1
|
Figaj D. The Role of Heat Shock Protein (Hsp) Chaperones in Environmental Stress Adaptation and Virulence of Plant Pathogenic Bacteria. Int J Mol Sci 2025; 26:528. [PMID: 39859244 PMCID: PMC11764788 DOI: 10.3390/ijms26020528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Plant pathogenic bacteria are responsible for a substantial number of plant diseases worldwide, resulting in significant economic losses. Bacteria are exposed to numerous stress factors during their epiphytic life and within the host. Their ability to survive in the host and cause symptomatic infections depends on their capacity to overcome stressors. Bacteria have evolved a range of defensive and adaptive mechanisms to thrive under varying environmental conditions. One such mechanism involves the induction of chaperone proteins that belong to the heat shock protein (Hsp) family. Together with proteases, these proteins are integral components of the protein quality control system (PQCS), which is essential for maintaining cellular proteostasis. However, knowledge of their action is considerably less extensive than that of human and animal pathogens. This study discusses the modulation of Hsp levels by phytopathogenic bacteria in response to stress conditions, including elevated temperature, oxidative stress, changes in pH or osmolarity of the environment, and variable host conditions during infection. All these factors influence bacterial virulence. Finally, the secretion of GroEL and DnaK proteins outside the bacterial cell is considered a potentially important virulence trait.
Collapse
Affiliation(s)
- Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
2
|
Nagaiah HP, Shunmugiah KP. Multifunctional Temporary Dental Nanofillers Enhanced with Synergistically Active Chlorine-Containing Molecules against Streptococcus mutans and Its Effects on Oral Epithelial Cells. ACS APPLIED BIO MATERIALS 2024; 7:7332-7355. [PMID: 39494528 DOI: 10.1021/acsabm.4c00927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Temporary dental fillers are critical for safeguarding teeth during the period between caries removal and permanent restoration. However, conventional fillers often lack sufficient antimicrobial properties to prevent bacterial colonization. To address this issue, the study researches on the development of antimicrobial Temporary Dental Nano-Fillers (TDNF) capable of targeting multiple cariogenic pathogens, including Streptococcus mutans, Lactobacillus casei, Candida albicans, and mixed-species planktonic cells/biofilms, which play a significant role in the progression of dental caries. The TDNF was formulated using a combination of Chloramine-T (CRT) and Cetylpyridinium Chloride (CPC), both known for their antimicrobial efficacy, and embedded in a nanoparticle matrix of hydroxyapatite (HAP) and silicon dioxide (SiO2). The synergistic antimicrobial effect of CRT and CPC, with MIC90 values of 12.5 and 6.25 ppm, respectively, displayed potent activity against S. mutans. Proteomic analysis, including gene ontology and protein-protein interaction network evaluations, further confirmed significant disruptions in S. mutans metabolic and stress response pathways, highlighting the bactericidal effectiveness of the formulation against S. mutans. Additionally, the formulation demonstrated sustained antimicrobial efficacy against other cariogenic pathogens such as L. casei, C. albicans and mixed-species planktonic cells and biofilms over a 16-day period. The TDNF (HAP+SiO2+CRT+CPC matrix) exhibited superior mechanical properties with a compressive strength of 237.7 MPa, flexural strength of 124.3 MPa, and shear bond strength of 52 MPa. Biocompatibility tests conducted on human oral squamous carcinoma cells (OECM-1) indicated over 95% cell viability, affirming its safety for preclinical or clinical applications. The multifunctional TDNF developed in this study successfully combines mechanical reinforcement with broad-spectrum antimicrobial efficacy, offering a promising interim solution in dental restorations. Its ability to protect against microbial colonization, while maintaining structural stability, positions it as an effective temporary material that enhances patient outcomes during the period before permanent restoration.
Collapse
Affiliation(s)
- Hari Prasath Nagaiah
- Department of Biotechnology, Alagappa University, Karaikudi ,Tamil Nadu 630 003, India
| | | |
Collapse
|
3
|
Mann AE, Chakraborty B, O'Connell LM, Nascimento MM, Burne RA, Richards VP. Heterogeneous lineage-specific arginine deiminase expression within dental microbiome species. Microbiol Spectr 2024; 12:e0144523. [PMID: 38411054 PMCID: PMC10986539 DOI: 10.1128/spectrum.01445-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Arginine catabolism by the bacterial arginine deiminase system (ADS) has anticariogenic properties through the production of ammonia, which modulates the pH of the oral environment. Given the potential protective capacity of the ADS pathway, the exploitation of ADS-competent oral microbes through pre- or probiotic applications is a promising therapeutic target to prevent tooth decay. To date, most investigations of the ADS in the oral cavity and its relation to caries have focused on indirect measures of activity or on specific bacterial groups, yet the pervasiveness and rate of expression of the ADS operon in diverse mixed microbial communities in oral health and disease remain an open question. Here, we use a multivariate approach, combining ultra-deep metatranscriptomic sequencing with paired metataxonomic and in vitro citrulline quantification to characterize the microbial community and ADS operon expression in healthy and late-stage cavitated teeth. While ADS activity is higher in healthy teeth, we identify multiple bacterial lineages with upregulated ADS activity on cavitated teeth that are distinct from those found on healthy teeth using both reference-based mapping and de novo assembly methods. Our dual metataxonomic and metatranscriptomic approach demonstrates the importance of species abundance for gene expression data interpretation and that patterns of differential expression can be skewed by low-abundance groups. Finally, we identify several potential candidate probiotic bacterial lineages within species that may be useful therapeutic targets for the prevention of tooth decay and propose that the development of a strain-specific, mixed-microbial probiotic may be a beneficial approach given the heterogeneity of taxa identified here across health groups. IMPORTANCE Tooth decay is the most common preventable chronic disease, affecting more than two billion people globally. The development of caries on teeth is primarily a consequence of acid production by cariogenic bacteria that inhabit the plaque microbiome. Other bacterial strains in the oral cavity may suppress or prevent tooth decay by producing ammonia as a byproduct of the arginine deiminase metabolic pathway, increasing the pH of the plaque biofilm. While the benefits of arginine metabolism on oral health have been extensively documented in specific bacterial groups, the prevalence and consistency of arginine deiminase system (ADS) activity among oral bacteria in a community context remain an open question. In the current study, we use a multi-omics approach to document the pervasiveness of the expression of the ADS operon in both health and disease to better understand the conditions in which ADS activity may prevent tooth decay.
Collapse
Affiliation(s)
- Allison E. Mann
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Brinta Chakraborty
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Lauren M. O'Connell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Marcelle M. Nascimento
- Division of Operative Dentistry, Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Robert A. Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Vincent P. Richards
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
4
|
Bender O, Khoury J, Hirsch G, Weinberg E, Sagy N, Buller S, Lapides-Levy S, Blumer S, Bar DZ. Immunorecognition of Streptococcus mutans secreted proteins protects against caries by limiting tooth adhesion. J Dent 2024; 141:104805. [PMID: 38101504 DOI: 10.1016/j.jdent.2023.104805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION Childhood caries, a prevalent chronic disease, affects 60-90 % of children in industrialized regions, leading to lesions in both primary and permanent teeth. This condition precipitates hospital admissions, emergency room visits, elevated treatment costs, and missed school days, thereby impeding the child's academic engagement and increasing the likelihood of caries into adulthood. Despite multiple identified risk factors, significant interpersonal variability remains unexplained. The immune system generates a unique antibody repertoire, essential for maintaining a balanced and healthy oral microbiome. Streptococcus mutans is a primary contributor to the development of caries. METHODS Employing mass spectrometry, we investigated the S. mutans proteins targeted by antibodies in children both with and without caries, delineating a fundamental suite of proteins discernible by the immune systems of a majority of individuals. Notably, this suite was enriched with proteins pivotal for bacterial adhesion. To ascertain the physiological implications of these discoveries, we evaluated the efficacy of saliva in thwarting S. mutans adherence to dental surfaces. RESULTS Antibodies in most children recognized a core set of ten S. mutans proteins, with additional proteins identified in some individuals. There was no significant difference in the proteins identified by children with or without caries, but there was variation in antibody binding intensity to some proteins. Functionally, saliva from caries-free individuals, but not children with caries, was found to hinder the binding of S. mutans to teeth. These findings delineate the S. mutans proteome targeted by the immune system and suggest that the inhibition of bacterial adherence to teeth is a primary mechanism employed by the immune system to maintain oral balance and prevent caries formation. CONCLUSIONS These findings enhance our knowledge of the immune system's function in oral health maintenance and caries prevention, shedding light on how immunoglobulins interact with S. mutans proteins. CLINICAL SIGNIFICANCE Targeting S. mutans proteins implicated in bacterial adhesion could be a promising strategy for preventing childhood caries.
Collapse
Affiliation(s)
- Omer Bender
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel
| | - Jessica Khoury
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel
| | - Gal Hirsch
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel
| | - Evgeny Weinberg
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel; Department of Periodontology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel
| | - Naor Sagy
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel
| | - Shani Buller
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel
| | - Shiri Lapides-Levy
- Department of Pediatric Dentistry, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel
| | - Sigalit Blumer
- Department of Pediatric Dentistry, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel
| | - Daniel Z Bar
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University 69978, Israel.
