1
|
Omole Z, Dorrell N, Elmi A, Nasher F, Gundogdu O, Wren BW. Pathogenicity and virulence of Campylobacter jejuni: What do we really know? Virulence 2024; 15:2436060. [PMID: 39648291 PMCID: PMC11633169 DOI: 10.1080/21505594.2024.2436060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 12/10/2024] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis and is a major public health concern worldwide. Despite its importance, our understanding of how C. jejuni causes diarrhoea and interacts with its hosts is limited due to the absence of appropriate infection models and established virulence factors found in other enteric pathogens. Additionally, despite its genetic diversity, non-pathogenic C. jejuni strains are unknown. Regardless of these limitations, significant progress has been made in understanding how C. jejuni uses a complex array of factors which aid the bacterium to survive and respond to host defences. This review provides an update on fitness and virulence determinants of this important pathogen and questions our knowledge on these determinants that are often based on inferred genomics knowledge and surrogate infection models.
Collapse
Affiliation(s)
- Zahra Omole
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Fauzy Nasher
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Brendan W. Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
2
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and other detrimental metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:309-365. [PMID: 39396839 DOI: 10.1016/bs.adgen.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Increasing scientific evidence demonstrates that gut microbiota plays an essential role in the onset and development of Colorectal cancer (CRC). However, the mechanisms by which these microorganisms contribute to cancer development are complex and far from completely clarified. Specifically, the impact of gut microbiota-derived metabolites on CRC is undeniable, exerting both protective and detrimental effects. This paper examines the effects and mechanisms by which important bacterial metabolites exert detrimental effects associated with increased risk of CRC. Metabolites considered include heterocyclic amines and polycyclic aromatic hydrocarbons, heme iron, secondary bile acids, ethanol, and aromatic amines. It is necessary to delve deeper into the mechanisms of action of these metabolites in CRC and identify the microbiota members involved in their production. Furthermore, since diet is the main factor capable of modifying the intestinal microbiota, conducting studies that include detailed descriptions of dietary interventions is crucial. All this knowledge is essential for developing precision nutrition strategies to optimise a protective intestinal microbiota against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
3
|
Sinha R, LeVeque RM, Callahan SM, Chatterjee S, Stopnisek N, Kuipel M, Johnson JG, DiRita VJ. Gut metabolite L-lactate supports Campylobacter jejuni population expansion during acute infection. Proc Natl Acad Sci U S A 2024; 121:e2316540120. [PMID: 38170751 PMCID: PMC10786315 DOI: 10.1073/pnas.2316540120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
How the microaerobic pathogen Campylobacter jejuni establishes its niche and expands in the gut lumen during infection is poorly understood. Using 6-wk-old ferrets as a natural disease model, we examined this aspect of C. jejuni pathogenicity. Unlike mice, which require significant genetic or physiological manipulation to become colonized with C. jejuni, ferrets are readily infected without the need to disarm the immune system or alter the gut microbiota. Disease after C. jejuni infection in ferrets reflects closely how human C. jejuni infection proceeds. Rapid growth of C. jejuni and associated intestinal inflammation was observed within 2 to 3 d of infection. We observed pathophysiological changes that were noted by cryptic hyperplasia through the induction of tissue repair systems, accumulation of undifferentiated amplifying cells on the colon surface, and instability of HIF-1α in colonocytes, which indicated increased epithelial oxygenation. Metabolomic analysis demonstrated that lactate levels in colon content were elevated in infected animals. A C. jejuni mutant lacking lctP, which encodes an L-lactate transporter, was significantly decreased for colonization during infection. Lactate also influences adhesion and invasion by C. jejuni to a colon carcinoma cell line (HCT116). The oxygenation required for expression of lactate transporter (lctP) led to identification of a putative thiol-based redox switch regulator (LctR) that may repress lctP transcription under anaerobic conditions. Our work provides better insights into the pathogenicity of C. jejuni.
Collapse
Affiliation(s)
- Ritam Sinha
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| | - Rhiannon M. LeVeque
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| | - Sean M. Callahan
- Department of Microbiology, University of Tennessee, Knoxville, TN37996
| | - Shramana Chatterjee
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| | - Nejc Stopnisek
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| | - Matti Kuipel
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI48824
| | | | - Victor J. DiRita
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| |
Collapse
|
4
|
Cao X, van Putten JP, Wösten MM. Campylobacter jejuni benefits from the bile salt deoxycholate under low-oxygen condition in a PldA dependent manner. Gut Microbes 2023; 15:2262592. [PMID: 37768138 PMCID: PMC10540661 DOI: 10.1080/19490976.2023.2262592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Enteric bacteria need to adapt to endure the antibacterial activities of bile salts in the gut. Phospholipase A (PldA) is a key enzyme in the maintenance of bacterial membrane homeostasis. Bacteria respond to stress by modulating their membrane composition. Campylobacter jejuni is the most common cause of human worldwide. However, the mechanism by which C. jejuni adapts and survives in the gut environment is not fully understood. In this study, we investigated the roles of PldA, bile salt sodium deoxycholate (DOC), and oxygen availability in C. jejuni biology, mimicking an in vivo situation. Growth curves were used to determine the adaptation of C. jejuni to bile salts. RNA-seq and functional assays were employed to investigate the PldA-dependent and DOC-induced changes in gene expression that influence bacterial physiology. Survival studies were performed to address oxidative stress defense in C. jejuni. Here, we discovered that PldA of C. jejuni is required for optimal growth in the presence of bile salt DOC. Under high oxygen conditions, DOC is toxic to C. jejuni, but under low oxygen conditions, as is present in the lumen of the gut, C. jejuni benefits from DOC. C. jejuni PldA seems to enable the use of iron needed for optimal growth in the presence of DOC but makes the bacterium more vulnerable to oxidative stress. In conclusion, DOC stimulates C. jejuni growth under low oxygen conditions and alters colony morphology in a PldA-dependent manner. C. jejuni benefits from DOC by upregulating iron metabolism in a PldA-dependent manner.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P.M. van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M.S.M. Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Dreyer A, Lenz C, Groß U, Bohne W, Zautner AE. Characterization of Campylobacter jejuni proteome profiles in co-incubation scenarios. Front Microbiol 2023; 14:1247211. [PMID: 38029072 PMCID: PMC10666060 DOI: 10.3389/fmicb.2023.1247211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
In dynamic microbial ecosystems, bacterial communication is a relevant mechanism for interactions between different microbial species. When C. jejuni resides in the intestine of either avian or human hosts, it is exposed to diverse bacteria from the microbiome. This study aimed to reveal the influence of co-incubation with Enterococcus faecalis, Enterococcus faecium, or Staphylococcus aureus on the proteome of C. jejuni 81-176 using data-independent-acquisition mass spectrometry (DIA-MS). We compared the proteome profiles during co-incubation with the proteome profile in response to the bile acid deoxycholate (DCA) and investigated the impact of DCA on proteomic changes during co-incubation, as C. jejuni is exposed to both factors during colonization. We identified 1,375 proteins by DIA-MS, which is notably high, approaching the theoretical maximum of 1,645 proteins. S. aureus had the highest impact on the proteome of C. jejuni with 215 up-regulated and 230 down-regulated proteins. However, these numbers are still markedly lower than the 526 up-regulated and 516 down-regulated proteins during DCA exposure. We identified a subset of 54 significantly differentially expressed proteins that are shared after co-incubation with all three microbial species. These proteins were indicative of a common co-incubation response of C. jejuni. This common proteomic response partly overlapped with the DCA response; however, several proteins were specific to the co-incubation response. In the co-incubation experiment, we identified three membrane-interactive proteins among the top 20 up-regulated proteins. This finding suggests that the presence of other bacteria may contribute to increased adherence, e.g., to other bacteria but eventually also epithelial cells or abiotic surfaces. Furthermore, a conjugative transfer regulon protein was typically up-expressed during co-incubation. Exposure to both, co-incubation and DCA, demonstrated that the two stressors influenced each other, resulting in a unique synergistic proteomic response that differed from the response to each stimulus alone. Data are available via ProteomeXchange with identifier PXD046477.
Collapse
Affiliation(s)
- Annika Dreyer
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Groß
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Bohne
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Erich Zautner
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
6
|
Dale AL, Man L, Cordwell SJ. Global Acetylomics of Campylobacter jejuni Shows Lysine Acetylation Regulates CadF Adhesin Processing and Human Fibronectin Binding. J Proteome Res 2023; 22:3519-3533. [PMID: 37830485 DOI: 10.1021/acs.jproteome.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Lysine acetylation (KAc) is a reversible post-translational modification (PTM) that can alter protein structure and function; however, specific roles for KAc are largely undefined in bacteria. Acetyl-lysine immunoprecipitation and LC-MS/MS identified 5567 acetylated lysines on 1026 proteins from the gastrointestinal pathogen Campylobacter jejuni (∼63% of the predicted proteome). KAc was identified on proteins from all subcellular locations, including the outer membrane (OM) and extracellular proteins. Label-based LC-MS/MS identified proteins and KAc sites during growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts). 3410 acetylated peptides were quantified, and 784 (from 409 proteins) were differentially abundant in DOC growth. Changes in KAc involved multiple pathways, suggesting a dynamic role for this PTM in bile resistance. As observed elsewhere, we show KAc is primarily nonenzymatically mediated via acetyl-phosphate; however, the deacetylase CobB also contributes to a global elevation of this modification in DOC. We observed several multiply acetylated OM proteins and altered DOC abundance of acetylated peptides in the fibronectin (Fn)-binding adhesin CadF. We show KAc reduces CadF Fn binding and prevalence of lower mass variants. This study provides the first system-wide lysine acetylome of C. jejuni and contributes to our understanding of KAc as an emerging PTM in bacteria.
Collapse
Affiliation(s)
- Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Lok Man
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
- Sydney Mass Spectrometry, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
7
|
Sinha R, LeVeque RM, Callahan SM, Chatterjee S, Stopnisek N, Kuipel M, Johnson JG, DiRita VJ. Gut metabolite L-lactate supports Campylobacter jejuni population expansion during acute infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560557. [PMID: 37873437 PMCID: PMC10592923 DOI: 10.1101/2023.10.02.560557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
How the microaerobic pathogen Campylobacter jejuni establishes its niche and expands in the gut lumen during infection is poorly understood. Using six-week-old ferrets as a natural disease model, we examined this aspect of C. jejuni pathogenicity. Unlike mice, which require significant genetic or physiological manipulation to become colonized with C. jejuni , ferrets are readily infected without the need to disarm the immune system or alter the gut microbiota. Disease after C. jejuni infection in ferrets reflects closely how human C. jejuni infection proceeds. Rapid growth of C. jejuni and associated intestinal inflammation was observed within two-three days of infection. We observed pathophysiological changes that were noted by cryptic hyperplasia through the induction of tissue repair systems, accumulation of undifferentiated amplifying cells on the colon surface, and instability of HIF-1α in colonocytes, which indicated increased epithelial oxygenation. Metabolomic analysis demonstrated that lactate levels in colon content were elevated in infected animals. A C. jejuni mutant lacking lctP , which encodes an L-lactate transporter, was significantly decreased for colonization during infection. Lactate also influences adhesion and invasion by C. jejuni to a colon carcinoma cell line (HCT116). The oxygenation required for expression of lactate transporter ( lctP ) led to discovery of a putative thiol based redox switch regulator (LctR) that may repress lctP transcription under anaerobic conditions. Our work provides new insights into the pathogenicity of C. jejuni . Significance There is a gap in knowledge about the mechanisms by which C. jejuni populations expand during infection. Using an animal model which accurately reflects human infection without the need to alter the host microbiome or the immune system prior to infection, we explored pathophysiological alterations of the gut after C. jejuni infection. Our study identified the gut metabolite L-lactate as playing an important role as a growth substrate for C. jejuni during acute infection. We identified a DNA binding protein, LctR, that binds to the lctP promoter and may repress lctP expression, resulting in decreased lactate transport under low oxygen levels. This work provides new insights about C. jejuni pathogenicity.
