1
|
Ahn JH, da Silva Pedrosa M, Lopez LR, Tibbs TN, Jeyachandran JN, Vignieri EE, Rothemich A, Cumming I, Irmscher AD, Haswell CJ, Zamboni WC, Yu YRA, Ellermann M, Denson LA, Arthur JC. Intestinal E. coli-produced yersiniabactin promotes profibrotic macrophages in Crohn's disease. Cell Host Microbe 2025; 33:71-88.e9. [PMID: 39701098 DOI: 10.1016/j.chom.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Inflammatory bowel disease (IBD)-associated fibrosis causes significant morbidity. Mechanisms are poorly understood but implicate the microbiota, especially adherent-invasive Escherichia coli (AIEC). We previously demonstrated that AIEC producing the metallophore yersiniabactin (Ybt) promotes intestinal fibrosis in an IBD mouse model. Since macrophages interpret microbial signals and influence inflammation/tissue remodeling, we hypothesized that Ybt metal sequestration disrupts this process. Here, we show that macrophages are abundant in human IBD-fibrosis tissue and mouse fibrotic lesions, where they co-localize with AIEC. Ybt induces profibrotic gene expression in macrophages via stabilization and nuclear translocation of hypoxia-inducible factor 1-alpha (HIF-1α), a metal-dependent immune regulator. Importantly, Ybt-producing AIEC deplete macrophage intracellular zinc and stabilize HIF-1α through inhibition of zinc-dependent HIF-1α hydroxylation. HIF-1α+ macrophages localize to sites of disease activity in human IBD-fibrosis strictures and mouse fibrotic lesions, highlighting their physiological relevance. Our findings reveal microbiota-mediated metal sequestration as a profibrotic trigger targeting macrophages in the inflamed intestine.
Collapse
Affiliation(s)
- Ju-Hyun Ahn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marlus da Silva Pedrosa
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lacey R Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Taylor N Tibbs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joanna N Jeyachandran
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emily E Vignieri
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Aaron Rothemich
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian Cumming
- Department of Pulmonary and Critical Care Medicine, Duke University, Durham, NC 27710, USA
| | - Alexander D Irmscher
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Corey J Haswell
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C Zamboni
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yen-Rei A Yu
- Department of Pulmonary and Critical Care Medicine, Duke University, Durham, NC 27710, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Melissa Ellermann
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Lee A Denson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Roncarati D, Vannini A, Scarlato V. Temperature sensing and virulence regulation in pathogenic bacteria. Trends Microbiol 2025; 33:66-79. [PMID: 39164134 DOI: 10.1016/j.tim.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
Pathogenic bacteria can detect a variety of environmental signals, including temperature changes. While sudden and significant temperature variations act as danger signals that trigger a protective heat-shock response, minor temperature fluctuations typically signal to the pathogen that it has moved from one environment to another, such as entering a specific niche within a host during infection. These latter temperature fluctuations are utilized by pathogens to coordinate the expression of crucial virulence factors. Here, we elucidate the critical role of temperature in governing the expression of virulence factors in bacterial pathogens. Moreover, we outline the molecular mechanisms used by pathogens to detect temperature fluctuations, focusing on systems that employ proteins and nucleic acids as sensory devices. We also discuss the potential implications and the extent of the risk that climate change poses to human pathogenic diseases.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Andrea Vannini
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Heffernan JR, Wildenthal JA, Tran H, Katumba GL, McCoy WH, Henderson JP. Yersiniabactin is a quorum-sensing autoinducer and siderophore in uropathogenic Escherichia coli. mBio 2024; 15:e0027723. [PMID: 38236035 PMCID: PMC10865836 DOI: 10.1128/mbio.00277-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024] Open
Abstract
Siderophores are secreted ferric ion chelators used to obtain iron in nutrient-limited environmental niches, including human hosts. While all Escherichia coli express the enterobactin (Ent) siderophore system, isolates from patients with urinary tract infections additionally express the genetically distinct yersiniabactin (Ybt) siderophore system. To determine whether the Ent and Ybt systems are functionally redundant for iron uptake, we compared the growth of different isogenic siderophore biosynthetic mutants in the presence of transferrin, a human iron-binding protein. We observed that Ybt expression does not compensate for deficient Ent expression following low-density inoculation. Using transcriptional and product analysis, we found this non-redundancy to be attributable to a density-dependent transcriptional stimulation cycle in which Ybt functions as an autoinducer. These results distinguish the Ybt system as a combined quorum-sensing and siderophore system. These functions may reflect Ybt as a public good within bacterial communities or as an adaptation to confined, subcellular compartments in infected hosts. This combined functionality may contribute to the extraintestinal pathogenic potential of E. coli and related Enterobacterales.IMPORTANCEPatients with urinary tract infections are often infected with Escherichia coli strains carrying adaptations that increase their pathogenic potential. One of these adaptations is the accumulation of multiple siderophore systems, which scavenge iron for nutritional use. While iron uptake is important for bacterial growth, the increased metabolic costs of siderophore production could diminish bacterial fitness during infections. In a siderophore-dependent growth condition, we show that the virulence-associated yersiniabactin siderophore system in uropathogenic E. coli is not redundant with the ubiquitous E. coli enterobactin system. This arises not from differences in iron-scavenging activity but because yersiniabactin is preferentially expressed during bacterial crowding, leaving bacteria dependent upon enterobactin for growth at low cell density. Notably, this regulatory mode arises because yersiniabactin stimulates its own expression, acting as an autoinducer in a previously unappreciated quorum-sensing system. This unexpected result connects quorum-sensing with pathogenic potential in E. coli and related Enterobacterales.
Collapse
Affiliation(s)
- James R. Heffernan
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John A. Wildenthal
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hung Tran
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - George L. Katumba
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - William H. McCoy
- Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey P. Henderson
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Bennasar-Figueras A. The Natural and Clinical History of Plague: From the Ancient Pandemics to Modern Insights. Microorganisms 2024; 12:146. [PMID: 38257973 PMCID: PMC10818976 DOI: 10.3390/microorganisms12010146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The human pathogen Yersinia pestis is responsible for bubonic, septicemic, and pneumonic plague. A deeply comprehensive overview of its historical context, bacteriological characteristics, genomic analysis based on ancient DNA (aDNA) and modern strains, and its impact on historical and actual human populations, is explored. The results from multiple studies have been synthesized to investigate the origins of plague, its transmission, and effects on different populations. Additionally, molecular interactions of Y. pestis, from its evolutionary origins to its adaptation to flea-born transmission, and its impact on human and wild populations are considered. The characteristic combinations of aDNA patterns, which plays a decisive role in the reconstruction and analysis of ancient genomes, are reviewed. Bioinformatics is fundamental in identifying specific Y. pestis lineages, and automated pipelines are among the valuable tools in implementing such studies. Plague, which remains among human history's most lethal infectious diseases, but also other zoonotic diseases, requires the continuous investigation of plague topics. This can be achieved by improving molecular and genetic screening of animal populations, identifying ecological and social determinants of outbreaks, increasing interdisciplinary collaborations among scientists and public healthcare providers, and continued research into the characterization, diagnosis, and treatment of these diseases.
Collapse
Affiliation(s)
- Antoni Bennasar-Figueras
- Microbiologia—Departament de Biologia, Universitat de les Illes Balears (UIB), Campus UIB, Carretera de Valldemossa, Km 7.5, 07122 Palma de Mallorca, Spain; ; Tel.: +34-971172778
- Facultat de Medicina, Hospital Universitari Son Espases (HUSE), Universitat de les Illes Balears (UIB), Carretera de Valldemossa, 79, 07122 Palma de Mallorca, Spain
| |
Collapse
|
5
|
Diamant I, Adani B, Sylman M, Rahav G, Gal-Mor O. The transcriptional regulation of the horizontally acquired iron uptake system, yersiniabactin and its contribution to oxidative stress tolerance and pathogenicity of globally emerging salmonella strains. Gut Microbes 2024; 16:2369339. [PMID: 38962965 PMCID: PMC11225919 DOI: 10.1080/19490976.2024.2369339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
The bacterial species Salmonella enterica (S. enterica) is a highly diverse pathogen containing more than 2600 distinct serovars, which can infect a wide range of animal and human hosts. Recent global emergence of multidrug resistant strains, from serovars Infantis and Muenchen is associated with acquisition of the epidemic megaplasmid, pESI that augments antimicrobial resistance and pathogenicity. One of the main pESI's virulence factors is the potent iron uptake system, yersiniabactin encoded by fyuA, irp2-irp1-ybtUTE, ybtA, and ybtPQXS gene cluster. Here we show that yersiniabactin, has an underappreciated distribution among different S. enterica serovars and subspecies, integrated in their chromosome or carried by different conjugative plasmids, including pESI. While the genetic organization and the coding sequence of the yersiniabactin genes are generally conserved, a 201-bp insertion sequence upstream to ybtA, was identified in pESI. Despite this insertion, pESI-encoded yersiniabactin is regulated by YbtA and the ancestral Ferric Uptake Regulator (Fur), which binds directly to the ybtA and irp2 promoters. Furthermore, we show that yersiniabactin genes are specifically induced during the mid-late logarithmic growth phase and in response to iron-starvation or hydrogen peroxide. Concurring, yersiniabactin was found to play a previously unknown role in oxidative stress tolerance and to enhance intestinal colonization of S. Infantis in mice. These results indicate that yersiniabactin contributes to Salmonella fitness and pathogenicity in vivo and is likely to play a role in the rapid dissemination of pESI among globally emerging Salmonella lineages.