| |
Collapse
|
5
|
Liu C, Zhang H, Peng X, Blackledge MS, Furlani RE, Li H, Su Z, Melander RJ, Melander C, Michalek S, Wu H. Small Molecule Attenuates Bacterial Virulence by Targeting Conserved Response Regulator. mBio 2023; 14:e0013723. [PMID: 37074183 PMCID: PMC10294662 DOI: 10.1128/mbio.00137-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 04/20/2023] Open
Abstract
Antibiotic tolerance within a biofilm community presents a serious public health challenge. Here, we report the identification of a 2-aminoimidazole derivative that inhibits biofilm formation by two pathogenic Gram-positive bacteria, Streptococcus mutans and Staphylococcus aureus. In S. mutans, the compound binds to VicR, a key response regulator, at the N-terminal receiver domain, and concurrently inhibits expression of vicR and VicR-regulated genes, including the genes that encode the key biofilm matrix producing enzymes, Gtfs. The compound inhibits S. aureus biofilm formation via binding to a Staphylococcal VicR homolog. In addition, the inhibitor effectively attenuates S. mutans virulence in a rat model of dental caries. As the compound targets bacterial biofilms and virulence through a conserved transcriptional factor, it represents a promising new class of anti-infective agents that can be explored to prevent or treat a host of bacterial infections. IMPORTANCE Antibiotic resistance is a major public health issue due to the growing lack of effective anti-infective therapeutics. New alternatives to treat and prevent biofilm-driven microbial infections, which exhibit high tolerance to clinically available antibiotics, are urgently needed. We report the identification of a small molecule that inhibits biofilm formation by two important pathogenic Gram-positive bacteria, Streptococcus mutans and Staphylococcus aureus. The small molecule selectively targets a transcriptional regulator leading to attenuation of a biofilm regulatory cascade and concurrent reduction of bacterial virulence in vivo. As the regulator is highly conserved, the finding has broad implication for the development of antivirulence therapeutics that selectively target biofilms.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pediatric Dentistry, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
- Department of Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
| | - Hua Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health & Science University School of Dentistry, Portland, Oregon, USA
- Department of Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
| | - Xian Peng
- Department of Pediatric Dentistry, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
- Department of Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
| | - Meghan S. Blackledge
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Robert E. Furlani
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Haoting Li
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhaoming Su
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Roberta J. Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Suzanne Michalek
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health & Science University School of Dentistry, Portland, Oregon, USA
| | - Hui Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health & Science University School of Dentistry, Portland, Oregon, USA
- Department of Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Wolfson G, Sionov RV, Smoum R, Korem M, Polacheck I, Steinberg D. Anti-Bacterial and Anti-Biofilm Activities of Anandamide against the Cariogenic Streptococcus mutans. Int J Mol Sci 2023; 24:ijms24076177. [PMID: 37047147 PMCID: PMC10094667 DOI: 10.3390/ijms24076177] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Streptococcus mutans is a cariogenic bacterium in the oral cavity involved in plaque formation and dental caries. The endocannabinoid anandamide (AEA), a naturally occurring bioactive lipid, has been shown to have anti-bacterial and anti-biofilm activities against Staphylococcus aureus. We aimed here to study its effects on S. mutans viability, biofilm formation and extracellular polysaccharide substance (EPS) production. S. mutans were cultivated in the absence or presence of various concentrations of AEA, and the planktonic growth was followed by changes in optical density (OD) and colony-forming units (CFU). The resulting biofilms were examined by MTT metabolic assay, Crystal Violet (CV) staining, spinning disk confocal microscopy (SDCM) and high-resolution scanning electron microscopy (HR-SEM). The EPS production was determined by Congo Red and fluorescent dextran staining. Membrane potential and membrane permeability were determined by diethyloxacarbocyanine iodide (DiOC2(3)) and SYTO 9/propidium iodide (PI) staining, respectively, using flow cytometry. We observed that AEA was bactericidal to S. mutans at 12.5 µg/mL and prevented biofilm formation at the same concentration. AEA reduced the biofilm thickness and biomass with concomitant reduction in total EPS production, although there was a net increase in EPS per bacterium. Preformed biofilms were significantly affected at 50 µg/mL AEA. We further show that AEA increased the membrane permeability and induced membrane hyperpolarization of these bacteria. AEA caused S. mutans to become elongated at the minimum inhibitory concentration (MIC). Gene expression studies showed a significant increase in the cell division gene ftsZ. The concentrations of AEA needed for the anti-bacterial effects were below the cytotoxic concentration for normal Vero epithelial cells. Altogether, our data show that AEA has anti-bacterial and anti-biofilm activities against S. mutans and may have a potential role in preventing biofilms as a therapeutic measure.
Collapse
|
7
|
Fei Y, Huang L, Wang H, Liang J, Liu G, Bai W. Adaptive mechanism of Lactobacillus amylolyticus L6 in soymilk environment based on metabolism of nutrients and related gene-expression profiles. Food Sci Nutr 2022; 10:1548-1563. [PMID: 35592287 PMCID: PMC9094474 DOI: 10.1002/fsn3.2779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
Lactobacillus amylolyticus L6 isolated from naturally fermented tofu-whey was characterized as potential probiotics. To give insight into the adaptive mechanism of L. amylolyticus L6 in soymilk, the gene-expression profiles of this strain and changes of chemical components in fermented soymilk were investigated. The viable counts of L. amylolyticus L6 in soymilk reached 1012 CFU/mL in the stationary phase (10 hr). The main sugars reduced gradually while the acidity value significantly increased from 45.33° to 95.88° during fermentation. About 50 genes involved in sugar metabolization and lactic acid production were highly induced during soymilk fermentation. The concentration of total amino acid increased to 668.38 mg/L in the logarithmic phase, and 45 differentially expressed genes (DEGs) in terms of nitrogen metabolism and biosynthesis of amino acid were detected. Other genes related to lipid metabolism, inorganic ion transport, and stress response were also highly induced. Besides, the concentration of isoflavone aglycones with high bioactivity increased from 14.51 mg/L to 36.09 mg/L during the fermentation, and the expression of 6-phospho-β-glucosidase gene was also synchronously induced. This study revealed the adaptive mechanism of L. amylolyticus L6 in the soymilk-based ecosystem, which gives the theoretical guidance for the application of this strain in other soybean-derived products.
Collapse
Affiliation(s)
- Yongtao Fei
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,College of Light Industry and Food Science Zhongkai University of Agriculture and Engineering Guangzhou China.,Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Li Huang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,College of Light Industry and Food Science Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Jinglong Liang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Gongliang Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,College of Light Industry and Food Science Zhongkai University of Agriculture and Engineering Guangzhou China.,Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,College of Light Industry and Food Science Zhongkai University of Agriculture and Engineering Guangzhou China.,Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| |
Collapse
|
8
|
Tsao N, Chang YC, Hsieh SY, Li TC, Chiu CC, Yu HH, Hsu TC, Kuo CF. AR-12 Has a Bactericidal Activity and a Synergistic Effect with Gentamicin against Group A Streptococcus. Int J Mol Sci 2021; 22:ijms222111617. [PMID: 34769046 PMCID: PMC8583967 DOI: 10.3390/ijms222111617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 12/30/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus (GAS) is an important human pathogen that can cause severe invasive infection, such as necrotizing fasciitis and streptococcal toxic shock syndrome. The mortality rate of streptococcal toxic shock syndrome ranges from 20% to 50% in spite of antibiotics administration. AR-12, a pyrazole derivative, has been reported to inhibit the infection of viruses, intracellular bacteria, and fungi. In this report, we evaluated the bactericidal activities and mechanisms of AR-12 on GAS infection. Our in vitro results showed that AR-12 dose-dependently reduced the GAS growth, and 2.5 μg/mL of AR-12 significantly killed GAS within 2 h. AR-12 caused a remarkable reduction in nucleic acid and protein content of GAS. The expression of heat shock protein DnaK and streptococcal exotoxins was also inhibited by AR-12. Surveys of the GAS architecture by scanning electron microscopy revealed that AR-12-treated GAS displayed incomplete septa and micro-spherical structures protruding out of cell walls. Moreover, the combination of AR-12 and gentamicin had a synergistic antibacterial activity against GAS replication for both in vitro and in vivo infection. Taken together, these novel findings obtained in this study may provide a new therapeutic strategy for invasive GAS infection.
Collapse
Affiliation(s)
- Nina Tsao
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (N.T.); (Y.-C.C.); (T.-C.L.); (C.-C.C.)
- Department of Biological Science and Technology, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (H.-H.Y.); (T.-C.H.)
| | - Ya-Chu Chang
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (N.T.); (Y.-C.C.); (T.-C.L.); (C.-C.C.)
| | - Sung-Yuan Hsieh
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300024, Taiwan;
| | - Tang-Chi Li
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (N.T.); (Y.-C.C.); (T.-C.L.); (C.-C.C.)
| | - Ching-Chen Chiu
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (N.T.); (Y.-C.C.); (T.-C.L.); (C.-C.C.)
| | - Hai-Han Yu
- Department of Biological Science and Technology, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (H.-H.Y.); (T.-C.H.)
| | - Tzu-Ching Hsu
- Department of Biological Science and Technology, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (H.-H.Y.); (T.-C.H.)
| | - Chih-Feng Kuo
- School of Medicine, I-Shou University, Kaohsiung 824005, Taiwan
- Department of Nursing, College of Medicine, I-Shou University, Kaohsiung 824005, Taiwan
- Correspondence: ; Tel.: +886-7-6151100 (ext. 7967)
| |
Collapse
|
9
|
Kumar CMS, Chugh K, Dutta A, Mahamkali V, Bose T, Mande SS, Mande SC, Lund PA. Chaperonin Abundance Enhances Bacterial Fitness. Front Mol Biosci 2021; 8:669996. [PMID: 34381811 PMCID: PMC8350394 DOI: 10.3389/fmolb.2021.669996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
The ability of chaperonins to buffer mutations that affect protein folding pathways suggests that their abundance should be evolutionarily advantageous. Here, we investigate the effect of chaperonin overproduction on cellular fitness in Escherichia coli. We demonstrate that chaperonin abundance confers 1) an ability to tolerate higher temperatures, 2) improved cellular fitness, and 3) enhanced folding of metabolic enzymes, which is expected to lead to enhanced energy harvesting potential.
Collapse
Affiliation(s)
- C M Santosh Kumar
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Kritika Chugh
- Department of Biotechnology and Bioinformatics, University of Rajasthan, Jaipur, India
| | - Anirban Dutta
- TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Vishnuvardhan Mahamkali
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Tungadri Bose
- TCS Research, Tata Consultancy Services Ltd., Pune, India
| | | | - Shekhar C Mande
- Laboratory of Structural Biology, National Centre for Cell Science (NCCS), Pune, India
| | - Peter A Lund
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Lee Y, Kim N, Roh H, Kim A, Han HJ, Cho M, Kim DH. Transcriptome analysis unveils survival strategies of Streptococcus parauberis against fish serum. PLoS One 2021; 16:e0252200. [PMID: 34038483 PMCID: PMC8153452 DOI: 10.1371/journal.pone.0252200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
Streptococcus parauberis is an important bacterial fish pathogen that causes streptococcosis in a variety of fish species including the olive flounder. Despite its importance in the aquaculture industry, little is known about the survival strategy of S. parauberis in the host. Therefore, the objective of this study was to produce genome-wide transcriptome data and identify key factors for the survival of S. parauberis SPOF3K in its host. To this end, S. parauberis SPOF3K was incubated in olive flounder serum and nutrient-enriched media as a control. Although S. parauberis SPOF3K proliferated in both culture conditions, the transcriptomic patterns of the two groups were very different. Interestingly, the expression levels of genes responsible for the replication of an S. parauberis plasmid in the presence of olive flounder serum were higher than those in the absence of olive flounder serum, indicating that this plasmid may play an important role in the survival and proliferation of S. parauberis in the host. Several ATP-binding cassette transporters known to transport organic substrates (e.g., biotin and osmoprotectants) that are vital for bacterial survival in the host were significantly up-regulated in S. parauberis cultured in serum. In addition, groEL, dnaK operon, and members of the clp protease family, which are known to play important roles in response to various stressors, were up-regulated in S. parauberis incubated in serum, thus limiting damage and facilitating cellular recovery. Moreover, important virulence factors including the hyaluronic acid capsule (has operon), sortase A (srtA), C5a peptidase (scp), and peptidoglycan O-acetyltransferase (oatA) were significantly upregulated in S. paraubers in serum. These results indicate that S. paraubers can resist and evade the humoral immune responses of fish. The transcriptomic data obtained in this study provide a better understanding of the mode of action of S. parauberis in fish.
