1
|
De Martinis ECP, Alves VF, Pereira MG, Andrade LN, Abichabki N, Abramova A, Dannborg M, Bengtsson-Palme J. Applying 3D cultures and high-throughput technologies to study host-pathogen interactions. Front Immunol 2025; 16:1488699. [PMID: 40051624 PMCID: PMC11882522 DOI: 10.3389/fimmu.2025.1488699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Recent advances in cell culturing and DNA sequencing have dramatically altered the field of human microbiome research. Three-dimensional (3D) cell culture is an important tool in cell biology, in cancer research, and for studying host-microbe interactions, as it mimics the in vivo characteristics of the host environment in an in vitro system, providing reliable and reproducible models. This work provides an overview of the main 3D culture techniques applied to study interactions between host cells and pathogenic microorganisms, how these systems can be integrated with high-throughput molecular methods, and how multi-species model systems may pave the way forward to pinpoint interactions among host, beneficial microbes and pathogens.
Collapse
Affiliation(s)
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Neves Andrade
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nathália Abichabki
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Abramova
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
| | - Mirjam Dannborg
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Rea Hernández PA, Ramírez-Paz-Y-Puente GA, Montes-García F, Vázquez-Cruz C, Sanchez-Alonso P, Cobos-Justo ME, Zenteno E, Negrete-Abascal E. Epinephrine and norepinephrine regulate the expression of virulence factors in Gallibacterium anatis. Microb Pathog 2024; 196:106987. [PMID: 39374885 DOI: 10.1016/j.micpath.2024.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
Gallibacterium anatis is a member of the Pasteurellaceae family and is an opportunistic pathogen that causes gallibacteriosis in chickens. Stress plays a relevant role in promoting the development of pathogenicity in G. anatis. Epinephrine (E) and norepinephrine (NE) are relevant to stress; however, their effects on G. anatis have not been elucidated. In this work, we evaluated the effects of E and NE on the growth, biofilm formation, expression of adhesins, and proteases of two G. anatis strains, namely, the hemolytic 12656-12 and the nonhemolytic F149T biovars. E (10 μM/mL) and NE (30 and 50 μM/mL) increased the growth of G. anatis 12656-12 by 20 % and 25 %, respectively. E did not affect the growth of F149T, whereas 40 μM/mL NE decreased bacterial growth by 25 %. E and NE at a dose of 30-50 μM/mL upregulated five fibrinogen adhesins in the 12565-12 strain, whereas no effect was observed in the F149T strain. NE increased proteolytic activity in both strains, whereas E diminished proteolytic activity in the 12656-12 strain. E and NE reduced biofilm formation (30 %) and increased Congo red binding (15 %) in both strains. QseBC is the E and NE two-component detection system most common in bacteria. The qseC gene, which is the E and NE receptor in bacteria, was identified in the genomic DNA of the 12565-12 and F149TG. anatis strains via PCR amplification. Our results suggest that QseC can detect host changes in E and NE concentrations and that catecholamines can modulate the expression of several virulence factors in G. anatis.
Collapse
Affiliation(s)
- Pablo A Rea Hernández
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico
| | - Gerardo A Ramírez-Paz-Y-Puente
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico
| | - Fernando Montes-García
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico
| | | | | | | | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, UNAM, Mexico
| | - Erasmo Negrete-Abascal
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico.
| |
Collapse
|
3
|
Luqman A. The orchestra of human bacteriome by hormones. Microb Pathog 2023; 180:106125. [PMID: 37119938 DOI: 10.1016/j.micpath.2023.106125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Human microbiome interact reciprocally with the host. Recent findings showed the capability of microorganisms to response towards host signaling molecules, such as hormones. Studies confirmed the complex response of bacteria in response to hormones exposure. These hormones impact many aspects on bacteria, such as the growth, metabolism, and virulence. The effects of each hormone seem to be species-specific. The most studied hormones are cathecolamines also known as stress hormones that consists of epinephrine, norepinephrine and dopamine. These hormones affect the growth of bacteria either inhibit or enhance by acting like a siderophore. Epinephrine and norepinephrine have also been reported to activate QseBC, a quorum sensing in Gram-negative bacteria and eventually enhances the virulence of pathogens. Other hormones were also reported to play a role in shaping human microbiome composition and affect their behavior. Considering the complex response of bacteria on hormones, it highlights the necessity to take the impact of hormones on bacteria into account in studying human health in relation to human microbiome.
Collapse
Affiliation(s)
- Arif Luqman
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
| |
Collapse
|
4
|
Kaur A, Kaur IP, Chopra K, Rishi P. Bi-directional elucidation of Lactiplantibacillus plantarum (RTA 8) intervention on the pathophysiology of gut-brain axis during Salmonella brain infection. Gut Pathog 2022; 14:11. [PMID: 35236424 PMCID: PMC8892704 DOI: 10.1186/s13099-022-00484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There have been reports of patients suffering from typhoid fever, particularly those involving infants and immunocompromised patients, which at times present with Salmonella induced brain infection. Although rare, it has frequently been associated with adverse neurological complications and increased mortality. In this context, the gut-brain axis, involving two-way communication between the gut and the brain, holds immense significance as various gut ailments have been associated with psychiatric complications. In turn, several neurodegenerative diseases have been associated with an altered gut microbiota profile. Given the paucity of effective antimicrobials and increasing incidence of multi-drug resistance in pathogens, alternate treatment therapies such as probiotics have gained significant attention in the recent past. RESULTS In the current study, prophylactic effect of Lactiplantibacillus plantarum (RTA 8) in preventing neurological complications occurring due to Salmonella brain infection was evaluated in a murine model. Along with a significant reduction in bacterial burden and improved histoarchitecture, L. plantarum (RTA 8) administration resulted in amelioration in the level of neurotransmitters such as serotonin, norepinephrine and dopamine in the gut as well as in the brain tissue. Simultaneously, increased gene expression of physiologically essential molecules such as mucin (MUC1 and MUC3) and brain-derived neurotrophic factor (BDNF) was also observed in this group. CONCLUSION Present study highlights the potential benefits of a probiotic supplemented diet in improving various aspects of host health due to their multi-targeted approach, thereby resulting in multi-faceted gains.
Collapse
Affiliation(s)
- Amrita Kaur
- Department of Microbiology, Basic Medical Sciences Block I, Panjab University, South Campus, Sector 25, Chandigarh, 160014, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Praveen Rishi
- Department of Microbiology, Basic Medical Sciences Block I, Panjab University, South Campus, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Boukerb AM, Cambronel M, Rodrigues S, Mesguida O, Knowlton R, Feuilloley MGJ, Zommiti M, Connil N. Inter-Kingdom Signaling of Stress Hormones: Sensing, Transport and Modulation of Bacterial Physiology. Front Microbiol 2021; 12:690942. [PMID: 34690943 PMCID: PMC8526972 DOI: 10.3389/fmicb.2021.690942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Prokaryotes and eukaryotes have coexisted for millions of years. The hormonal communication between microorganisms and their hosts, dubbed inter-kingdom signaling, is a recent field of research. Eukaryotic signals such as hormones, neurotransmitters or immune system molecules have been shown to modulate bacterial physiology. Among them, catecholamines hormones epinephrine/norepinephrine, released during stress and physical effort, or used therapeutically as inotropes have been described to affect bacterial behaviors (i.e., motility, biofilm formation, virulence) of various Gram-negative bacteria (e.g., Escherichia coli, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, Vibrio sp.). More recently, these molecules were also shown to influence the physiology of some Gram-positive bacteria like Enterococcus faecalis. In E. coli and S. enterica, the stress-associated mammalian hormones epinephrine and norepinephrine trigger a signaling cascade by interacting with the QseC histidine sensor kinase protein. No catecholamine sensors have been well described yet in other bacteria. This review aims to provide an up to date report on catecholamine sensors in eukaryotes and prokaryotes, their transport, and known effects on bacteria.