Collapse
Affiliation(s)
- Imbar Diamant
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Adani
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Meir Sylman
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Xiao L, Jin J, Song K, Qian X, Wu Y, Sun Z, Xiong Z, Li Y, Zhao Y, Shen L, Cui Y, Yao W, Cui Y, Song Y. Regulatory Functions of PurR in Yersinia pestis: Orchestrating Diverse Biological Activities. Microorganisms 2023; 11:2801. [PMID: 38004812 PMCID: PMC10673613 DOI: 10.3390/microorganisms11112801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The bacterium Yersinia pestis has developed various strategies to sense and respond to the complex stresses encountered during its transmission and pathogenic processes. PurR is a common transcriptional regulator of purine biosynthesis among microorganisms, and it modulates the transcription level of the pur operon to suppress the production of hypoxanthine nucleotide (IMP). This study aims to understand the functions and regulatory mechanisms of purR in Y. pestis. Firstly, we constructed a purR knockout mutant of Y. pestis strain 201 and compared certain phenotypes of the null mutant (201-ΔpurR) and the wild-type strain (201-WT). The results show that deleting purR has no significant impact on the biofilm formation, growth rate, or viability of Y. pestis under different stress conditions (heat and cold shock, high salinity, and hyperosmotic pressure). Although the cytotoxicity of the purR knockout mutant on HeLa and 293 cells is reduced, the animal-challenging test found no difference of the virulence in mice between 201-ΔpurR and 201-WT. Furthermore, RNA-seq and EMSA analyses demonstrate that PurR binds to the promoter regions of at least 15 genes in Y. pestis strain 201, primarily involved in purine biosynthesis, along with others not previously observed in other bacteria. Additionally, RNA-seq results suggest the presence of 11 potential operons, including a newly identified co-transcriptional T6SS cluster. Thus, aside from its role as a regulator of purine biosynthesis, purR in Y. pestis may have additional regulatory functions.
Collapse
Affiliation(s)
- Liting Xiao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Junyan Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Xiuwei Qian
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Zhulin Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Ziyao Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yanbing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yanting Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Leiming Shen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yiming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Wenwu Yao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yujun Cui
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yajun Song
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| |
Collapse
|
7
|
Chaaban T, Mohsen Y, Ezzeddine Z, Ghssein G. Overview of Yersinia pestis Metallophores: Yersiniabactin and Yersinopine. BIOLOGY 2023; 12:598. [PMID: 37106798 PMCID: PMC10136090 DOI: 10.3390/biology12040598] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
The pathogenic anaerobic bacteria Yersinia pestis (Y. pestis), which is well known as the plague causative agent, has the ability to escape or inhibit innate immune system responses, which can result in host death even before the activation of adaptive responses. Bites from infected fleas in nature transmit Y. pestis between mammalian hosts causing bubonic plague. It was recognized that a host's ability to retain iron is essential in fighting invading pathogens. To proliferate during infection, Y. pestis, like most bacteria, has various iron transporters that enable it to acquire iron from its hosts. The siderophore-dependent iron transport system was found to be crucial for the pathogenesis of this bacterium. Siderophores are low-molecular-weight metabolites with a high affinity for Fe3+. These compounds are produced in the surrounding environment to chelate iron. The siderophore secreted by Y. pestis is yersiniabactin (Ybt). Another metallophore produced by this bacterium, yersinopine, is of the opine type and shows similarities with both staphylopine and pseudopaline produced by Staphylococcus aureus and Pseudomonas aeruginosa, respectively. This paper sheds light on the most important aspects of the two Y. pestis metallophores as well as aerobactin a siderophore no longer secreted by this bacterium due to frameshift mutation in its genome.
Collapse
Affiliation(s)
- Taghrid Chaaban
- Nursing Sciences Department, Faculty of Public Health, Islamic University of Lebanon, Khalde P.O. Box 30014, Lebanon
- Nursing Sciences Research Chair, Laboratory Educations and Health Practices (LEPS), (EA 3412), UFR SMBH, University Paris 13, Sorbonne Paris Cite, F-93017 Bobigny, France
| | - Yehya Mohsen
- Department of Medical Laboratory Technology, College of Health and Medical Technologies, Al-Ayen University, Nasiriyah 64001, Iraq
| | - Zeinab Ezzeddine
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
- Faculty of Sciences V, Lebanese University, Nabatieh 1700, Lebanon
| | - Ghassan Ghssein
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
- Faculty of Sciences V, Lebanese University, Nabatieh 1700, Lebanon
| |
Collapse
|
8
|
Heffernan JR, Katumba GL, McCoy WH, Henderson JP. Yersiniabactin is a quorum sensing autoinducer and siderophore in uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527953. [PMID: 36798367 PMCID: PMC9934619 DOI: 10.1101/2023.02.09.527953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Siderophores are secreted ferric ion chelators used to obtain iron in nutrient-limited environmental niches, including human hosts. While all E. coli encode the enterobactin (Ent) siderophore system, isolates from patients with urinary tract infections additionally encode the genetically distinct yersiniabactin (Ybt) siderophore system. To determine whether the Ent and Ybt systems are functionally redundant for iron uptake, we compared growth of different isogenic siderophore biosynthesis mutants in the presence of transferrin, a human iron-binding protein. We observed that the Ybt system does not compensate for loss of the Ent system during siderophore-dependent, low density growth. Using transcriptional and product analysis, we found that this non-redundancy is attributable to a density-dependent transcriptional stimulation cycle in which Ybt assume an additional autoinducer function. These results distinguish the Ybt system as a combined quorum-sensing and siderophore system. These functions may reflect Ybt as a public good within bacterial communities or as an adaptation to confined, subcellular compartments in infected hosts. The efficiency of this arrangement may contribute to the extraintestinal pathogenic potential of E. coli and related Enterobacterales. IMPORTANCE Urinary tract infections (UTIs) are one of the most common human bacterial infections encountered by physicians. Adaptations that increase the pathogenic potential of commensal microbes such as E.coli are of great interest. One potential adaptation observed in clinical isolates is accumulation of multiple siderophore systems, which scavenge iron for nutritional use. While iron uptake is important for bacterial growth, the increased metabolic costs of siderophore production could diminish bacterial fitness during infections. In a siderophore-dependent growth conditions, we show that the virulence-associated yersiniabactin siderophore system in uropathogenic E. coli is not redundant with the ubiquitous E. coli enterobactin system. This arises not from differences in iron scavenging activity but because yersiniabactin is preferentially expressed during bacterial crowding, leaving bacteria dependent upon enterobactin for growth at low cell density. Notably, this regulatory mode arises because yersiniabactin stimulates its own expression, acting as an autoinducer in a previously unappreciated quorum-sensing system. This unexpected result connects quorum-sensing with pathogenic potential in E. coli and related Enterobacterales.
Collapse
|
9
|
Liu L, Liu W, He Y, Liu Y, Zhang Y. The cyclic AMP receptor protein (CRP) controls expression of the ferric uptake regulator (Fur) in Yersinia pestis. Can J Microbiol 2022; 68:501-506. [PMID: 35801716 DOI: 10.1139/cjm-2021-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yersinia pestis, the causative agent of plague, is one of the most dangerous pathogens in the world. Both the cyclic AMP receptor protein (CRP) and ferric uptake regulator (Fur) are global regulators that control the expression of a great deal of genes involved in a variety of cellular functions in Y. pestis. In this work, two CRP box-like deoxyribonucleic acid (DNA) sequences were detected in the upstream DNA region of fur, suggesting that the transcription of fur might be directly regulated by CRP in Y. pestis. Thus, transcriptional regulation of fur by CRP was investigated by primer extension, quantitative real-time PCR, LacZ fusion, and electrophoretic mobility shift assays. The results demonstrated that CRP was able to bind the regulatory DNA region of fur to activate its transcription. The data presented here not only suggested that the CRP and Fur regulons were bridged together via the direct regulation of fur by CRP, but also provided us a deeper understanding of the transcriptional regulation of fur in Y. pestis.
Collapse
Affiliation(s)
- Lei Liu
- Department of Transfusion Medicine, General Hospital of Central Theater Command of the PLA, Wuhan 430070, Hubei, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Wanbing Liu
- Department of Transfusion Medicine, General Hospital of Central Theater Command of the PLA, Wuhan 430070, Hubei, China
| | - Yingyu He
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yan Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | | |
Collapse
|
10
|
Katumba GL, Tran H, Henderson JP. The Yersinia High-Pathogenicity Island Encodes a Siderophore-Dependent Copper Response System in Uropathogenic Escherichia coli. mBio 2022; 13:e0239121. [PMID: 35089085 PMCID: PMC8725597 DOI: 10.1128/mbio.02391-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023] Open
Abstract
Siderophores are iron chelators used by microbes to bind and acquire iron, which, once in the cell, inhibits siderophore production through feedback repression mediated by the ferric uptake repressor (Fur). Yersiniabactin (Ybt), a siderophore associated with enhanced pathogenic potential among Enterobacteriaceae, also binds copper ions during human and experimental murine infections. In contrast to iron, we found that extracellular copper ions rapidly and selectively stimulate Ybt production in extraintestinal pathogenic Escherichia coli. The stimulatory pathway requires formation of an extracellular copper-Ybt (Cu(II)-Ybt) complex, internalization of Cu(II)-Ybt entry through the canonical TonB-dependent outer membrane transporter, and Fur-independent transcriptional regulation by the specialized transcription factor YbtA. Dual regulation by iron and copper is consistent with a multifunctional metallophore role for Ybt. Feed-forward regulation is typical of stress responses, implicating Ybt in prevention of, or response to, copper stress during infection pathogenesis. IMPORTANCE Interactions between bacteria and transition metal ions play an important role in encounters between humans and bacteria. Siderophore systems have long been prominent mediators of these interactions. These systems secrete small-molecule chelators that bind oxidized iron(III) and express proteins that specifically recognize and import these complexes as a nutritional iron source. While E. coli and other Enterobacteriaceae secrete enterobactin, clinical isolates often secrete an additional siderophore, yersiniabactin (Ybt), which has been found to also bind copper and other non-iron metal ions. The observation here that an extraintestinal E. coli isolate secretes Ybt in a copper-inducible manner suggests an important gain of function over the enterobactin system. Copper recognition involves using Ybt to bind Cu(II) ions, consistent with a distinctively extracellular mode of copper detection. The resulting Cu(II)-Ybt complex signals upregulation of Ybt biosynthesis genes as a rapid response against potentially toxic extracellular copper ions. The Ybt system is distinguishable from other copper response systems that sense cytosolic and periplasmic copper ions. The Ybt dependence of the copper response presents an implicit feed-forward regulatory scheme that is typical of bacterial stress responses. The distinctive extracellular copper recognition-response functionality of the Ybt system may enhance the pathogenic potential of infection-associated Enterobacteriaceae.