Collapse
|
8
|
Alenezi T, Fu Y, Alrubaye B, Alanazi T, Almansour A, Wang H, Sun X. Potent Bile Acid Microbial Metabolites Modulate Clostridium perfringens Virulence. Pathogens 2023; 12:1202. [PMID: 37887718 PMCID: PMC10610205 DOI: 10.3390/pathogens12101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Clostridium perfringens is a versatile pathogen, inducing diseases in the skin, intestine (such as chicken necrotic enteritis (NE)), and other organs. The classical sign of NE is the foul smell gas in the ballooned small intestine. We hypothesized that deoxycholic acid (DCA) reduced NE by inhibiting C. perfringens virulence signaling pathways. To evaluate the hypothesis, C. perfringens strains CP1 and wild-type (WT) HN13 and its mutants were cultured with different bile acids, including DCA and isoallolithocholic acid (isoalloLCA). Growth, hydrogen sulfide (H2S) production, and virulence gene expression were measured. Notably, isoalloLCA was more potent in reducing growth, H2S production, and virulence gene expression in CP1 and WT HN13 compared to DCA, while other bile acids were less potent compared to DCA. Interestingly, there was a slightly different impact between DCA and isoalloLCA on the growth, H2S production, and virulence gene expression in the three HN13 mutants, suggesting possibly different signaling pathways modulated by the two bile acids. In conclusion, DCA and isoalloLCA reduced C. perfringens virulence by transcriptionally modulating the pathogen signaling pathways. The findings could be used to design new strategies to prevent and treat C. perfringens-induced diseases.
Collapse
Affiliation(s)
- Tahrir Alenezi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (T.A.); (Y.F.); (B.A.); (T.A.); (A.A.); (H.W.)
- Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
- College of Medical Applied Sciences, The Northern Border University, Arar 91431, Saudi Arabia
| | - Ying Fu
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (T.A.); (Y.F.); (B.A.); (T.A.); (A.A.); (H.W.)
| | - Bilal Alrubaye
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (T.A.); (Y.F.); (B.A.); (T.A.); (A.A.); (H.W.)
| | - Thamer Alanazi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (T.A.); (Y.F.); (B.A.); (T.A.); (A.A.); (H.W.)
- Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ayidh Almansour
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (T.A.); (Y.F.); (B.A.); (T.A.); (A.A.); (H.W.)
- Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Hong Wang
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (T.A.); (Y.F.); (B.A.); (T.A.); (A.A.); (H.W.)
- Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Xiaolun Sun
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (T.A.); (Y.F.); (B.A.); (T.A.); (A.A.); (H.W.)
- Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
9
|
Mateus C, Maia CJ, Domingues F, Bücker R, Oleastro M, Ferreira S. Evaluation of Bile Salts on the Survival and Modulation of Virulence of Aliarcobacter butzleri. Antibiotics (Basel) 2023; 12:1387. [PMID: 37760684 PMCID: PMC10525121 DOI: 10.3390/antibiotics12091387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Aliarcobacter butzleri is a Gram-negative bacterium associated with infections of the gastrointestinal tract and widely distributed in various environments. For successful infection, A. butzleri should be able to tolerate various stresses during gastrointestinal passage, such as bile. Bile represents an antimicrobial host barrier that acts against external noxious agents and consists of a variety of bile salts. The intestinal bile salts act as detergents involved in the antimicrobial host defense; although, on the bacterial side, they could also serve as a signal to activate virulence mechanisms. The aim of this work was to understand the effects of bile salts on the survival and virulence of A. butzleri. In our study, A. butzleri was able to survive in the presence of human physiological concentrations of bile salts. Regarding the virulence features, an increase in cellular hydrophobicity, a decrease in motility and expression of flaA gene, as well as an increase in biofilm formation with a concomitant change in the type of biofilm structure were observed in the presence of sub-inhibitory concentration of bile salts. Concerning adhesion and invasion ability, no significant difference was observed. Overall, the results demonstrated that A. butzleri is able to survive in physiological concentrations of bile salts and that exposure to bile salts could change its virulence mechanisms.
Collapse
Affiliation(s)
- Cristiana Mateus
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| | - Cláudio J. Maia
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| | - Fernanda Domingues
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| | - Roland Bücker
- Clinical Physiology/Nutritional Medicine, Medical Department of Gastroenterology, Infectiology, Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany;
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Susana Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| |
Collapse
|
10
|
Ascari A, Waters JK, Morona R, Eijkelkamp BA. Shigella flexneri Adapts to Niche-Specific Stresses through Modifications in Cell Envelope Composition and Decoration. ACS Infect Dis 2023; 9:1610-1621. [PMID: 37494550 DOI: 10.1021/acsinfecdis.3c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Shigella flexneri is the primary causative agent of worldwide shigellosis. As the pathogen transverses the distinct niches of the gastrointestinal tract it necessitates dynamic adaptation strategies to mitigate host antimicrobials such as dietary fatty acids (FAs) and the bile salt, deoxycholate (DOC). This study investigates the dynamics of the S. flexneri cell envelope, by interrogating adaptations following FA or DOC exposure. We deciphered the effects of FAs and DOC on bacterial membrane fatty acid and lipopolysaccharide (LPS) compositions. We identified novel LPS-based strategies by the pathogen to support resistance to these host compounds. In particular, expression of S. flexneri very-long O antigen (VL-Oag) LPS was found to play a central role in stress mitigation, as VL-Oag protects against antimicrobial FAs, but its presence rendered S. flexneri susceptible to DOC stress. Collectively, this work underpins the importance for S. flexneri to maintain appropriate regulation of cell envelope constituents, in particular VL-Oag LPS, to adequately adapt to diverse stresses during infection.
Collapse
Affiliation(s)
- Alice Ascari
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide 5005, South Australia, Australia
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide 5042, South Australia, Australia
| | - Jack K Waters
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide 5042, South Australia, Australia
| | - Renato Morona
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide 5005, South Australia, Australia
| | - Bart A Eijkelkamp
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide 5042, South Australia, Australia
| |
Collapse
|
11
|
Gabbert AD, Mydosh JL, Talukdar PK, Gloss LM, McDermott JE, Cooper KK, Clair GC, Konkel ME. The Missing Pieces: The Role of Secretion Systems in Campylobacter jejuni Virulence. Biomolecules 2023; 13:135. [PMID: 36671522 PMCID: PMC9856085 DOI: 10.3390/biom13010135] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Campylobacter jejuni is likely the most common bacterial cause of gastroenteritis worldwide, responsible for millions of cases of inflammatory diarrhea characterized by severe abdominal cramps and blood in the stool. Further, C. jejuni infections are associated with post-infection sequelae in developed countries and malnutrition and growth-stunting in low- and middle-income countries. Despite the increasing prevalence of the disease, campylobacteriosis, and the recognition that this pathogen is a serious health threat, our understanding of C. jejuni pathogenesis remains incomplete. In this review, we focus on the Campylobacter secretion systems proposed to contribute to host-cell interactions and survival in the host. Moreover, we have applied a genomics approach to defining the structural and mechanistic features of C. jejuni type III, IV, and VI secretion systems. Special attention is focused on the flagellar type III secretion system and the prediction of putative effectors, given that the proteins exported via this system are essential for host cell invasion and the inflammatory response. We conclude that C. jejuni does not possess a type IV secretion system and relies on the type III and type VI secretion systems to establish a niche and potentiate disease.
Collapse
Affiliation(s)
- Amber D. Gabbert
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jennifer L. Mydosh
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Prabhat K. Talukdar
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Lisa M. Gloss
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jason E. McDermott
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Geremy C. Clair
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
12
|
Forster ER, Yang X, Tai AK, Hang HC, Shen A. Identification of a Bile Acid-Binding Transcription Factor in Clostridioides difficile Using Chemical Proteomics. ACS Chem Biol 2022; 17:3086-3099. [PMID: 36279369 PMCID: PMC10518218 DOI: 10.1021/acschembio.2c00463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Clostridioides difficile is a Gram-positive anaerobic bacterium that is the leading cause of hospital-acquired gastroenteritis in the US. In the gut milieu, C. difficile encounters microbiota-derived, growth-inhibiting bile acids that are thought to be a significant mechanism of colonization resistance. While the levels of certain bile acids in the gut correlate with susceptibility to C. difficile infection, their molecular targets in C. difficile remain unknown. In this study, we sought to use chemical proteomics to identify bile acid-interacting proteins in C. difficile. Using photoaffinity bile acid probes and chemical proteomics, we identified a previously uncharacterized MerR family protein, CD3583 (now BapR), as a putative bile acid-sensing transcription regulator. Our data indicate that BapR specifically binds to and is stabilized by lithocholic acid (LCA) in C. difficile. Although loss of BapR did not affect C. difficile's sensitivity to LCA, ΔbapR cells elongated more in the presence of LCA compared to wild-type cells. Transcriptomics revealed that BapR regulates several gene clusters, with the expression of the mdeA-cd3573 locus being specifically de-repressed in the presence of LCA in a BapR-dependent manner. Electrophoretic mobility shift assays revealed that BapR directly binds to the mdeA promoter region. Because mdeA is involved in amino acid-related sulfur metabolism and the mdeA-cd3573 locus encodes putative transporters, we propose that BapR senses a gastrointestinal tract-specific small molecule, LCA, as an environmental cue for metabolic adaptation.
Collapse
Affiliation(s)
- Emily R Forster
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, United States
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
| | - Xinglin Yang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California 92037, United States
| | - Albert K Tai
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
- Data Intensive Studies Center, Tufts University, Medford, Massachusetts 02155, United States
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California 92037, United States
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
| |
Collapse
|
13
|
Henrot C, Petit M. Signals triggering prophage induction in the gut microbiota. Mol Microbiol 2022; 118:494-502. [PMID: 36164818 PMCID: PMC9827884 DOI: 10.1111/mmi.14983] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 01/12/2023]
Abstract
Compared to bacteria of the gut microbiota, bacteriophages are still poorly characterised, and their physiological importance is far less known. Temperate phages are probably a major actor in the gut, as it is estimated that 80% of intestinal bacteria are lysogens, meaning that they are carrying prophages. In addition, prophage induction rates are higher in the gut than in vitro. However, studies on the signals leading to prophage induction have essentially focused on genotoxic agents with poor relevance for this environment. In this review, we sum up recent findings about signals able to trigger prophage induction in the gut. Three categories of signals are at play: those originating from interactions between intestinal microbes, those from the human or animal host physiology and those from external intakes. These recent results highlight the diversity of factors influencing prophage induction in the gut, and start to unveil ways by which microbiota composition may be modulated.
