |
Collapse
|
33
|
Yang J, Gu Y, Chen Z, Song Y, Sun F, Liu J, Waigi MG. Colonization and performance of a pyrene-degrading bacterium Mycolicibacterium sp. Pyr9 on root surfaces of white clover. CHEMOSPHERE 2021; 263:127918. [PMID: 32822944 DOI: 10.1016/j.chemosphere.2020.127918] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 05/12/2023]
Abstract
Some rhizosphere bacteria could colonize on the root surface of plants, or even form biofilm to promote plant growth, enhance plant resistance to harsh external environments and block the soil contamination. In this study, to explore the effects of pyrene-degrading bacterium on root surface on plant uptake of pyrene, a pyrene-degrading bacterium Mycolicibacterium sp. Pyr9 was isolated from the root surface of Eleusine indica L. Gaertn. in PAH-contaminated fields; after antibiotic labeling, it was colonized onto the root surface of white clover (Trifolium repens L.), and its distribution and performance were monitored under different levels of pyrene contamination. Strain Pyr9 could degrade 98% of pyrene (with an initial concentration of 50 mg L-1) in culture solution within 8 d; it also owns a variety of plant growth promoting characteristics and appreciable tolerance to harsh environments. The transcription of pyrene catabolic genes in Pyr9 enhanced obviously when induced by pyrene. Pyr9 colonized and grew well on the root surface of white clover via root inoculation; some cells could even enter into the root tissues and move to the shoots. Compared with the Pyr9-free treatment, the pyrene contents in the roots and shoots of Pyr9-inoculated white clover decreased by 25%-30% and 33%-42%, respectively. Correspondingly, the pyrene accumulation and translocation factors in white clover decreased as well. These results indicate that Pyr9 would be a good potential to circumvent plant pyrene pollution. This research may provide a theoretical basis and technical support for the safety of agricultural products and human health in PAH-contaminated sites.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yujun Gu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhigao Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yao Song
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Fengfei Sun
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
34
|
Draft Whole-Genome Sequence of the Anthracene-Degrading Strain Mycolicibacterium frederiksbergense LB501T, Isolated from a Polycyclic Aromatic Hydrocarbon-Contaminated Soil. Microbiol Resour Announc 2020; 9:9/43/e00671-20. [PMID: 33093053 PMCID: PMC7585852 DOI: 10.1128/mra.00671-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the draft whole-genome sequence of an anthracene-degrading bacterium, Mycolicibacterium frederiksbergense strain LB501T, using the PacBio and Illumina sequencing platforms. The complete genome sequence of strain LB501T consists of 6,713,618 bp and provides new insights into its metabolic capabilities, including aromatic conversion pathways with promiscuous activities. Here, we report the draft whole-genome sequence of an anthracene-degrading bacterium, Mycolicibacterium frederiksbergense strain LB501T, using the PacBio and Illumina sequencing platforms. The complete genome sequence of strain LB501T consists of 6,713,618 bp and provides new insights into its metabolic capabilities, including aromatic conversion pathways with promiscuous activities.