Collapse
Affiliation(s)
- George L. Katumba
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hung Tran
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey P. Henderson
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Gao H, Wang H, Qin Q, Gao Y, Qiu Y, Zhang J, Li J, Lou J, Diao B, Zhang Y, Kan B. Transcriptional regulation of the mannitol phosphotransferase system operon by the ferric uptake regulator (Fur) in Vibrio cholerae El Tor serogroup O1. Res Microbiol 2021; 172:103848. [PMID: 34089838 DOI: 10.1016/j.resmic.2021.103848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022]
Abstract
The phosphoenolpyruvate (PEP): carbohydrate phosphotransferase system (PTS) allows bacteria to use various carbohydrates as energy resources including mannitol. The mannitol-specific PTS transporter in Vibrio cholerae is encoded by the mtlADR operon. Expression of the mtl operon has been shown to be strictly regulated by CRP, MtlS, and MtlR. In the present study, we investigated the regulation of mtlADR by the ferric uptake regulator (Fur). The results showed that Fur binds to the promoter-proximal DNA region of mtlADR to repress its transcription independent of iron, in mannitol-containing growth medium. The capacity for mannitol fermentation was significantly increased in Δfur relative to that of WT for normal and iron-replete growth media. The level of organic acids produced by Δfur was significantly enhanced relative to that produced by the WT strain in the normal and iron-replete media but not in an iron-starved medium. The results provided for a deeper understanding of the regulation of mtlADR in V. cholerae.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Han Wang
- Department of Clinical Diagnostic Centre, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Qin Qin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yue Gao
- First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yue Qiu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jingyun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jing Lou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
12
|
Genome Scale Analysis Reveals IscR Directly and Indirectly Regulates Virulence Factor Genes in Pathogenic Yersinia. mBio 2021; 12:e0063321. [PMID: 34060331 PMCID: PMC8262890 DOI: 10.1128/mbio.00633-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The iron-sulfur cluster coordinating transcription factor IscR is important for the virulence of Yersinia pseudotuberculosis and a number of other bacterial pathogens. However, the IscR regulon has not yet been defined in any organism. To determine the Yersinia IscR regulon and identify IscR-dependent functions important for virulence, we employed chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of Y. pseudotuberculosis expressing or lacking iscR following iron starvation conditions, such as those encountered during infection. We found that IscR binds to the promoters of genes involved in iron homeostasis, reactive oxygen species metabolism, and cell envelope remodeling and regulates expression of these genes in response to iron depletion. Consistent with our previous work, we also found that IscR binds in vivo to the promoter of the Ysc type III secretion system (T3SS) master regulator LcrF, leading to regulation of T3SS genes. Interestingly, comparative genomic analysis suggested over 93% of IscR binding sites were conserved between Y. pseudotuberculosis and the related plague agent Yersinia pestis. Surprisingly, we found that the IscR positively regulated sufABCDSE Fe-S cluster biogenesis pathway was required for T3SS activity. These data suggest that IscR regulates the T3SS in Yersinia through maturation of an Fe-S cluster protein critical for type III secretion, in addition to its known role in activating T3SS genes through LcrF. Altogether, our study shows that iron starvation triggers IscR to coregulate multiple, distinct pathways relevant to promoting bacterial survival during infection.
Collapse
|
13
|
Prudent V, Demarre G, Vazeille E, Wery M, Quenech'Du N, Ravet A, Dauverd-Girault J, van Dijk E, Bringer MA, Descrimes M, Barnich N, Rimsky S, Morillon A, Espéli O. The Crohn's disease-related bacterial strain LF82 assembles biofilm-like communities to protect itself from phagolysosomal attack. Commun Biol 2021; 4:627. [PMID: 34035436 PMCID: PMC8149705 DOI: 10.1038/s42003-021-02161-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/28/2021] [Indexed: 11/09/2022] Open
Abstract
Patients with Crohn's disease exhibit abnormal colonization of the intestine by adherent invasive E. coli (AIEC). They adhere to epithelial cells, colonize them and survive inside macrophages. It appeared recently that AIEC LF82 adaptation to phagolysosomal stress involves a long lag phase in which many LF82 cells become antibiotic tolerant. Later during infection, they proliferate in vacuoles and form colonies harboring dozens of LF82 bacteria. In the present work, we investigated the mechanism sustaining this phase of growth. We found that intracellular LF82 produced an extrabacterial matrix that acts as a biofilm and controls the formation of LF82 intracellular bacterial communities (IBCs) for several days post infection. We revealed the crucial role played by the pathogenicity island encoding the yersiniabactin iron capture system to form IBCs and for optimal LF82 survival. These results illustrate that AIECs use original strategies to establish their replicative niche within macrophages.
Collapse
Affiliation(s)
- Victoria Prudent
- CIRB - Collège de France, CNRS-UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Gaëlle Demarre
- CIRB - Collège de France, CNRS-UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Emilie Vazeille
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte. UMR Inserm/ Université de Clermont -Auvergne U1071, USC INRA 2018, Clermont, Ferrand, France
| | - Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne University, CNRS UMR 3244, Paris, France
| | - Nicole Quenech'Du
- CIRB - Collège de France, CNRS-UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Antinéa Ravet
- CIRB - Collège de France, CNRS-UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Julie Dauverd-Girault
- CIRB - Collège de France, CNRS-UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Erwin van Dijk
- Next-Generation Sequencing Service - I2BC, I2BC-CNRS, Gif-sur-Yvette, France
| | - Marie-Agnès Bringer
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte. UMR Inserm/ Université de Clermont -Auvergne U1071, USC INRA 2018, Clermont, Ferrand, France
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Marc Descrimes
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne University, CNRS UMR 3244, Paris, France
| | - Nicolas Barnich
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte. UMR Inserm/ Université de Clermont -Auvergne U1071, USC INRA 2018, Clermont, Ferrand, France
| | - Sylvie Rimsky
- CIRB - Collège de France, CNRS-UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne University, CNRS UMR 3244, Paris, France
| | - Olivier Espéli
- CIRB - Collège de France, CNRS-UMR7241, INSERM U1050, PSL Research University, Paris, France.
| |
Collapse
|
14
|
Sarasa-Buisan C, Guio J, Broset E, Peleato ML, Fillat MF, Sevilla E. FurC (PerR) from Anabaena sp. PCC7120: a versatile transcriptional regulator engaged in the regulatory network of heterocyst development and nitrogen fixation. Environ Microbiol 2021; 24:566-582. [PMID: 33938105 DOI: 10.1111/1462-2920.15552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
FurC (PerR) from Anabaena sp. PCC7120 was previously described as a key transcriptional regulator involved in setting off the oxidative stress response. In the last years, the cross-talk between oxidative stress, iron homeostasis and nitrogen metabolism is becoming more and more evident. In this work, the transcriptome of a furC-overexpressing strain was compared with that of a wild-type strain under both standard and nitrogen-deficiency conditions. The results showed that the overexpression of furC deregulates genes involved in several categories standing out photosynthesis, iron transport and nitrogen metabolism. The novel FurC-direct targets included some regulatory elements that control heterocyst development (hetZ and asr1734), genes directly involved in the heterocyst envelope formation (devBCA and hepC) and genes which participate in the nitrogen fixation process (nifHDK and nifH2, rbrA rubrerythrin and xisHI excisionase). Likewise, furC overexpression notably impacts the mRNA levels of patA encoding a key protein in the heterocyst pattern formation. The relevance of FurC in these processes is bringing out by the fact that the overexpression of furC impairs heterocyst development and cell growth under nitrogen step-down conditions. In summary, this work reveals a new player in the complex regulatory network of heterocyst formation and nitrogen fixation.