Collapse
Affiliation(s)
- Amine Mohamed Boukerb
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Melyssa Cambronel
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Sophie Rodrigues
- EA 3884, LBCM, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Ouiza Mesguida
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Rikki Knowlton
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Marc G J Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Mohamed Zommiti
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| |
Collapse
|
6
|
Matanza XM, López-Suárez L, do Vale A, Osorio CR. The two-component system RstAB regulates production of a polysaccharide capsule with a role in virulence in the marine pathogen Photobacterium damselae subsp. damselae. Environ Microbiol 2021; 23:4859-4880. [PMID: 34423883 DOI: 10.1111/1462-2920.15731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022]
Abstract
The marine bacterium Photobacterium damselae subsp. damselae (Pdd) causes disease in marine animals and humans. Previous studies demonstrated that mutation of the two-component system RstAB strongly impacts virulence of this pathogen, but the RstAB regulon has not been thoroughly elucidated. We here compared the transcriptomes of Pdd RM-71 and ΔrstA and ΔrstB derivatives using RNA-seq. In accordance with previous studies, RstAB positively regulated cytotoxins Dly, PhlyP and PhlyC. This analysis also demonstrated a positive regulation of outer membrane proteins, resistance against antimicrobials and potential virulence factors by this system. Remarkably, RstAB positively regulated two hitherto uncharacterised gene clusters involved in the synthesis of a polysaccharide capsule. Presence of a capsular layer in wild-type cells was confirmed by transmission electron microscopy, whereas rstA and rstB mutants were non-capsulated. Mutants for capsule synthesis genes, wza and wzc exhibited acapsular phenotypes, were impaired in resistance against the bactericidal action of fish serum and mucus, and were strongly impaired in virulence for fish, indicating a major role of capsule in virulence. Collectively, this study demonstrates that RstAB is a major positive regulator of key virulence factors including a polysaccharide capsule essential for full virulence in a pathogenic Photobacterium.
Collapse
Affiliation(s)
- Xosé M Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura López-Suárez
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carlos R Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
7
|
Beata S, Michał T, Mateusz O, Urszula W, Choroszy M, Andrzej T, Piotr D. Norepinephrine affects the interaction of adherent-invasive Escherichia coli with intestinal epithelial cells. Virulence 2021; 12:630-637. [PMID: 33538227 PMCID: PMC7872043 DOI: 10.1080/21505594.2021.1882780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Norepinephrine (NE), the stress hormone, stimulates many bacterial species’ growth and virulence, including Escherichia coli. However, the hormone’s impact on the adherent-invasive E. coli (AIEC) implicated in Crohn’s disease is poorly understood. In the study, we have investigated the effect of NE on the interaction of six AIEC strains isolated from an intestinal biopsy from 6 children with Crohn’s disease with Caco-2 cells. Our study focused on type 1 fimbria and CEACAM6 molecules serving as docking sites for these adhesins. The study results demonstrated that the hormone significantly increased the adherence and invasion of AIEC to Caco-2 cells in vitro. However, the effect was not associated with the impact of NE on the increased proliferation rate of AIEC or the fimA gene expression vital for their interaction with intestinal epithelial cells. Instead, the carcinoembryonic antigen-related cell-adhesion-molecule-6 (CEACAM6) level was increased significantly in NE-treated Caco-2 cells infected with AIEC in contrast to control uninfected NE-treated cells. These results indicated that NE influenced the interaction of AIEC with intestinal epithelium by increasing the level of CEACAM6 in epithelial cells, strengthening their adherence and invasion.
Collapse
Affiliation(s)
| | - Turniak Michał
- Department of Microbiology, Wroclaw Medical University , Wroclaw, Poland
| | - Olbromski Mateusz
- Department of Histology and Embryology, Wroclaw Medical University , Wroclaw, Poland
| | - Walczuk Urszula
- Department of Microbiology, Wroclaw Medical University , Wroclaw, Poland
| | - Marcin Choroszy
- Department of Microbiology, Wroclaw Medical University , Wroclaw, Poland
| | - Tukiendorf Andrzej
- Department of Public Health, Wroclaw Medical University , Wroclaw, Poland
| | - Dzięgiel Piotr
- Department of Histology and Embryology, Wroclaw Medical University , Wroclaw, Poland
| |
Collapse
|
8
|
Serpunja S, Kim I. Supplementation of a low-energy diet with recombinant ferritin fromPerinereissp. can be beneficial to finishing pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2018-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A total of 90 finishing pigs [(Yorkshire × Landrace) × Duroc] with an average body weight (BW) of 50.02 ± 1.78 kg were used in a 10 wk experiment. The pigs were distributed into three dietary treatments replicated six times with five pigs (two barrows and three gilts) per pen. The treatment diets were a positive control (PC; high-energy diet), a negative control (NC; low-energy diet), and an NC + 0.05% ferritin diet (TRT1). The supplementation of ferritin in a low-energy diet tended (P = 0.06) to increase the BW at week 5 compared with pigs fed low-energy diets without ferritin. At week 5 and overall period, the gain-to-feed ratio of pigs fed high-energy diets was higher (P < 0.05) compared with pigs fed low-energy diets. The pigs receiving a ferritin-supplemented diet had a comparable growth performance to pigs fed high-energy diets. At week 10, fecal Lactobacilli counts of pigs fed high-energy diets were higher (P < 0.05) compared with pigs fed low-energy diets. The supplementation of low-energy diets with ferritin resulted in comparable growth performance to pigs fed high-energy diets and had no adverse effect on digestibility and fecal gas emissions. Thus, it seems beneficial to include ferritin in low-energy diets of finishing pigs.
Collapse
Affiliation(s)
- S. Serpunja
- Department of Animal Resource and Science, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungam 31116, South Korea
- Department of Animal Resource and Science, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungam 31116, South Korea
| | - I.H. Kim
- Department of Animal Resource and Science, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungam 31116, South Korea
- Department of Animal Resource and Science, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungam 31116, South Korea
| |
Collapse
|
9
|
Torabi Delshad S, Soltanian S, Sharifiyazdi H, Bossier P. Effect of catecholamine stress hormones (dopamine and norepinephrine) on growth, swimming motility, biofilm formation and virulence factors of Yersinia ruckeri in vitro and an in vivo evaluation in rainbow trout. JOURNAL OF FISH DISEASES 2019; 42:477-487. [PMID: 30694560 DOI: 10.1111/jfd.12934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
In this study, we evaluated the impact of the catecholamines on growth, swimming motility, biofilm formation and some virulence factors activities of pathogenic Yersinia ruckeri. Norepinephrine and dopamine (at 100 µM) significantly increased the growth of Y. ruckeri in culture media containing serum. An increase in swimming motility of the pathogen was found following the exposure to the hormones; however, no effect was seen on caseinase, phospholipase and haemolysin productions. Further, antagonists for the catecholamine receptors were observed to block some of the influences of the catecholamines. Indeed, the effects of catecholamines were inhibited by chlorpromazine (the dopaminergic receptor antagonist) for dopamine, labetalol (α-and β-adrenergic receptor antagonist) and phenoxybenzamine (the α-adrenergic receptor antagonist) for norepinephrine, but propranolol (the β-adrenergic receptor antagonist) showed no effect. Pretreatment of Y. ruckeri with the catecholamines resulted in a significant enhancement of its virulence towards rainbow trout and the antagonists could neutralize the effect of the stress hormones in vivo. In summary, our results show that the catecholamines increase the virulence of Y. ruckeri which is pathogenic to trout through increasing the motility, biofilm formation and growth.