Collapse
Affiliation(s)
- Caroline Henrot
- Université Paris‐Saclay, INRAEAgroParisTech, Micalis InstituteJouy‐en‐JosasFrance,Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1Université de LyonLyonFrance
| | - Marie‐Agnès Petit
- Université Paris‐Saclay, INRAEAgroParisTech, Micalis InstituteJouy‐en‐JosasFrance
| |
Collapse
|
14
|
Li S, Lam J, Souliotis L, Alam MT, Constantinidou C. Posttranscriptional Regulation in Response to Different Environmental Stresses in Campylobacter jejuni. Microbiol Spectr 2022; 10:e0020322. [PMID: 35678555 PMCID: PMC9241687 DOI: 10.1128/spectrum.00203-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
The survival strategies that Campylobacter jejuni (C. jejuni) employ throughout its transmission and infection life cycles remain largely elusive. Specifically, there is a lack of understanding about the posttranscriptional regulation of stress adaptations resulting from small noncoding RNAs (sRNAs). Published C. jejuni sRNAs have been discovered in specific conditions but with limited insights into their biological activities. Many more sRNAs are yet to be discovered as they may be condition-dependent. Here, we have generated transcriptomic data from 21 host- and transmission-relevant conditions. The data uncovered transcription start sites, expression patterns and posttranscriptional regulation during various stress conditions. This data set helped predict a list of putative sRNAs. We further explored the sRNAs' biological functions by integrating differential gene expression analysis, coexpression analysis, and genome-wide sRNA target prediction. The results showed that the C. jejuni gene expression was influenced primarily by nutrient deprivation and food storage conditions. Further exploration revealed a putative sRNA (CjSA21) that targeted tlp1 to 4 under food processing conditions. tlp1 to 4 are transcripts that encode methyl-accepting chemotaxis proteins (MCPs), which are responsible for chemosensing. These results suggested CjSA21 inhibits chemotaxis and promotes survival under food processing conditions. This study presents the broader research community with a comprehensive data set and highlights a novel sRNA as a potential chemotaxis inhibitor. IMPORTANCE The foodborne pathogen C. jejuni is a significant challenge for the global health care system. It is crucial to investigate C. jejuni posttranscriptional regulation by small RNAs (sRNAs) in order to understand how it adapts to different stress conditions. However, limited data are available for investigating sRNA activity under stress. In this study, we generate gene expression data of C. jejuni under 21 stress conditions. Our data analysis indicates that one of the novel sRNAs mediates the adaptation to food processing conditions. Results from our work shed light on the posttranscriptional regulation of C. jejuni and identify an sRNA associated with food safety.
Collapse
Affiliation(s)
- Stephen Li
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jenna Lam
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Mohammad Tauqeer Alam
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | |
Collapse
|
15
|
Shulpekova Y, Zharkova M, Tkachenko P, Tikhonov I, Stepanov A, Synitsyna A, Izotov A, Butkova T, Shulpekova N, Lapina N, Nechaev V, Kardasheva S, Okhlobystin A, Ivashkin V. The Role of Bile Acids in the Human Body and in the Development of Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113401. [PMID: 35684337 PMCID: PMC9182388 DOI: 10.3390/molecules27113401] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Bile acids are specific and quantitatively important organic components of bile, which are synthesized by hepatocytes from cholesterol and are involved in the osmotic process that ensures the outflow of bile. Bile acids include many varieties of amphipathic acid steroids. These are molecules that play a major role in the digestion of fats and the intestinal absorption of hydrophobic compounds and are also involved in the regulation of many functions of the liver, cholangiocytes, and extrahepatic tissues, acting essentially as hormones. The biological effects are realized through variable membrane or nuclear receptors. Hepatic synthesis, intestinal modifications, intestinal peristalsis and permeability, and receptor activity can affect the quantitative and qualitative bile acids composition significantly leading to extrahepatic pathologies. The complexity of bile acids receptors and the effects of cross-activations makes interpretation of the results of the studies rather difficult. In spite, this is a very perspective direction for pharmacology.
Collapse
Affiliation(s)
- Yulia Shulpekova
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Maria Zharkova
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Pyotr Tkachenko
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Igor Tikhonov
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Alexander Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | - Alexandra Synitsyna
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
- Correspondence: ; Tel.: +7-499-764-98-78
| | - Alexander Izotov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | - Tatyana Butkova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | | | - Natalia Lapina
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Vladimir Nechaev
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Svetlana Kardasheva
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Alexey Okhlobystin
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Vladimir Ivashkin
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| |
Collapse
|
16
|
Liu Y, Zhang S, Zhou W, Hu D, Xu H, Ji G. Secondary Bile Acids and Tumorigenesis in Colorectal Cancer. Front Oncol 2022; 12:813745. [PMID: 35574393 PMCID: PMC9097900 DOI: 10.3389/fonc.2022.813745] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/21/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and deadly cancers in the world and is a typical inflammatory tumor. In recent years, the incidence of CRC has been increasing year by year. There is evidence that the intake of high-fat diet and overweight are associated with the incidence of CRC, among which bile acids play a key role in the pathogenesis of the disease. Studies on the relationship between bile acid metabolism and the occurrence of CRC have gradually become a hot topic, improving the understanding of metabolic factors in the etiology of colorectal cancer. Meanwhile, intestinal flora also plays an important role in the occurrence and development of CRC In this review, the classification of bile acids and their role in promoting the occurrence of CRC are discussed, and we highlights how a high-fat diet affects bile acid metabolism and destroys the integrity of the intestinal barrier and the effects of gut bacteria.
Collapse
Affiliation(s)
- Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengan Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- Department of Internal Medicine of Chinese Medicine, Shanghai Pudong New Area Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Lopes GV, Ramires T, Kleinubing NR, Scheik LK, Fiorentini ÂM, Padilha da Silva W. Virulence factors of foodborne pathogen Campylobacterjejuni. Microb Pathog 2021; 161:105265. [PMID: 34699927 DOI: 10.1016/j.micpath.2021.105265] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/27/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022]
Abstract
Campylobacter jejuni is a highly frequent cause of gastrointestinal foodborne disease in humans throughout the world. Disease outcomes vary from mild to severe diarrhea, and in rare cases the Guillain-Barré syndrome or reactive arthritis can develop as a post-infection complication. Transmission to humans usually occurs via the consumption of a range of foods, especially those associated with the consumption of raw or undercooked poultry meat, unpasteurized milk, and water-based environmental sources. When associated to food or water ingestion, the C. jejuni enters the human host intestine via the oral route and colonizes the distal ileum and colon. When it adheres and colonizes the intestinal cell surfaces, the C. jejuni is expected to express several putative virulence factors, which cause damage to the intestine either directly, by cell invasion and/or production of toxin(s), or indirectly, by triggering inflammatory responses. This review article highlights various C. jejuni characteristics - such as motility and chemotaxis - that contribute to the biological fitness of the pathogen, as well as factors involved in human host cell adhesion and invasion, and their potential role in the development of the disease. We have analyzed and critically discussed nearly 180 scientific articles covering the latest improvements in the field.
Collapse
Affiliation(s)
- Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Natalie Rauber Kleinubing
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Letícia Klein Scheik
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Ângela Maria Fiorentini
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil.
| |
Collapse
|
18
|
Kumar R, Tung TC, Ng TH, Chang CC, Chen YL, Chen YM, Lin SS, Wang HC. Metabolic Alterations in Shrimp Stomach During Acute Hepatopancreatic Necrosis Disease and Effects of Taurocholate on Vibrio parahaemolyticus. Front Microbiol 2021; 12:631468. [PMID: 33959104 PMCID: PMC8093816 DOI: 10.3389/fmicb.2021.631468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND), a recently emerged bacterial shrimp disease, has increased shrimp mortality and caused huge economic losses in many Asian countries. However, molecular factors underlying pathogenesis of this disease remain largely unknown. Our objective was to characterize metabolic alterations in shrimp stomach during AHPND and determine effects of taurocholate on AHPND-causing Vibrio parahaemolyticus. Based on metabolomics, pathways for lipid metabolism and for primary bile acid (BA) synthesis were majorly affected following AHPND infection. Bile acid metabolites, namely taurocholate, were downregulated in the metabolomics database. This prompted us to study effects of taurocholate on biofilm formation, PirAB vp toxin release and biofilm detachment capabilities in AHPND-causing V. parahaemolyticus. Treatment of this bacterium with high concentration of taurocholate, a primary bile acid, induced biofilm formation, PirAB vp toxin release and facilitated the dispersion of bacterial cells. Taken together, our findings suggest that AHPND infection can affect the lipid metabolites in shrimp stomach, and further suggest that the primary bile acid taurocholate is important for the virulence of AHPND-causing V. parahaemolyticus.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Teng-Chun Tung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Tze Hann Ng
- International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.,Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Che-Chih Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Lun Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Min Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
19
|
Gadishaw-Lue C, Banaag A, Birstonas S, Francis AS, Barnett Foster D. Bile Salts Differentially Enhance Resistance of Enterohemorrhagic Escherichia coli O157:H7 to Host Defense Peptides. Infect Immun 2021; 89:e00719-20. [PMID: 33229368 PMCID: PMC7822141 DOI: 10.1128/iai.00719-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
During passage through the human gastrointestinal tract, enterohemorrhagic Escherichia coli (EHEC) is exposed to membrane-damaging bile in the small intestine. We previously reported that EHEC treatment with a physiological bile salt mixture upregulates basRS, encoding a two-component system, and arnBCADTEF, encoding the aminoarabinose lipid A modification pathway (J. V. Kus, A. Gebremedhin, V. Dang, S. L. Tran, A. Serbanescu, and D. Barnett Foster, J Bacteriol 193: 4509-4515, 2011, https://doi.org/10.1128/JB.00200-11). The present study examined the effect of bile salt mix (BSM) treatment on EHEC resistance to three human gastrointestinal defense peptides-HD-5, HNP-1, and LL-37-as well as the role of basRS and arnT in the respective responses. After BSM treatment, EHEC resistance to HD-5 and HNP-1 was significantly increased in a BSM-, defensin dose-dependent manner. The resistance phenotype was dependent on both basRS and arnT However, the BSM treatment did not alter EHEC resistance to LL-37, even when the ompT gene, encoding an LL-37 cleavage protease, was disrupted. Interestingly, enteropathogenic E. coli, a related pathogen that infects the small intestine, showed a similar BSM-induced resistance phenotype. Using a model of EHEC infection in Galleria mellonella, we found significantly lower survival rates in wax moth larvae infected with BSM-treated wild-type EHEC than in those infected with a BSM-treated basS mutant, suggesting that treatment with a physiological BSM enhances virulence through a basS-mediated pathway. The results of this investigation provide persuasive evidence that bile salts typically encountered during transit through the small intestine can serve as an environmental cue for EHEC, enhancing resistance to several key host defense peptides.