Collapse
Affiliation(s)
- Yoonhang Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Nameun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - HyeongJin Roh
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Ahran Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Hyun-Ja Han
- Pathology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Miyoung Cho
- Pathology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
11
|
Ambrose AJ, Chapman E. Function, Therapeutic Potential, and Inhibition of Hsp70 Chaperones. J Med Chem 2021; 64:7060-7082. [PMID: 34009983 DOI: 10.1021/acs.jmedchem.0c02091] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hsp70s are among the most highly conserved proteins in all of biology. Through an iterative binding and release of exposed hydrophobic residues on client proteins, Hsp70s can prevent aggregation and promote folding to the native state of their client proteins. The human proteome contains eight canonical Hsp70s. Because Hsp70s are relatively promiscuous they play a role in folding a large proportion of the proteome. Hsp70s are implicated in disease through their ability to regulate protein homeostasis. In recent years, researchers have attempted to develop selective inhibitors of Hsp70 isoforms to better understand the role of individual isoforms in biology and as potential therapeutics. Selective inhibitors have come from rational design, forced localization, and serendipity, but the development of completely selective inhibitors remains elusive. In the present review, we discuss the Hsp70 structure and function, the known Hsp70 client proteins, the role of Hsp70s in disease, and current efforts to discover Hsp70 modulators.
Collapse
Affiliation(s)
- Andrew J Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| |
Collapse
|
12
|
Castillo H, Li X, Smith GB. Deinococcus radiodurans UWO298 Dependence on Background Radiation for Optimal Growth. Front Genet 2021; 12:644292. [PMID: 34025716 PMCID: PMC8136434 DOI: 10.3389/fgene.2021.644292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Ionizing radiation is a major environmental variable for cells on Earth, and so organisms have adapted to either prevent or to repair damages caused by it, primarily from the appearance and accumulation of reactive oxygen species (ROS). In this study, we measured the differential gene expression in Deinococcus radiodurans UWO298 cultures deprived of background ionizing radiation (IR) while growing 605 m underground at the Waste Isolation Pilot Plant (WIPP), reducing the dose rate from 72.1 to 0.9 nGy h–1 from control to treatment, respectively. This reduction in IR dose rate delayed the entry into the exponential phase of the IR-shielded cultures, resulting in a lower biomass accumulation for the duration of the experiment. The RNASeq-based transcriptome analysis showed the differential expression of 0.2 and 2.7% of the D. radiodurans genome after 24 and 34 h of growth in liquid culture, respectively. Gene expression regulation after 34 h was characterized by the downregulation of genes involved in folding newly synthesized and denatured/misfolded proteins, in the assimilation of nitrogen for amino acid synthesis and in the control of copper transport and homeostasis to prevent oxidative stress. We also observed the upregulation of genes coding for proteins with transport and cell wall assembly roles. These results show that D. radiodurans is sensitive to the absence of background levels of ionizing radiation and suggest that its transcriptional response is insufficient to maintain optimal growth.
Collapse
Affiliation(s)
- Hugo Castillo
- Human Factors and Behavioral Neurobiology Department, Embry-Riddle Aeronautical University, Daytona Beach, FL, United States
| | - Xiaoping Li
- Virginia Tech Hampton Roads Agriculture Research and Extension Center, Virginia Tech, Blacksburg, VA, United States
| | - Geoffrey B Smith
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
13
|
The Chaperonin GroESL Facilitates Caulobacter crescentus Cell Division by Supporting the Functions of the Z-Ring Regulators FtsA and FzlA. mBio 2021; 12:mBio.03564-20. [PMID: 33947758 PMCID: PMC8262945 DOI: 10.1128/mbio.03564-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The highly conserved chaperonin GroESL performs a crucial role in protein folding; however, the essential cellular pathways that rely on this chaperone are underexplored. Loss of GroESL leads to severe septation defects in diverse bacteria, suggesting the folding function of GroESL may be integrated with the bacterial cell cycle at the point of cell division. Here, we describe new connections between GroESL and the bacterial cell cycle using the model organism Caulobacter crescentus. Using a proteomics approach, we identify candidate GroESL client proteins that become insoluble or are degraded specifically when GroESL folding is insufficient, revealing several essential proteins that participate in cell division and peptidoglycan biosynthesis. We demonstrate that other cell cycle events, such as DNA replication and chromosome segregation, are able to continue when GroESL folding is insufficient. We further find that deficiency of two FtsZ-interacting proteins, the bacterial actin homologue FtsA and the constriction regulator FzlA, mediate the GroESL-dependent block in cell division. Our data show that sufficient GroESL is required to maintain normal dynamics of the FtsZ scaffold and divisome functionality in C. crescentus. In addition to supporting divisome function, we show that GroESL is required to maintain the flow of peptidoglycan precursors into the growing cell wall. Linking a chaperone to cell division may be a conserved way to coordinate environmental and internal cues that signal when it is safe to divide.
Collapse
|
14
|
Chen J, Zhang A, Xiang Z, Lu M, Huang P, Gong T, Pan Y, Lin Y, Zhou X, Li Y. EpsR Negatively Regulates Streptococcus mutans Exopolysaccharide Synthesis. J Dent Res 2021; 100:968-976. [PMID: 33749354 DOI: 10.1177/00220345211000668] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Streptococcus mutans is considered the primary etiological agent of human dental caries. Glucosyltransferases (Gtfs) from S. mutans play important roles in the formation of biofilm matrix and the development of cariogenic oral biofilm. Therefore, Gtfs are considered an important target to prevent the development of dental caries. However, the role of transcription factors in regulating gtf expression is not yet clear. Here, we identify a MarR (multiple antibiotic resistance regulator) family transcription factor named EpsR (exopolysaccharide synthesis regulator), which negatively regulates gtfB expression and exopolysaccharide (EPS) production in S. mutans. The epsR in-frame deletion strain grew slowly, aggregated more easily in the presence of dextran, and displayed different colony morphology and biofilm structure. Notably, epsR deletion resulted in altered 3-dimensional biofilm architecture, increased water-insoluble EPS production, and upregulated GtfB protein content and activity. In addition, global gene expression profiling revealed differences in the expression levels of 69 genes in which gtfB was markedly upregulated. The conserved DNA motif for EpsR binding was determined by electrophoretic mobility shift assay and DNase I footprinting assays. Moreover, analysis of β-galactosidase activity suggested that EpsR acted as a repressor and inhibited gtfB expression. Taken together, our findings indicate that EpsR is an important transcription factor that regulates gtfB expression and EPS production in S. mutans. These results add new aspects to the complexity of regulating the expression of genes involved in the cariogenicity of S. mutans, which might lead to novel strategies to prevent the formation of cariogenic biofilm that may favor diseases.
Collapse
Affiliation(s)
- J Chen
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - A Zhang
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Z Xiang
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M Lu
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - P Huang
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - T Gong
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Pan
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Lin
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Zhou
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Li
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Shields RC, Kim JN, Ahn SJ, Burne RA. Peptides encoded in the Streptococcus mutans RcrRPQ operon are essential for thermotolerance. MICROBIOLOGY-SGM 2020; 166:306-317. [PMID: 31935187 DOI: 10.1099/mic.0.000887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The MarR-like transcriptional regulator and two ABC transporters encoded by the rcrRPQ operon in the dental caries pathogen Streptococcus mutans have important regulatory roles related to oxidative stress tolerance, genetic competence and (p)ppGpp metabolism. A unique feature of the rcrRPQ operon, when compared to other bacteria, is the presence of two peptides, designated Pep1 and Pep2, encoded in alternative reading frames at the 3' end of rcrQ. Here, we show that the rcrRPQ operon, including Pep1 and 2, is essential for S. mutans to survive and maintain viability at elevated temperatures. No major changes in the levels of the heat shock proteins DnaK or GroEL that could account for the thermosensitivity of rcrRPQ mutants were observed. By introducing a single amino acid substitution into the comX gene that deletes an internally encoded peptide, XrpA, we found that XrpA is a contributing factor to the thermosensitive phenotype of a ΔrcrR strain. Overexpression of XrpA on a plasmid also caused a significant growth defect at 42 °C. Interestingly, loss of the gene for the RelA/SpoT homologue (RSH) enzyme, relA, restored growth of the ΔrcrR strain at 42 °C. During heat stress and when a stringent response was induced, levels of (p)ppGpp were elevated in the ΔrcrR strain. Deletion of relA in the ΔrcrR strain lowered the basal levels of (p)ppGpp to those observed in wild-type S. mutans. Thus, (p)ppGpp pools are dysregulated in ΔrcrR, which likely leads to aberrant control of transcriptional/translational processes and the thermosensitive phenotype. In summary, the genes and peptides encoded in the rcrRPQ operon are critical for thermotolerance, and in some strains these phenotypes are related to altered (p)ppGpp metabolism and increased production of the XrpA peptide.
Collapse
Affiliation(s)
- Robert C Shields
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Jeong Nam Kim
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
16
|
Domínguez-Ramírez LL, Rodríguez-Sanoja R, Tecante A, García-Garibay M, Sainz T, Wacher C. Tolerance to acid and alkali by Streptococcus infantarius subsp. infantarius strain 25124 isolated from fermented nixtamal dough: Pozol. Studies in APT broth. Food Microbiol 2020; 90:103458. [PMID: 32336375 DOI: 10.1016/j.fm.2020.103458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 01/21/2023]
Abstract
Pozol is a beverage prepared with maize dough made after boiling the kernels in limewater. This pretreatment could act as a selective force that shapes the starter microbiota, with microorganisms able to survive the fermentation. Since Streptococcus infantarius subsp. infantarius (Sii) dominates in pozol, we evaluated the effect of acid and alkali stresses on strain Sii-25124 in commercial APT broth as a first attempt to assess its adaptation capacity. Results suggest that Sii-25124 has adaptative advantages to pH changes that possibly contribute to its persistence even after the acidification of the dough. Its cardinal pH values were 4.0 and 11.0, with an optimum between 6.6 and 8.0. It showed alkali tolerance unlike other pozol Sii strains. Adaptation at pH 4.0, 10.0 and 11.0, compared with non-adapted cells, induced acid tolerance enhancing survival at pH 3.6 (P < 0.05); a 2 min heat shock at 62 °C induced alkali tolerance response enhancing survival at pH 10.5 (P < 0.05). The up-regulation of dnaK, groEL, ptsG and atpB was observed during 5 h of exposition at pH 3.6, 4.0 and 10.0, showing similar expression rates after induction by acid shock or alkaline stress. Changes of atpB were more evident having almost five-fold induction during long-term stress.