Collapse
Affiliation(s)
- Somayeh Torabi Delshad
- Department of Aquatic Animal Health and Diseases, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Ghent University, Gent, Belgium
| | - Siyavash Soltanian
- Department of Aquatic Animal Health and Diseases, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Hassan Sharifiyazdi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Peter Bossier
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Ghent University, Gent, Belgium
| |
Collapse
|
10
|
Song J, Hou HM, Wu HY, Li KX, Wang Y, Zhou QQ, Zhang GL. Transcriptomic Analysis of Vibrio parahaemolyticus Reveals Different Virulence Gene Expression in Response to Benzyl Isothiocyanate. Molecules 2019; 24:molecules24040761. [PMID: 30791538 PMCID: PMC6412943 DOI: 10.3390/molecules24040761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 01/01/2023] Open
Abstract
Vibrio parahaemolyticus isolated from seafood is a pathogenic microorganism that leads to several acute diseases that are harmful to our health and is frequently transmitted by food. Therefore, there is an urgent need for the control and suppression of this pathogen. In this paper, transcriptional analysis was used to determine the effect of treatment with benzyl isothiocyanate (BITC) extracted from cruciferous vegetables on V. parahaemolyticus and to elucidate the molecular mechanisms underlying the response to BITC. Treatment with BITC resulted in 332 differentially expressed genes, among which 137 genes were downregulated, while 195 genes were upregulated. Moreover, six differentially expressed genes (DEGs) in RNA sequencing studies were further verified by quantitative real-time polymerase chain reaction (qRT-PCR). Genes found to regulate virulence encoded an l-threonine 3-dehydrogenase, a GGDEF family protein, the outer membrane protein OmpV, a flagellum-specific adenosine triphosphate synthase, TolQ protein and VirK protein. Hence, the results allow us to speculate that BITC may be an effective control strategy for inhibiting microorganisms growing in foods.
Collapse
Affiliation(s)
- Jie Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Hong-Man Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Hong-Yan Wu
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.
| | - Ke-Xin Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Yan Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Qian-Qian Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Gong-Liang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
11
|
Das S, Sreevidya VS, Udvadia AJ, Gyaneshwar P. Dopamine-induced sulfatase and its regulator are required for Salmonella enterica serovar Typhimurium pathogenesis. MICROBIOLOGY-SGM 2019; 165:302-310. [PMID: 30648943 DOI: 10.1099/mic.0.000769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Catecholamine hormones enhance the virulence of pathogenic bacteria. Studies in the 1980s made intriguing observations that catecholamines were required for induction of sulfatase activity in many enteric pathogens, including Salmonella enterica serovar Typhimurium. In this report, we show that STM3122 and STM3124, part of horizontally acquired Salmonella pathogenesis island 13, encode a catecholamine-induced sulfatase and its regulator, respectively. Induction of sulfatase activity was independent of the well-studied QseBC and QseEF two-component regulatory systems. S. Typhimurium 14028S mutants lacking STM3122 or STM3124 showed reduced virulence in zebrafish. Because catecholamines are inactivated by sulfation in the mammalian gut, S. Typhimurium could utilize CA-induced sulfatase to access free catecholamines for growth and virulence.
Collapse
Affiliation(s)
- Seema Das
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Ava J Udvadia
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Prasad Gyaneshwar
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
12
|
Lerner A, Matthias T, Aminov R. Potential Effects of Horizontal Gene Exchange in the Human Gut. Front Immunol 2017; 8:1630. [PMID: 29230215 PMCID: PMC5711824 DOI: 10.3389/fimmu.2017.01630] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/09/2017] [Indexed: 01/02/2023] Open
Abstract
Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host-microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly via horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- AESKU.KIPP Institute, Wendelsheim, Germany
| | | | - Rustam Aminov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
13
|
Ganguly A, Joerger RD. Sugar sulfates are not hydrolyzed by the acid-inducible sulfatase AslA from Salmonella enterica Enteritidis NalR and Kentucky 3795 at pH 5.5. Can J Microbiol 2017; 63:739-744. [DOI: 10.1139/cjm-2017-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The open reading frames SEN0085 and SeKA_A4361, from Salmonella enterica serovar Enteritidis NalR and serovar Kentucky 3795, respectively, corresponding to the acid-inducible sulfatase gene aslA from Salmonella enterica serovar Typhimurium, were previously suggested by microarray analysis to be differentially expressed under acid conditions. However, growth and enzyme activity tests in the present study demonstrated that both wild-type strains exhibited sulfatase activity with 4-nitrophenyl sulfate and 5-bromo-4-chloro-3 indolyl sulfate at pH 5.5. The acid sulfatase does not appear to be involved in sugar sulfate, tyrosine sulfate, 4-hydroxy-3-methoxyphenylglycol sulfate, heparin sulfate, or chondroitin sulfate hydrolysis at pH 5.5. Adhesion and invasion assays did not reveal differences between the serotypes and their corresponding aslA deletion mutants. Thus, the role and substrate(s) of AslA, a protein unique to salmonella and encoded in all sequenced Salmonella strains, remain elusive.
Collapse
Affiliation(s)
- Arpeeta Ganguly
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | - Rolf D. Joerger
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
14
|
Verbeke F, De Craemer S, Debunne N, Janssens Y, Wynendaele E, Van de Wiele C, De Spiegeleer B. Peptides as Quorum Sensing Molecules: Measurement Techniques and Obtained Levels In vitro and In vivo. Front Neurosci 2017; 11:183. [PMID: 28446863 PMCID: PMC5388746 DOI: 10.3389/fnins.2017.00183] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
The expression of certain bacterial genes is regulated in a cell-density dependent way, a phenomenon called quorum sensing. Both Gram-negative and Gram-positive bacteria use this type of communication, though the signal molecules (auto-inducers) used by them differ between both groups: Gram-negative bacteria use predominantly N-acyl homoserine lacton (AHL) molecules (autoinducer-1, AI-1) while Gram-positive bacteria use mainly peptides (autoinducer peptides, AIP or quorum sensing peptides). These quorum sensing molecules are not only involved in the inter-microbial communication, but can also possibly cross-talk directly or indirectly with their host. This review summarizes the currently applied analytical approaches for quorum sensing identification and quantification with additionally summarizing the experimentally found in vivo concentrations of these molecules in humans.
Collapse
Affiliation(s)
- Frederick Verbeke
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Severine De Craemer
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Nathan Debunne
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Yorick Janssens
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Christophe Van de Wiele
- Department of Nuclear Medicine, AZ GroeningeKortrijk, Belgium.,Department of Nuclear Medicine and Radiology, Faculty of Medicine and Health Sciences, Ghent UniversityGhent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| |
Collapse
|
15
|
Alverdy JC, Luo JN. The Influence of Host Stress on the Mechanism of Infection: Lost Microbiomes, Emergent Pathobiomes, and the Role of Interkingdom Signaling. Front Microbiol 2017; 8:322. [PMID: 28303126 PMCID: PMC5332386 DOI: 10.3389/fmicb.2017.00322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/15/2017] [Indexed: 01/10/2023] Open
Abstract
Mammals constantly face stressful situations, be it extended periods of starvation, sleep deprivation from fear of predation, changing environmental conditions, or loss of habitat. Today, mammals are increasingly exposed to xenobiotics such as pesticides, pollutants, and antibiotics. Crowding conditions such as those created for the purposes of meat production from animals or those imposed upon humans living in urban environments or during world travel create new levels of physiologic stress. As such, human progress has led to an unprecedented exposure of both animals and humans to accidental pathogens (i.e., those that have not co-evolved with their hosts). Strikingly missing in models of infection pathogenesis are the various elements of these conditions, in particular host physiologic stress. The compensatory factors released in the gut during host stress have profound and direct effects on the metabolism and virulence of the colonizing microbiota and the emerging pathobiota. Here, we address unanswered questions to highlight the relevance and importance of incorporating host stress to the field of microbial pathogenesis.