Collapse
|
35
|
Miao LL, Qu J, Liu ZP. Hydroxylation at Multiple Positions Initiated the Biodegradation of Indeno[1,2,3-cd]Pyrene in Rhodococcus aetherivorans IcdP1. Front Microbiol 2020; 11:568381. [PMID: 33072027 PMCID: PMC7536264 DOI: 10.3389/fmicb.2020.568381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/17/2020] [Indexed: 12/29/2022] Open
Abstract
Nowadays, contamination by polycyclic aromatic hydrocarbons (PAHs) has become a serious problem all over the world; in particular, high-molecular-weight PAHs (HWM PAHs, four to seven rings) are more harmful to human health and environment due to their more complex structure and metabolic pathway. Biodegradation of PAHs with six or more rings, such as indeno[1,2,3-cd]pyrene (IcdP), was rarely described. An IcdP-degrading strain, Rhodococcus aetherivorans IcdP1, was isolated from HWM PAH-contaminated soil. It could grow on and efficiently degrade various HWM PAHs, such as IcdP, benzo[a]pyrene, and benzo[j]fluoranthene. It showed highest degrading ability toward IcdP (> 70% within 10 days). The IcdP degradation was initiated by ring hydroxylation with multiple pathways, including the hydroxylation at the 1,2 and 7,8 positions, according to the relevant metabolites detected, e.g., cyclopenta[cd]pyrene-3,4-dicarboxylic acid and 2,3-dimethoxy-2,3-dihydrofluoranthene. The transcriptional patterns of the genes encoding ring-hydroxylating oxygenases (RHOs) and cytochrome P450 monooxygenases (CYP450s) under the induction of IcdP, pyrene, and benzo[b]fluoranthene (BbF) were compared to determine the key initial RHOs in the conversion of IcdP. The expression of genes encoding RHOs 1892-1894, 1917-1920, and 4740-4741 was induced strictly by IcdP, and the amino acid sequences of these proteins showed very low identities with their homologs. These results suggested that IcdP was degraded through a dioxygenation-initiated metabolism pattern, and RHOs 1892-1894, 1917-1920, and 4740-4741 responded to the initial ring cleavage of IcdP through 1,2-dihydrodiol or 7,8-dihydrodiol. The studies would contribute to the understanding of the molecular mechanism of initial degradation of IcdP.
Collapse
Affiliation(s)
- Li-Li Miao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Qu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Shandong Key Laboratory of Biophysics, Shandong Engineering Laboratory of Porcine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Pereira AC, Ramos B, Reis AC, Cunha MV. Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches. Microorganisms 2020; 8:microorganisms8091380. [PMID: 32916931 PMCID: PMC7563442 DOI: 10.3390/microorganisms8091380] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are paradigmatic colonizers of the total environment, circulating at the interfaces of the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. Their striking adaptive ecology on the interconnection of multiple spheres results from the combination of several biological features related to their exclusive hydrophobic and lipid-rich impermeable cell wall, transcriptional regulation signatures, biofilm phenotype, and symbiosis with protozoa. This unique blend of traits is reviewed in this work, with highlights to the prodigious plasticity and persistence hallmarks of NTM in a wide diversity of environments, from extreme natural milieus to microniches in the human body. Knowledge on the taxonomy, evolution, and functional diversity of NTM is updated, as well as the molecular and physiological bases for environmental adaptation, tolerance to xenobiotics, and infection biology in the human and non-human host. The complex interplay between individual, species-specific and ecological niche traits contributing to NTM resilience across ecosystems are also explored. This work hinges current understandings of NTM, approaching their biology and heterogeneity from several angles and reinforcing the complexity of these microorganisms often associated with a multiplicity of diseases, including pulmonary, soft-tissue, or milliary. In addition to emphasizing the cornerstones of knowledge involving these bacteria, we identify research gaps that need to be addressed, stressing out the need for decision-makers to recognize NTM infection as a public health issue that has to be tackled, especially when considering an increasingly susceptible elderly and immunocompromised population in developed countries, as well as in low- or middle-income countries, where NTM infections are still highly misdiagnosed and neglected.