Collapse
Affiliation(s)
- Crystal Gadishaw-Lue
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Alyssa Banaag
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Sarah Birstonas
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Aju-Sue Francis
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Debora Barnett Foster
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Whelan MVX, Simpson JC, Ó Cróinín T. A novel high-content screening approach for the elucidation of C. jejuni biofilm composition and integrity. BMC Microbiol 2021; 21:2. [PMID: 33397288 PMCID: PMC7784365 DOI: 10.1186/s12866-020-02062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is the leading cause of bacterial gastroenteritis worldwide and the main source of infection is contaminated chicken meat. Although this important human pathogen is an obligate microaerophile, it must survive atmospheric oxygen conditions to allow transmission from contaminated chicken meat to humans. It is becoming increasingly evident that formation of biofilm plays a key role in the survival of this organism for extended periods on poultry products. We have recently demonstrated a novel inducible model for the study of adherent C. jejuni biofilm formation under aerobic conditions. By taking advantage of supercoiling mediated gene regulation, incubation of C. jejuni with subinhibitory concentrations of the Gyrase B inhibitor novobiocin was shown to promote the consistent formation of metabolically active adherent biofilm. RESULTS In this study, we implement this model in conjunction with the fluorescent markers: TAMRA (live cells) and SytoX (dead cells, eDNA) to develop a novel systematic high-content imaging approach and describe how it can be implemented to gain quantifiable information about the integrity and extracellular polymeric substance (EPS) composition of adherent C. jejuni biofilm in aerobic conditions. We show that this produces a model with a consistent, homogenous biofilm that can be induced and used to screen a range of inhibitors of biofilm adherence and matrix formation. CONCLUSIONS This model allows for the first time a high throughput analysis of C. jejuni biofilms which will be invaluable in enabling researchers to develop mechanisms to disrupt these biofilms and reduce the viability of these bacteria under aerobic conditions.
Collapse
Affiliation(s)
- Matthew V X Whelan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tadhg Ó Cróinín
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
21
|
Mousavi S, Bereswill S, Heimesaat MM. Murine Models for the Investigation of Colonization Resistance and Innate Immune Responses in Campylobacter Jejuni Infections. Curr Top Microbiol Immunol 2021; 431:233-263. [PMID: 33620654 DOI: 10.1007/978-3-030-65481-8_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human infections with the food-borne pathogen Campylobacter jejuni are progressively increasing worldwide and constitute a significant socioeconomic burden to mankind. Intestinal campylobacteriosis in humans is characterized by bloody diarrhea, fever, abdominal pain, and severe malaise. Some individuals develop chronic post-infectious sequelae including neurological and autoimmune diseases such as reactive arthritis and Guillain-Barré syndrome. Studies unraveling the molecular mechanisms underlying campylobacteriosis and post-infectious sequelae have been hampered by the scarcity of appropriate experimental in vivo models. Particularly, conventional laboratory mice are protected from C. jejuni infection due to the physiological colonization resistance exerted by the murine gut microbiota composition. Additionally, as compared to humans, mice are up to 10,000 times more resistant to C. jejuni lipooligosaccharide (LOS) constituting a major pathogenicity factor responsible for the immunopathological host responses during campylobacteriosis. In this chapter, we summarize the recent progress that has been made in overcoming these fundamental obstacles in Campylobacter research in mice. Modification of the murine host-specific gut microbiota composition and sensitization of the mice to C. jejuni LOS by deletion of genes encoding interleukin-10 or a single IL-1 receptor-related molecule as well as by dietary zinc depletion have yielded reliable murine infection models resembling key features of human campylobacteriosis. These substantial improvements pave the way for a better understanding of the molecular mechanisms underlying pathogen-host interactions. The ongoing validation and standardization of these novel murine infection models will provide the basis for the development of innovative treatment and prevention strategies to combat human campylobacteriosis and collateral damages of C. jejuni infections.
Collapse
Affiliation(s)
- Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
22
|
Fu Y, Almansour A, Bansal M, Alenezi T, Alrubaye B, Wang H, Sun X. Microbiota attenuates chicken transmission-exacerbated campylobacteriosis in Il10 -/- mice. Sci Rep 2020; 10:20841. [PMID: 33257743 PMCID: PMC7705718 DOI: 10.1038/s41598-020-77789-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/17/2020] [Indexed: 11/08/2022] Open
Abstract
Campylobacter jejuni is a prevalent foodborne pathogen mainly transmitting through poultry. It remains unknown how chicken-transmitted C. jejuni and microbiota impact on human campylobacteriosis. Campylobacter jejuni AR101 (Cj-P0) was introduced to chickens and isolated as passage 1 (Cj-P1). Campylobacter jejuni Cj-P1-DCA-Anaero was isolated from Cj-P0-infected birds transplanted with DCA-modulated anaerobic microbiota. Specific pathogen free Il10-/- mice were gavaged with antibiotic clindamycin and then infected with Cj-P0, Cj-P1, or Cj-P1-DCA-Anaero, respectively. After 8 days post infection, Il10-/- mice infected with Cj-P1 demonstrated severe morbidity and bloody diarrhea and the experiment had to be terminated. Cj-P1 induced more severe histopathology compared to Cj-P0, suggesting that chicken transmission increased C. jejuni virulence. Importantly, mice infected with Cj-P1-DCA-Anaero showed attenuation of intestinal inflammation compared to Cj-P1. At the cellular level, Cj-P1 induced more C. jejuni invasion and neutrophil infiltration into the Il10-/- mouse colon tissue compared to Cj-P0, which was attenuated with Cj-P1-DCA-Anaero. At the molecular level, Cj-P1 induced elevated inflammatory mediator mRNA accumulation of Il17a, Il1β, and Cxcl1 in the colon compared to Cj-P0, while Cj-P1-DCA-Anaero showed reduction of the inflammatory gene expression. In conclusion, our data suggest that DCA-modulated anaerobes attenuate chicken-transmitted campylobacteriosis in mice and it is important to control the elevation of C. jejuni virulence during chicken transmission process.
Collapse
Affiliation(s)
- Ying Fu
- CEMB, University of Arkansas, Fayetteville, AR, 72701, USA
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St. O-409, Fayetteville, AR, 72701, USA
| | - Ayidh Almansour
- CEMB, University of Arkansas, Fayetteville, AR, 72701, USA
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St. O-409, Fayetteville, AR, 72701, USA
| | - Mohit Bansal
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St. O-409, Fayetteville, AR, 72701, USA
| | - Tahrir Alenezi
- CEMB, University of Arkansas, Fayetteville, AR, 72701, USA
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St. O-409, Fayetteville, AR, 72701, USA
| | - Bilal Alrubaye
- CEMB, University of Arkansas, Fayetteville, AR, 72701, USA
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St. O-409, Fayetteville, AR, 72701, USA
| | - Hong Wang
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St. O-409, Fayetteville, AR, 72701, USA
| | - Xiaolun Sun
- CEMB, University of Arkansas, Fayetteville, AR, 72701, USA.
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St. O-409, Fayetteville, AR, 72701, USA.
| |
Collapse
|
23
|
Man L, Dale AL, Klare WP, Cain JA, Sumer-Bayraktar Z, Niewold P, Solis N, Cordwell SJ. Proteomics of Campylobacter jejuni Growth in Deoxycholate Reveals Cj0025c as a Cystine Transport Protein Required for Wild-type Human Infection Phenotypes. Mol Cell Proteomics 2020; 19:1263-1280. [PMID: 32376616 PMCID: PMC8015009 DOI: 10.1074/mcp.ra120.002029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni is a major cause of food-borne gastroenteritis. Proteomics by label-based two-dimensional liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) identified proteins associated with growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts), and system-wide validation was performed by data-independent acquisition (DIA-SWATH-MS). LC-MS/MS quantified 1326 proteins (∼82% of the predicted C. jejuni proteome), of which 1104 were validated in additional biological replicates by DIA-SWATH-MS. DOC resulted in a profound proteome shift with 512 proteins showing significantly altered abundance. Induced proteins were associated with flagellar motility and antibiotic resistance; and these correlated with increased DOC motility and resistance to polymyxin B and ciprofloxacin. DOC also increased human Caco-2 cell adherence and invasion. Abundances of proteins involved in nutrient transport were altered by DOC and aligned with intracellular changes to their respective carbon sources. DOC increased intracellular levels of sulfur-containing amino acids (cysteine and methionine) and the dipeptide cystine (Cys-Cys), which also correlated with reduced resistance to oxidative stress. A DOC induced transport protein was Cj0025c, which has sequence similarity to bacterial Cys-Cys transporters. Deletion of cj0025c (Δcj0025c) resulted in proteome changes consistent with sulfur starvation, as well as attenuated invasion, reduced motility, atypical morphology, increased antimicrobial susceptibility and poor biofilm formation. Targeted metabolomics showed Δcj0025c could use known C. jejuni amino and organic acid substrates commensurate with wild-type. Medium Cys-Cys levels however, were maintained in Δcj0025c relative to wild-type. A toxic Cys-Cys mimic (selenocystine) inhibited wild-type growth, but not Δcj0025c Provision of an alternate sulfur source (2 mm thiosulfate) restored Δcj0025c motility. Our data confirm that Cj0025c is a Cys-Cys transporter that we have named TcyP consistent with the nomenclature of homologous proteins in other species.
Collapse
Affiliation(s)
- Lok Man
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - William P Klare
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Joel A Cain
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Zeynep Sumer-Bayraktar
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Paula Niewold
- Charles Perkins Centre, The University of Sydney, Australia; Discipline of Pathology, School of Medical Sciences, The University of Sydney, Australia
| | - Nestor Solis
- School of Life and Environmental Sciences, The University of Sydney, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia; Discipline of Pathology, School of Medical Sciences, The University of Sydney, Australia; Sydney Mass Spectrometry, The University of Sydney, Australia.
| |
Collapse
|
24
|
Small Noncoding RNA CjNC110 Influences Motility, Autoagglutination, AI-2 Localization, Hydrogen Peroxide Sensitivity, and Chicken Colonization in Campylobacter jejuni. Infect Immun 2020; 88:IAI.00245-20. [PMID: 32366573 DOI: 10.1128/iai.00245-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Small noncoding RNAs (ncRNAs) are involved in many important physiological functions in pathogenic microorganisms. Previous studies have identified the presence of noncoding RNAs in the major zoonotic pathogen Campylobacter jejuni; however, few have been functionally characterized to date. CjNC110 is a conserved ncRNA in C. jejuni, located downstream of the luxS gene, which is responsible for the production of the quorum sensing molecule autoinducer-2 (AI-2). In this study, we utilized strand specific high-throughput RNAseq to identify potential targets or interactive partners of CjNC110 in a sheep abortion clone of C. jejuni These data were then utilized to focus further phenotypic evaluation of the role of CjNC110 in motility, autoagglutination, quorum sensing, hydrogen peroxide sensitivity, and chicken colonization in C. jejuni Inactivation of the CjNC110 ncRNA led to a statistically significant decrease in autoagglutination ability as well as increased motility and hydrogen peroxide sensitivity compared to the wild-type. Extracellular AI-2 detection was decreased in ΔCjNC110; however, intracellular AI-2 accumulation was significantly increased, suggesting a key role of CjNC110 in modulating the transport of AI-2. Notably, ΔCjNC110 also showed a decreased ability to colonize chickens. Complementation of CjNC110 restored all phenotypic changes back to wild-type levels. The collective results of the phenotypic and transcriptomic changes observed in our data provide valuable insights into the pathobiology of C. jejuni sheep abortion clone and strongly suggest that CjNC110 plays an important role in the regulation of energy taxis, flagellar glycosylation, cellular communication via quorum sensing, oxidative stress tolerance, and chicken colonization in this important zoonotic pathogen.