Collapse
Affiliation(s)
- Lila Lubianka Domínguez-Ramírez
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, C.P., 04510, Mexico City, Mexico.
| | - Romina Rodríguez-Sanoja
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, C.P., 04510, Mexico City, Mexico; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, C.P., 04510, Mexico City, Mexico.
| | - Alberto Tecante
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, C.P., 04510, Mexico City, Mexico
| | - Mariano García-Garibay
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, C.P., 04510, Mexico City, Mexico; Departamento de Biotecnología/Departamento de Ciencias de La Alimentación, Universidad Autónoma Metropolitana-Iztapalapa/Lerma. Av. San Rafael Atlixco 186, Colonia Vicentina, Iztapalapa, C.P., 09340, Mexico City, Mexico.
| | - Teresita Sainz
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, C.P., 04510, Mexico City, Mexico; Departamento de Sistemas Biológicos de La División de CBS, Universidad Autónoma Metropolitana-Xochimilco. Calzada Del Hueso 1100, Colonia Villa Quietud, Coyoacán, C.P, 04969, Mexico City, Mexico.
| | - Carmen Wacher
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, C.P., 04510, Mexico City, Mexico.
| |
Collapse
|
17
|
Adaptation to Adversity: the Intermingling of Stress Tolerance and Pathogenesis in Enterococci. Microbiol Mol Biol Rev 2019; 83:83/3/e00008-19. [PMID: 31315902 DOI: 10.1128/mmbr.00008-19] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Enterococcus is a diverse and rugged genus colonizing the gastrointestinal tract of humans and numerous hosts across the animal kingdom. Enterococci are also a leading cause of multidrug-resistant hospital-acquired infections. In each of these settings, enterococci must contend with changing biophysical landscapes and innate immune responses in order to successfully colonize and transit between hosts. Therefore, it appears that the intrinsic durability that evolved to make enterococci optimally competitive in the host gastrointestinal tract also ideally positioned them to persist in hospitals, despite disinfection protocols, and acquire new antibiotic resistances from other microbes. Here, we discuss the molecular mechanisms and regulation employed by enterococci to tolerate diverse stressors and highlight the role of stress tolerance in the biology of this medically relevant genus.
Collapse
|
18
|
Tomoyasu T, Tsuruno K, Tanatsugu R, Miyazaki A, Kondo H, Tabata A, Whiley RA, Sonomoto K, Nagamune H. Recognizability of heterologous co-chaperones with Streptococcus intermedius DnaK and Escherichia coli DnaK. Microbiol Immunol 2018; 62:681-693. [PMID: 30239035 DOI: 10.1111/1348-0421.12651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 11/27/2022]
Abstract
Streptococcus intermedius DnaK complements the temperature-sensitive phenotype of an Escherichia coli dnaK null mutant only when co-chaperones DnaJ and GrpE are co-expressed. Therefore, whether S. intermedius DnaK and E. coli DnaK can recognize heterologous co-chaperones in vitro was examined. Addition of heterologous GrpE to DnaK and DnaJ partially stimulated adenosine triphosphatase (ATPase) activity, and almost completely stimulated luciferase refolding activity. Addition of heterologous DnaJ to GrpE and DnaK also stimulated ATPase activity; however, significant luciferase refolding activity was not observed. Moreover, E. coli DnaJ had a negative effect on the luciferase refolding activity of the S. intermedius DnaK chaperone system. In E. coli chaperone mutants, with the exception of E. coli DnaJ, stronger expression of the heterologous co-chaperones partially or almost completely complemented the temperature-sensitive-phenotype. These results indicate that all heterologous co-chaperones can at least partially recognize DnaK of a distantly related species. A region of the ATPase domain that is present in the DnaK of gram-negative bacteria is absent from the DnaK of gram-positive bacteria. This region is believed to be important for recognition of co-chaperones from gram-negative bacteria. However, insertion of this segment into S. intermedius DnaK failed to increase its ability to recognize E. coli co-chaperones, implying that this region is unnecessary or insufficient for the recognition of E. coli co-chaperones. Thus, our data suggest that a basic structural similarity is conserved among the components of the S. intermedius and E. coli DnaK chaperone systems, allowing weak associations between heterologous components.
Collapse
Affiliation(s)
- Toshifumi Tomoyasu
- Field of Biomolecular Functions and Technology, Department of Bioscience and Bioindustry, Graduate School of Bioscience and Bioindustry, Tokushima University Graduate School, Minami-josanjima-cho, Tokushima 770-8513, Japan
| | - Keigo Tsuruno
- Faculty of Agriculture, Department of Bioscience and Biotechnology, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Ryosuke Tanatsugu
- Department of Biological Science and Technology, Institute of Technology and Science, Tokushima University Graduate School, Minami-josanjima-cho, Tokushima 770-8506, Japan
| | - Aya Miyazaki
- Faculty of Agriculture, Department of Bioscience and Biotechnology, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hiroyuki Kondo
- Department of Biological Science and Technology, Institute of Technology and Science, Tokushima University Graduate School, Minami-josanjima-cho, Tokushima 770-8506, Japan
| | - Atsushi Tabata
- Field of Biomolecular Functions and Technology, Department of Bioscience and Bioindustry, Graduate School of Bioscience and Bioindustry, Tokushima University Graduate School, Minami-josanjima-cho, Tokushima 770-8513, Japan
| | - Robert A Whiley
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Kenji Sonomoto
- Faculty of Agriculture, Department of Bioscience and Biotechnology, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hideaki Nagamune
- Field of Biomolecular Functions and Technology, Department of Bioscience and Bioindustry, Graduate School of Bioscience and Bioindustry, Tokushima University Graduate School, Minami-josanjima-cho, Tokushima 770-8513, Japan
| |
Collapse
|
19
|
De A, Jorgensen AN, Beatty WL, Lemos J, Wen ZT. Deficiency of MecA in Streptococcus mutans Causes Major Defects in Cell Envelope Biogenesis, Cell Division, and Biofilm Formation. Front Microbiol 2018; 9:2130. [PMID: 30254619 PMCID: PMC6141683 DOI: 10.3389/fmicb.2018.02130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022] Open
Abstract
MecA is an adaptor protein that guides the ClpC/P-mediated proteolysis. A S. mutans MecA-deficient mutant was constructed by double-crossover allelic exchange and analyzed for the effects of such a deficiency on cell biology and biofilm formation. Unlike the wild-type, UA159, the mecA mutant, TW416, formed mucoid and smooth colonies, severely clumped in broth and had a reduced growth rate. Transmission electron microscopy analysis revealed that TW416 grows primarily in chains of giant “swollen” cells with multiple asymmetric septa, unlike the coccoid form of UA159. As compared to UA159, biofilm formation by TW416 was significantly reduced regardless of the carbohydrate sources used for growth (P < 0.001). Western blot analysis of TW416 whole cell lysates showed a reduced expression of the glucosyltransferase GtfC and GtfB, as well as the P1 and WapA adhesins providing an explanation for the defective biofilm formation of TW416. When analyzed by a colorimetric assay, the cell wall phosphate of the mutant murein sacculi was almost 20-fold lower than the parent strain (P < 0.001). Interestingly, however, when analyzed using immunoblotting of the murein sacculi preps with UA159 whole cell antiserum as a probe, TW416 was shown to possess significantly higher signal intensity as compared to the wild-type. There is also evidence that MecA in S. mutans is more than an adaptor protein, although how it modulates the bacterial pathophysiology, including cell envelope biogenesis, cell division, and biofilm formation awaits further investigation.
Collapse
Affiliation(s)
- Arpan De
- Department of Comprehensive Dentistry and Biomaterials, University of Florida, Gainesville, FL, United States
| | - Ashton N Jorgensen
- Department of Comprehensive Dentistry and Biomaterials, University of Florida, Gainesville, FL, United States
| | - Wandy L Beatty
- Center of Oral and Craniofacial Biology, University of Florida, Gainesville, FL, United States
| | - Jose Lemos
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Zezhang T Wen
- Department of Comprehensive Dentistry and Biomaterials, University of Florida, Gainesville, FL, United States.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, United States.,Department of Oral Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
20
|
Biomarker panels for characterizing microbial community biofilm formation as composite molecular process. PLoS One 2018; 13:e0202032. [PMID: 30092027 PMCID: PMC6085001 DOI: 10.1371/journal.pone.0202032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/26/2018] [Indexed: 01/08/2023] Open
Abstract
Microbial consortia execute collaborative molecular processes with contributions from individual species, on such basis enabling optimized molecular function. Such collaboration and synergies benefit metabolic flux specifically in extreme environmental conditions as seen in acid mine drainage, with biofilms as relevant microenvironment. However, knowledge about community species composition is not sufficient for deducing presence and efficiency of composite molecular function. For this task molecular resolution of the consortium interactome is to be retrieved, with molecular biomarkers particularly suited for characterizing composite molecular processes involved in biofilm formation and maintenance. A microbial species set identified in 18 copper environmental sites provides a data matrix for deriving a cross-species molecular process model of biofilm formation composed of 191 protein coding genes contributed from 25 microbial species. Computing degree and stress centrality of biofilm molecular process nodes allows selection of network hubs and central connectors, with the top ranking molecular features proposed as biomarker candidates for characterizing biofilm homeostasis. Functional classes represented in the biomarker panel include quorum sensing, chemotaxis, motility and extracellular polysaccharide biosynthesis, complemented by chaperones. Abundance of biomarker candidates identified in experimental data sets monitoring different biofilm conditions provides evidence for the selected biomarkers as sensitive and specific molecular process proxies for capturing biofilm microenvironments. Topological criteria of process networks covering an aggregate function of interest support the selection of biomarker candidates independent of specific community species composition. Such panels promise efficient screening of environmental samples for presence of microbial community composite molecular function.
Collapse
|
21
|
Zhang M, Zheng Y, Li Y, Jiang H, Huang Y, Du M. Acid-resistant genes of oral plaque microbiome from the functional metagenomics. J Oral Microbiol 2018; 10:1424455. [PMID: 29503702 PMCID: PMC5795652 DOI: 10.1080/20002297.2018.1424455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/03/2018] [Indexed: 02/05/2023] Open
Abstract
Acid resistance is one of key properties assisting the survival of cariogenic bacteria in a dental caries environment, but only a few genes conferring acid resistance have been identified to data. Functional metagenomics provides a systematic method for investigating commensal DNA to identify genes that encode target functions. Here, the host strain Escherichia coli DH10B and a constructed bidirectional transcription vector pSKII+-lacZ contributed to the construction of a metagenomic library, and 46.6 Mb of metagenomic DNA was cloned from carious supragingival plaque of 8children along with screening for lethal functionality. The screen identified 2 positive clones that exhibited a similar aciduric phenotype to that of the positive controls. Bioinformatic analysis revealed that these two genes encoded an ATP/GTP-binding protein and a malate dehydrogenase. Moreover, we also performed functional screening of Streptococcus mutans, since it is one of the predominant cariogenic strains but was not identified in our initial screening. Five positive clones were retrieved. In conclusion, our improved functional metagenomics screening method helped in the identification of important acid resistance genes, thereby providing new insights into the mechanism underlying caries formation as well as in the prevention and treatment of early childhood caries (ECC).