Collapse
Affiliation(s)
- John C Alverdy
- Sarah and Harold Lincoln Thompson Professor of Surgery, Pritzker School of Medicine, The University of Chicago Chicago, IL, USA
| | - James N Luo
- Pritzker School of Medicine, The University of Chicago Chicago, IL, USA
| |
Collapse
|
16
|
Abstract
Enteric pathogens such as enterohemorrhagic Escherichia coli (EHEC) and Citrobacter rodentium, which is largely used as a surrogate EHEC model for murine infections, are exposed to several host neurotransmitters in the gut. An important chemical exchange within the gut involves the neurotransmitters epinephrine and/or norepinephrine, extensively reported to increase virulence gene expression in EHEC, acting through two bacterial adrenergic sensors: QseC and QseE. However, EHEC is unable to establish itself and cause its hallmark lesions, attaching and effacing (AE) lesions, on murine enterocytes. To address the role of these neurotransmitters during enteric infection, we employed C. rodentium. Both EHEC and C. rodentium harbor the locus of enterocyte effacement (LEE) that is necessary for AE lesion formation. Here we show that expression of the LEE, as well as that of other virulence genes in C. rodentium, is also activated by epinephrine and/or norepinephrine. Both QseC and QseE are required for LEE gene activation in C. rodentium, and the qseC and qseE mutants are attenuated for murine infection. C. rodentium has a decreased ability to colonize dopamine β-hydroxylase knockout (Dbh−/−) mice, which do not produce epinephrine and norepinephrine. Both adrenergic sensors are required for C. rodentium to sense these neurotransmitters and activate the LEE genes during infection. These data indicate that epinephrine and norepinephrine are sensed by bacterial adrenergic receptors during enteric infection to promote activation of their virulence repertoire. This is the first report of the role of these neurotransmitters during mammalian gastrointestinal (GI) infection by a noninvasive pathogen. The epinephrine and norepinephrine neurotransmitters play important roles in gut physiology and motility. Of note, epinephrine and norepinephrine play a central role in stress responses in mammals, and stress has profound effects on GI function. Bacterial enteric pathogens exploit these neurotransmitters as signals to coordinate the regulation of their virulence genes. The bacterial QseC and QseE adrenergic sensors are at the center of this regulatory cascade. C. rodentium is a noninvasive murine pathogen with a colonization mechanism similar to that of EHEC, enabling the investigation of host signals in mice. The presence of these neurotransmitters in the gut is necessary for C. rodentium to fully activate its virulence program, in a QseC/QseE-dependent manner, to successfully colonize its murine host. Our study data provide the first example of epinephrine and norepinephrine signaling within the gut to stimulate infection by a bacterial pathogen in a natural animal infection.
Collapse
|
17
|
Modulation of the Interaction of Enteric Bacteria with Intestinal Mucosa by Stress-Related Catecholamines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:143-66. [PMID: 26589217 DOI: 10.1007/978-3-319-20215-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stress associated with parturition, transport or mixing has long been correlated with enhanced faecal excretion of diarrhoeal zoonotic pathogens in animals such as Salmonella enterica and Escherichia coli. It may also predispose humans to infection and/or be associated with more severe outcomes. One possible explanation for this phenomenon is the ability of enteric bacterial pathogens to sense and respond to host stress-related catecholamines. This article reviews evidence of the ability of catecholamine hormones to modulate interactions between Gram-negative diarrhoeal pathogens and intestinal mucosa, as well as the molecular mechanisms that may be at work.
Collapse
|
18
|
Bearson BL. Molecular Profiling: Catecholamine Modulation of Gene Expression in Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:167-82. [DOI: 10.1007/978-3-319-20215-0_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Scanzano A, Cosentino M. Adrenergic regulation of innate immunity: a review. Front Pharmacol 2015; 6:171. [PMID: 26321956 PMCID: PMC4534859 DOI: 10.3389/fphar.2015.00171] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/31/2015] [Indexed: 12/24/2022] Open
Abstract
The sympathetic nervous system has a major role in the brain-immune cross-talk, but few information exist on the sympathoadrenergic regulation of innate immune system. The aim of this review is to summarize available knowledge regarding the sympathetic modulation of the innate immune response, providing a rational background for the possible repurposing of adrenergic drugs as immunomodulating agents. The cells of immune system express adrenoceptors (AR), which represent the target for noradrenaline and adrenaline. In human neutrophils, adrenaline and noradrenaline inhibit migration, CD11b/CD18 expression, and oxidative metabolism, possibly through β-AR, although the role of α1- and α2-AR requires further investigation. Natural Killer express β-AR, which are usually inhibitory. Monocytes express β-AR and their activation is usually antiinflammatory. On murine Dentritic cells (DC), β-AR mediate sympathetic influence on DC-T cells interactions. In human DC β2-AR may affect Th1/2 differentiation of CD4+ T cells. In microglia and in astrocytes, β2-AR dysregulation may contribute to neuroinflammation in autoimmune and neurodegenerative disease. In conclusion, extensive evidence supports a critical role for adrenergic mechanisms in the regulation of innate immunity, in peripheral tissues as well as in the CNS. Sympathoadrenergic pathways in the innate immune system may represent novel antiinflammatory and immunomodulating targets with significant therapeutic potential.
Collapse
Affiliation(s)
- Angela Scanzano
- Center for Research in Medical Pharmacology, University of Insubria Varese, Italy
| | - Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria Varese, Italy
| |
Collapse
|
20
|
Harrison CF, Kicka S, Kranjc A, Finsel I, Chiriano G, Ouertatani-Sakouhi H, Soldati T, Scapozza L, Hilbi H. Adrenergic antagonists restrict replication of Legionella. MICROBIOLOGY-SGM 2015; 161:1392-406. [PMID: 25873585 DOI: 10.1099/mic.0.000094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Legionella pneumophila is a facultative intracellular bacterium, which upon inhalation can cause a potentially fatal pneumonia termed Legionnaires' disease. The opportunistic pathogen grows in environmental amoebae and mammalian macrophages within a unique membrane-bound compartment, the 'Legionella-containing vacuole'. Bacteria are exposed to many environmental cues including small signalling molecules from eukaryotic cells. A number of pathogenic bacteria sense and respond to catecholamine hormones, such as adrenalin and noradrenalin, a process mediated via the QseBC two-component system in some bacteria. In this study, we examined the effect of adrenergic compounds on L. pneumophila, and discovered that the adrenergic receptor antagonists benoxathian, naftopidil, propranolol and labetalol, as well as the QseC sensor kinase inhibitor LED209, reduced the growth of L. pneumophila in broth or amoebae, while replication in macrophages was enhanced. Growth restriction was common to members of the genus Legionella and Mycobacterium, and was observed for L. pneumophila in the replicative but not stationary phase of the biphasic life cycle. Deletion of the L. pneumophila qseBC genes indicated that growth inhibition by adrenergics or LED209 is mediated only to a minor extent by this two-component system, implying the presence of other adrenergic sensing systems. This study identifies adrenergic molecules as novel inhibitors of extra- and intracellular growth of Legionella and reveals LED209 as a potential lead compound to combat infections with Legionella or Mycobacterium spp.