Collapse
|
25
|
Virulence Traits of Inpatient Campylobacter jejuni Isolates, and a Transcriptomic Approach to Identify Potential Genes Maintaining Intracellular Survival. Microorganisms 2020; 8:microorganisms8040531. [PMID: 32272707 PMCID: PMC7232156 DOI: 10.3390/microorganisms8040531] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
There are still major gaps in our understanding of the bacterial factors that influence the outcomes of human Campylobacter jejuni infection. The aim of this study was to compare the virulence-associated features of 192 human C. jejuni strains isolated from hospitalized patients with diarrhoea (150/192, 78.1%), bloody diarrhoea (23/192, 11.9%), gastroenteritis (3/192, 1.6%), ulcerative colitis (3/192, 1.5%), and stomach ache (2/192, 1.0%). Traits were analysed with genotypic and phenotypic methods, including PCR and extracellular matrix protein (ECMP) binding, adhesion, and invasion capacities. Results were studied alongside patient symptoms, but no distinct links with them could be determined. Since the capacity of C. jejuni to invade host epithelial cells is one of its most enigmatic attributes, a high throughput transcriptomic analysis was performed in the third hour of internalization with a C. jejuni strain originally isolated from bloody diarrhoea. Characteristic groups of genes were significantly upregulated, outlining a survival strategy of internalized C. jejuni comprising genes related (1) to oxidative stress; (2) to a protective sheath formed by the capsule, LOS, N-, and O- glycosylation systems; (3) to dynamic metabolic activity supported by different translocases and the membrane-integrated component of the flagellar apparatus; and (4) to hitherto unknown genes.
Collapse
|
26
|
Xi D, Alter T, Einspanier R, Sharbati S, Gölz G. Campylobacter jejuni genes Cj1492c and Cj1507c are involved in host cell adhesion and invasion. Gut Pathog 2020; 12:8. [PMID: 32064001 PMCID: PMC7011364 DOI: 10.1186/s13099-020-00347-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Background Campylobacter jejuni (C. jejuni) has been assigned as an important food-borne pathogen for human health but many pathogenicity factors of C. jejuni and human host cell responses related to the infection have not yet been adequately clarified. This study aimed to determine further C. jejuni pathogenicity factors and virulence genes based on a random mutagenesis approach. A transposon mutant library of C. jejuni NCTC 11168 was constructed and the ability of individual mutants to adhere to and invade human intestinal epithelial cells was evaluated compared to the wild type. We identified two mutants of C. jejuni possessing altered phenotypes with transposon insertions in the genes Cj1492c and Cj1507c. Cj1492c is annotated as a two-component sensor and Cj1507c is described as a regulatory protein. However, functions of both mutated genes are not clarified so far. Results In comparison to the wild type, Cj::1492c and Cj::1507c showed around 70-80% relative motility and Cj::1492c had around 3-times enhanced adhesion and invasion rates whereas Cj::1507c had significantly impaired adhesive and invasive capability. Moreover, Cj::1492c had a longer lag phase and slower growth rate while Cj::1507c showed similar growth compared to the wild type. Between 5 and 24 h post infection, more than 60% of the intracellular wild type C. jejuni were eliminated in HT-29/B6 cells, however, significantly fewer mutants were able to survive intracellularly. Nevertheless, no difference in host cell viability and induction of the pro-inflammatory chemokine IL-8 were determined between both mutants and the wild type. Conclusion We conclude that genes regulated by Cj1507c have an impact on efficient adhesion, invasion and intracellular survival of C. jejuni in HT-29/B6 cells. Furthermore, potential signal sensing by Cj1492c seems to lead to limiting attachment and hence internalisation of C. jejuni. However, as the intracellular survival capacities are reduced, we suggest that signal sensing by Cj1492c impacts several processes related to pathogenicity of C. jejuni.
Collapse
Affiliation(s)
- De Xi
- 1Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Thomas Alter
- 2Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Ralf Einspanier
- 1Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Soroush Sharbati
- 1Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Greta Gölz
- 2Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
27
|
Askoura M, Youns M, Halim Hegazy WA. Investigating the influence of iron on Campylobacter jejuni transcriptome in response to acid stress. Microb Pathog 2019; 138:103777. [PMID: 31600543 DOI: 10.1016/j.micpath.2019.103777] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/12/2023]
Abstract
The capacity of C. jejuni to survive acid and capture iron is a requirement for C. jejuni to colonize host and cause infection. Herein, we aimed to characterize the influence of iron on Campylobacter acid response. The capacity of C. jejuni to survive acid stress was greatly enhanced in presence of iron. Moreover, the acid stimulon of C. jejuni under iron-enriched condition was investigated using the microarray approach. A total of 211 genes were differentially expressed in C. jejuni. Differentially expressed genes were included in 21 functional groups that control Campylobacter physiology. C. jejuni induced expression of many genes that were previously shown to be important for Campylobacter acid survival such as flagella biogenesis genes and genes involved in cell envelope biogenesis. The microarray results were validated using RT-qPCR where there was a great similarity in data obtained by both techniques. Finally, comparative analysis with previous studies showed that acid exposure induced expression of many genes in C. jejuni that were not detected in other studies such as genes encoding for the heat shock proteins GroEL and GroES. Current data could help us understand the mechanism of C. jejuni acid survival and consequently overcome infection by this enteric pathogen.
Collapse
Affiliation(s)
- Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Mahmoud Youns
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt; Department of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, Germany.
| | - Wael Abdel Halim Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; Department of Pharmaceutics, College of Pharmacy, University of Florida, USA.
| |
Collapse
|
28
|
Negretti NM, Clair G, Talukdar PK, Gourley CR, Huynh S, Adkins JN, Parker CT, Corneau CM, Konkel ME. Campylobacter jejuni Demonstrates Conserved Proteomic and Transcriptomic Responses When Co-cultured With Human INT 407 and Caco-2 Epithelial Cells. Front Microbiol 2019; 10:755. [PMID: 31031730 PMCID: PMC6470190 DOI: 10.3389/fmicb.2019.00755] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/26/2019] [Indexed: 12/21/2022] Open
Abstract
Major foodborne bacterial pathogens, such as Campylobacter jejuni, have devised complex strategies to establish and foster intestinal infections. For more than two decades, researchers have used immortalized cell lines derived from human intestinal tissue to dissect C. jejuni-host cell interactions. Known from these studies is that C. jejuni virulence is multifactorial, requiring a coordinated response to produce virulence factors that facilitate host cell interactions. This study was initiated to identify C. jejuni proteins that contribute to adaptation to the host cell environment and cellular invasion. We demonstrated that C. jejuni responds to INT 407 and Caco-2 cells in a similar fashion at the cellular and molecular levels. Active protein synthesis was found to be required for C. jejuni to maximally invade these host cells. Proteomic and transcriptomic approaches were then used to define the protein and gene expression profiles of C. jejuni co-cultured with cells. By focusing on those genes showing increased expression by C. jejuni when co-cultured with epithelial cells, we discovered that C. jejuni quickly adapts to co-culture with epithelial cells by synthesizing gene products that enable it to acquire specific amino acids for growth, scavenge for inorganic molecules including iron, resist reactive oxygen/nitrogen species, and promote host cell interactions. Based on these findings, we selected a subset of the genes involved in chemotaxis and the regulation of flagellar assembly and generated C. jejuni deletion mutants for phenotypic analysis. Binding and internalization assays revealed significant differences in the interaction of C. jejuni chemotaxis and flagellar regulatory mutants. The identification of genes involved in C. jejuni adaptation to culture with host cells provides new insights into the infection process.
Collapse
Affiliation(s)
- Nicholas M. Negretti
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Geremy Clair
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Prabhat K. Talukdar
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Christopher R. Gourley
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Steven Huynh
- Produce Safety and Microbiology, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Joshua N. Adkins
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Craig T. Parker
- Produce Safety and Microbiology, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Colby M. Corneau
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
29
|
The bile salt glycocholate induces global changes in gene and protein expression and activates virulence in enterotoxigenic Escherichia coli. Sci Rep 2019; 9:108. [PMID: 30643184 PMCID: PMC6331568 DOI: 10.1038/s41598-018-36414-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 11/20/2018] [Indexed: 12/23/2022] Open
Abstract
Pathogenic bacteria use specific host factors to modulate virulence and stress responses during infection. We found previously that the host factor bile and the bile component glyco-conjugated cholate (NaGCH, sodium glycocholate) upregulate the colonization factor CS5 in enterotoxigenic Escherichia coli (ETEC). To further understand the global regulatory effects of bile and NaGCH, we performed Illumina RNA-Seq and found that crude bile and NaGCH altered the expression of 61 genes in CS5 + CS6 ETEC isolates. The most striking finding was high induction of the CS5 operon (csfA-F), its putative transcription factor csvR, and the putative ETEC virulence factor cexE. iTRAQ-coupled LC-MS/MS proteomic analyses verified induction of the plasmid-borne virulence proteins CS5 and CexE and also showed that NaGCH affected the expression of bacterial membrane proteins. Furthermore, NaGCH induced bacteria to aggregate, increased their adherence to epithelial cells, and reduced their motility. Our results indicate that CS5 + CS6 ETEC use NaGCH present in the small intestine as a signal to initiate colonization of the epithelium.
Collapse
|
30
|
Taheri N, Mahmud AKMF, Sandblad L, Fällman M, Wai SN, Fahlgren A. Campylobacter jejuni bile exposure influences outer membrane vesicles protein content and bacterial interaction with epithelial cells. Sci Rep 2018; 8:16996. [PMID: 30451931 PMCID: PMC6242867 DOI: 10.1038/s41598-018-35409-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/31/2018] [Indexed: 12/19/2022] Open
Abstract
Campylobacter jejuni is a prevalent human pathogen and a major cause of bacterial gastroenteritis in the world. In humans, C. jejuni colonizes the intestinal tract and its tolerance to bile is crucial for bacteria to survive and establish infection. C. jejuni produces outer membrane vesicles (OMVs) which have been suggested to be involved in virulence. In this study, the proteome composition of C. jejuni OMVs in response to low concentration of bile was investigated. We showed that exposure of C. jejuni to low concentrations of bile, similar to the concentration in cecum, induced significant changes in the protein profile of OMVs released during growth without affecting the protein profile of the bacteria. This suggests that bile influences a selective packing of the OMVs after bacterial exposure to low bile. A low concentration of bile was found to increase bacterial adhesion to intestinal epithelial cells, likely by an enhanced hydrophobicity of the cell membrane following exposure to bile. The increased bacterial adhesiveness was not associated with increased invasion, instead bile exposure decreased C. jejuni invasion. OMVs released from bacteria upon exposure to low bile showed to increase both adhesion and invasion of non-bile-exposed bacteria into intestinal epithelial cells. These findings suggest that C. jejuni in environments with low concentrations of bile produce OMVs that facilitates colonization of the bacteria, and this could potentially contribute to virulence of C. jejuni in the gut.