Collapse
Affiliation(s)
- Cristina Sarasa-Buisan
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Jorge Guio
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Esther Broset
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - M Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| |
Collapse
|
15
|
Two Polyketides Intertwined in Complex Regulation: Posttranscriptional CsrA-Mediated Control of Colibactin and Yersiniabactin Synthesis in Escherichia coli. mBio 2021; 13:e0381421. [PMID: 35100864 PMCID: PMC8805033 DOI: 10.1128/mbio.03814-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bacteria have to process several levels of gene regulation and coordination of interconnected regulatory networks to ensure the most adequate cellular response to specific growth conditions. Especially, expression of complex and costly fitness and pathogenicity-associated traits is coordinated and tightly regulated at multiple levels. We studied the interconnected regulation of the expression of the colibactin and yersiniabactin polyketide biosynthesis machineries, which are encoded by two pathogenicity islands found in many phylogroup B2 Escherichia coli isolates. Comparative phenotypic and genotypic analyses identified the BarA-UvrY two-component system as an important regulatory element involved in colibactin and yersiniabactin expression. The carbon storage regulator (Csr) system controls the expression of a wide range of central metabolic and virulence-associated traits. The availability of CsrA, the key translational regulator of the Csr system, depends on BarA-UvrY activity. We employed reporter gene fusions to demonstrate UvrY- and CsrA-dependent expression of the colibactin and yersiniabactin determinants and confirmed a direct interaction of CsrA with the 5' untranslated leader transcripts of representative genes of the colibactin and yersiniabactin operons by RNA electrophoretic mobility shift assays. This posttranscriptional regulation adds an additional level of complexity to control mechanisms of polyketide expression, which is also orchestrated at the level of ferric uptake regulator (Fur)-dependent regulation of transcription and phosphopantetheinyl transferase-dependent activation of polyketide biosynthesis. Our results emphasize the interconnection of iron- and primary metabolism-responsive regulation of colibactin and yersiniabactin expression by the fine-tuned action of different regulatory mechanisms in response to variable environmental signals as a prerequisite for bacterial adaptability, fitness, and pathogenicity in different habitats. IMPORTANCE Secondary metabolite expression is a widespread strategy among bacteria to improve their fitness in habitats where they constantly compete for resources with other bacteria. The production of secondary metabolites is associated with a metabolic and energetic burden. Colibactin and yersiniabactin are two polyketides, which are expressed in concert and promote the virulence of different enterobacterial pathogens. To maximize fitness, they should be expressed only in microenvironments in which they are required. Accordingly, precise regulation of colibactin and yersiniabactin expression is crucial. We show that the expression of these two polyketides is also interconnected via primary metabolism-responsive regulation at the posttranscriptional level by the CsrA RNA-binding protein. Our findings may help to optimize (over-)expression and further functional characterization of the polyketide colibactin. Additionally, this new aspect of concerted colibactin and yersiniabactin expression extends our knowledge of conditions that favor the expression of these virulence- and fitness-associated factors in different Enterobacterales members.
Collapse
|
16
|
Jaworska K, Ludwiczak M, Murawska E, Raczkowska A, Brzostek K. The Regulator OmpR in Yersinia enterocolitica Participates in Iron Homeostasis by Modulating Fur Level and Affecting the Expression of Genes Involved in Iron Uptake. Int J Mol Sci 2021; 22:ijms22031475. [PMID: 33540627 PMCID: PMC7867234 DOI: 10.3390/ijms22031475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we found that the loss of OmpR, the response regulator of the two-component EnvZ/OmpR system, increases the cellular level of Fur, the master regulator of iron homeostasis in Y. enterocolitica. Furthermore, we demonstrated that transcription of the fur gene from the YePfur promoter is subject to negative OmpR-dependent regulation. Four putative OmpR-binding sites (OBSs) were indicated by in silico analysis of the fur promoter region, and their removal affected OmpR-dependent fur expression. Moreover, OmpR binds specifically to the predicted OBSs which exhibit a distinct hierarchy of binding affinity. Finally, the data demonstrate that OmpR, by direct binding to the promoters of the fecA, fepA and feoA genes, involved in the iron transport and being under Fur repressor activity, modulates their expression. It seems that the negative effect of OmpR on fecA and fepA transcription is sufficient to counteract the indirect, positive effect of OmpR resulting from decreasing the Fur repressor level. The expression of feoA was positively regulated by OmpR and this mode of action seems to be direct and indirect. Together, the expression of fecA, fepA and feoA in Y. enterocolitica has been proposed to be under a complex mode of regulation involving OmpR and Fur regulators.
Collapse
|
17
|
Gao H, Ma L, Qin Q, Qiu Y, Zhang J, Li J, Lou J, Diao B, Zhao H, Shi Q, Zhang Y, Kan B. Fur Represses Vibrio cholerae Biofilm Formation via Direct Regulation of vieSAB, cdgD, vpsU, and vpsA-K Transcription. Front Microbiol 2020; 11:587159. [PMID: 33193241 PMCID: PMC7641913 DOI: 10.3389/fmicb.2020.587159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Attached Vibrio cholerae biofilms are essential for environmental persistence and infectivity. The vps loci (vpsU, vpsA-K, and vpsL-Q) are required for mature biofilm formation and are responsible for the synthesis of exopolysaccharide. Transcription of vps genes is activated by the signaling molecule bis-(3'-5')-cyclic di-GMP (c-di-GMP), whose metabolism is controlled by the proteins containing the GGDEF and/or EAL domains. The ferric uptake regulator (Fur) plays key roles in the transcription of many genes involved in iron metabolism and non-iron functions. However, roles for Fur in Vibrio biofilm production have not been documented. In this study, phenotypic assays demonstrated that Fur, independent of iron, decreases in vivo c-di-GMP levels and inhibits in vitro biofilm formation by Vibrio cholerae. The Fur box-like sequences were detected within the promoter-proximal DNA regions of vpsU, vpsA-K, vieSAB, and cdgD, suggesting that transcription of these genes may be under the direct control of Fur. Indeed, the results of luminescence, quantitative PCR (qPCR), electrophoretic mobility shift assay (EMSA), and DNase I footprinting assays demonstrated Fur to bind to the promoter-proximal DNA regions of vpsU, vpsA-K, and cdgD to repress their transcription. In contrast, Fur activates the transcription of vieSAB in a direct manner. The cdgD and vieSAB encode proteins with GGDEF and EAL domains, respectively. Thus, data presented here highlight a new physiological role for Fur wherein it acts as a repressor of V. cholerae biofilm formation mediated by decreasing the production of exopolysaccharide and the intracellular levels of c-di-GMP.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lizhi Ma
- Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qin Qin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue Qiu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jingyun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Lou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiannan Shi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
18
|
Berg K, Pedersen HL, Leiros I. Biochemical characterization of ferric uptake regulator (Fur) from Aliivibrio salmonicida. Mapping the DNA sequence specificity through binding studies and structural modelling. Biometals 2020; 33:169-185. [PMID: 32648080 PMCID: PMC7536154 DOI: 10.1007/s10534-020-00240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 06/28/2020] [Indexed: 11/25/2022]
Abstract
Iron is an essential nutrient for bacteria, however its propensity to form toxic hydroxyl radicals at high intracellular concentrations, requires its acquisition to be tightly regulated. Ferric uptake regulator (Fur) is a metal-dependent DNA-binding protein that acts as a transcriptional regulator in maintaining iron metabolism in bacteria and is a highly interesting target in the design of new antibacterial drugs. Fur mutants have been shown to exhibit decreased virulence in infection models. The protein interacts specifically with DNA at binding sites designated as 'Fur boxes'. In the present study, we have investigated the interaction between Fur from the fish pathogen Aliivibrio salmonicida (AsFur) and its target DNA using a combination of biochemical and in silico methods. A series of target DNA oligomers were designed based on analyses of Fur boxes from other species, and affinities assessed using electrophoretic mobility shift assay. Binding strengths were interpreted in the context of homology models of AsFur to gain molecular-level insight into binding specificity.
Collapse
Affiliation(s)
- Kristel Berg
- Department of Chemistry, Faculty of Science and Technology, The Norwegian Structural Biology Centre (NorStruct), UiT the Arctic University of Norway, 9037, Tromsø, Norway
| | - Hege Lynum Pedersen
- Department of Chemistry, Faculty of Science and Technology, The Norwegian Structural Biology Centre (NorStruct), UiT the Arctic University of Norway, 9037, Tromsø, Norway
| | - Ingar Leiros
- Department of Chemistry, Faculty of Science and Technology, The Norwegian Structural Biology Centre (NorStruct), UiT the Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
19
|
Yuan L, Li X, Du L, Su K, Zhang J, Liu P, He Q, Zhang Z, Peng D, Shen L, Qiu J, Li Y. RcsAB and Fur Coregulate the Iron-Acquisition System via entC in Klebsiella pneumoniae NTUH-K2044 in Response to Iron Availability. Front Cell Infect Microbiol 2020; 10:282. [PMID: 32587833 PMCID: PMC7298118 DOI: 10.3389/fcimb.2020.00282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/12/2020] [Indexed: 01/21/2023] Open
Abstract
The iron acquisition system is an essential virulence factor for human infection and is under tight regulatory control in a variety of pathogens. Ferric-uptake regulator (Fur) is one of Fe2+-responsive transcription factor that maintains iron homeostasis, and the regulator of capsule synthesis (Rcs) is known to regulate exopolysaccharide biosynthesis. We speculate the Rcs may involve in iron-acquisition given the identified regulator box in the upstream of entC that participated in the biosynthesis of enterobactin. To study the coregulation by RcsAB and Fur of entC, we measured the β-galactosidase activity and relative mRNA expression of entC in WT and mutant strains. The RcsAB- and Fur-protected regions were identified by an electrophoretic mobility shift assay (EMSA) and a DNase I footprinting assay. A regulatory cascade was identified with which Fur repressed rcsA expression and reduced RcsAB and entC expression. Our study demonstrated that entC was coregulated by two different transcriptional regulators, namely, RcsAB and Fur, in response to iron availability in Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Lingyue Yuan
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xuan Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ling Du
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Kewen Su
- Hangzhou Hospital for the Prevention and Treatment of Occupational Disease, Hangzhou, China
| | - Jiaxue Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Pin Liu
- Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Qiang He
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Zhongshuang Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Dan Peng
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Lifei Shen
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jingfu Qiu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yingli Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Singh AK, Wang X, Sun W. Oral vaccination with live attenuated Yersinia pseudotuberculosis strains delivering a FliC180-LcrV fusion antigen confers protection against pulmonary Y. Pestis infection. Vaccine 2020; 38:3720-3728. [PMID: 32278523 PMCID: PMC7285849 DOI: 10.1016/j.vaccine.2020.03.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
We incorporated the ΔPfur::TT araC PBADfur deletion-insertion mutation on top of a previous Yersinia pseudotuberculosis mutant (Δasd ΔyopJ ΔyopK) to construct a new mutant designated as Yptb5, which manifests the arabinose-dependent regulated delayed fur (encoding ferric uptake regulator) shut-off. The Yptb5 strain was used to deliver an adjuvanted fusion protein, FliC180-LcrV. Levels of FliC180-LcrV synthesis were same in Yptb5 either harboring pSMV4, a p15A ori plasmid or pSMV8, a pSC101 ori plasmid containing the fliC180-lcrV fusion gene driven by Ptrc promoter. Tissue burdens of both Yptb5(pSMV4) and Yptb5(pSMV8) in mice had similar patterns. Mice vaccinated orally with 5 × 108 CFU of either Yptb5(pSMV4) or Yptb5(pSMV8) strain were primed high antibody titers with a balanced Th1/Th2 response, also developed potent T-cell responses with significant productions of IFN-γ, IL-17A and TNF-α. Immunization with each mutant strain conferred complete protection against pulmonary challenge with 5.5 × 103 CFU (55 LD50) of Y. pestis, but partial protection (50% survival) against 100 LD50 of Y. pestis. Our results demonstrate that arabinose-dependent regulated delayed fur shut-off is an effective strategy to develop live attenuated bacterial vaccines while retaining strong immunogenicity.