Collapse
Affiliation(s)
- Christopher F Harrison
- 1Max von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Sébastien Kicka
- 2Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Agata Kranjc
- 3School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Ivo Finsel
- 1Max von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Gianpaolo Chiriano
- 3School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | | | - Thierry Soldati
- 2Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Leonardo Scapozza
- 3School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Hubert Hilbi
- 1Max von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany 5Institute of Medical Microbiology, Department of Medicine, University of Zurich, Gloriastrasse 30/32, 8006 Zurich, Switzerland
| |
Collapse
|
21
|
Zaborin A, Smith D, Garfield K, Quensen J, Shakhsheer B, Kade M, Tirrell M, Tiedje J, Gilbert JA, Zaborina O, Alverdy JC. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. mBio 2014; 5:e01361-14. [PMID: 25249279 PMCID: PMC4173762 DOI: 10.1128/mbio.01361-14] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/27/2014] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED We analyzed the 16S rRNA amplicon composition in fecal samples of selected patients during their prolonged stay in an intensive care unit (ICU) and observed the emergence of ultra-low-diversity communities (1 to 4 bacterial taxa) in 30% of the patients. Bacteria associated with the genera Enterococcus and Staphylococcus and the family Enterobacteriaceae comprised the majority of these communities. The composition of cultured species from stool samples correlated to the 16S rRNA analysis and additionally revealed the emergence of Candida albicans and Candida glabrata in ~75% of cases. Four of 14 ICU patients harbored 2-member pathogen communities consisting of one Candida taxon and one bacterial taxon. Bacterial members displayed a high degree of resistance to multiple antibiotics. The virulence potential of the 2-member communities was examined in C. elegans during nutrient deprivation and exposure to opioids in order to mimic local conditions in the gut during critical illness. Under conditions of nutrient deprivation, the bacterial members attenuated the virulence of fungal members, leading to a "commensal lifestyle." However, exposure to opioids led to a breakdown in this commensalism in 2 of the ultra-low-diversity communities. Application of a novel antivirulence agent (phosphate-polyethylene glycol [Pi-PEG]) that creates local phosphate abundance prevented opioid-induced virulence among these pathogen communities, thus rescuing the commensal lifestyle. To conclude, the gut microflora in critically ill patients can consist of ultra-low-diversity communities of multidrug-resistant pathogenic microbes. Local environmental conditions in gut may direct pathogen communities to adapt to either a commensal style or a pathogenic style. IMPORTANCE During critical illness, the normal gut microbiota becomes disrupted in response to host physiologic stress and antibiotic treatment. Here we demonstrate that the community structure of the gut microbiota during prolonged critical illness is dramatically changed such that in many cases only two-member pathogen communities remain. Most of these ultra-low-membership communities display low virulence when grouped together (i.e., a commensal lifestyle); individually, however, they can express highly harmful behaviors (i.e., a pathogenic lifestyle). The commensal lifestyle of the whole community can be shifted to a pathogenic one in response to host factors such as opioids that are released during physiologic stress and critical illness. This shift can be prevented by using compounds such as Pi-PEG15-20 that interrupt bacterial virulence expression. Taking the data together, this report characterizes the plasticity seen with respect to the choice between a commensal lifestyle and a pathogenic lifestyle among ultra-low-diversity pathogen communities that predominate in the gut during critical illness and offers novel strategies for prevention of sepsis.
Collapse
Affiliation(s)
| | - Daniel Smith
- Argonne National Laboratory, Argonne, Illinois, USA
| | | | - John Quensen
- Michigan State University, East Lansing, Michigan, USA
| | | | | | | | - James Tiedje
- Michigan State University, East Lansing, Michigan, USA
| | | | | | | |
Collapse
|
22
|
Rosenzweig JA, Ahmed S, Eunson J, Chopra AK. Low-shear force associated with modeled microgravity and spaceflight does not similarly impact the virulence of notable bacterial pathogens. Appl Microbiol Biotechnol 2014; 98:8797-807. [PMID: 25149449 DOI: 10.1007/s00253-014-6025-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 12/18/2022]
Abstract
As their environments change, microbes experience various threats and stressors, and in the hypercompetitive microbial world, dynamism and the ability to rapidly respond to such changes allow microbes to outcompete their nutrient-seeking neighbors. Viewed in that light, the very difference between microbial life and death depends on effective stress response mechanisms. In addition to the more commonly studied temperature, nutritional, and chemical stressors, research has begun to characterize microbial responses to physical stress, namely low-shear stress. In fact, microbial responses to low-shear modeled microgravity (LSMMG), which emulates the microgravity experienced in space, have been studied quite widely in both prokaryotes and eukaryotes. Interestingly, LSMMG-induced changes in the virulence potential of several Gram-negative enteric bacteria, e.g., an increased enterotoxigenic Escherichia coli-mediated fluid secretion in ligated ileal loops of mice, an increased adherent invasive E. coli-mediated infectivity of Caco-2 cells, an increased Salmonella typhimurium-mediated invasion of both epithelial and macrophage cells, and S. typhimurium hypervirulence phenotype in BALB/c mice when infected by the intraperitoneal route. Although these were some examples where virulence of the bacteria was increased, there are instances where organisms became less virulent under LSMMG, e.g., hypovirulence of Yersinia pestis in cell culture infections and hypovirulence of methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, and Listeria monocytogenes in a Caenorhabditis elegans infection model. In general, a number of LSMMG-exposed bacteria (but not all) seemed better equipped to handle subsequent stressors such as osmotic shock, acid shock, heat shock, and exposure to chemotherapeutics. This mini-review primarily discusses both LSMMG-induced as well as bona fide spaceflight-specific alterations in bacterial virulence potential, demonstrating that pathogens' responses to low-shear forces vary dramatically. Ultimately, a careful characterization of numerous bacterial pathogens' responses to low-shear forces is necessary to evaluate a more complete picture of how this physical stress impacts bacterial virulence since a "one-size-fits-all" response is clearly not the case.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Biology and Center for Bionanotechnology and Environmental Research, Texas Southern University, 3100 Cleburne Street, Houston, TX, 77004, USA,
| | | | | | | |
Collapse
|
23
|
The Dynamic Interactions between Salmonella and the Microbiota, within the Challenging Niche of the Gastrointestinal Tract. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:846049. [PMID: 27437481 PMCID: PMC4897363 DOI: 10.1155/2014/846049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/14/2014] [Indexed: 12/25/2022]
Abstract
Understanding how Salmonella species establish successful infections remains a foremost research priority. This gastrointestinal pathogen not only faces the hostile defenses of the host's immune system, but also faces fierce competition from the large and diverse community of microbiota for space and nutrients. Salmonella have solved these challenges ingeniously. To jump-start growth, Salmonella steal hydrogen produced by the gastrointestinal microbiota. Type 3 effector proteins are subsequently secreted by Salmonella to trigger potent inflammatory responses, which generate the alternative terminal electron acceptors tetrathionate and nitrate. Salmonella exclusively utilize these electron acceptors for anaerobic respiration, permitting metabolic access to abundant substrates such as ethanolamine to power growth blooms. Chemotaxis and flagella-mediated motility enable the identification of nutritionally beneficial niches. The resulting growth blooms also promote horizontal gene transfer amongst the resident microbes. Within the gastrointestinal tract there are opportunities for chemical signaling between host cells, the microbiota, and Salmonella. Host produced catecholamines and bacterial autoinducers form components of this chemical dialogue leading to dynamic interactions. Thus, Salmonella have developed remarkable strategies to initially shield against host defenses and to transiently compete against the intestinal microbiota leading to successful infections. However, the immunocompetent host is subsequently able to reestablish control and clear the infection.
Collapse
|
24
|
Multidirectional chemical signalling between Mammalian hosts, resident microbiota, and invasive pathogens: neuroendocrine hormone-induced changes in bacterial gene expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:241-53. [PMID: 24997037 DOI: 10.1007/978-1-4939-0897-4_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Host-pathogen communication appears to be crucial in establishing the outcome of bacterial infections. There is increasing evidence to suggest that this communication can take place by bacterial pathogens sensing and subsequently responding to host neuroendocrine (NE) stress hormones. Bacterial pathogens have developed mechanisms allowing them to eavesdrop on these communication pathways within their hosts. These pathogens can use intercepted communication signals to adjust their fitness to persist and cause disease in their hosts. Recently, there have been numerous studies highlighting the ability of NE hormones to act as an environmental cue for pathogens, helping to steer their responses during host infection. Host NE hormone sensing can take place indirectly or directly via bacterial adrenergic receptors (BARs). The resulting changes in bacterial gene expression can be of strategic benefit to the pathogen. Furthermore, it is intriguing that not only can bacteria sense NE stress hormones but they are also able to produce key signalling molecules known as autoinducers. The rapid advances in our knowledge of the human microbiome, and its impact on health and disease highlights the potential importance of communication between the microbiota, pathogens and the host. It is indeed likely that the microbiota input significantly in the neuroendocrinological homeostasis of the host by catabolic, anabolic, and signalling processes. The arrival of unwanted guests, such as bacterial pathogens, clearly has a major impact on these delicately balanced interactions. Unravelling the pathways involved in interkingdom communication between invading bacterial pathogens, the resident microbiota, and hosts, may provide novel targets in our continuous search for new antimicrobials to control disease.