Collapse
Affiliation(s)
- Meng Zhang
- MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuqiao Zheng
- MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuhong Li
- MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Han Jiang
- MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuping Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Minquan Du
- MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Xu X, Jiao L, Feng X, Ran J, Liang X, Zhao R. Heterogeneous expression of DnaK gene from Alicyclobacillus acidoterrestris improves the resistance of Escherichia coli against heat and acid stress. AMB Express 2017; 7:36. [PMID: 28194744 PMCID: PMC5307391 DOI: 10.1186/s13568-017-0337-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/02/2017] [Indexed: 11/10/2022] Open
Abstract
Alicyclobacillus acidoterrestris, an acidophilic and thermophilic bacteria, is an important microbial resource for stress resistance genes screening. In this study, DnaK gene from A. acidoterrestris was subcloned to construct the recombinant plasmid pET28a-DnaK. The successful construction of the plasmid was verified by double-enzyme digestion and sequencing analysis. The recombinant plasmid was transformed into Escherichia coli BL21 and isopropy-β-D-thiogalactoside (IPTG) was used to induce recombinant E. coli to express DnaK gene. A 70 kD fusion protein was identified by SDS-PAGE, which suggested that DnaK gene from A. acidoterrestris was successfully expressed. The recombinant and wild BL21 were treated with high temperatures of 54, 56 and 58 °C at pH values of 5.0-7.0 to compare the effects of heterogeneous expression of the DnaK gene from A. acidoterrestris on the stress resistance. The experimental results showed that survival rate of recombinant BL21-DnaK has been improved considerably under heat and acid stresses in contrast with the wild BL21, and D-values of recombinant BL21 were 14.7-72% higher than that of wild BL21, which demonstrated that heterogeneous expression of DnaK gene from A. acidoterrestris could significantly enhance the resistance of host bacteria E. coli against heat and acid stresses.
Collapse
Affiliation(s)
- Xixi Xu
- School of Food Science, Henan Institute of Science and Technology, Hualan Road, Xinxiang City, 453003 Henan Province China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Hualan Road, Xinxiang City, 453003 Henan Province China
| | - Xin Feng
- School of Food Science, Henan Institute of Science and Technology, Hualan Road, Xinxiang City, 453003 Henan Province China
| | - Junjian Ran
- School of Food Science, Henan Institute of Science and Technology, Hualan Road, Xinxiang City, 453003 Henan Province China
| | - Xinhong Liang
- School of Food Science, Henan Institute of Science and Technology, Hualan Road, Xinxiang City, 453003 Henan Province China
| | - Ruixiang Zhao
- School of Food Science, Henan Institute of Science and Technology, Hualan Road, Xinxiang City, 453003 Henan Province China
| |
Collapse
|
23
|
Kajfasz JK, Ganguly T, Hardin EL, Abranches J, Lemos JA. Transcriptome responses of Streptococcus mutans to peroxide stress: identification of novel antioxidant pathways regulated by Spx. Sci Rep 2017; 7:16018. [PMID: 29167560 PMCID: PMC5700188 DOI: 10.1038/s41598-017-16367-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/02/2017] [Indexed: 01/12/2023] Open
Abstract
The oxidative stress regulator Spx is ubiquitously found among Gram-positive bacteria. Previously, we reported identification of two Spx proteins in Streptococcus mutans - SpxA1 was the primary activator of oxidative stress genes whereas SpxA2 served a backup role. Here, we used RNA sequencing to uncover the scope of the H2O2 (peroxide)-stress regulon and to further explore the significance of Spx regulation in S. mutans. The transcriptome data confirmed the relationship between Spx and genes typically associated with oxidative stress, but also identified novel genes and metabolic pathways controlled by Spx during peroxide stress. While individual inactivation of newly identified peroxide stress genes had modest or no obvious consequences to bacterial survival, a phenotype enhancement screen using the ∆spxA1 strain as background for creation of double mutants revealed that four of the five genes inactivated were required for stress survival. Physiological and biochemical assays validated, at least in part, the transcriptome data indicating that SpxA1 coordinates transcriptional changes during peroxide stress that modify global metabolism and facilitate production of antioxidants. Collectively, our findings unraveled the scope of the peroxide stress regulon and expand the repertoire of oxidative stress genes in S. mutans, shedding new light on the role of Spx regulation.
Collapse
Affiliation(s)
- Jessica K Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32608, USA
| | - Tridib Ganguly
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32608, USA
| | - Emily L Hardin
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32608, USA
| | - Jacqueline Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32608, USA
| | - José A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32608, USA.
| |
Collapse
|
24
|
Yang G, Jia D, Jin L, Jiang Y, Wang Y, Jiang W, Gu Y. Rapid Generation of Universal Synthetic Promoters for Controlled Gene Expression in Both Gas-Fermenting and Saccharolytic Clostridium Species. ACS Synth Biol 2017; 6:1672-1678. [PMID: 28602076 DOI: 10.1021/acssynbio.7b00155] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Engineering solventogenic clostridia, a group of important industrial microorganisms, to realize their full potential in biorefinery application is still hindered by the absence of plentiful biological parts. Here, we developed an effective approach for rapid generation of a synthetic promoter library in solventogenic clostridia based on a dual-reporter system (catP-lacZ) and a widely used strong thl promoter. The yielded artificial promoters, spanning 2 orders of magnitude, comprised two modular components (the core promoter region and the spacer between RBS and the translation-initiating code), and the strongest promoter had an over 10-fold-higher activity than the original expression part Pthl. The test of these synthetic promoters in controlled expression of sadh and danK in saccharolytic C. acetobutylicum and gas-fermenting C. ljungdahlii, respectively, gave the expected phenotypes, and moreover, showed good correlation between promoter activities and phenotypic changes. The presented wide-strength-range promoters here will be useful for synthetic biology application in solventogenic clostridia.
Collapse
Affiliation(s)
- Gaohua Yang
- Key
Laboratory of Synthetic Biology, Institute of Plant Physiology and
Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dechen Jia
- Key
Laboratory of Synthetic Biology, Institute of Plant Physiology and
Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lin Jin
- Key
Laboratory of Synthetic Biology, Institute of Plant Physiology and
Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuqian Jiang
- Department
of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, California 95817, United States
| | - Yong Wang
- Key
Laboratory of Synthetic Biology, Institute of Plant Physiology and
Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Weihong Jiang
- Key
Laboratory of Synthetic Biology, Institute of Plant Physiology and
Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Jiangsu
National Synergetic Innovation Center for Advanced Materials, SICAM, 200 North Zhongshan Road, Nanjing 210009, China
| | - Yang Gu
- Key
Laboratory of Synthetic Biology, Institute of Plant Physiology and
Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
25
|
Exploring the Genomic Diversity and Cariogenic Differences of Streptococcus mutans Strains Through Pan-Genome and Comparative Genome Analysis. Curr Microbiol 2017; 74:1200-1209. [PMID: 28717847 DOI: 10.1007/s00284-017-1305-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
Abstract
Pan-genome refers to the sum of genes that can be found in a given bacterial species, including the core-genome and the dispensable genome. In this study, the genomes from 183 Streptococcus mutans (S. mutans) isolates were analyzed from the pan-genome perspective. This analysis revealed that S. mutans has an "open" pan-genome, implying that there are plenty of new genes to be found as more genomes are sequenced. Additionally, S. mutans has a limited core-genome, which is composed of genes related to vital activities within the bacterium, such as metabolism and hereditary information storage or processing, occupying 35.6 and 26.6% of the core genes, respectively. We estimate the theoretical core-genome size to be about 1083 genes, which are fewer than other Streptococcus species. In addition, core genes suffer larger selection pressures in comparison to those that are less widely distributed. Not surprisingly, the distribution of putative virulence genes in S. mutans strains does not correlate with caries status, indicating that other factors are also responsible for cariogenesis. These results contribute to a more understanding of the evolutionary characteristics and dynamic changes within the genome components of the species. This also helps to form a new theoretical foundation for preventing dental caries. Furthermore, this study sets an example for analyzing large genomic datasets of pathogens from the pan-genome perspective.
Collapse
|
26
|
Effects of Arginine on Streptococcus mutans Growth, Virulence Gene Expression, and Stress Tolerance. Appl Environ Microbiol 2017; 83:AEM.00496-17. [PMID: 28526785 DOI: 10.1128/aem.00496-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/11/2017] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is a common constituent of oral biofilms and a primary etiologic agent of human dental caries. The bacteria associated with dental caries have potent abilities to produce organic acids from dietary carbohydrates and to grow and metabolize in acidic conditions. By contrast, many commensal bacteria produce ammonia through the arginine deiminase system (ADS), which moderates the pH of oral biofilms. Arginine metabolism by the ADS is a significant deterrent to the initiation and progression of dental caries. In this study, we observed how exogenously provided l-arginine affects the growth, the virulence properties, and the tolerance of environmental stresses of S. mutans Supplementation with 1.5% arginine (final concentration) had an inhibitory effect on the growth of S. mutans in complex and chemically defined media, particularly when cells were exposed to acid or oxidative stress. The genes encoding virulence factors required for attachment/accumulation (gtfB and spaP), bacteriocins (nlmA, nlmB, nlmD, and cipB), and the sigma factor required for competence development (comX) were downregulated during growth with 1.5% arginine. Deep sequencing of RNA (RNA-Seq) comparing the transcriptomes of S. mutans growing in chemically defined media with and without 1.5% arginine revealed differential expression of genes encoding ATP-binding cassette transporters, metal transporters, and constituents required for survival, metabolism, and biofilm formation. Therefore, the mechanisms of action by which arginine inhibits dental caries include direct adverse effects on multiple virulence-related properties of the most common human dental caries pathogen.IMPORTANCE Metabolism of the amino acid arginine by the arginine deiminase system (ADS) of certain oral bacteria raises the pH of dental plaque and provides a selective advantage to health-associated bacteria, thereby protecting the host from dental caries (cavities). Here, we examine the effects of arginine on the cavity-causing bacterium Streptococcus mutans We find that arginine negatively impacts the growth, the pathogenic potential, and the tolerance of environmental stresses in a way that is likely to compromise the ability of S. mutans to cause disease. Using genetic and genomic techniques, multiple mechanisms by which arginine exerts its influence on virulence-related properties of S. mutans are discovered. This report demonstrates that a primary mechanism of action by which arginine inhibits the initiation and progression of dental caries may be by reducing the pathogenic potential of S. mutans.
Collapse
|
27
|
Liu J, Guo L, Liu J, Zhang J, Zeng H, Ning Y, Wei X. Identification of an Efflux Transporter LmrB Regulating Stress Response and Extracellular Polysaccharide Synthesis in Streptococcus mutans. Front Microbiol 2017. [PMID: 28642736 PMCID: PMC5463993 DOI: 10.3389/fmicb.2017.00962] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Efflux transporters have been implicated in regulating bacterial virulence properties such as resistance to antibiotics, biofilm formation and colonization. The pathogenicity of Streptococcus mutans, the primary etiologic agent of human dental caries, relies on the bacterium's ability to form biofilms on tooth surface. However, the studies on efflux transporters in S. mutans are scare and the function of these transporters remained to be clarified. In this study, we identified an efflux transporter (LmrB) in S. mutans through cloning the lmrB gene into Escherichia coli. Introducing lmrB into E. coli conferred a multidrug-resistant phenotype and resulted in higher EtBr efflux activity which could be suppressed by efflux inhibitor. To explore whether LmrB was involved in S. mutans virulence properties regulation, we constructed the lmrB inactivation mutant and examined the phenotypes of the mutant. It was found that LmrB deficiency resulted in increased IPS storage and prolonged acid production. Enhanced biofilm formation characterized by increased extracellular polysaccharides (EPS) production and elevated resistance to hydrogen peroxide and antimicrobials were also observed in lmrB mutant. To gain a better understanding of the global role of LmrB, a transcriptome analysis was performed using lmrB mutant strain. The expression of 107 genes was up- or down-regulated in the lmrB mutant compared with the wild type. Notably, expression of genes in several genomic islands was differentially modulated, such as stress-related GroELS and scnRK, sugar metabolism associated glg operons and msmREFGK transporter. The results presented here indicate that LmrB plays a vital global role in the regulation of several important virulence properties in S. mutans.