Collapse
Affiliation(s)
- André C. Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Beatriz Ramos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana C. Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Mónica V. Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217-500-000 (ext. 22461)
| |
Collapse
|
37
|
Wolf DC, Cryder Z, Khoury R, Carlan C, Gan J. Bioremediation of PAH-contaminated shooting range soil using integrated approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138440. [PMID: 32315846 DOI: 10.1016/j.scitotenv.2020.138440] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Serious contamination of polycyclic aromatic hydrocarbons (PAHs) occurs at outdoor shooting ranges due to the accumulation of clay target fragments containing coal tar or petroleum pitch. These contaminated sites are characterized with high-molecular-weight PAHs that are low in bioavailability and recalcitrant to bioremediation. We evaluated the effectiveness of different remediation strategies, used individually or in combinations, to decontaminate PAHs in a shooting range soil. The treatments included vegetation with bermudagrass [Cynodon dactylon (L.) Pers] or switchgrass [Panicum virgatum]), bioaugmentation of Mycobacterium vanbaalenii PYR-1, and addition of surfactants (Brij-35, rhamnolipid biosurfactant, or Brij-35/sodium dodecyl sulfate mixture). The initial total PAH concentration in the shooting range soil was 373 mg/kg and consisted of primarily high-molecular-weight PAHs (84%). Planting of bermudagrass and switchgrass resulted in 36% and 27% ∑16PAH reduction compared to the non-vegetated control, respectively. Bermudagrass enhanced soil dehydrogenase activity and both vegetation treatments also increased polyphenol oxidase activity. Bioaugmentation of M. vanbaalenii PYR-1 had a significant effect only on the dissipation of high-molecular-weight PAHs, leading to a 15% decrease (∑10PAH) compared to the control. In the non-vegetated soil, Brij-35/sodium dodecyl sulfate mixture increased PAH degradation compared to the no surfactant control. The increased PAH biodegradation in the vegetated and bioaugmented treatments improved lettuce [Lactuca sativa] seed germination, suggesting reduced toxicity in the treated soils. Phytoremediation using bermudagrass or switchgrass with bioaugmentation of M. vanbaalenii PYR-1 was an effective in situ remediation option for shooting range soils with heavy PAH contamination.
Collapse
Affiliation(s)
- D C Wolf
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States of America.
| | - Z Cryder
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States of America
| | - R Khoury
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States of America
| | - C Carlan
- Department of Neuroscience, University of California, Riverside, CA 92521, United States of America
| | - J Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States of America
| |
Collapse
|
38
|
Sakshi, Haritash AK. A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch Microbiol 2020; 202:2033-2058. [DOI: 10.1007/s00203-020-01929-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 01/01/2023]
|
39
|
Bioremediation of PAH-Contaminated Soils: Process Enhancement through Composting/Compost. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113684] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bioremediation of contaminated soils has gained increasing interest in recent years as a low-cost and environmentally friendly technology to clean soils polluted with anthropogenic contaminants. However, some organic pollutants in soil have a low biodegradability or are not bioavailable, which hampers the use of bioremediation for their removal. This is the case of polycyclic aromatic hydrocarbons (PAHs), which normally are stable and hydrophobic chemical structures. In this review, several approaches for the decontamination of PAH-polluted soil are presented and discussed in detail. The use of compost as biostimulation- and bioaugmentation-coupled technologies are described in detail, and some parameters, such as the stability of compost, deserve special attention to obtain better results. Composting as an ex situ technology, with the use of some specific products like surfactants, is also discussed. In summary, the use of compost and composting are promising technologies (in all the approaches presented) for the bioremediation of PAH-contaminated soils.