Collapse
|
25
|
Karavolos MH, Winzer K, Williams P, Khan CMA. Pathogen espionage: multiple bacterial adrenergic sensors eavesdrop on host communication systems. Mol Microbiol 2012; 87:455-65. [PMID: 23231070 DOI: 10.1111/mmi.12110] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2012] [Indexed: 12/11/2022]
Abstract
The interactions between bacterial pathogens and their eukaryotic hosts are vital in determining the outcome of infections. Bacterial pathogens employ molecular sensors to detect and facilitate adaptation to changes in their niche. The sensing of these extracellular signals enables the pathogen to navigate within mammalian hosts. Intercellular bacterial communication is facilitated by the production and sensing of autoinducer (AI) molecules via quorum sensing. More recently, AI-3 and the host neuroendocrine (NE) hormones adrenaline and noradrenaline were reported to display cross-talk for the activation of the same signalling pathways. Remarkably, there is increasing evidence to suggest that enteric bacteria sense and respond to the host NE stress hormones adrenaline and noradrenaline to modulate virulence. These responses can be inhibited by α and β-adrenergic receptor antagonists implying a bacterial receptor-based sensing and signalling cascade. In Escherichia coli O157:H7 and Salmonella, QseC has been proposed as the adrenergic receptor. Strikingly, there is an increasing body of evidence that not all the bacterial adrenergic responses require signalling through QseC. Here we provide additional hypotheses to reconcile these observations implicating the existence of alternative adrenergic receptors including BasS, QseE and CpxA and their associated signalling cascades with major roles in interkingdom communication.
Collapse
Affiliation(s)
- Michail H Karavolos
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle NE2 4HH, UK
| | | | | | | |
Collapse
|
26
|
Interplay between the QseC and QseE bacterial adrenergic sensor kinases in Salmonella enterica serovar Typhimurium pathogenesis. Infect Immun 2012; 80:4344-53. [PMID: 23027532 DOI: 10.1128/iai.00803-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial adrenergic sensor kinases QseC and QseE respond to epinephrine and/or norepinephrine to initiate a complex phosphorelay regulatory cascade that modulates virulence gene expression in several pathogens. We have previously shown that QseC activates virulence gene expression in Salmonella enterica serovar Typhimurium. Here we report the role of QseE in S. Typhimurium pathogenesis as well as the interplay between these two histidine sensor kinases in gene regulation. An S. Typhimurium qseE mutant is hampered in the invasion of epithelial cells and intramacrophage replication. The ΔqseC strain is highly attenuated for intramacrophage survival but has only a minor defect in invasion. However, the ΔqseEC strain has only a slight attenuation in invasion, mirroring the ΔqseC strain, and has an intermediary intramacrophage replication defect in comparison to the ΔqseE and ΔqseC strains. The expressions of the sipA and sopB genes, involved in the invasion of epithelial cells, are activated by epinephrine via QseE. The expression levels of these genes are still decreased in the ΔqseEC double mutant, albeit to a lesser extent, congruent with the invasion phenotype of this mutant. The expression level of the sifA gene, important for intramacrophage replication, is decreased in the qseE mutant and the ΔqseEC double mutant grown in vitro. However, as previously reported by us, the epinephrine-dependent activation of this gene occurs via QseC. In the systemic model of S. Typhimurium infection of BALB/c mice, the qseC and qseE mutants are highly attenuated, while the double mutant has an intermediary phenotype. Altogether, these data suggest that both adrenergic sensors play an important role in modulating several aspects of S. Typhimurium pathogenesis.
Collapse
|
27
|
Ahuja U, Liu M, Tomida S, Park J, Souda P, Whitelegge J, Li H, Harvill ET, Parkhill J, Miller JF. Phenotypic and genomic analysis of hypervirulent human-associated Bordetella bronchiseptica. BMC Microbiol 2012; 12:167. [PMID: 22863321 PMCID: PMC3462115 DOI: 10.1186/1471-2180-12-167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/17/2012] [Indexed: 01/17/2023] Open
Abstract
Background B. bronchiseptica infections are usually associated with wild or domesticated animals, but infrequently with humans. A recent phylogenetic analysis distinguished two distinct B. bronchiseptica subpopulations, designated complexes I and IV. Complex IV isolates appear to have a bias for infecting humans; however, little is known regarding their epidemiology, virulence properties, or comparative genomics. Results Here we report a characterization of the virulence of human-associated complex IV B. bronchiseptica strains. In in vitro cytotoxicity assays, complex IV strains showed increased cytotoxicity in comparison to a panel of complex I strains. Some complex IV isolates were remarkably cytotoxic, resulting in LDH release levels in A549 cells that were 10- to 20-fold greater than complex I strains. In vivo, a subset of complex IV strains was found to be hypervirulent, with an increased ability to cause lethal pulmonary infections in mice. Hypercytotoxicity in vitro and hypervirulence in vivo were both dependent on the activity of the bsc T3SS and the BteA effector. To clarify differences between lineages, representative complex IV isolates were sequenced and their genomes were compared to complex I isolates. Although our analysis showed there were no genomic sequences that can be considered unique to complex IV strains, there were several loci that were predominantly found in complex IV isolates. Conclusion Our observations reveal a T3SS-dependent hypervirulence phenotype in human-associated complex IV isolates, highlighting the need for further studies on the epidemiology and evolutionary dynamics of this B. bronchiseptica lineage.
Collapse
Affiliation(s)
- Umesh Ahuja
- Department of Microbiology, Immunology and Molecular Genetics, University of California, BSRB 254, 615 Charles E, Young Drive East, Los Angeles, CA 90095-1747, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Global effects of catecholamines on Actinobacillus pleuropneumoniae gene expression. PLoS One 2012; 7:e31121. [PMID: 22347439 PMCID: PMC3275570 DOI: 10.1371/journal.pone.0031121] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 01/03/2012] [Indexed: 11/26/2022] Open
Abstract
Bacteria can use mammalian hormones to modulate pathogenic processes that play essential roles in disease development. Actinobacillus pleuropneumoniae is an important porcine respiratory pathogen causing great economic losses in the pig industry globally. Stress is known to contribute to the outcome of A. pleuropneumoniae infection. To test whether A. pleuropneumoniae could respond to stress hormone catecholamines, gene expression profiles after epinephrine (Epi) and norepinephrine (NE) treatment were compared with those from untreated bacteria. The microarray results showed that 158 and 105 genes were differentially expressed in the presence of Epi and NE, respectively. These genes were assigned to various functional categories including many virulence factors. Only 18 genes were regulated by both hormones. These genes included apxIA (the ApxI toxin structural gene), pgaB (involved in biofilm formation), APL_0443 (an autotransporter adhesin) and genes encoding potential hormone receptors such as tyrP2, the ygiY-ygiX (qseC-qseB) operon and narQ-narP (involved in nitrate metabolism). Further investigations demonstrated that cytotoxic activity was enhanced by Epi but repressed by NE in accordance with apxIA gene expression changes. Biofilm formation was not affected by either of the two hormones despite pgaB expression being affected. Adhesion to host cells was induced by NE but not by Epi, suggesting that the hormones affect other putative adhesins in addition to APL_0443. This study revealed that A. pleuropneumoniae gene expression, including those encoding virulence factors, was altered in response to both catecholamines. The differential regulation of A. pleuropneumoniae gene expression by the two hormones suggests that this pathogen may have multiple responsive systems for the two catecholamines.