Collapse
Affiliation(s)
- Jia Liu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Lihong Guo
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Jianwei Liu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Jianying Zhang
- Department of Operative Dentistry and Endodontics, Xiangya Stomatological Hospital, Central South UniversityChangsha, China
| | - Huihui Zeng
- Applied Oral Sciences, Faculty of Dentistry, University of Hong KongHong Kong, Hong Kong
| | - Yang Ning
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Xi Wei
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| |
Collapse
|
28
|
Ser/Thr protein kinase PrkC-mediated regulation of GroEL is critical for biofilm formation in Bacillus anthracis. NPJ Biofilms Microbiomes 2017. [PMID: 28649408 PMCID: PMC5460178 DOI: 10.1038/s41522-017-0015-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PrkC is a conserved Ser/Thr protein kinase encoded in Bacillus anthracis genome. PrkC is shown to be important for B. anthracis pathogenesis, but little is known about its other functions and phosphorylated substrates. Systemic analyses indicate the compelling role of PrkC in phosphorylating multiple substrates, including the essential chaperone GroEL. Through mass spectrometry, we identified that PrkC phosphorylates GroEL on six threonine residues that are distributed in three canonical regions. Phosphorylation facilitates the oligomerization of GroEL to the physiologically active tetradecameric state and increases its affinity toward the co-chaperone GroES. Deletion of prkC in B. anthracis abrogates its ability to form biofilm. Overexpression of native GroEL recovers the biofilm-forming ability of prkC deletion strain. Similar overexpression of GroEL phosphorylation site mutants (Thr to Ala) does not augment biofilm formation. Further analyses indicate the phosphorylation of GroEL in diverse bacterial species. Thus, our results suggest that PrkC regulates biofilm formation by modulating the GroEL activity in a phosphorylation-dependent manner. The study deciphers the molecular signaling events that are important for biofilm formation in B. anthracis. An enzyme that adds phosphate groups to other proteins, PrkC, mediates molecular signaling events that allow anthrax bacteria to form biofilms. Bacillus anthracis is widely used as a model to explore the formation of biofilms that allows many bacterial infections to resist immune defenses. An international research team led by Yogendra Singh and Andaleeb Sajid at the CSIR-Institute of Genomics and Integrative Biology in Delhi, India, studied the bacterial protein kinase PrkC. The researchers found that PrkC phosphorylates a “chaperone” protein that assist the assembly and disassembly of other protein-based structures. This signaling protein and the chaperone help in biofilm formation. Establishing this link in the signaling chain leading to biofilms will guide future research to combat the role of biofilms in disease.
Collapse
|
29
|
Zeng H, Liu J, Ling J. Efflux inhibitor suppresses Streptococcus mutans virulence properties. FEMS Microbiol Lett 2017; 364:2975576. [DOI: 10.1093/femsle/fnx033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/07/2017] [Indexed: 01/26/2023] Open
Affiliation(s)
- Huihui Zeng
- Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Applied Oral Sciences, Faculty of Dentistry, University of HongKong, HongKong
| | - Jia Liu
- Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Junqi Ling
- Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
30
|
Sadeghinejad L, Cvitkovitch DG, Siqueira WL, Merritt J, Santerre JP, Finer Y. Mechanistic, genomic and proteomic study on the effects of BisGMA-derived biodegradation product on cariogenic bacteria. Dent Mater 2016; 33:175-190. [PMID: 27919444 DOI: 10.1016/j.dental.2016.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Investigate the effects of a Bis-phenyl-glycidyl-dimethacrylate (BisGMA) biodegradation product, bishydroxypropoxyphenyl-propane (BisHPPP), on gene expression and protein synthesis of cariogenic bacteria. METHODS Quantitative real-time polymerase chain reaction was used to investigate the effects of BisHPPP on the expression of specific virulence-associated genes, i.e. gtfB, gtfC, gbpB, comC, comD, comE and atpH in Streptococcus mutans UA159. Possible mechanisms for bacterial response to BisHPPP were explored using gene knock-out and associated complemented strains of the signal peptide encoding gene, comC. The effects of BisHPPP on global gene and protein expression was analyzed using microarray and quantitative proteomics. The role of BisHPPP in glucosyltransferase (GTF) enzyme activity of S. mutans biofilms was also measured. RESULTS BisHPPP (0.01, 0.1mM) up-regulated gtfB/C, gbpB, comCDE, and atpH most pronounced in biofilms at cariogenic pH (5.5). The effects of BisHPPP on the constructed knock-out and complemented strains of comC from quorum-sensing system, implicated this signaling pathway in up-regulation of the virulence-associated genes. Microarray and proteomics identified BisHPPP-regulated genes and proteins involved in biofilm formation, carbohydrate transport, acid tolerance and stress-response. GTF activity was higher in BisHPPP-exposed biofilms when compared to no-BisHPPP conditions. SIGNIFICANCE These findings provide insight into the genetic and physiological pathways and mechanisms that help explain S. mutans adaptation to restorative conditions that are conducive to increased secondary caries around resin composite restorations and may provide guidance to clinicians' decision on the selection of dental materials when considering the long term oral health of patients and the interactions of composite resins with oral bacteria.
Collapse
Affiliation(s)
- Lida Sadeghinejad
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dennis G Cvitkovitch
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Walter L Siqueira
- Schulich Dentistry and Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - J Paul Santerre
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yoav Finer
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Vinod Kumar K, Lall C, Vimal Raj R, Vedhagiri K, Kartick C, Surya P, Natarajaseenivasan K, Vijayachari P. Overexpression of heat shock GroEL stress protein in leptospiral biofilm. Microb Pathog 2016; 102:8-11. [PMID: 27865827 DOI: 10.1016/j.micpath.2016.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/24/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022]
Abstract
Leptospira is the causative agent of leptospirosis, which is an emerging zoonotic disease. Recent studies on Leptospira have demonstrated biofilm formation on abiotic surfaces. The protein expressed in the biofilm was investigated by using SDS-PAGE and immunoblotting in combination with MALDI-TOF mass spectrometry. The proteins expressed in Leptospira biofilm and planktonic cells was analyzed and compared. Among these proteins, one (60 kDa) was found to overexpress in biofilm as compared to the planktonic cells. MALDI-TOF analysis identified this protein as stress and heat shock chaperone GroEL. Our findings demonstrate that GroEL is associated with Leptospira biofilm. GroEL is conserved, highly immunogenic and a prominent stress response protein in pathogenic Leptospira spp., which may have clinical relevance.
Collapse
Affiliation(s)
- K Vinod Kumar
- Regional Medical Research Centre (ICMR), WHO Collaborating Centre for Diagnosis, Reference, Research and Training in Leptospirosis, Port Blair 744101, Andaman and Nicobar Islands, India
| | - Chandan Lall
- Regional Medical Research Centre (ICMR), WHO Collaborating Centre for Diagnosis, Reference, Research and Training in Leptospirosis, Port Blair 744101, Andaman and Nicobar Islands, India
| | - R Vimal Raj
- Regional Medical Research Centre (ICMR), WHO Collaborating Centre for Diagnosis, Reference, Research and Training in Leptospirosis, Port Blair 744101, Andaman and Nicobar Islands, India
| | - K Vedhagiri
- National Hub for Healthcare Instrumentation Development (NHHID), Centre for Biotechnology, Anna University, Chennai 600 025, India
| | - C Kartick
- Regional Medical Research Centre (ICMR), WHO Collaborating Centre for Diagnosis, Reference, Research and Training in Leptospirosis, Port Blair 744101, Andaman and Nicobar Islands, India
| | - P Surya
- Regional Medical Research Centre (ICMR), WHO Collaborating Centre for Diagnosis, Reference, Research and Training in Leptospirosis, Port Blair 744101, Andaman and Nicobar Islands, India
| | - K Natarajaseenivasan
- Bharathidasan University, Department of Microbiology, School of Life Sciences, Tiruchirappalli 620 024, India
| | - P Vijayachari
- Regional Medical Research Centre (ICMR), WHO Collaborating Centre for Diagnosis, Reference, Research and Training in Leptospirosis, Port Blair 744101, Andaman and Nicobar Islands, India.
| |
Collapse
|
32
|
Sadeghinejad L, Cvitkovitch DG, Siqueira WL, Santerre JP, Finer Y. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans. PLoS One 2016; 11:e0165760. [PMID: 27820867 PMCID: PMC5098727 DOI: 10.1371/journal.pone.0165760] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/17/2016] [Indexed: 01/30/2023] Open
Abstract
Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG’s effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the selected genes. These findings demonstrate a mechanistic pathway by which TEG derived from commercial resin materials in the oral cavity promote S. mutans pathogenicity, which is typically associated with secondary caries.
Collapse
Affiliation(s)
- Lida Sadeghinejad
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dennis G. Cvitkovitch
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Walter L. Siqueira
- Schulich Dentistry and Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - J. Paul Santerre
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yoav Finer
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
33
|
Analysis of Small RNAs in Streptococcus mutans under Acid Stress-A New Insight for Caries Research. Int J Mol Sci 2016; 17:ijms17091529. [PMID: 27649155 PMCID: PMC5037804 DOI: 10.3390/ijms17091529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 11/23/2022] Open
Abstract
Streptococcus mutans (S. mutans) is the major clinical pathogen responsible for dental caries. Its acid tolerance has been identified as a significant virulence factor for its survival and cariogenicity in acidic conditions. Small RNAs (sRNAs) are recognized as key regulators of virulence and stress adaptation. Here, we constructed three libraries of sRNAs with small size exposed to acidic conditions for the first time, followed by verification using qRT-PCR. The levels of two sRNAs and target genes predicted to be bioinformatically related to acid tolerance were further evaluated under different acid stress conditions (pH 7.5, 6.5, 5.5, and 4.5) at three time points (0.5, 1, and 2 h). Meanwhile, bacterial growth characteristics and vitality were assessed. We obtained 1879 sRNAs with read counts of at least 100. One hundred and ten sRNAs were perfectly mapped to reported msRNAs in S. mutans. Ten out of 18 sRNAs were validated by qRT-PCR. The survival of bacteria declined as the acid was increased from pH 7.5 to 4.5 at each time point. The bacteria can proliferate under each pH except pH 4.5 with time. The levels of sRNAs gradually decreased from pH 7.5 to 5.5, and slightly increased in pH 4.5; however, the expression levels of target mRNAs were up-regulated in acidic conditions than in pH 7.5. These results indicate that some sRNAs are specially induced at acid stress conditions, involving acid adaptation, and provide a new insight into exploring the complex acid tolerance for S. mutans.