Collapse
Affiliation(s)
- Nayyer Taheri
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden
| | - A K M Firoj Mahmud
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umea, Sweden
| | - Linda Sandblad
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umea, Sweden
| | - Maria Fällman
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umea, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umea, Sweden
| | - Anna Fahlgren
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden. .,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden.
| |
Collapse
|
31
|
Masanta WO, Zautner AE, Lugert R, Bohne W, Gross U, Leha A, Dakna M, Lenz C. Proteome Profiling by Label-Free Mass Spectrometry Reveals Differentiated Response of Campylobacter jejuni 81-176 to Sublethal Concentrations of Bile Acids. Proteomics Clin Appl 2018; 13:e1800083. [PMID: 30246935 PMCID: PMC6585709 DOI: 10.1002/prca.201800083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/27/2018] [Indexed: 11/18/2022]
Abstract
Purpose Bile acids are crucial components of the intestinal antimicrobial defense and represent a significant stress factor for enteric pathogens. Adaptation processes of Campylobacter jejuni to this hostile environment are analyzed in this study by a proteomic approach. Experimental design Proteome profiling by label‐free mass spectrometry (SWATH‐MS) has been used to characterize the adaptation of C. jejuni to sublethal concentrations of seven bile acids. Results The bile acids with the lowest inhibitory concentration (IC50), deoxycholic and chenodeoxycholic acid, induce the most significant proteome changes. Overall a downregulation of all basic biosynthetic pathways and a general decrease in the transcription machinery are found. Concurrently, an induction of factors involved in detoxification of reactive oxygen species, protein folding, and bile acid exporting efflux pumps is detected. Exposure to deoxycholic and chenodeoxycholic acid results in an increased expression of components of the more energy‐efficient aerobic respiration pathway, while the anaerobic branches of the electron transport chain are down‐expressed. Conclusions and clinical relevance The results show that C. jejuni has a differentiated system of adaptation to bile acid stresses. The findings enhance the understanding of the pathogenesis of campylobacteriosis, especially for survival of C. jejuni in the human intestine, and may provide clues to future medical treatment.
Collapse
Affiliation(s)
- Wycliffe O Masanta
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany.,Department of Medical Microbiology, Maseno University Medical School, Private Bag, 40105 Maseno, Kenya
| | - Andreas E Zautner
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Raimond Lugert
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Wolfgang Bohne
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Uwe Gross
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Andreas Leha
- Department of Medical Statistics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Mohammed Dakna
- Department of Medical Statistics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Institute of Clinical Chemistry, Bioanalytics, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
32
|
Horn N, Bhunia AK. Food-Associated Stress Primes Foodborne Pathogens for the Gastrointestinal Phase of Infection. Front Microbiol 2018; 9:1962. [PMID: 30190712 PMCID: PMC6115488 DOI: 10.3389/fmicb.2018.01962] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
The incidence of foodborne outbreaks and product recalls is on the rise. The ability of the pathogen to adapt and survive under stressful environments of food processing and the host gastrointestinal tract may contribute to increasing foodborne illnesses. In the host, multiple factors such as bacteriolytic enzymes, acidic pH, bile, resident microflora, antimicrobial peptides, and innate and adaptive immune responses are essential in eliminating pathogens. Likewise, food processing and preservation techniques are employed to eliminate or reduce human pathogens load in food. However, sub-lethal processing or preservation treatments may evoke bacterial coping mechanisms that alter gene expression, specifically and broadly, resulting in resistance to the bactericidal insults. Furthermore, environmentally cued changes in gene expression can lead to changes in bacterial adhesion, colonization, invasion, and toxin production that contribute to pathogen virulence. The shared microenvironment between the food preservation techniques and the host gastrointestinal tract drives microbes to adapt to the stressful environment, resulting in enhanced virulence and infectivity during a foodborne illness episode.
Collapse
Affiliation(s)
- Nathan Horn
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
33
|
Urdaneta V, Casadesús J. Adaptation of Salmonella enterica to bile: essential role of AcrAB-mediated efflux. Environ Microbiol 2018; 20:1405-1418. [PMID: 29349886 DOI: 10.1111/1462-2920.14047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 12/25/2022]
Abstract
Adaptation to bile is the ability to endure the lethal effects of bile salts after growth on sublethal concentrations. Surveys of adaptation to bile in Salmonella enterica ser. Tyhimurium reveal that active efflux is essential for adaptation while other bacterial functions involved in bile resistance are not. Among S. enterica mutants lacking one or more efflux systems, only strains lacking AcrAB are unable to adapt, thus revealing an essential role for AcrAB. Transcription of the acrAB operon is upregulated in the presence of a sublethal concentration of sodium deoxycholate (DOC) while other efflux loci are either weakly upregulated or irresponsive. Upregulation of acrAB transcription is strong during exponential growth, and weak in stationary cultures. Single cell analysis of ethidium bromide accumulation indicates that DOC-induced AcrAB-mediated efflux occurs in both exponential and stationary cultures. Upregulation of acrAB expression may thus be crucial at early stages of adaptation, while sustained AcrAB activity may be sufficient to confer bile resistance in nondividing cells.
Collapse
Affiliation(s)
- Verónica Urdaneta
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Sevilla, Spain
| |
Collapse
|
34
|
Elmi A, Dorey A, Watson E, Jagatia H, Inglis NF, Gundogdu O, Bajaj-Elliott M, Wren BW, Smith DGE, Dorrell N. The bile salt sodium taurocholate induces Campylobacter jejuni outer membrane vesicle production and increases OMV-associated proteolytic activity. Cell Microbiol 2017; 20. [PMID: 29205766 DOI: 10.1111/cmi.12814] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
Abstract
Campylobacter jejuni, the leading cause of bacterial acute gastroenteritis worldwide, secretes an arsenal of virulence-associated proteins within outer membrane vesicles (OMVs). C. jejuni OMVs contain three serine proteases (HtrA, Cj0511, and Cj1365c) that cleave the intestinal epithelial cell (IEC) tight and adherens junction proteins occludin and E-cadherin, promoting enhanced C. jejuni adhesion to and invasion of IECs. C. jejuni OMVs also induce IECs innate immune responses. The bile salt sodium taurocholate (ST) is sensed as a host signal to coordinate the activation of virulence-associated genes in the enteric pathogen Vibrio cholerae. In this study, the effect of ST on C. jejuni OMVs was investigated. Physiological concentrations of ST do not have an inhibitory effect on C. jejuni growth until the early stationary phase. Coculture of C. jejuni with 0.1% or 0.2% (w/v) ST stimulates OMV production, increasing both lipid and protein concentrations. C. jejuni ST-OMVs possess increased proteolytic activity and exhibit a different protein profile compared to OMVs isolated in the absence of ST. ST-OMVs exhibit enhanced cytotoxicity and immunogenicity to T84 IECs and enhanced killing of Galleria mellonella larvae. ST increases the level of mRNA transcripts of the OMVs-associated serine protease genes and the cdtABC operon that encodes the cytolethal distending toxin. Coculture with ST significantly enhances the OMVs-induced cleavage of E-cadherin and occludin. C. jejuni OMVs also cleave the major endoplasmic reticulum chaperone protein BiP/GRP78 and this activity is associated with the Cj1365c protease. These data suggest that C. jejuni responds to the presence of physiological concentrations of the bile salt ST that increases OMV production and the synthesis of virulence-associated factors that are secreted within the OMVs. We propose that these events contribute to pathogenesis.
Collapse
Affiliation(s)
- Abdi Elmi
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Amber Dorey
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Heena Jagatia
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ozan Gundogdu
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Mona Bajaj-Elliott
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, UK
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - David G E Smith
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Nick Dorrell
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
35
|
Thibodeau A, Fravalo P, Perron A, Lewandowski SL, Letellier A. Production and characterization of anti-Campylobacter jejuni IgY derived from egg yolks. Acta Vet Scand 2017; 59:80. [PMID: 29208016 PMCID: PMC5717825 DOI: 10.1186/s13028-017-0346-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/29/2017] [Indexed: 01/29/2023] Open
Abstract
Background Campylobacter jejuni is a major cause of foodborne disease having chickens as an important reservoir. Its control at the farm would lower the contamination of the final products and therefore also lower the risk of transmission to humans. At the farm, C. jejuni is rarely found in chickens before they reach 2 weeks of age. Past studies have shown that maternal antibodies could hamper C. jejuni gut colonization. The objective of this study was to compare protocols to use in order to produce anti-C. jejuni antibodies derived from egg yolks in the perspective to be used as feed additives for the control of chicken C. jejuni colonization. Laying hens were naturally contaminated with four well-characterized strains or injected with either outer membrane proteins or formalin-killed whole bacteria derived from these same strains. Eggs were collected and IgYs present in the yolks were extracted. The amount and the specificity of the recovered antibodies were characterized. Results It was observed that injection yielded eggs with superior concentrations of both total and anti-C. jejuni antibodies. Equivalent performances for antibodies recovered from all protocols were observed for the ability of the antibodies to agglutinate the live C. jejuni homologous strains, to hinder their motility or to lyse the bacteria. Western blot analyses showed that proteins from all strains could be recognized by all IgY extracts. All these characteristics were strain specific. The characterization assays were also made for heterologous strains and weaker results were observed when compared to the homologous strains. Conclusions Based on these results, only an IgY quantitative based selection can be made in regards to which protocol would give the best anti-C. jejuni IgY enriched egg-yolks as all tested protocols were equivalent in terms of the recovered antibody ability to recognized the tested C. jejuni strains.
Collapse
|
36
|
The food-borne pathogen Campylobacter jejuni responds to the bile salt deoxycholate with countermeasures to reactive oxygen species. Sci Rep 2017; 7:15455. [PMID: 29133896 PMCID: PMC5684402 DOI: 10.1038/s41598-017-15379-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022] Open
Abstract
Bile plays an important role in digestion, absorption of fats, and the excretion of waste products, while concurrently providing a critical barrier against colonization by harmful bacteria. Previous studies have demonstrated that gut pathogens react to bile by adapting their protein synthesis. The ability of pathogens to respond to bile is remarkably complex and still incompletely understood. Here we show that Campylobacter jejuni, a leading bacterial cause of human diarrheal illness worldwide, responds to deoxycholate, a component of bile, by altering global gene transcription in a manner consistent with a strategy to mitigate exposure to reactive oxygen stress. More specifically, continuous growth of C. jejuni in deoxycholate was found to: 1) induce the production of reactive oxygen species (ROS); 2) decrease succinate dehydrogenase activity (complex II of the electron transport chain); 3) increase catalase activity that is involved in H2O2 breakdown; and 4) result in DNA strand breaks. Congruently, the addition of 4-hydroxy-TEMPO (TEMPOL), a superoxide dismutase mimic that reacts with superoxide, rescued the growth of C. jejuni cultured in the presence of deoxycholate. We postulate that continuous exposure of a number of enteric pathogens to deoxycholate stimulates a conserved survival response to this stressor.