Collapse
|
29
|
The complex interplay between stress and bacterial infections in animals. Vet Microbiol 2011; 155:115-27. [PMID: 21963418 DOI: 10.1016/j.vetmic.2011.09.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 09/07/2011] [Accepted: 09/09/2011] [Indexed: 11/23/2022]
Abstract
Over the past decade, an increasing awareness has arisen of the role of neuroendocrine hormones in the susceptibility of mammalian hosts to a bacterial infection. During a stress response, glucocorticoids, catecholamines and neuroendocrine factors are released into the circulation of the host. For a long time the effects of stress on the course of an infection have been exclusively ascribed to the direct effect of stress-related hormones on the immune system and the intestinal barrier function. Chronic stress is known to cause a shift from T helper 1-mediated cellular immunity toward T helper 2-mediated humoral immunity, which can influence the course of an infection and/or the susceptibility to a microorganism. Bacteria can however also respond directly to stress-related host signals. Catecholamines can alter growth, motility, biofilm formation and/or virulence of pathogens and commensal bacteria, and as a consequence influence the outcome of infections by these bacteria in many hosts. For some bacteria, such as Salmonella, Escherichia coli and Pseudomonas aeruginosa it was shown that this influence is regulated by quorum sensing mechanisms. In this manuscript an overview of how and when stress influences the outcome of bacterial infections in animals is provided.
Collapse
|
30
|
Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol 2011; 2:158. [PMID: 21845185 PMCID: PMC3145257 DOI: 10.3389/fmicb.2011.00158] [Citation(s) in RCA: 376] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/11/2011] [Indexed: 01/21/2023] Open
Abstract
Horizontal gene transfer (HGT) plays an important role in the evolution of life on the Earth. This view is supported by numerous occasions of HGT that are recorded in the genomes of all three domains of living organisms. HGT-mediated rapid evolution is especially noticeable among the Bacteria, which demonstrate formidable adaptability in the face of recent environmental changes imposed by human activities, such as the use of antibiotics, industrial contamination, and intensive agriculture. At the heart of the HGT-driven bacterial evolution and adaptation are highly sophisticated natural genetic engineering tools in the form of a variety of mobile genetic elements (MGEs). The main aim of this review is to give a brief account of the occurrence and diversity of MGEs in natural ecosystems and of the environmental factors that may affect MGE-mediated HGT.
Collapse
Affiliation(s)
- Rustam I Aminov
- Rowett Institute of Nutrition and Health, University of Aberdeen Aberdeen, UK
| |
Collapse
|
31
|
Karavolos MH, Williams P, Khan CMA. Interkingdom crosstalk: host neuroendocrine stress hormones drive the hemolytic behavior of Salmonella typhi. Virulence 2011; 2:371-4. [PMID: 21758008 DOI: 10.4161/viru.2.4.16810] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ability of bacterial pathogens to sense their immediate environment plays a significant role on their capacity to survive and cause disease. Salmonella enterica serovar typhi (S. typhi) is an exclusively human pathogen that causes typhoid fever. In a recent study, we have shown that S. typhi senses and responds to host neuroendocrine stress hormones to release the toxin hemolysin E. Hormone-mediated hemolysis by S. typhi was inhibited by the β-blocker propranolol and was dependent on the presence of the CpxAR signal transduction system. Furthermore, we demonstrate that normal expression of the small RNA micA is necessary for the arbitration of the response to host neuroendocrine hormones. This leads to a significant decrease in the levels of the outer membrane protein OmpA and increased formation of membrane vesicles containing HlyE. The exploration of host pathogen interactions is of paramount importance in deciphering pathogen virulence and the discovery of novel treatments.
Collapse
Affiliation(s)
- Michail H Karavolos
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle, UK.
| | | | | |
Collapse
|
32
|
McDermott JE, Yoon H, Nakayasu ES, Metz TO, Hyduke DR, Kidwai AS, Palsson BO, Adkins JN, Heffron F. Technologies and approaches to elucidate and model the virulence program of salmonella. Front Microbiol 2011; 2:121. [PMID: 21687430 PMCID: PMC3108385 DOI: 10.3389/fmicb.2011.00121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/15/2011] [Indexed: 11/13/2022] Open
Abstract
Salmonella is a primary cause of enteric diseases in a variety of animals. During its evolution into a pathogenic bacterium, Salmonella acquired an elaborate regulatory network that responds to multiple environmental stimuli within host animals and integrates them resulting in fine regulation of the virulence program. The coordinated action by this regulatory network involves numerous virulence regulators, necessitating genome-wide profiling analysis to assess and combine efforts from multiple regulons. In this review we discuss recent high-throughput analytic approaches used to understand the regulatory network of Salmonella that controls virulence processes. Application of high-throughput analyses have generated large amounts of data and necessitated the development of computational approaches for data integration. Therefore, we also cover computer-aided network analyses to infer regulatory networks, and demonstrate how genome-scale data can be used to construct regulatory and metabolic systems models of Salmonella pathogenesis. Genes that are coordinately controlled by multiple virulence regulators under infectious conditions are more likely to be important for pathogenesis. Thus, reconstructing the global regulatory network during infection or, at the very least, under conditions that mimic the host cellular environment not only provides a bird's eye view of Salmonella survival strategy in response to hostile host environments but also serves as an efficient means to identify novel virulence factors that are essential for Salmonella to accomplish systemic infection in the host.
Collapse
Affiliation(s)
- Jason E. McDermott
- Computational Biology and Bioinformatics Group, Pacific Northwest National LaboratoryRichland, WA, USA
| | - Hyunjin Yoon
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences UniversityPortland, OR, USA
| | - Ernesto S. Nakayasu
- Biological Separations and Mass Spectroscopy Group, Pacific Northwest National LaboratoryRichland WA, USA
| | - Thomas O. Metz
- Biological Separations and Mass Spectroscopy Group, Pacific Northwest National LaboratoryRichland WA, USA
| | - Daniel R. Hyduke
- Systems Biology, University of California San DiegoSan Diego, CA, USA
| | - Afshan S. Kidwai
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences UniversityPortland, OR, USA
| | | | - Joshua N. Adkins
- Biological Separations and Mass Spectroscopy Group, Pacific Northwest National LaboratoryRichland WA, USA
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences UniversityPortland, OR, USA
| |
Collapse
|
33
|
Hadjifrangiskou M, Kostakioti M, Chen SL, Henderson JP, Greene SE, Hultgren SJ. A central metabolic circuit controlled by QseC in pathogenic Escherichia coli. Mol Microbiol 2011; 80:1516-29. [PMID: 21542868 DOI: 10.1111/j.1365-2958.2011.07660.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The QseC sensor kinase regulates virulence in multiple Gram-negative pathogens, by controlling the activity of the QseB response regulator. We have previously shown that qseC deletion interferes with dephosphorylation of QseB thus unleashing what appears to be an uncontrolled positive feedback loop stimulating increased QseB levels. Deletion of QseC downregulates virulence gene expression and attenuates enterohaemorrhagic and uropathogenic Escherichia coli (EHEC and UPEC), Salmonella typhimurium, and Francisella tularensis. Given that these pathogens employ different infection strategies and virulence factors, we used genome-wide approaches to better understand the role of the QseBC interplay in pathogenesis. We found that deletion of qseC results in misregulation of nucleotide, amino acid, and carbon metabolism. Comparable metabolic changes are seen in EHEC ΔqseC, suggesting that deletion of qseC confers similar pleiotropic effects in these two different pathogens. Disruption of representative metabolic enzymes phenocopied UPEC ΔqseC in vivo and resulted in virulence factor downregulation. We thus propose that in the absence of QseC, the constitutively active QseB leads to pleiotropic effects, impairing bacterial metabolism, and thereby attenuating virulence. These findings provide a basis for the development of antimicrobials targeting the phosphatase activity of QseC, as a means to attenuate a wide range of QseC-bearing pathogens.