Collapse
|
34
|
Proper Control of Caulobacter crescentus Cell Surface Adhesion Requires the General Protein Chaperone DnaK. J Bacteriol 2016; 198:2631-42. [PMID: 27044628 DOI: 10.1128/jb.00027-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/30/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Growth in a surface-attached bacterial community, or biofilm, confers a number of advantages. However, as a biofilm matures, high-density growth imposes stresses on individual cells, and it can become less advantageous for progeny to remain in the community. Thus, bacteria employ a variety of mechanisms to control attachment to and dispersal from surfaces in response to the state of the environment. The freshwater oligotroph Caulobacter crescentus can elaborate a polysaccharide-rich polar organelle, known as the holdfast, which enables permanent surface attachment. Holdfast development is strongly inhibited by the small protein HfiA; mechanisms that control HfiA levels in the cell are not well understood. We have discovered a connection between the essential general protein chaperone, DnaK, and control of C. crescentus holdfast development. C. crescentus mutants partially or completely lacking the C-terminal substrate binding "lid" domain of DnaK exhibit enhanced bulk surface attachment. Partial or complete truncation of the DnaK lid domain increases the probability that any single cell will develop a holdfast by 3- to 10-fold. These results are consistent with the observation that steady-state levels of an HfiA fusion protein are significantly diminished in strains that lack the entire lid domain of DnaK. While dispensable for growth, the lid domain of C. crescentus DnaK is required for proper chaperone function, as evidenced by observed dysregulation of HfiA and holdfast development in strains expressing lidless DnaK mutants. We conclude that DnaK is an important molecular determinant of HfiA stability and surface adhesion control. IMPORTANCE Regulatory control of cell adhesion ensures that bacterial cells can transition between free-living and surface-attached states. We define a role for the essential protein chaperone, DnaK, in the control of Caulobacter crescentus cell adhesion. C. crescentus surface adhesion is mediated by an envelope-attached organelle known as the holdfast. Holdfast development is tightly controlled by HfiA, a small protein inhibitor that directly interacts with a WecG/TagA-family glycosyltransferase required for holdfast biosynthesis. We demonstrate that the C-terminal lid domain of DnaK is not essential for growth but is necessary for proper control of HfiA levels in the cell and for control of holdfast adhesin development.
Collapse
|
35
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
36
|
He Z, Huang Z, Zhou W, Tang Z, Ma R, Liang J. Anti-biofilm Activities from Resveratrol against Fusobacterium nucleatum. Front Microbiol 2016; 7:1065. [PMID: 27458454 PMCID: PMC4932316 DOI: 10.3389/fmicb.2016.01065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/24/2016] [Indexed: 11/24/2022] Open
Abstract
Fusobacterium nucleatum is a Gram-negative, anaerobic bacterium that plays an important role in dental plaque biofilm formation. In this study, we evaluate the effect of resveratrol, a phytoalexin compound, on F. nucleatum biofilm formation. The effects of different concentrations of resveratrol on biofilms formed on 96-well microtiter plates at different time points were determined by the MTT assay. The structures and thicknesses of the biofilm were observed by confocal laser scanning microscopy (CLSM), and gene expression was investigated by real-time PCR. The results showed that resveratrol at sub-MIC levels can significantly decrease biofilm formation, whereas it does not affect the bacterial growth rate. It was observed by CLSM images that the biofilm was visually decreased with increasing concentrations of resveratrol. Gene expression was down regulated in the biofilm in the presence of resveratrol. Our results revealed that resveratrol can effectively inhibit biofilm formation.
Collapse
Affiliation(s)
- Zhiyan He
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Wei Zhou
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Rui Ma
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Jingping Liang
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| |
Collapse
|
37
|
Fan D, Liu C, Liu L, Zhu L, Peng F, Zhou Q. Large-scale gene expression profiling reveals physiological response to deletion of chaperone dnaKJ in Escherichia coli. Microbiol Res 2016; 186-187:27-36. [PMID: 27242140 DOI: 10.1016/j.micres.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 11/18/2022]
Abstract
Chaperone DnaK and its co-chaperone DnaJ plays various essential roles such as in assisting in the folding of nascent peptides, preventing protein aggregation and maintaining cellular protein homeostasis. Global transcriptional changes in vivo associated with deletion of dnaKJ were monitored using DNA microarray to elucidate the role of DnaKJ at the transcriptional level. Microarray profiling and bioinformatics analysis revealed that a few chaperone and protease genes, stress-related genes and genes involved in the tricarboxylic acid cycle and oxidative phosphorylation were up-regulated, whereas various transporter genes, pentose phosphate pathway and transcriptional regulation related genes were down-regulated. This study is the first to systematically analyze the alterations at the transcriptional level in vivo in deletion of dnaKJ. Fatty acid methyl esters analysis indicated that the amount of unsaturated fatty acid sharply increased and subcellular location prediction analysis showed a marked decrease in transcription of inner-membrane protein genes, which might have triggered the development of aberrant cell shape and susceptibility for some antibiotics in the ΔdnaKJ strain.
Collapse
Affiliation(s)
- Dongjie Fan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin 150080, China.
| | - Lushan Liu
- Department of Emergency, Beijing Bo'ai Hospital, 10 Jiaomen North Road, Fengtai District, Beijing, 100068, China; China Rehabilitation Research Center, Capital Medical University, Beijing 100068, China
| | - Lingxiang Zhu
- National Research Institute for Family Planning (NRIFP), Beijing 100081, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan430072, China; Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan 430072, China
| | - Qiming Zhou
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin 150080, China.
| |
Collapse
|
38
|
Nguyen CT, Park SS, Rhee DK. Stress responses in Streptococcus species and their effects on the host. J Microbiol 2015; 53:741-9. [PMID: 26502957 DOI: 10.1007/s12275-015-5432-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
Streptococci cause a variety of diseases, such as dental caries, pharyngitis, meningitis, pneumonia, bacteremia, endocarditis, erysipelas, and necrotizing fasciitis. The natural niche of this genus of bacteria ranges from the mouth and nasopharynx to the skin, indicating that the bacteria will inevitably be subjected to environmental changes during invasion into the host, where it is exposed to the host immune system. Thus, the Streptococcus-host interaction determines whether bacteria are cleared by the host's defenses or whether they survive after invasion to cause serious diseases. If this interaction was to be deciphered, it could aid in the development of novel preventive and therapeutic agents. Streptococcus species possess many virulent factors, such as peroxidases and heat-shock proteins (HSPs), which play key roles in protecting the bacteria from hostile host environments. This review will discuss insights into the mechanism(s) by which streptococci adapt to host environments. Additionally, we will address how streptococcal infections trigger host stress responses; however, the mechanism by which bacterial components modulate host stress responses remains largely unknown.
Collapse
Affiliation(s)
- Cuong Thach Nguyen
- School of Pharmacy, Sungkyunkwan University, Su-Won, 16419, Republic of Korea
| | - Sang-Sang Park
- School of Pharmacy, Sungkyunkwan University, Su-Won, 16419, Republic of Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Su-Won, 16419, Republic of Korea.
| |
Collapse
|
39
|
Palmer SR, Burne RA. Post-transcriptional regulation by distal Shine-Dalgarno sequences in the grpE-dnaK intergenic region of Streptococcus mutans. Mol Microbiol 2015; 98:302-17. [PMID: 26172310 DOI: 10.1111/mmi.13122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 12/24/2022]
Abstract
A unique 373 bp region (igr66) between grpE and dnaK of Streptococcus mutans lacks a promoter but is required for optimal production of DnaK. Northern blotting using probes specific to hrcA, igr66 or dnaK revealed multiple transcripts produced from the dnaK operon and 5'-RACE mapped 5' termini of multiple dnaK transcripts within igr66. One product mapped to a predicted 5'-SL (stem-loop) and two others mapped just 5' to Shine-Dalgarno (SD)-like sequences located immediately upstream to dnaK and to a predicted SL 120 bp upstream of the dnaK start codon (3'-SL). A collection of cat reporter-gene strains containing mutant derivatives of igr66 were engineered. Chloramphenicol acetyltransferase (CAT) activity varied greatly between strains, but there were no correlative changes in cat mRNA levels. Interestingly, mutations introduced into the SD-like sequences 5' to the 3'-SL resulted in an 83-98% decrease in CAT activity. Markerless point mutations introduced upstream of dnaK in the SD-like sequences impaired growth at elevated temperatures and resulted in up to a 40% decrease in DnaK protein after heat shock. Collectively, these results indicate processing within igr66 enhances translation in a temperature dependent manner via non-canonical ribosome binding sites positioned >120 bp upstream of dnaK.
Collapse
Affiliation(s)
- Sara R Palmer
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
40
|
Liu C, Niu Y, Zhou X, Zheng X, Wang S, Guo Q, Li Y, Li M, Li J, Yang Y, Ding Y, Lamont RJ, Xu X. Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism. Sci Rep 2015; 5:12929. [PMID: 26251057 PMCID: PMC4528225 DOI: 10.1038/srep12929] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 07/14/2015] [Indexed: 02/05/2023] Open
Abstract
Dental caries is closely associated with the virulence of Streptococcus mutans. The virulence expression of S. mutans is linked to its stress adaptation to the changes in the oral environment. In this work we used whole-genome microarrays to profile the dynamic transcriptomic responses of S. mutans during physiological heat stress. In addition, we evaluated the phenotypic changes, including, eDNA release, initial biofilm formation, extracellular polysaccharides generation, acid production/acid tolerance, and ATP turnover of S. mutans during heat stress. There were distinct patterns observed in the way that S. mutans responded to heat stress that included 66 transcription factors for the expression of functional genes being differentially expressed. Especially, response regulators of two component systems (TCSs), the repressors of heat shock proteins and regulators involved in sugar transporting and metabolism co-ordinated to enhance the cell’s survival and energy generation against heat stress in S. mutans.