Collapse
Affiliation(s)
- Amit K Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Xiuran Wang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
21
|
Gao H, Zhang J, Lou J, Li J, Qin Q, Shi Q, Zhang Y, Kan B. Direct Binding and Regulation by Fur and HapR of the Intermediate Regulator and Virulence Factor Genes Within the ToxR Virulence Regulon in Vibrio cholerae. Front Microbiol 2020; 11:709. [PMID: 32362889 PMCID: PMC7181404 DOI: 10.3389/fmicb.2020.00709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/26/2020] [Indexed: 01/30/2023] Open
Abstract
Cholera toxin (CT) and toxin coregulated pilus (TCP, TcpA is the major subunit) are two major virulence factors of Vibrio cholerae, both of which play critical roles in developing severe diarrhea in human. Expression of CT and TCP is under the tight control of the regulatory cascade known as the ToxR virulence regulon, which is composed of three regulators ToxR, TcpP, and ToxT. Besides, their expression is also regulated by the quorum sensing (QS) master regulator HapR and the regulatory protein Fur. Though transcription of tcpP, toxT, and/or tcpA are reported to be regulated by HapR and Fur, to date there are no studies to verify their direct regulations. In the present study, we showed that HapR directly repress the transcription of tcpP and tcpA by binding to their promoter regions, and possibly repress toxT transcription in an indirect manner. Fur directly activated the transcription of tcpP, toxT, and tcpA by binding to their promoters. Taking account of the sequential expression of hapR, fur, tcpP, toxT, and tcpA in the different growth phases of V. cholerae, we deduce that at the early mid-logarithmic growth phase, Fur binds to the promoters of tcpP, toxT, and tcpA to activate their transcription; while at the later mid-logarithmic growth phase, HapR can bind to the promoters of tcpP and tcpA to repress their transcription. Our study reveals the new recognition in the virulence regulatory pathways in V. cholerae and suggests the complicated and subtle regulation network with the growth density dependence.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingyun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Lou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qin Qin
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiannan Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
22
|
Liu L, Zheng S. Transcriptional regulation of Yersinia pestis biofilm formation. Microb Pathog 2019; 131:212-217. [PMID: 30980880 DOI: 10.1016/j.micpath.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/08/2019] [Indexed: 01/27/2023]
Abstract
Yersinia pestis, the causative agent of plague, is transmitted primarily by infected fleas in nature. Y. pestis can produce biofilms that block flea's proventriculus and promote flea-borne transmission. Transcriptional regulation of Y. pestis biofilm formation plays an important role in the response to complex changes in environments, including temperature, pH, oxidative stress, and restrictive nutrition conditions, and contributes to Y. pestis growth, reproduction, transmission, and pathogenesis. A set of transcriptional regulators involved in Y. pestis biofilm production simultaneously controls a variety of biological functions and physiological pathways. Interactions between these regulators contribute to the development of Y. pestis gene regulatory networks, which are helpful for a quick response to complex environmental changes and better survival. The roles of crucial factors and regulators involved in response to complex environmental signals and Y. pestis biofilm formation as well as the precise gene regulatory networks are discussed in this review, which will give a better understanding of the complicated mechanisms of transcriptional regulation in Y. pestis biofilm formation.
Collapse
Affiliation(s)
- Lei Liu
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shangen Zheng
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China.
| |
Collapse
|
23
|
Chatterjee R, Shreenivas MM, Sunil R, Chakravortty D. Enteropathogens: Tuning Their Gene Expression for Hassle-Free Survival. Front Microbiol 2019; 9:3303. [PMID: 30687282 PMCID: PMC6338047 DOI: 10.3389/fmicb.2018.03303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022] Open
Abstract
Enteropathogenic bacteria have been the cause of the majority of foodborne illnesses. Much of the research has been focused on elucidating the mechanisms by which these pathogens evade the host immune system. One of the ways in which they achieve the successful establishment of a niche in the gut microenvironment and survive is by a chain of elegantly regulated gene expression patterns. Studies have shown that this process is very elaborate and is also regulated by several factors. Pathogens like, enteropathogenic Escherichia coli (EPEC), Salmonella Typhimurium, Shigella flexneri, Yersinia sp. have been seen to employ various regulated gene expression strategies. These include toxin-antitoxin systems, quorum sensing systems, expression controlled by nucleoid-associated proteins (NAPs), several regulons and operons specific to these pathogens. In the following review, we have tried to discuss the common gene regulatory systems of enteropathogenic bacteria as well as pathogen-specific regulatory mechanisms.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Meghanashree M. Shreenivas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Rohith Sunil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
24
|
Jaworska K, Nieckarz M, Ludwiczak M, Raczkowska A, Brzostek K. OmpR-Mediated Transcriptional Regulation and Function of Two Heme Receptor Proteins of Yersinia enterocolitica Bio-Serotype 2/O:9. Front Cell Infect Microbiol 2018; 8:333. [PMID: 30294593 PMCID: PMC6158557 DOI: 10.3389/fcimb.2018.00333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022] Open
Abstract
We show that Yersinia enterocolitica strain Ye9 (bio-serotype 2/O:9) utilizes heme-containing molecules as an iron source. The Ye9 genome contains two multigenic clusters, hemPRSTUV-1 and hemPRST-2, encoding putative heme receptors HemR1 and HemR2, that share 62% amino acid identity. Expression of these proteins in an Escherichia coli mutant defective in heme biosynthesis allowed this strain to use hemin and hemoglobin as a source of porphyrin. The hemPRSTUV-1 and hemPRST-2 clusters are organized as operons, expressed from the phem−1 and weaker phem−2 promoters, respectively. Expression of both operons is negatively regulated by iron and the iron-responsive transcriptional repressor Fur. In addition, OmpR, the response regulator of two component system (TCSs) EnvZ/OmpR, represses transcription of both operons through interaction with binding sequences overlapping the −35 region of their promoters. Western blot analysis of the level of HemR1 in ompR, fur, and ompRfur mutants, showed an additive effect of these mutations, indicating that OmpR may regulate HemR expression independently of Fur. However, the effect of OmpR on the activity of the phem−1 promoter and on HemR1 production was observed in both iron-depleted and iron-replete conditions, i.e., when Fur represses the iron-regulated promoter. In addition, a hairpin RNA thermometer, composed of four uracil residues (FourU) that pair with the ribosome-binding site in the 5′-untranslated region (5′-UTR) of hemR1 was predicted by in silico analysis. However, thermoregulated expression of HemR1 could not be demonstrated. Taken together, these data suggest that Fur and OmpR control iron/heme acquisition via a complex mechanism based on negative regulation of hemR1 and hemR2 at the transcriptional level. This interplay could fine-tune the level of heme receptor proteins to allow Y. enterocolitica to fulfill its iron/heme requirements without over-accumulation, which might be important for pathogenic growth within human hosts.
Collapse
Affiliation(s)
- Karolina Jaworska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Ludwiczak
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Sarvan S, Butcher J, Stintzi A, Couture JF. Variation on a theme: investigating the structural repertoires used by ferric uptake regulators to control gene expression. Biometals 2018; 31:681-704. [DOI: 10.1007/s10534-018-0120-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022]
|
26
|
Gao H, Xu J, Lu X, Li J, Lou J, Zhao H, Diao B, Shi Q, Zhang Y, Kan B. Expression of Hemolysin Is Regulated Under the Collective Actions of HapR, Fur, and HlyU in Vibrio cholerae El Tor Serogroup O1. Front Microbiol 2018; 9:1310. [PMID: 29971055 PMCID: PMC6018088 DOI: 10.3389/fmicb.2018.01310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022] Open
Abstract
The biotype El Tor of serogroup O1 and most of the non-O1/non-O139 strains of Vibrio cholerae can produce an extracellular pore-forming toxin known as cholera hemolysin (HlyA). Expression of HlyA has been previously reported to be regulated by the quorum sensing (QS) and the regulatory proteins HlyU and Fur, but lacks the direct evidence for their binding to the promoter of hlyA. In the present work, we showed that the QS regulator HapR, along with Fur and HlyU, regulates the transcription of hlyA in V. cholerae El Tor biotype. At the late mid-logarithmic growth phase, HapR binds to the three promoters of fur, hlyU, and hlyA to repress their transcription. At the early mid-logarithmic growth phase, Fur binds to the promoters of hlyU and hlyA to repress their transcription; meanwhile, HlyU binds to the promoter of hlyA to activate its transcription, but it manifests direct inhibition of its own gene. The highest transcriptional level of hlyA occurs at an OD600 value of around 0.6–0.7, which may be due to the subtle regulation of HapR, Fur, and HlyU. The complex regulation of HapR, Fur, and HlyU on hlyA would be beneficial to the invasion and pathogenesis of V. cholerae during the different infection stages.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jialiang Xu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Lou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiannan Shi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
27
|
Radka CD, Chen D, DeLucas LJ, Aller SG. The crystal structure of the Yersinia pestis iron chaperone YiuA reveals a basic triad binding motif for the chelated metal. Acta Crystallogr D Struct Biol 2017; 73:921-939. [PMID: 29095164 PMCID: PMC5683015 DOI: 10.1107/s2059798317015236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022] Open
Abstract
Biological chelating molecules called siderophores are used to sequester iron and maintain its ferric state. Bacterial substrate-binding proteins (SBPs) bind iron-siderophore complexes and deliver these complexes to ATP-binding cassette (ABC) transporters for import into the cytoplasm, where the iron can be transferred from the siderophore to catalytic enzymes. In Yersinia pestis, the causative agent of plague, the Yersinia iron-uptake (Yiu) ABC transporter has been shown to improve iron acquisition under iron-chelated conditions. The Yiu transporter has been proposed to be an iron-siderophore transporter; however, the precise siderophore substrate is unknown. Therefore, the precise role of the Yiu transporter in Y. pestis survival remains uncharacterized. To better understand the function of the Yiu transporter, the crystal structure of YiuA (YPO1310/y2875), an SBP which functions to present the iron-siderophore substrate to the transporter for import into the cytoplasm, was determined. The 2.20 and 1.77 Å resolution X-ray crystal structures reveal a basic triad binding motif at the YiuA canonical substrate-binding site, indicative of a metal-chelate binding site. Structural alignment and computational docking studies support the function of YiuA in binding chelated metal. Additionally, YiuA contains two mobile helices, helix 5 and helix 10, that undergo 2-3 Å shifts across crystal forms and demonstrate structural breathing of the c-clamp architecture. The flexibility in both c-clamp lobes suggest that YiuA substrate transfer resembles the Venus flytrap mechanism that has been proposed for other SBPs.