Collapse
|
40
|
Rolando L, Vila J, Baquero RP, Castilla-Alcantara JC, Barra Caracciolo A, Ortega-Calvo JJ. Impact of bacterial motility on biosorption and cometabolism of pyrene in a porous medium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137210. [PMID: 32062235 DOI: 10.1016/j.scitotenv.2020.137210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
The risks of pollution by polycyclic aromatic hydrocarbons (PAHs) may increase in bioremediated soils as a result of the formation of toxic byproducts and the mobilization of pollutants associated to suspended colloids. In this study, we used the motile and chemotactic bacterium Pseudomonas putida G7 as an experimental model for examining the potential role of bacterial motility in the cometabolism and biosorption of pyrene in a porous medium. For this purpose, we conducted batch and column transport experiments with 14C-labelled pyrene loaded on silicone O-rings, which acted as a passive dosing system. In the batch experiments, we observed concentrations of the 14C-pyrene equivalents well above the equilibrium concentration observed in abiotic controls. This mobilization was attributed to biosorption and cometabolism processes occurring in parallel. HPLC quantification revealed pyrene concentrations well below the 14C-based quantifications by liquid scintillation, indicating pyrene transformation into water-soluble polar metabolites. The results from transport experiments in sand columns revealed that cometabolic-active, motile cells were capable of accessing a distant source of sorbed pyrene. Using the same experimental system, we also determined that salicylate-mobilized cells, inhibited for pyrene cometabolism, but mobilized due to their tactic behavior, were able to sorb the compound and mobilize it by biosorption. Our results indicate that motile bacteria active in bioremediation may contribute, through cometabolism and biosorption, to the risk associated to pollutant mobilization in soils. This research could be the starting point for the development of more efficient, low-risk bioremediation strategies of poorly bioavailable contaminants in soils.
Collapse
Affiliation(s)
- Ludovica Rolando
- Istituto di Ricerca Sulle Acque (IRSA), CNR, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM, Italy; Dipartimento di Science Ecologiche e Biologiche (DEB), Universita degli studi della Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes, 10, E-41012 Seville, Spain
| | - Joaquim Vila
- Departament de Microbiologia, Universitat de Barcelona, Avenida Diagonal 643, 08028 Barcelona, Spain; Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes, 10, E-41012 Seville, Spain
| | - Rosa Posada Baquero
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes, 10, E-41012 Seville, Spain
| | - Jose Carlos Castilla-Alcantara
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes, 10, E-41012 Seville, Spain
| | - Anna Barra Caracciolo
- Istituto di Ricerca Sulle Acque (IRSA), CNR, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM, Italy
| | - Jose-Julio Ortega-Calvo
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes, 10, E-41012 Seville, Spain.
| |
Collapse
|
41
|
Peng T, Kan J, Hu J, Hu Z. Genes and novel sRNAs involved in PAHs degradation in marine bacteria Rhodococcus sp. P14 revealed by the genome and transcriptome analysis. 3 Biotech 2020; 10:140. [PMID: 32206489 DOI: 10.1007/s13205-020-2133-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/11/2020] [Indexed: 01/12/2023] Open
Abstract
Rhodococcus sp. P14 is able to degrade various polycyclic aromatic hydrocarbons (PAHs). In this study, 6 ring-hydroxylating dioxygenases and 24 monooxygenases genes related to PAHs degradation were identified in its genome. Moreover, various genes, like serine hydrolase, hydratase, alcohol dehydrogenase, protocatechuate 3,4-dioxygenase, β-ketoadipate CoA transferase and β-Ketoadipyl CoA thiolase, which were supposed to be involved in PAHs degradation were also identified. Based on the genome analysis, the proposed PAHs degradation pathway was constructed in P14 strain, which showed that PAHs was degraded into the acetyl CoA and succinyl CoA, then mineralized to CO2 via the TCA cycle. Furthermore, several genes, including cytochrome P450 (RS16725; RS16695; RS12220), catalase (RS15825), dehydrogenase (RS15755; RS18420) and hydrolase (RS16460; RS24665), showed increased expression level during PAHs degradation according to the transcriptome data. In addition, 12 novel sRNAs which were supposed to have the regulation function in PAHs degradation were identified. This study gives us the outlook of PAHs degradation pathway in Rhodococcus sp. P14. Moreover, it first demonstrates that sRNAs may harbor the regulation function in PAHs degradation.