Collapse
|
37
|
Urdaneta V, Casadesús J. Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Front Med (Lausanne) 2017; 4:163. [PMID: 29043249 PMCID: PMC5632352 DOI: 10.3389/fmed.2017.00163] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/19/2017] [Indexed: 12/25/2022] Open
Abstract
Bile salts and bacteria have intricate relationships. The composition of the intestinal pool of bile salts is shaped by bacterial metabolism. In turn, bile salts play a role in intestinal homeostasis by controlling the size and the composition of the intestinal microbiota. As a consequence, alteration of the microbiome-bile salt homeostasis can play a role in hepatic and gastrointestinal pathological conditions. Intestinal bacteria use bile salts as environmental signals and in certain cases as nutrients and electron acceptors. However, bile salts are antibacterial compounds that disrupt bacterial membranes, denature proteins, chelate iron and calcium, cause oxidative damage to DNA, and control the expression of eukaryotic genes involved in host defense and immunity. Bacterial species adapted to the mammalian gut are able to endure the antibacterial activities of bile salts by multiple physiological adjustments that include remodeling of the cell envelope and activation of efflux systems and stress responses. Resistance to bile salts permits that certain bile-resistant pathogens can colonize the hepatobiliary tract, and an outstanding example is the chronic infection of the gall bladder by Salmonella enterica. A better understanding of the interactions between bacteria and bile salts may inspire novel therapeutic strategies for gastrointestinal and hepatobiliary diseases that involve microbiome alteration, as well as novel schemes against bacterial infections.
Collapse
Affiliation(s)
- Verónica Urdaneta
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
38
|
Kreuder AJ, Schleining JA, Yaeger M, Zhang Q, Plummer PJ. RNAseq Reveals Complex Response of Campylobacter jejuni to Ovine Bile and In vivo Gallbladder Environment. Front Microbiol 2017; 8:940. [PMID: 28611744 PMCID: PMC5447181 DOI: 10.3389/fmicb.2017.00940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/10/2017] [Indexed: 02/01/2023] Open
Abstract
Colonization of the gallbladder by enteric pathogens such as Salmonella typhi, Listeria monocytogenes, and Campylobacter jejuni is thought to play a key role in transmission and persistence of these important zoonotic agents; however, little is known about the molecular mechanisms that allow for bacterial survival within this harsh environment. Recently, a highly virulent C. jejuni sheep abortion (SA) clone represented by the clinical isolate IA3902 has emerged as the dominant cause for sheep abortion in the United States. Previous studies have indicated that the C. jejuni clone SA can frequently be isolated from the gallbladders of otherwise healthy sheep, suggesting that the gallbladder may serve as an important reservoir for infection. To begin to understand the molecular mechanisms associated with survival in the host gallbladder, C. jejuni IA3902 was exposed for up to 24 h to both the natural ovine host in vivo gallbladder environment, as well as ovine bile in vitro. Following exposure, total RNA was isolated from the bile and high throughput deep sequencing of strand specific rRNA-depleted total RNA was used to characterize the transcriptome of IA3902 under these conditions. Our results demonstrated for the first time the complete transcriptome of C. jejuni IA3902 during exposure to an important host environment, the sheep gallbladder. Exposure to the host environment as compared to in vitro bile alone provided a more robust picture of the complexity of gene regulation required for survival in the host gallbladder. A subset of genes including a large number of protein coding genes as well as seven previously identified non-coding RNAs were confirmed to be differentially expressed within our data, suggesting that they may play a key role in adaptation upon exposure to these conditions. This research provides valuable insights into the molecular mechanisms that may be utilized by C. jejuni IA3902 to colonize and survive within the inhospitable gallbladder environment.
Collapse
Affiliation(s)
- Amanda J Kreuder
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States.,Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Jennifer A Schleining
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Michael Yaeger
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Paul J Plummer
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States.,Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| |
Collapse
|
39
|
Antioxidant activity and influence of Citrus byproduct extracts on adherence and invasion of Campylobacter jejuni and on the relative expression of cadF and ciaB. Food Sci Biotechnol 2017; 26:453-459. [PMID: 30263564 DOI: 10.1007/s10068-017-0062-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/24/2016] [Accepted: 01/12/2017] [Indexed: 10/19/2022] Open
Abstract
Adherence and invasion to cells are the key processes during infection development by Campylobacter jejuni (C. jejuni). In this study, extracts from the byproducts of Citrus limon, Citrus aurantium, and Citrus medica were added to the cultures of C. jejuni, and the adherence and invasion of C. jejuni to HeLa cells and the expression of cadF and ciaB genes were analyzed. The relative expression of the genes was determined by quantitative reverse transcription PCR (qRT-PCR). The antioxidant activity was determined using spectrophotometric methods. Byproduct extracts at subinhibitory concentrations affected the adherence (reduced 2.3 to 99%) and invasion (reduced 71.3 to 99.2%) to the HeLa cells. The expression of cadF and ciaB was reduced from 66 to 99% and from 81 to 99%, respectively. The total phenolic content of the byproducts varied from 92 to 26 mg GAE/g and the total flavonoids varied from 161 to 29.29 mg QE/g. C. aurantium showed the highest percentage of radical scavenging activity (RSA, 90.1). These extracts can prove as effective alternatives for devising new strategies to control Campylobacter infections.
Collapse
|
40
|
Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection. Clin Microbiol Rev 2017; 29:819-36. [PMID: 27464994 DOI: 10.1128/cmr.00031-16] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial pathogens have coevolved with humans in order to efficiently infect, replicate within, and be transmitted to new hosts to ensure survival and a continual infection cycle. For enteric pathogens, the ability to adapt to numerous host factors under the harsh conditions of the gastrointestinal tract is critical for establishing infection. One such host factor readily encountered by enteric bacteria is bile, an innately antimicrobial detergent-like compound essential for digestion and nutrient absorption. Not only have enteric pathogens evolved to resist the bactericidal conditions of bile, but these bacteria also utilize bile as a signal to enhance virulence regulation for efficient infection. This review provides a comprehensive and up-to-date analysis of bile-related research with enteric pathogens. From common responses to the unique expression of specific virulence factors, each pathogen has overcome significant challenges to establish infection in the gastrointestinal tract. Utilization of bile as a signal to modulate virulence factor expression has led to important insights for our understanding of virulence mechanisms for many pathogens. Further research on enteric pathogens exposed to this in vivo signal will benefit therapeutic and vaccine development and ultimately enhance our success at combating such elite pathogens.
Collapse
|
41
|
Analysis of Campylobacter jejuni infection in the gnotobiotic piglet and genome-wide identification of bacterial factors required for infection. Sci Rep 2017; 7:44283. [PMID: 28281647 PMCID: PMC5345035 DOI: 10.1038/srep44283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/06/2017] [Indexed: 12/30/2022] Open
Abstract
To investigate how Campylobacter jejuni causes the clinical symptoms of diarrhoeal disease in humans, use of a relevant animal model is essential. Such a model should mimic the human disease closely in terms of host physiology, incubation period before onset of disease, clinical signs and a comparable outcome of disease. In this study, we used a gnotobiotic piglet model to study determinants of pathogenicity of C. jejuni. In this model, C. jejuni successfully established infection and piglets developed an increased temperature with watery diarrhoea, which was caused by a leaky epithelium and reduced bile re-absorption in the intestines. Further, we assessed the C. jejuni genes required for infection of the porcine gastrointestinal tract utilising a transposon (Tn) mutant library screen. A total of 123 genes of which Tn mutants showed attenuated piglet infection were identified. Our screen highlighted a crucial role for motility and chemotaxis, as well as central metabolism. In addition, Tn mutants of 14 genes displayed enhanced piglet infection. This study gives a unique insight into the mechanisms of C. jejuni disease in terms of host physiology and contributing bacterial factors.
Collapse
|
42
|
Scanlan E, Yu L, Maskell D, Choudhary J, Grant A. A quantitative proteomic screen of the Campylobacter jejuni flagellar-dependent secretome. J Proteomics 2017; 152:181-187. [PMID: 27865792 PMCID: PMC5223770 DOI: 10.1016/j.jprot.2016.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 11/24/2022]
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis in the world. A number of factors are believed to contribute to the ability of C. jejuni to cause disease within the human host including the secretion of non-flagellar proteins via the flagellar type III secretion system (FT3SS). Here for the first time we have utilised quantitative proteomics using stable isotope labelling by amino acids in cell culture (SILAC), and label-free liquid chromatography-mass spectrometry (LC/MS), to compare supernatant samples from C. jejuni M1 wild type and flagella-deficient (flgG mutant) strains to identify putative novel proteins secreted via the FT3SS. Genes encoding proteins that were candidates for flagellar secretion, derived from the LC/MS and SILAC datasets, were deleted. Infection of human CACO-2 tissue culture cells using these mutants resulted in the identification of novel genes required for interactions with these cells. This work has shown for the first time that both CJM1_0791 and CJM1_0395 are dependent on the flagellum for their presence in supernatants from C. jejuni stains M1 and 81-176. BIOLOGICAL SIGNIFICANCE This study provides the most complete description of the Campylobac er jejuni secretome to date. SILAC and label-free proteomics comparing mutants with or without flagella have resulted in the identification of two C. jejuni proteins that are dependent on flagella for their export from the bacterial cell.
Collapse
Affiliation(s)
- Eoin Scanlan
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Lu Yu
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Duncan Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Jyoti Choudhary
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Andrew Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom.
| |
Collapse
|
43
|
Rivera-Cancel G, Orth K. Biochemical basis for activation of virulence genes by bile salts in Vibrio parahaemolyticus. Gut Microbes 2017; 8:366-373. [PMID: 28129014 PMCID: PMC5570421 DOI: 10.1080/19490976.2017.1287655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bile salts act as a stressor to bacteria that transit the intestinal tract. Enteric pathogens have hijacked bile as an intestinal signal to regulate virulence factors. We recently demonstrated that Vibrio parahemolyticus senses bile salts via a heterodimeric receptor formed by the periplasmic domains of inner-membrane proteins VtrA and VtrC. Crystal structures of the periplasmic complex reveal that VtrA and VtrC form a β-barrel that binds bile salts in its hydrophobic interior to activate the VtrA cytoplasmic DNA-binding domain. Proteins with the same domain arrangement as VtrA and VtrC are widespread in Vibrio and related bacteria, where they are involved in regulating virulence and other unknown functions. Here we discuss our findings and review current knowledge on VtrA and VtrC homologs. We propose that signaling by these membrane-bound transcription factors can be advantageous for the regulation of membrane and secretory proteins.