Collapse
Affiliation(s)
- Christopher D. Radka
- Graduate Biomedical Sciences Microbiology Theme, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dongquan Chen
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lawrence J. DeLucas
- Office of the Provost, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephen G. Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
28
|
O'Connor L, Fetherston JD, Perry RD. The feoABC Locus of Yersinia pestis Likely Has Two Promoters Causing Unique Iron Regulation. Front Cell Infect Microbiol 2017; 7:331. [PMID: 28785546 PMCID: PMC5519574 DOI: 10.3389/fcimb.2017.00331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022] Open
Abstract
The FeoABC ferrous transporter is a wide-spread bacterial system. While the feoABC locus is regulated by a number of factors in the bacteria studied, we have previously found that regulation of feoABC in Yersinia pestis appears to be unique. None of the non-iron responsive transcriptional regulators that control expression of feoABC in other bacteria do so in Y. pestis. Another unique factor is the iron and Fur regulation of the Y. pestis feoABC locus occurs during microaerobic but not aerobic growth. Here we show that this unique iron-regulation is not due to a unique aspect of the Y. pestis Fur protein but to DNA sequences that regulate transcription. We have used truncations, alterations, and deletions of the feoA::lacZ reporter to assess the mechanism behind the failure of iron to repress transcription under aerobic conditions. These studies plus EMSAs and DNA sequence analysis have led to our proposal that the feoABC locus has two promoters: an upstream P1 promoter whose expression is relatively iron-independent but repressed under microaerobic conditions and the known downstream Fur-regulated P2 promoter. In addition, we have identified two regions that bind Y. pestis protein(s), although we have not identified these protein(s) or their function. Finally we used iron uptake assays to demonstrate that both FeoABC and YfeABCD transport ferrous iron in an energy-dependent manner and also use ferric iron as a substrate for uptake.
Collapse
Affiliation(s)
- Lauren O'Connor
- Department of Microbiology, Immunology, and Molecular Genetics, University of KentuckyLexington, KY, United States
| | - Jacqueline D Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of KentuckyLexington, KY, United States
| | - Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of KentuckyLexington, KY, United States
| |
Collapse
|
29
|
Liu L, Fang H, Yang H, Zhang Y, Han Y, Zhou D, Yang R. Reciprocal regulation of Yersinia pestis biofilm formation and virulence by RovM and RovA. Open Biol 2016; 6:rsob.150198. [PMID: 26984293 PMCID: PMC4821237 DOI: 10.1098/rsob.150198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RovA is known to enhance Yersinia pestis virulence by directly upregulating the psa loci. This work presents a complex gene regulatory paradigm involving the reciprocal regulatory action of RovM and RovA on the expression of biofilm and virulence genes as well as on their own genes. RovM and RovA enhance and inhibit Y. pestis biofilm production, respectively, whereas RovM represses virulence in mice. RovM directly stimulates the transcription of hmsT, hmsCDE and rovM, while indirectly enhancing hmsHFRS transcription. It also indirectly represses hmsP transcription. By contrast, RovA directly represses hmsT transcription and indirectly inhibits waaAE-coaD transcription, while RovM inhibits psaABC and psaEF transcription by directly repressing rovA transcription. rovM expression is significantly upregulated at 26°C (the temperature of the flea gut) relative to 37°C (the warm-blooded host temperature). We speculate that upregulation of rovM together with downregulation of rovA in the flea gut would promote Y. pestis biofilm formation while inhibiting virulence gene expression, leading to a more transmissible infection of this pathogen in fleas. Once the bacterium shifts to a lifestyle in the warm-blooded hosts, inhibited RovM production accompanied by recovered RovA synthesis would encourage virulence factor production and inhibit biofilm gene expression.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Yiquan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| |
Collapse
|
30
|
Liu Z, Gao X, Wang H, Fang H, Yan Y, Liu L, Chen R, Zhou D, Yang R, Han Y. Plasmid pPCP1-derived sRNA HmsA promotes biofilm formation of Yersinia pestis. BMC Microbiol 2016; 16:176. [PMID: 27492011 PMCID: PMC4973556 DOI: 10.1186/s12866-016-0793-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/29/2016] [Indexed: 11/24/2022] Open
Abstract
Background The ability of Yersinia pestis to form a biofilm is an important characteristic in flea transmission of this pathogen. Y. pestis laterally acquired two plasmids (pPCP1and pMT1) and the ability to form biofilms when it evolved from Yersinia pseudotuberculosis. Small regulatory RNAs (sRNAs) are thought to play a crucial role in the processes of biofilm formation and pathogenesis. Results A pPCP1-derived sRNA HmsA (also known as sR084) was found to contribute to the enhanced biofilm formation phenotype of Y. pestis. The concentration of c-di-GMP was significantly reduced upon deletion of the hmsA gene in Y. pestis. The abundance of mRNA transcripts determining exopolysaccharide production, crucial for biofilm formation, was measured by primer extension, RT-PCR and lacZ transcriptional fusion assays in the wild-type and hmsA mutant strains. HmsA positively regulated biofilm synthesis-associated genes (hmsHFRS, hmsT and hmsCDE), but had no regulatory effect on the biofilm degradation-associated gene hmsP. Interestingly, the recently identified biofilm activator sRNA, HmsB, was rapidly degraded in the hmsA deletion mutant. Two genes (rovM and rovA) functioning as biofilm regulators were also found to be regulated by HmsA, whose regulatory effects were consistent with the HmsA-mediated biofilm phenotype. Conclusion HmsA potentially functions as an activator of biofilm formation in Y. pestis, implying that sRNAs encoded on the laterally acquired plasmids might be involved in the chromosome-based regulatory networks implicated in Y. pestis-specific physiological processes. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0793-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zizhong Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.,State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaofang Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.,Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hongduo Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.,College of Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Lei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Rong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.,The General Hospital of PLA, Beijing, 100853, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.
| |
Collapse
|
31
|
Silica-Induced Protein (Sip) in Thermophilic Bacterium Thermus thermophilus Responds to Low Iron Availability. Appl Environ Microbiol 2016; 82:3198-3207. [PMID: 26994077 DOI: 10.1128/aem.04027-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Thermus thermophilus HB8 expresses silica-induced protein (Sip) when cultured in medium containing supersaturated silicic acids. Using genomic information, Sip was identified as a Fe(3+)-binding ABC transporter. Detection of a 1-kb hybridized band in Northern analysis revealed that sip transcription is monocistronic and that sip has its own terminator and promoter. The sequence of the sip promoter showed homology with that of the σ(A)-dependent promoter, which is known as a housekeeping promoter in HB8. Considering that sip is transcribed when supersaturated silicic acids are added, the existence of a repressor is presumed. DNA microarray analysis suggested that supersaturated silicic acids and iron deficiency affect Thermus cells similarly, and enhanced sip transcription was detected under both conditions. This suggested that sip transcription was initiated by iron deficiency and that the ferric uptake regulator (Fur) controlled the transcription. Three Fur gene homologues (TTHA0255, TTHA0344, and TTHA1292) have been annotated in the HB8 genome, and electrophoretic mobility shift assays revealed that the TTHA0344 product interacts with the sip promoter region. In medium containing supersaturated silicic acids, free Fe(3+) levels were decreased due to Fe(3+) immobilization on colloidal silica. This suggests that, because Fe(3+) ions are captured by colloidal silica in geothermal water, Thermus cells are continuously exposed to the risk of iron deficiency. Considering that Sip is involved in iron acquisition, Sip production may be a strategy to survive under conditions of low iron availability in geothermal water. IMPORTANCE The thermophilic bacterium Thermus thermophilus HB8 produces silica-induced protein (Sip) in the presence of supersaturated silicic acids. Sip has homology with iron-binding ABC transporter; however, the mechanism by which Sip expression is induced by silicic acids remains unexplained. We demonstrate that Sip captures iron and its transcription is regulated by the repressor ferric uptake regulator (Fur). This implies that Sip is expressed with iron deficiency. In addition, it is suggested that negatively charged colloidal silica in supersaturated solution absorbs Fe(3+) ions and decreases iron availability. Considering that geothermal water contains ample silicic acids, it is suggested that thermophilic bacteria are always facing iron starvation. Sip production may be a strategy for surviving under conditions of low iron availability in geothermal water.