Collapse
Affiliation(s)
- Maria Hadjifrangiskou
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, 660 S Euclid, St Louis, MO 63110-1010, USA
| | | | | | | | | | | |
Collapse
|
34
|
Karavolos MH, Bulmer DM, Spencer H, Rampioni G, Schmalen I, Baker S, Pickard D, Gray J, Fookes M, Winzer K, Ivens A, Dougan G, Williams P, Khan CMA. Salmonella Typhi sense host neuroendocrine stress hormones and release the toxin haemolysin E. EMBO Rep 2011; 12:252-8. [PMID: 21331094 DOI: 10.1038/embor.2011.4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 11/09/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. typhi) causes typhoid fever. We show that exposure of S. typhi to neuroendocrine stress hormones results in haemolysis, which is associated with the release of haemolysin E in membrane vesicles. This effect is attributed to increased expression of the small RNA micA and RNA chaperone Hfq, with concomitant downregulation of outer membrane protein A. Deletion of micA or the two-component signal-transduction system, CpxAR, abolishes the phenotype. The hormone response is inhibited by the β-blocker propranolol. We provide mechanistic insights into the basis of neuroendocrine hormone-mediated haemolysis by S. typhi, increasing our understanding of inter-kingdom signalling.
Collapse
Affiliation(s)
- Michail H Karavolos
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle NE2 4HH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Impact of salmonella infection on host hormone metabolism revealed by metabolomics. Infect Immun 2011; 79:1759-69. [PMID: 21321075 DOI: 10.1128/iai.01373-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The interplay between pathogens and their hosts has been studied for decades using targeted approaches, such as the analysis of mutants and host immunological responses. Although much has been learned from such studies, they focus on individual pathways and fail to reveal the global effects of infection on the host. To alleviate this issue, high-throughput methods, such as transcriptomics and proteomics, have been used to study host-pathogen interactions. Recently, metabolomics was established as a new method to study changes in the biochemical composition of host tissues. We report a metabolomic study of Salmonella enterica serovar Typhimurium infection. Our results revealed that dozens of host metabolic pathways are affected by Salmonella in a murine infection model. In particular, multiple host hormone pathways are disrupted. Our results identify unappreciated effects of infection on host metabolism and shed light on mechanisms used by Salmonella to cause disease and by the host to counter infection.
Collapse
|
36
|
Pullinger GD, van Diemen PM, Carnell SC, Davies H, Lyte M, Stevens MP. 6-hydroxydopamine-mediated release of norepinephrine increases faecal excretion of Salmonella enterica serovar Typhimurium in pigs. Vet Res 2010; 41:68. [PMID: 20609329 PMCID: PMC2913729 DOI: 10.1051/vetres/2010040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/05/2010] [Indexed: 01/03/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is an animal and zoonotic pathogen of worldwide importance. In pigs, transport and social stress are associated with reactivation and spread of Salmonella Typhimurium infection. The stress-related catecholamine norepinephrine (NE) has been reported to activate growth and virulence factor expression in Salmonella; however the extent to which NE contributes to stress-associated salmonellosis is unclear. We studied the impact of releasing NE from endogenous stores during Salmonella Typhimurium infection of pigs by administration of 6-hydroxydopamine (6-OHDA), which selectively destroys noradrenergic nerve terminals. Treatment of pigs with 6-OHDA 7 or 16 days post-oral inoculation with Salmonella Typhimurium produced elevated plasma NE levels and transiently, but significantly, increased faecal excretion of the challenge strain. Oral administration of NE to Salmonella Typhimurium-infected pigs also transiently and significantly increased shedding; however pre-culture of the bacteria with NE did not alter the outcome of infection. Salmonella has been proposed to sense and respond to NE via a homologue of the adrenergic sensor kinase QseC. A DeltaqseC mutant of Salmonella Typhimurium was consistently excreted in lower numbers than the parent strain post-oral inoculation of pigs, though not significantly so. 6-OHDA treatment of pigs infected with the DeltaqseC mutant also increased faecal excretion of the mutant strain, albeit to a lesser extent than observed upon 6-OHDA treatment of pigs infected with the parent strain. Our data support the notion that stress-related catecholamines modulate the interaction of enteric bacterial pathogens with their hosts.
Collapse
Affiliation(s)
- Gillian D. Pullinger
-
Enteric Bacterial Pathogens Laboratory, Institute for Animal Health Compton Berkshire RG20 7NN United Kingdom
| | - Pauline M. van Diemen
-
Enteric Bacterial Pathogens Laboratory, Institute for Animal Health Compton Berkshire RG20 7NN United Kingdom
| | - Sonya C. Carnell
-
Enteric Bacterial Pathogens Laboratory, Institute for Animal Health Compton Berkshire RG20 7NN United Kingdom
- Present address: Institute for Cell and Molecular Biosciences & School of Biomedical Sciences, University of Newcastle Framlington Place Newcastle NE2 4HH United Kingdom
| | - Holly Davies
-
Enteric Bacterial Pathogens Laboratory, Institute for Animal Health Compton Berkshire RG20 7NN United Kingdom
| | - Mark Lyte
-
School of Pharmacy, Texas Tech University Health Sciences Center Lubbock TX 79430-8162 USA
| | - Mark P. Stevens
-
Enteric Bacterial Pathogens Laboratory, Institute for Animal Health Compton Berkshire RG20 7NN United Kingdom
| |
Collapse
|
37
|
Transcriptomic responses of Salmonella enterica serovars Enteritidis and Typhimurium to chlorine-based oxidative stress. Appl Environ Microbiol 2010; 76:5013-24. [PMID: 20562293 DOI: 10.1128/aem.00823-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovars Enteritidis and Typhimurium are the leading causative agents of salmonellosis in the United States. S. Enteritidis is predominantly associated with contamination of shell eggs and egg products, whereas S. Typhimurium is frequently linked to tainted poultry meats, fresh produce, and recently, peanut-based products. Chlorine is an oxidative disinfectant commonly used in the food industry to sanitize the surfaces of foods and food processing facilities (e.g., shell eggs and poultry meats). However, chlorine disinfection is not always effective, as some S. enterica strains may resist and survive the disinfection process. To date, little is known about the underlying mechanisms of how S. enterica responds to chlorine-based oxidative stress. In this study, we designed a custom bigenome microarray that consists of 385,000 60-mer oligonucleotide probes and targets 4,793 unique gene features in the genomes of S. Enteritidis strain PT4 and S. Typhimurium strain LT2. We explored the transcriptomic responses of both strains to two different chlorine treatments (130 ppm of chlorine for 30 min and 390 ppm of chlorine for 10 min) in brain heart infusion broth. We identified 209 S. enterica core genes associated with Fe-S cluster assembly, cysteine biosynthesis, stress response, ribosome formation, biofilm formation, and energy metabolism that were differentially expressed (>1.5-fold; P < 0.05). In addition, we found that serovars Enteriditis and Typhimurium differed in the responses of 33 stress-related genes and 19 virulence-associated genes to the chlorine stress. Findings from this study suggest that the oxidative-stress response may render S. enterica resistant or susceptible to certain types of environmental stresses, which in turn promotes the development of more effective hurdle interventions to reduce the risk of S. enterica contamination in the food supply.
Collapse
|
38
|
Bearson BL, Bearson SM, Lee IS, Brunelle BW. The Salmonella enterica serovar Typhimurium QseB response regulator negatively regulates bacterial motility and swine colonization in the absence of the QseC sensor kinase. Microb Pathog 2010; 48:214-9. [DOI: 10.1016/j.micpath.2010.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/02/2010] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
|