Collapse
Affiliation(s)
- Giomar Rivera-Cancel
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA,CONTACT Kim Orth
| |
Collapse
|
44
|
Diseases of the Alimentary Tract. Vet Med (Auckl) 2017. [PMCID: PMC7167529 DOI: 10.1016/b978-0-7020-5246-0.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Calcium Enhances Bile Salt-Dependent Virulence Activation in Vibrio cholerae. Infect Immun 2016; 85:IAI.00707-16. [PMID: 27849180 DOI: 10.1128/iai.00707-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/04/2016] [Indexed: 12/17/2022] Open
Abstract
Vibrio cholerae is the causative bacteria of the diarrheal disease cholera, but it also persists in aquatic environments, where it displays an expression profile that is distinct from that during infection. Upon entry into the host, a tightly regulated circuit coordinates the induction of two major virulence factors: cholera toxin and a toxin-coregulated pilus (TCP). It has been shown that a set of bile salts, including taurocholate, serve as host signals to activate V. cholerae virulence through inducing the activity of the transmembrane virulence regulator TcpP. In this study, we investigated the role of calcium, an abundant mental ion in the gut, in the regulation of virulence. We show that whereas Ca2+ alone does not affect virulence, Ca2+ enhances bile salt-dependent virulence activation for V. cholerae The induction of TCP by murine intestinal contents is counteracted when Ca2+ is depleted by the high-affinity calcium chelator EGTA, suggesting that the calcium present in the gut is a relevant signal for V. cholerae virulence induction in vivo We further show that Ca2+ enhances virulence by promoting bile salt-induced TcpP-TcpP interaction. Moreover, fluorescence recovery after photobleaching (FRAP) analysis demonstrated that exposure to bile salts and Ca2+ together decreases the recovery rate for fluorescently labeled TcpP, but not for another inner membrane protein (TatA). Together, these data support a model in which physiological levels of Ca2+ may result in altered bile salt-induced TcpP protein movement and activity, ultimately leading to an increased expression of virulence.
Collapse
|
46
|
Hay AJ, Zhu J. In Sickness and in Health: The Relationships Between Bacteria and Bile in the Human Gut. ADVANCES IN APPLIED MICROBIOLOGY 2016; 96:43-64. [PMID: 27565580 DOI: 10.1016/bs.aambs.2016.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Colonization of a human host with a commensal microbiota has a complex interaction in which bacterial communities provide numerous health benefits to the host. An equilibrium between host and microbiota is kept in check with the help of biliary secretions by the host. Bile, composed primarily of bile salts, promotes digestion. It also provides a barrier between host and bacteria. After bile salts are synthesized in the liver, they are stored in the gallbladder to be released after food intake. The set of host-secreted bile salts is modified by the resident bacteria. Because bile salts are toxic to bacteria, an equilibrium of modified bile salts is reached that allows commensal bacteria to survive, yet rebuffs invading pathogens. In addition to direct toxic effects on cells, bile salts maintain homeostasis as signaling molecules, tuning the immune system. To cause disease, gram-negative pathogenic bacteria have shared strategies to survive this harsh environment. Through exclusion of bile, efflux of bile, and repair of bile-induced damage, these pathogens can successfully disrupt and outcompete the microbiota to activate virulence factors.
Collapse
Affiliation(s)
- A J Hay
- University of Pennsylvania, Philadelphia, PA, United States
| | - J Zhu
- University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
47
|
Skarp CPA, Akinrinade O, Nilsson AJE, Ellström P, Myllykangas S, Rautelin H. Comparative genomics and genome biology of invasive Campylobacter jejuni. Sci Rep 2015; 5:17300. [PMID: 26603914 PMCID: PMC4658567 DOI: 10.1038/srep17300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/28/2015] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni is a major pathogen in bacterial gastroenteritis worldwide and can cause bacteremia in severe cases. C. jejuni is highly structured into clonal lineages of which the ST677CC lineage has been overrepresented among C. jejuni isolates derived from blood. In this study, we characterized the genomes of 31 C. jejuni blood isolates and 24 faecal isolates belonging to ST677CC in order to study the genome biology related to C. jejuni invasiveness. We combined the genome analyses with phenotypical evidence on serum resistance which was associated with phase variation of wcbK; a GDP-mannose 4,6-dehydratase involved in capsular biosynthesis. We also describe the finding of a Type III restriction-modification system unique to the ST-794 sublineage. However, features previously considered to be related to pathogenesis of C. jejuni were either absent or disrupted among our strains. Our results refine the role of capsule features associated with invasive disease and accentuate the possibility of methylation and restriction enzymes in the potential of C. jejuni to establish invasive infections. Our findings underline the importance of studying clinically relevant well-characterized bacterial strains in order to understand pathogenesis mechanisms important in human infections.
Collapse
Affiliation(s)
- C. P. A. Skarp
- Department of Medical Sciences, Clinical Microbiology, Uppsala
University, Uppsala, Sweden
| | - O. Akinrinade
- Institute of Clinical Medicine, University of Helsinki,
Helsinki, Finland
- Institute of Biomedicine, University of Helsinki,
Helsinki, Finland
| | - A. J. E. Nilsson
- Department of Medical Sciences, Clinical Microbiology, Uppsala
University, Uppsala, Sweden
| | - P. Ellström
- Department of Medical Sciences, Clinical Microbiology, Uppsala
University, Uppsala, Sweden
| | - S. Myllykangas
- Institute of Biomedicine, University of Helsinki,
Helsinki, Finland
| | - H. Rautelin
- Department of Medical Sciences, Clinical Microbiology, Uppsala
University, Uppsala, Sweden
- Department of Bacteriology and Immunology, University of
Helsinki, Helsinki, Finland
| |
Collapse
|
48
|
Jervis AJ, Butler JA, Wren BW, Linton D. Chromosomal integration vectors allowing flexible expression of foreign genes in Campylobacter jejuni. BMC Microbiol 2015; 15:230. [PMID: 26497958 PMCID: PMC4619491 DOI: 10.1186/s12866-015-0559-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/08/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is a major cause of human gastroenteritis yet there is limited knowledge of how disease is caused. Molecular genetic approaches are vital for research into the virulence mechanisms of this important pathogen. Vectors that allow expression of genes in C. jejuni via recombination onto the chromosome are particularly useful for genetic complementation of insertional knockout mutants and more generally for expression of genes in particular C. jejuni host backgrounds. METHODS A series of three vectors that allow integration of genes onto the C. jejuni chromosome were constructed by standard cloning techniques with expression driven from three different strong promoters. Following integration onto the C. jejuni chromosome expression levels were quantified by fluorescence measurements and cells visualized by fluorescence microscopy. RESULTS We have created plasmid, pCJC1, designed for recombination-mediated delivery of genes onto the C. jejuni chromosome. This plasmid contains a chloramphenicol resistance cassette (cat) with upstream and downstream restriction sites, flanked by regions of the C. jejuni pseudogene Cj0223. Cloning of genes immediately upstream or downstream of the cat gene allows their subsequent introduction onto the C. jejuni chromosome within the pseudogene. Gene expression can be driven from the native gene promoter if included, or alternatively from the cat promoter if the gene is cloned downstream of, and in the same transcriptional orientation as cat. To provide increased and variable expression of genes from the C. jejuni chromosome we modified pCJC1 through incorporation of three relatively strong promoters from the porA, ureI and flaA genes of C. jejuni, Helicobacter pylori and Helicobacter pullorum respectively. These promoters along with their associated ribosome binding sites were cloned upstream of the cat gene on pCJC1 to create plasmids pCJC2, pCJC3 and pCJC4. To test their effectiveness, a green fluorescent protein (gfp) reporter gene was inserted downstream of each of the three promoters and following integration of promoter-gene fusions onto the C. jejuni host chromosome, expression levels were quantified. Expression from the porA promoter produced the highest fluorescence, from flaA intermediate levels and from ureI the lowest. Expression of gfp from the porA promoter enabled visualization by fluorescent microscopy of intracellular C. jejuni cells following invasion of HeLa cells. CONCLUSIONS The plasmids constructed allow stable chromosomal expression of genes in C. jejuni and, depending on the promoter used, different expression levels were obtained making these plasmids useful tools for genetic complementation and high level expression.
Collapse
Affiliation(s)
- Adrian J Jervis
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK.
- Pathogen Molecular Biology Unit, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| | - Jonathan A Butler
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK.
| | - Brendan W Wren
- Pathogen Molecular Biology Unit, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| | - Dennis Linton
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK.
| |
Collapse
|
49
|
Pancreatic amylase is an environmental signal for regulation of biofilm formation and host interaction in Campylobacter jejuni. Infect Immun 2015; 83:4884-95. [PMID: 26438798 DOI: 10.1128/iai.01064-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/30/2015] [Indexed: 01/19/2023] Open
Abstract
Campylobacter jejuni is a commensal bacterium in the intestines of animals and birds and a major cause of food-borne gastroenteritis in humans worldwide. Here we show that exposure to pancreatic amylase leads to secretion of an α-dextran by C. jejuni and that a secreted protease, Cj0511, is required. Exposure of C. jejuni to pancreatic amylase promotes biofilm formation in vitro, increases interaction with human epithelial cell lines, increases virulence in the Galleria mellonella infection model, and promotes colonization of the chicken ileum. We also show that exposure to pancreatic amylase protects C. jejuni from stress conditions in vitro, suggesting that the induced α-dextran may be important during transmission between hosts. This is the first evidence that pancreatic amylase functions as an interkingdom signal in an enteric microorganism.
Collapse
|
50
|
Bachmann V, Kostiuk B, Unterweger D, Diaz-Satizabal L, Ogg S, Pukatzki S. Bile Salts Modulate the Mucin-Activated Type VI Secretion System of Pandemic Vibrio cholerae. PLoS Negl Trop Dis 2015; 9:e0004031. [PMID: 26317760 PMCID: PMC4552747 DOI: 10.1371/journal.pntd.0004031] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/04/2015] [Indexed: 01/18/2023] Open
Abstract
The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen’s arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS). This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus) and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection. The type six-secretion system (T6SS) is a molecular syringe that many Gram-negative pathogens use to kill other bacteria, including commensal bacteria of the human gut. We investigated how the environment of the intestine, specifically commensal bacteria, the mucus lining, and bile affect the T6SS of the bacterial pathogen Vibrio cholerae. First, we showed that the mucins, a family of proteins ubiquitously found in the intestine, activate the T6SS thereby allowing V. cholerae to kill other bacteria. Second, we showed that the magnitude of killing is regulated by bile acids. Certain bile acids produced by the host decrease the killing of bacteria by the V. cholerae T6SS. Last, we demonstrated that prominent members of the host microbiota metabolize these bile acids that enhance bacterial killing by V. cholerae into bile acids that diminish the bacterial killing effects of the T6SS. Our study suggests that the gut microbiota is an important first line of defense against bacterial pathogens, and that this line of defense may be impaired in individuals in poor health. Promoting a healthy microbial environment in the gut could play a role in counteracting cholera by reducing the ability of Vibrio cholerae to compete in the gut.
Collapse
Affiliation(s)
- Verena Bachmann
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin Kostiuk
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Unterweger
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Laura Diaz-Satizabal
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen Ogg
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Stefan Pukatzki
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|