Collapse
|
32
|
Expanding the Role of FurA as Essential Global Regulator in Cyanobacteria. PLoS One 2016; 11:e0151384. [PMID: 26967347 PMCID: PMC4788461 DOI: 10.1371/journal.pone.0151384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/26/2016] [Indexed: 01/03/2023] Open
Abstract
In the nitrogen-fixing heterocyst-forming cyanobacterium Anabaena sp. PCC 7120, the ferric uptake regulator FurA plays a global regulatory role. Failures to eliminate wild-type copies of furA gene from the polyploid genome suggest essential functions. In the present study, we developed a selectively regulated furA expression system by the replacement of furA promoter in the Anabaena sp. chromosomes with the Co2+/Zn2+ inducible coaT promoter from Synechocystis sp. PCC 6803. By removing Co2+ and Zn2+ from the medium and shutting off furA expression, we showed that FurA was absolutely required for cyanobacterial growth. RNA-seq based comparative transcriptome analyses of the furA-turning off strain and its parental wild-type in conjunction with subsequent electrophoretic mobility shift assays and semi-quantitative RT-PCR were carried out in order to identify direct transcriptional targets and unravel new biological roles of FurA. The results of such approaches led us to identify 15 novel direct iron-dependent transcriptional targets belonging to different functional categories including detoxification and defences against oxidative stress, phycobilisome degradation, chlorophyll catabolism and programmed cell death, light sensing and response, heterocyst differentiation, exopolysaccharide biosynthesis, among others. Our analyses evidence novel interactions in the complex regulatory network orchestrated by FurA in cyanobacteria.
Collapse
|
33
|
Perry RD, Bobrov AG, Fetherston JD. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis. Metallomics 2016; 7:965-78. [PMID: 25891079 DOI: 10.1039/c4mt00332b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yersinia pestis, the causative agent of bubonic, septicemic and pneumonic plague, encodes a multitude of Fe transport systems. Some of these are defective due to frameshift or IS element insertions, while others are functional in vitro but have no established role in causing infections. Indeed only 3 Fe transporters (Ybt, Yfe and Feo) have been shown to be important in at least one form of plague. The yersiniabactin (Ybt) system is essential in the early dermal/lymphatic stages of bubonic plague, irrelevant in the septicemic stage, and critical in pneumonic plague. Two Mn transporters have been characterized (Yfe and MntH). These two systems play a role in bubonic plague but the double yfe mntH mutant is fully virulent in a mouse model of pneumonic plague. The same in vivo phenotype occurs with a mutant lacking two (Yfe and Feo) of four ferrous transporters. A role for the Ybt siderophore in Zn acquisition has been revealed. Ybt-dependent Zn acquisition uses a transport system completely independent of the Fe-Ybt uptake system. Together Ybt components and ZnuABC play a critical role in Zn acquisition in vivo. Single mutants in either system retain high virulence in a mouse model of septicemic plague while the double mutant is completely avirulent.
Collapse
Affiliation(s)
- Robert D Perry
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
34
|
Pérard J, Covès J, Castellan M, Solard C, Savard M, Miras R, Galop S, Signor L, Crouzy S, Michaud-Soret I, de Rosny E. Quaternary Structure of Fur Proteins, a New Subfamily of Tetrameric Proteins. Biochemistry 2016; 55:1503-15. [DOI: 10.1021/acs.biochem.5b01061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julien Pérard
- CNRS, Laboratoire de Chimie et Biologie
des Métaux
(LCBM), UMR 5249, CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes, LCBM, F-38054 Grenoble, France
| | - Jacques Covès
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Mathieu Castellan
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Charles Solard
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Myriam Savard
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Roger Miras
- CNRS, Laboratoire de Chimie et Biologie
des Métaux
(LCBM), UMR 5249, CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes, LCBM, F-38054 Grenoble, France
| | - Sandra Galop
- CNRS, Laboratoire de Chimie et Biologie
des Métaux
(LCBM), UMR 5249, CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes, LCBM, F-38054 Grenoble, France
| | - Luca Signor
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Serge Crouzy
- CNRS, Laboratoire de Chimie et Biologie
des Métaux
(LCBM), UMR 5249, CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes, LCBM, F-38054 Grenoble, France
| | - Isabelle Michaud-Soret
- CNRS, Laboratoire de Chimie et Biologie
des Métaux
(LCBM), UMR 5249, CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes, LCBM, F-38054 Grenoble, France
| | - Eve de Rosny
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| |
Collapse
|
35
|
Chen S, Thompson KM, Francis MS. Environmental Regulation of Yersinia Pathophysiology. Front Cell Infect Microbiol 2016; 6:25. [PMID: 26973818 PMCID: PMC4773443 DOI: 10.3389/fcimb.2016.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia.
Collapse
Affiliation(s)
- Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University Washington, DC, USA
| | - Matthew S Francis
- Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
36
|
Nieckarz M, Raczkowska A, Dębski J, Kistowski M, Dadlez M, Heesemann J, Rossier O, Brzostek K. Impact of OmpR on the membrane proteome of Yersinia enterocolitica in different environments: repression of major adhesin YadA and heme receptor HemR. Environ Microbiol 2016; 18:997-1021. [PMID: 26627632 DOI: 10.1111/1462-2920.13165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 01/22/2023]
Abstract
Enteropathogenic Yersinia enterocolitica is able to grow within or outside the mammalian host. Previous transcriptomic studies have indicated that the regulator OmpR plays a role in the expression of hundreds of genes in enterobacteria. Here, we have examined the impact of OmpR on the production of Y. enterocolitica membrane proteins upon changes in temperature, osmolarity and pH. Proteomic analysis indicated that the loss of OmpR affects the production of 120 proteins, a third of which are involved in uptake/transport, including several that participate in iron or heme acquisition. A set of proteins associated with virulence was also affected. The influence of OmpR on the abundance of adhesin YadA and heme receptor HemR was examined in more detail. OmpR was found to repress YadA production and bind to the yadA promoter, suggesting a direct regulatory effect. In contrast, the repression of hemR expression by OmpR appears to be indirect. These findings provide new insights into the role of OmpR in remodelling the cell surface and the adaptation of Y. enterocolitica to different environmental niches, including the host.
Collapse
Affiliation(s)
- Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Janusz Dębski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Kistowski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Dadlez
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, Warsaw, 02-106, Poland.,Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Jürgen Heesemann
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Ombeline Rossier
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
37
|
Abstract
Y. pestis exhibits dramatically different traits of pathogenicity and transmission, albeit their close genetic relationship with its ancestor-Y. pseudotuberculosis, a self-limiting gastroenteric pathogen. Y. pestis is evolved into a deadly pathogen and transmitted to mammals and/or human beings by infected flea biting or directly contacting with the infected animals. Various kinds of environmental changes are implicated into its complex life cycle and pathogenesis. Dynamic regulation of gene expression is critical for environmental adaptation or survival, primarily reflected by genetic regulation mediated by transcriptional factors and small regulatory RNAs at the transcriptional and posttranscriptional level, respectively. The effects of genetic regulation have been shown to profoundly influence Y. pestis physiology and pathogenesis such as stress resistance, biofilm formation, intracellular survival, and replication. In this chapter, we mainly summarize the progresses on popular methods of genetic regulation and on regulatory patterns and consequences of many key transcriptional and posttranscriptional regulators, with a particular emphasis on how genetic regulation influences the biofilm and virulence of Y. pestis.
Collapse
|
38
|
All Three TonB Systems Are Required for Vibrio vulnificus CMCP6 Tissue Invasiveness by Controlling Flagellum Expression. Infect Immun 2015; 84:254-65. [PMID: 26527216 DOI: 10.1128/iai.00821-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/24/2015] [Indexed: 01/22/2023] Open
Abstract
TonB systems actively transport iron-bound substrates across the outer membranes of Gram-negative bacteria. Vibrio vulnificus CMCP6, which causes fatal septicemia and necrotizing wound infections, possesses three active TonB systems. It is not known why V. vulnificus CMCP6 has maintained three TonB systems throughout its evolution. The TonB1 and TonB2 systems are relatively well characterized, while the pathophysiological function of the TonB3 system is still elusive. A reverse transcription-PCR (RT-PCR) study showed that the tonB1 and tonB2 genes are preferentially induced in vivo, whereas tonB3 is persistently transcribed, albeit at low expression levels, under both in vitro and in vivo conditions. The goal of the present study was to elucidate the raison d'être of these three TonB systems. In contrast to previous studies, we constructed in-frame single-, double-, and triple-deletion mutants of the entire structural genes in TonB loci, and the changes in various virulence-related phenotypes were evaluated. Surprisingly, only the tonB123 mutant exhibited a significant delay in killing eukaryotic cells, which was complemented in trans with any TonB operon. Very interestingly, we discovered that flagellum biogenesis was defective in the tonB123 mutant. The loss of flagellation contributed to severe defects in motility and adhesion of the mutant. Because of the difficulty of making contact with host cells, the mutant manifested defective RtxA1 toxin production, which resulted in impaired invasiveness, delayed cytotoxicity, and decreased lethality for mice. Taken together, these results indicate that a series of virulence defects in all three TonB systems of V. vulnificus CMCP6 coordinately complement each other for iron assimilation and full virulence expression by ensuring flagellar biogenesis.