Collapse
Affiliation(s)
- Tao Peng
- 1Department of Biology, Shantou University, Shantou, 515063 Guangdong China
| | - Jie Kan
- 1Department of Biology, Shantou University, Shantou, 515063 Guangdong China
| | - Jing Hu
- 2Affiliated Hospital 1, College of Medical, Shantou University, Guangdong, 515063 China
| | - Zhong Hu
- 1Department of Biology, Shantou University, Shantou, 515063 Guangdong China
| |
Collapse
|
42
|
Sun S, Wang H, Fu B, Zhang H, Lou J, Wu L, Xu J. Non-bioavailability of extracellular 1-hydroxy-2-naphthoic acid restricts the mineralization of phenanthrene by Rhodococcus sp. WB9. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135331. [PMID: 31831232 DOI: 10.1016/j.scitotenv.2019.135331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Rhodococcus sp. WB9, a strain isolated from polycyclic aromatic hydrocarbons contaminated soil, degraded phenanthrene (PHE, 100 mg L-1) completely within 4 days. 18 metabolites were identified during PHE degradation, including 5 different hydroxyphenanthrene compounds resulted from multiple routes of initial monooxygenase attack. Initial dioxygenation dominantly occurred on 3,4-C positions, followed by meta-cleavage to form 1-hydroxy-2-naphthoic acid (1H2N). More than 95.2% of 1H2N was transported to and kept in extracellular solution without further degradation. However, intracellular 1H2N was converted to 1,2-naphthalenediol that was branched to produce salicylate and phthalate. Furthermore, 131 genes in strain WB9 genome were related to aromatic hydrocarbons catabolism, including the gene coding for salicylate 1-monooxygenase that catalyzed the oxidation of 1H2N to 1,2-naphthalenediol, and complete gene sets for the transformation of salicylate and phthalate toward tricarboxylic acid (TCA) cycle. Metabolic and genomic analyses reveal that strain WB9 has the ability to metabolize intracellular 1H2N to TCA cycle intermediates, but the extracellular 1H2N can't enter the cells, restricting 1H2N bioavailability and PHE mineralization.
Collapse
Affiliation(s)
- Shanshan Sun
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Binxin Fu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Hao Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jun Lou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
43
|
Kan J, Peng T, Huang T, Xiong G, Hu Z. NarL, a Novel Repressor for CYP108j1 Expression during PAHs Degradation in Rhodococcus sp. P14. Int J Mol Sci 2020; 21:ijms21030983. [PMID: 32024188 PMCID: PMC7037279 DOI: 10.3390/ijms21030983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Rhodococcus sp. P14 was isolated from crude-oil-contaminated sediments, and a wide range of polycyclic aromatic hydrocarbons (PAHs) could be used as the sole source of carbon and energy. A key CYP450 gene, designated as cyp108j1 and involved in the degradation of PAHs, was identified and was able to hydroxylate various PAHs. However, the regulatory mechanism of the expression of cyp108j1 remains unknown. In this study, we found that the expression of cyp108j1 is negatively regulated by a LuxR (helix-turn-helix transcription factors in acyl-homoserine lactones-mediated quorum sensing) family regulator, NarL (nitrate-dependent two-component regulatory factor), which is located upstream of cyp108j1. Further analysis revealed that NarL can directly bind to the promoter region of cyp108j1. Mutational experiments demonstrated that the binding site between NarL and the cyp108j1 promoter was the palindromic sequence GAAAGTTG-CAACTTTC. Together, the finding reveal that NarL is a novel repressor for the expression of cyp108j1 during PAHs degradation.
Collapse
Affiliation(s)
- Jie Kan
- Department of Biology, Shantou University, Shantou 515063, China; (J.K.); (T.P.); (T.H.)
| | - Tao Peng
- Department of Biology, Shantou University, Shantou 515063, China; (J.K.); (T.P.); (T.H.)
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou 515063, China; (J.K.); (T.P.); (T.H.)
| | - Guangming Xiong
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, 24103 Kiel, Germany;
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou 515063, China; (J.K.); (T.P.); (T.H.)