Collapse
Affiliation(s)
- Chengcheng Liu
- 1] State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China [2] Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China [3] Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Yulong Niu
- Key Lab of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Xuedong Zhou
- 1] State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China [2] Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Xin Zheng
- 1] State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China [2] Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Shida Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Qiang Guo
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Yuqing Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Mingyun Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Jiyao Li
- 1] State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China [2] Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Yi Yang
- Key Lab of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yi Ding
- 1] State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China [2] Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Richard J Lamont
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Xin Xu
- 1] State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China [2] Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| |
Collapse
|
41
|
|
42
|
Jiao L, Ran J, Xu X, Wang J. Heat, acid and cold stresses enhance the expression of DnaK gene in Alicyclobacillus acidoterrestris. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.11.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Arita-Morioka KI, Yamanaka K, Mizunoe Y, Ogura T, Sugimoto S. Novel strategy for biofilm inhibition by using small molecules targeting molecular chaperone DnaK. Antimicrob Agents Chemother 2015; 59:633-41. [PMID: 25403660 PMCID: PMC4291377 DOI: 10.1128/aac.04465-14] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/06/2014] [Indexed: 01/19/2023] Open
Abstract
Biofilms are complex communities of microorganisms that attach to surfaces and are embedded in a self-produced extracellular matrix. Since these cells acquire increased tolerance against antimicrobial agents and host immune systems, biofilm-associated infectious diseases tend to become chronic. We show here that the molecular chaperone DnaK is important for biofilm formation and that chemical inhibition of DnaK cellular functions is effective in preventing biofilm development. Genetic, microbial, and microscopic analyses revealed that deletion of the dnaK gene markedly reduced the production of the extracellular functional amyloid curli, which contributes to the robustness of Escherichia coli biofilms. We tested the ability of DnaK inhibitors myricetin (Myr), telmisartan, pancuronium bromide, and zafirlukast to prevent biofilm formation of E. coli. Only Myr, a flavonol widely distributed in plants, inhibited biofilm formation in a concentration-dependent manner (50% inhibitory concentration [IC50] = 46.2 μM); however, it did not affect growth. Transmission electron microscopy demonstrated that Myr inhibited the production of curli. Phenotypic analyses of thermosensitivity, cell division, intracellular level of RNA polymerase sigma factor RpoH, and vulnerability to vancomycin revealed that Myr altered the phenotype of E. coli wild-type cells to make them resemble those of the isogenic dnaK deletion mutant, indicating that Myr inhibits cellular functions of DnaK. These findings provide insights into the significance of DnaK in curli-dependent biofilm formation and indicate that DnaK is an ideal target for antibiofilm drugs.
Collapse
Affiliation(s)
- Ken-ichi Arita-Morioka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kunitoshi Yamanaka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yoshimitsu Mizunoe
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shinya Sugimoto
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
44
|
The identification of six novel proteins with fibronectin or collagen type I binding activity from Streptococcus suis serotype 2. J Microbiol 2014; 52:963-9. [DOI: 10.1007/s12275-014-4311-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
|
45
|
Halistanol sulfate A and rodriguesines A and B are antimicrobial and antibiofilm agents against the cariogenic bacterium Streptococcus mutans. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2014. [DOI: 10.1016/j.bjp.2014.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Zhao H, Zhang Z, Zhu L, Li Z, Li P, Liu J, Zhang Z. Differential proteomics analysis on fluoride-resistant Streptococcus mutans by label-free quantitation. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-4035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
An essential nonredundant role for mycobacterial DnaK in native protein folding. PLoS Genet 2014; 10:e1004516. [PMID: 25058675 PMCID: PMC4109909 DOI: 10.1371/journal.pgen.1004516] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022] Open
Abstract
Protein chaperones are essential in all domains of life to prevent and resolve protein misfolding during translation and proteotoxic stress. HSP70 family chaperones, including E. coli DnaK, function in stress induced protein refolding and degradation, but are dispensable for cellular viability due to redundant chaperone systems that prevent global nascent peptide insolubility. However, the function of HSP70 chaperones in mycobacteria, a genus that includes multiple human pathogens, has not been examined. We find that mycobacterial DnaK is essential for cell growth and required for native protein folding in Mycobacterium smegmatis. Loss of DnaK is accompanied by proteotoxic collapse characterized by the accumulation of insoluble newly synthesized proteins. DnaK is required for solubility of large multimodular lipid synthases, including the essential lipid synthase FASI, and DnaK loss is accompanied by disruption of membrane structure and increased cell permeability. Trigger Factor is nonessential and has a minor role in native protein folding that is only evident in the absence of DnaK. In unstressed cells, DnaK localizes to multiple, dynamic foci, but relocalizes to focal protein aggregates during stationary phase or upon expression of aggregating peptides. Mycobacterial cells restart cell growth after proteotoxic stress by isolating persistent DnaK containing protein aggregates away from daughter cells. These results reveal unanticipated essential nonredunant roles for mycobacterial DnaK in mycobacteria and indicate that DnaK defines a unique susceptibility point in the mycobacterial proteostasis network. All living organisms use protein chaperones to prevent proteins from becoming insoluble either spontaneously or during cellular stress that can damage proteins. The HSP70 chaperone DnaK has been well characterized in E. coli and is important for that bacterium to resist protein denaturation from heat, but is dispensable for cell growth in the absence of stress due to redundancy with other chaperone systems. However, the function of chaperones in bacterial pathogens, which are exposed to protein stress within the host, has received less attention. Here we examine the function of DnaK in mycobacteria, a genus that includes multiple human pathogens, and find that DnaK is required for cell growth. This essential function is due to a lack of redundancy with other chaperone systems for the folding of proteins, even in the absence of stress. These findings expand the paradigm of DnaK function and identify DnaK as a promising target for antibiotic development for mycobacteria.
Collapse
|
48
|
Pegos VR, Nascimento JF, Sobreira TJP, Pauletti BA, Paes-Leme A, Balan A. Phosphate regulated proteins of Xanthomonas citri subsp. citri: a proteomic approach. J Proteomics 2014; 108:78-88. [PMID: 24846853 DOI: 10.1016/j.jprot.2014.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/11/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
Xanthomonas citri subsp. citri (X. citri) is the causative agent of the citrus canker, a disease that affects several citrus plants in Brazil and across the world. Although many studies have demonstrated the importance of genes for infection and pathogenesis in this bacterium, there are no data related to phosphate uptake and assimilation pathways. To identify the proteins that are involved in the phosphate response, we performed a proteomic analysis of X. citri extracts after growth in three culture media with different phosphate concentrations. Using mass spectrometry and bioinformatics analysis, we showed that X. citri conserved orthologous genes from Pho regulon in Escherichia coli, including the two-component system PhoR/PhoB, ATP binding cassette (ABC transporter) Pst for phosphate uptake, and the alkaline phosphatase PhoA. Analysis performed under phosphate starvation provided evidence of the relevance of the Pst system for phosphate uptake, as well as both periplasmic binding proteins, PhoX and PstS, which were formed in high abundance. The results from this study are the first evidence of the Pho regulon activation in X. citri and bring new insights for studies related to the bacterial metabolism and physiology. Biological significance Using proteomics and bioinformatics analysis we showed for the first time that the phytopathogenic bacterium X. citri conserves a set of proteins that belong to the Pho regulon, which are induced during phosphate starvation. The most relevant in terms of conservation and up-regulation were the periplasmic-binding proteins PstS and PhoX from the ABC transporter PstSBAC for phosphate, the two-component system composed by PhoR/PhoB and the alkaline phosphatase PhoA.
Collapse
Affiliation(s)
- Vanessa Rodrigues Pegos
- Laboratório Nacional de Biociências - LNBio, Centro de Pesquisas em Energia e Materiais - CNPEM, Campinas, SP, Brazil; Universidade Estadual de Campinas - UNICAMP, Instituto de Biologia, Campinas, SP, Brazil
| | - Jéssica Faria Nascimento
- Laboratório Nacional de Biociências - LNBio, Centro de Pesquisas em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Tiago José Paschoal Sobreira
- Laboratório Nacional de Biociências - LNBio, Centro de Pesquisas em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Bianca Alves Pauletti
- Laboratório Nacional de Biociências - LNBio, Centro de Pesquisas em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Adriana Paes-Leme
- Laboratório Nacional de Biociências - LNBio, Centro de Pesquisas em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Andrea Balan
- Universidade de São Paulo - USP, Instituto de Ciências Biomédicas II, Departamento de Microbiologia, - São Paulo - SP, Brazil; Laboratório Nacional de Biociências - LNBio, Centro de Pesquisas em Energia e Materiais - CNPEM, Campinas, SP, Brazil.
| |
Collapse
|
49
|
Zimaro T, Thomas L, Marondedze C, Sgro GG, Garofalo CG, Ficarra FA, Gehring C, Ottado J, Gottig N. The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation. BMC Microbiol 2014; 14:96. [PMID: 24742141 PMCID: PMC4021560 DOI: 10.1186/1471-2180-14-96] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
Background Several bacterial plant pathogens colonize their hosts through the secretion of effector proteins by a Type III protein secretion system (T3SS). The role of T3SS in bacterial pathogenesis is well established but whether this system is involved in multicellular processes, such as bacterial biofilm formation has not been elucidated. Here, the phytopathogen Xanthomonas citri subsp. citri (X. citri) was used as a model to gain further insights about the role of the T3SS in biofilm formation. Results The capacity of biofilm formation of different X. citri T3SS mutants was compared to the wild type strain and it was observed that this secretion system was necessary for this process. Moreover, the T3SS mutants adhered proficiently to leaf surfaces but were impaired in leaf-associated growth. A proteomic study of biofilm cells showed that the lack of the T3SS causes changes in the expression of proteins involved in metabolic processes, energy generation, exopolysaccharide (EPS) production and bacterial motility as well as outer membrane proteins. Furthermore, EPS production and bacterial motility were also altered in the T3SS mutants. Conclusions Our results indicate a novel role for T3SS in X. citri in the modulation of biofilm formation. Since this process increases X. citri virulence, this study reveals new functions of T3SS in pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario 2000, Argentina.
| |
Collapse
|
50
|
Velineni S, Desoutter D, Perchec AM, Timoney JF. Characterization of a mucoid clone of Streptococcus zooepidemicus from an epizootic of equine respiratory disease in New Caledonia. Vet J 2014; 200:82-7. [PMID: 24618399 DOI: 10.1016/j.tvjl.2014.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 11/18/2022]
Abstract
Streptococcus equi subspecies zooepidemicus (Sz) is a tonsillar and mucosal commensal of healthy horses with the potential to cause opportunistic infections of the distal respiratory tract stressed by virus infection, transportation, training or high temperature. The invasive clone varies from horse to horse with little evidence of lateral transmission in the group. Tonsillar isolates are non-mucoid although primary isolates from opportunist lower respiratory tract infections may initially be mucoid. In this study, a novel stably mucoid Sz (SzNC) from a clonal epizootic of respiratory disease in horses in different parts of New Caledonia is described. SzNC (ST-307) was isolated in pure culture from transtracheal aspirates and as heavy growths from 80% of nasal swabs (n=31). Only 4% of swabs from unaffected horses (n=25) yielded colonies of Sz. A viral etiology was ruled out based on culture and early/late serum antibody screening. Evidence for clonality of SzNC included a mucoid colony phenotype, SzP and SzM sequences, and multilocus sequence typing. SzNC, with the exception of isolates at the end of the outbreak, was hyaluronidase positive. Its SzP protein was composed of an N2 terminal, and HV4 variable region motifs and 18 carboxy terminal PEPK repeats. Biotin labeling of surface proteins revealed DnaK and alanyl-tRNA synthetase (AlaS) on the surface of clonal isolates, but not on non-clonal non-mucoid Sz from horses in the epizootic or unrelated US isolates. Reactivity of these proteins and SzP with convalescent serum indicated expression during infection.
Collapse
Affiliation(s)
- Sridhar Velineni
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Denise Desoutter
- Laboratoire Territorial de Diagnostic Vétérinaire, BP42 Paita, New Caledonia
| | - Anne-Marie Perchec
- Laboratoire Territorial de Diagnostic Vétérinaire, BP42 Paita, New Caledonia
| | - John F Timoney
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|