- Correspondence:
| |
Collapse
|
44
|
Al-Hawash AB, Al-Qurnawi WS, Abbood HA, Hillo NA, Ghalib HB, Zhang X, Ma F. Pyrene-Degrading Fungus Ceriporia lacerata RF-7 from Contaminated Soil in Iraq. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1713183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Adnan B. Al-Hawash
- Department of Marine Chemistry and Environmental Pollution, Marine Science Center, University of Basrah, Basra, Iraq
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | - Hayder A. Abbood
- Material Engineering, College of Engineering, University of Basrah, Basrah, Iraq
| | | | | | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Swati, Ghosh P, Thakur IS. Biodegradation of pyrene by Pseudomonas sp. ISTPY2 isolated from landfill soil: Process optimisation using Box-Behnken design model. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100329] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Truskewycz A, Gundry TD, Khudur LS, Kolobaric A, Taha M, Aburto-Medina A, Ball AS, Shahsavari E. Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems-Fate and Microbial Responses. Molecules 2019; 24:molecules24183400. [PMID: 31546774 PMCID: PMC6767264 DOI: 10.3390/molecules24183400] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
Abstract
Petroleum hydrocarbons represent the most frequent environmental contaminant. The introduction of petroleum hydrocarbons into a pristine environment immediately changes the nature of that environment, resulting in reduced ecosystem functionality. Natural attenuation represents the single, most important biological process which removes petroleum hydrocarbons from the environment. It is a process where microorganisms present at the site degrade the organic contaminants without the input of external bioremediation enhancers (i.e., electron donors, electron acceptors, other microorganisms or nutrients). So successful is this natural attenuation process that in environmental biotechnology, bioremediation has developed steadily over the past 50 years based on this natural biodegradation process. Bioremediation is recognized as the most environmentally friendly remediation approach for the removal of petroleum hydrocarbons from an environment as it does not require intensive chemical, mechanical, and costly interventions. However, it is under-utilized as a commercial remediation strategy due to incomplete hydrocarbon catabolism and lengthy remediation times when compared with rival technologies. This review aims to describe the fate of petroleum hydrocarbons in the environment and discuss their interactions with abiotic and biotic components of the environment under both aerobic and anaerobic conditions. Furthermore, the mechanisms for dealing with petroleum hydrocarbon contamination in the environment will be examined. When petroleum hydrocarbons contaminate land, they start to interact with its surrounding, including physical (dispersion), physiochemical (evaporation, dissolution, sorption), chemical (photo-oxidation, auto-oxidation), and biological (plant and microbial catabolism of hydrocarbons) interactions. As microorganism (including bacteria and fungi) play an important role in the degradation of petroleum hydrocarbons, investigations into the microbial communities within contaminated soils is essential for any bioremediation project. This review highlights the fate of petroleum hydrocarbons in tertial environments, as well as the contributions of different microbial consortia for optimum petroleum hydrocarbon bioremediation potential. The impact of high-throughput metagenomic sequencing in determining the underlying degradation mechanisms is also discussed. This knowledge will aid the development of more efficient, cost-effective commercial bioremediation technologies.
Collapse
Affiliation(s)
- Adam Truskewycz
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Taylor D Gundry
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Leadin S Khudur
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Adam Kolobaric
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Mohamed Taha
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh, Qaliuobia 13736, Egypt.
| | - Arturo Aburto-Medina
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
47
|
Erwin KL, Johnson WH, Meichan AJ, Whitman CP. Preparation of dihydroxy polycyclic aromatic hydrocarbons and activities of two dioxygenases in the phenanthrene degradative pathway. Arch Biochem Biophys 2019; 673:108081. [PMID: 31445023 DOI: 10.1016/j.abb.2019.108081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 11/29/2022]
Abstract
Dihydroxy phenanthrene, fluoranthene, and pyrene derivatives are intermediates in the bacterial catabolism of the corresponding parent polycyclic aromatic hydrocarbon (PAH). Ring-opening of the dihydroxy species followed by a series of enzyme-catalyzed reactions generates metabolites that funnel into the Krebs Cycle with the eventual production of carbon dioxide and water. One complication in delineating these pathways and harnessing them for useful purposes is that the initial enzymatic processing produces multiple dihydroxy PAHs with multiple ring opening possibilities and products. As part of a systematic effort to address this issue, eight dihydroxy species were synthesized and characterized as the dimethoxy or diacetate derivatives. Several dihydroxy compounds were examined with two dioxygenases in the phenanthrene degradative pathway in Mycobacterium vanbaalenii PYR-1. One, 3,4-dihydroxyphenanthrene, was processed by PhdF with a kcat/Km of 6.0 × 106 M-1s-1, a value that is consistent with the annotated function of PhdF in the pathway. PhdI processed 1-hydroxy-2-naphthoate with a kcat/Km of 3.1 × 105 M-1s-1, which is also consistent with the proposed role in the pathway. The observations provide the first biochemical evidence for these two reactions in M. vanbaalenii PYR-1 and, to the best of our knowledge, the first biochemical evidence for the reaction of PhdF with 3,4-dihydroxyphenanthrene. Although PhdF is upregulated in the presence of pyrene, it did not process two dihydroxypyrenes. Methodology was developed for product analysis of the extradiol dioxygenases.
Collapse
Affiliation(s)
- Kaci L Erwin
- Department of Molecular Biosciences, College of Natural Sciences, 1 University Station, University of Texas, Austin, TX, 78712, USA
| | - William H Johnson
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, 1 University Station, University of Texas, Austin, TX, 78712, USA
| | - Andrew J Meichan
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, 1 University Station, University of Texas, Austin, TX, 78712, USA
| | - Christian P Whitman
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, 1 University Station, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
48
|
Zhang S, Hu Z, Wang H. Metagenomic analysis exhibited the co-metabolism of polycyclic aromatic hydrocarbons by bacterial community from estuarine sediment. ENVIRONMENT INTERNATIONAL 2019; 129:308-319. [PMID: 31150973 DOI: 10.1016/j.envint.2019.05.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/15/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
The bacterial community from estuarine sediment undertakes the bioremediation and energy transformation of anthropogenic pollutants especially polycyclic aromatic hydrocarbons (PAHs). However, information and studies on bacterial synergism and related metabolic profiles under the stress of PAHs are limited. In this study, sediments from estuarine were collected and co-incubated with a classical PAH, pyrene. The results showed that Alpha- and Gammaproteobacteria became abundant at the late domesticating phase with the dominant genus of ZD0117, the uncultivated bacteria affiliated into Gammaproteobacteria. Functional gene analysis based on metagenomic sequencing showed that quantitatively changes of genes directly related to the degradation of aromatic hydrocarbon coordinated with genes involved into various metabolic pathways such as acylglycerol degradation, nitrogen fixation, sulfate transport system, Arnon-Buchanan cycle, and Calvin cycle (P < 0.01 and |ρ| > 0.8). Fifty-six metagenome-assembled genomes (MAGs) were reconstructed, which were primarily composed by Alpha- and Gammaproteobacteria. Bacteria belonging to the phylum Proteobacteria were found to be abundant in MAGs and contained genes encoding for dehydrogenase, which are key enzymes for pyrene degradation. In addition, genomes of uncultivated bacteria were successfully reconstructed and were proven to carry genes of synergistically metabolizing pyrene. Based on analysis of typical MAGs, the metabolic pathways involved in syntrophic associations of a pyrene-degrading consortium were reconstructed. The results in this study could make us fully understand the metabolic patterns of pyrene-degrading consortium from the estuarine sediment and widen the scope of functional bacteria.
Collapse
Affiliation(s)
- Shuangfei Zhang
- Biology Department, College of Science, Shantou University, Shantou 515063, China
| | - Zhong Hu
- Biology Department, College of Science, Shantou University, Shantou 515063, China
| | - Hui Wang
- Biology Department, College of Science, Shantou University, Shantou 515063, China.
| |
Collapse
|
49
|
Bourguignon N, Irazusta V, Isaac P, Estévez C, Maizel D, Ferrero MA. Identification of proteins induced by polycyclic aromatic hydrocarbon and proposal of the phenanthrene catabolic pathway in Amycolatopsis tucumanensis DSM 45259. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:19-28. [PMID: 30878660 DOI: 10.1016/j.ecoenv.2019.02.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
In the present study the polycyclic aromatic hydrocarbon removal and metabolic adaptation of Amycolatopsis tucumanensis DSM 45259 were investigated. Analysis of one-dimensional gel electrophoresis of crude cell extracts revealed differential synthesis of proteins which were identified by MALDI-TOF. To elucidate the phenanthrene metabolic pathway in A. tucumanensis DSM45259, two-dimensional electrophoresis and detection of phenanthrene degradation intermediates by GS-MS were performed. The presence of aromatic substrates resulted in changes in the abundance of proteins involved in the metabolism of aromatic compounds, oxidative stress response, energy production and protein synthesis. The obtained results allowed us to clarify the phenanthrene catabolic pathway, by confirming the roles of several proteins involved in the degradation process and comprehensive adaptation. This may clear the way for more efficient engineering of bacteria in the direction of more effective bioremediation applications.
Collapse
Affiliation(s)
- Natalia Bourguignon
- Universidad Tecnológica Nacional (UTN), Facultad Regional de Haédo, París 532, 1706 Haedo, Buenos Aires, Argentina.
| | - Verónica Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), CONICET-UNSa, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina
| | - Paula Isaac
- Centro de Investigaciones y Transferencia de Villa María (CIT Villa María), CONICET-Instituto de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Córdoba, Argentina
| | - Cristina Estévez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI, CONICET), Tucumán, Argentina
| | - Daniela Maizel
- Instituto de Astronomía y Física del Espacio, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Buenos Aires, Intendente Güiraldes 2160, C1428EGA CABA, Argentina
| | - Marcela A Ferrero
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI, CONICET), Tucumán, Argentina
| |
Collapse
|
50
|
Patel AB, Singh S, Patel A, Jain K, Amin S, Madamwar D. Synergistic biodegradation of phenanthrene and fluoranthene by mixed bacterial cultures. BIORESOURCE TECHNOLOGY 2019; 284:115-120. [PMID: 30927648 DOI: 10.1016/j.biortech.2019.03.097] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly recalcitrant compounds and difficult to degrade. Therefore in this work, using a bioremediation approach, mixed bacterial cultures (ASPF) was developed and enriched from polluted marine sediments capable of degrading 400 mg/L of phenanthrene and fluoranthene in Bushnell Hass medium. ASPF consists of 22 bacterial genera dominated by Azoarcus and Chelativorans. The biostimulation effect of three water soluble fertilizers (NPK, urea, and ammonium sulfate) showed that NPK and ammonium sulfate have enhanced the degradation, whereas urea has decreased their degradation. ASPF was also able to degrade phenanthrene and fluoranthene in the presence of petroleum hydrocarbons. But degradation was found to decrease in the presence of pathway intermediates (phthalic acid and catechol) due to enzymatic feedback inhibition. Optimum degradation of both PAHs was observed under room temperature, suggesting the practical applicability of ASPF.
Collapse
Affiliation(s)
- Avani Bharatkumar Patel
- Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388 315, Anand, Gujarat, India
| | - Shilpi Singh
- Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388 315, Anand, Gujarat, India
| | - Aaishwarya Patel
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Charusat Campus, Changa 388 421, Anand, Gujarat, India
| | - Kunal Jain
- Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388 315, Anand, Gujarat, India
| | - Seema Amin
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Charusat Campus, Changa 388 421, Anand, Gujarat, India
| | - Datta Madamwar
- Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388 315, Anand, Gujarat, India.
| |
Collapse
|