Collapse
|
39
|
Kaushik MS, Singh P, Tiwari B, Mishra AK. Ferric Uptake Regulator (FUR) protein: properties and implications in cyanobacteria. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1134-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
40
|
Thode SK, Kahlke T, Robertsen EM, Hansen H, Haugen P. The immediate global responses of Aliivibrio salmonicida to iron limitations. BMC Microbiol 2015; 15:9. [PMID: 25649684 PMCID: PMC4324432 DOI: 10.1186/s12866-015-0342-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/09/2015] [Indexed: 01/15/2023] Open
Abstract
Background Iron is an essential micronutrient for all living organisms, and virulence and sequestration of iron in pathogenic bacteria are believed to be correlated. As a defence mechanism, potential hosts therefore keep the level of free iron inside the body to a minimum. In general, iron metabolism is well studied for some bacteria (mostly human or animal pathogens). However, this area is still under-investigated for a number of important bacterial pathogens. Aliivibrio salmonicida is a fish pathogen, and previous studies of this bacterium have shown that production of siderophores is temperature regulated and dependent on low iron conditions. In this work we studied the immediate changes in transcription in response to a sudden decrease in iron levels in cultures of A. salmonicida. In addition, we compared our results to studies performed with Vibrio cholerae and Vibrio vulnificus using a pan-genomic approach. Results Microarray technology was used to monitor global changes in transcriptional levels. Cultures of A. salmonicida were grown to mid log phase before the iron chelator 2,2’-dipyridyl was added and samples were collected after 15 minutes of growth. Using our statistical cut-off values, we retrieved thirty-two differentially expressed genes where the most up-regulated genes belong to an operon encoding proteins responsible for producing the siderophore bisucaberin. A subsequent pan-transcriptome analysis revealed that nine of the up-regulated genes from our dataset were also up-regulated in datasets from similar experiments using V. cholerae and V. vulnificus, thus indicating that these genes are involved in a shared strategy to mitigate low iron conditions. Conclusions The present work highlights the effect of iron limitation on the gene regulatory network of the fish pathogen A. salmonicida, and provides insights into common and unique strategies of Vibrionaceae species to mitigate low iron conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0342-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sunniva Katharina Thode
- Department of Chemistry and The Norwegian Structural Biology Centre, Faculty of Science and Technology, UiT - The Arctic University of Norway, Tromsø, 9037, Norway.
| | - Tim Kahlke
- Department of Chemistry and The Norwegian Structural Biology Centre, Faculty of Science and Technology, UiT - The Arctic University of Norway, Tromsø, 9037, Norway. .,Current address: Environmental Genomics Team, CSIRO Marine and Atmospheric Research, Castray Esplanade, Hobart, 7000, TAS, Australia.
| | - Espen Mikal Robertsen
- Department of Chemistry and The Norwegian Structural Biology Centre, Faculty of Science and Technology, UiT - The Arctic University of Norway, Tromsø, 9037, Norway.
| | - Hilde Hansen
- Department of Chemistry and The Norwegian Structural Biology Centre, Faculty of Science and Technology, UiT - The Arctic University of Norway, Tromsø, 9037, Norway.
| | - Peik Haugen
- Department of Chemistry and The Norwegian Structural Biology Centre, Faculty of Science and Technology, UiT - The Arctic University of Norway, Tromsø, 9037, Norway.
| |
Collapse
|
41
|
CRP Acts as a Transcriptional Repressor of the YPO1635-phoPQ-YPO1632 Operon in Yersinia pestis. Curr Microbiol 2014; 70:398-403. [DOI: 10.1007/s00284-014-0736-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/16/2014] [Indexed: 11/25/2022]
|
42
|
Becerra G, Merchán F, Blasco R, Igeño MI. Characterization of a ferric uptake regulator (Fur)-mutant of the cyanotrophic bacterium Pseudomonas pseudoalcaligenes CECT5344. J Biotechnol 2014; 190:2-10. [DOI: 10.1016/j.jbiotec.2014.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 11/25/2022]
|
43
|
Bertrand RL. Lag phase-associated iron accumulation is likely a microbial counter-strategy to host iron sequestration: role of the ferric uptake regulator (fur). J Theor Biol 2014; 359:72-9. [PMID: 24929040 DOI: 10.1016/j.jtbi.2014.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 01/26/2023]
Abstract
Iron is an essential metal for almost all forms of life, but potentiates oxidative stress via Fenton catalysis. During microbial lag phase there is a rapid influx of iron with concomitant oxidative hypersensitivity. How and why iron accumulation occurs remains to be elucidated. Iron homeostasis in prokaryotes is mediated by the ferric uptake regulator (Fur), an iron-activated global regulator that controls intracellular iron levels by feedback inhibition with the metal. Herein it is postulated, based on the expression profiles of antioxidant enzymes within the Fur regulon as observed in wild type and Δfur mutants, that iron accumulation is mediated by a transitively low concentration of the Fur protein during lag phase. Vertebrate hosts sequester iron upon 'sensing' an infection in order to retard microbial proliferation through a process known as 'nutritional immunity'. It is herein argued that the purpose of iron accumulation is not principally a preparative step for the replicative phase, as suggested elsewhere, but an evolved behavior that counteracts host iron sequestration. This interpretation is supported by multiple clinical and animal studies that demonstrate that iron surplus in hosts advances progression and susceptibility to infection, and vice versa. Contextualizing iron accumulation as a counter-immune behavior adds impetus to the development of antibiotics targeting pathogenic modes of iron acquisition.
Collapse
Affiliation(s)
- Robert L Bertrand
- Department of Chemistry, University of Winnipeg, Winnipeg, MB, Canada R3B 2E9.
| |
Collapse
|
44
|
Acinetobacter baumannii response to host-mediated zinc limitation requires the transcriptional regulator Zur. J Bacteriol 2014; 196:2616-26. [PMID: 24816603 DOI: 10.1128/jb.01650-14] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia in intensive care units, and the increasing rates of antibiotic resistance make treating these infections challenging. Consequently, there is an urgent need to develop new antimicrobials to treat A. baumannii infections. One potential therapeutic option is to target bacterial systems involved in maintaining appropriate metal homeostasis, processes that are critical for the growth of pathogens within the host. The A. baumannii inner membrane zinc transporter ZnuABC is required for growth under low-zinc conditions and for A. baumannii pathogenesis. The expression of znuABC is regulated by the transcriptional repressor Zur. To investigate the role of Zur during the A. baumannii response to zinc limitation, a zur deletion mutant was generated, and transcriptional changes were analyzed using RNA sequencing. A number of Zur-regulated genes were identified that exhibit increased expression both when zur is absent and under low-zinc conditions, and Zur binds to predicted Zur box sequences of several genes affected by zinc levels or the zur mutation. Furthermore, the zur mutant is impaired for growth in the presence of both high and low zinc levels compared to wild-type A. baumannii. Finally, the zur mutant exhibits a defect in dissemination in a mouse model of A. baumannii pneumonia, establishing zinc sensing as a critical process during A. baumannii infection. These results define Zur-regulated genes within A. baumannii and demonstrate a requirement for Zur in the A. baumannii response to the various zinc levels experienced within the vertebrate host.
Collapse
|
45
|
α-fur, an antisense RNA gene to fur in the extreme acidophile Acidithiobacillus ferrooxidans. Microbiology (Reading) 2014; 160:514-524. [DOI: 10.1099/mic.0.073171-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A large non-coding RNA, termed α-Fur, of ~1000 nt has been detected in the extreme acidophile Acidithiobacillus ferrooxidans encoded on the antisense strand to the iron-responsive master regulator fur (ferric uptake regulator) gene. A promoter for α-fur was predicted bioinformatically and validated using gene fusion experiments. The promoter is situated within the coding region and in the same sense as proB, potentially encoding a glutamate 5-kinase. The 3′ termination site of the α-fur transcript was determined by 3′ rapid amplification of cDNA ends to lie 7 nt downstream of the start of transcription of fur. Thus, α-fur is antisense to the complete coding region of fur, including its predicted ribosome-binding site. The genetic context of α-fur is conserved in several members of the genus Acidithiobacillus but not in all acidophiles, indicating that it is monophyletic but not niche specific. It is hypothesized that α-Fur regulates the cellular level of Fur. This is the fourth example of an antisense RNA to fur, although it is the first in an extreme acidophile, and underscores the growing importance of cis-encoded non-coding RNAs as potential regulators involved in the microbial iron-responsive stimulon.
Collapse
|
46
|
Fillat MF. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 2014; 546:41-52. [PMID: 24513162 DOI: 10.1016/j.abb.2014.01.029] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 11/17/2022]
Abstract
Control of metal homeostasis is essential for life in all kingdoms. In most prokaryotic organisms the FUR (ferric uptake regulator) family of transcriptional regulators is involved in the regulation of iron and zinc metabolism through control by Fur and Zur proteins. A third member of this family, the peroxide-stress response PerR, is present in most Gram-positives, establishing a tight functional interaction with the global regulator Fur. These proteins play a pivotal role for microbial survival under adverse conditions and in the expression of virulence in most pathogens. In this paper we present the current state of the art in the knowledge of the FUR family, including those members only present in more reduced numbers of bacteria, namely Mur, Nur and Irr. The huge amount of work done in the two last decades shows that FUR proteins present considerable diversity in their regulatory mechanisms and interesting structural differences. However, much work needs to be done to obtain a more complete picture of this family, especially in connection with the roles of some members as gas and redox sensors as well as to fully characterize their participation in bacterial adaptative responses.
Collapse
Affiliation(s)
- María F Fillat
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
| |
Collapse
|
47
|
Liu M, Biville F. Managing iron supply during the infection cycle of a flea borne pathogen, Bartonella henselae. Front Cell Infect Microbiol 2013; 3:60. [PMID: 24151576 PMCID: PMC3799009 DOI: 10.3389/fcimb.2013.00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/19/2013] [Indexed: 11/29/2022] Open
Abstract
Bartonella are hemotropic bacteria responsible for emerging zoonoses. Most Bartonella species appear to share a natural cycle that involves an arthropod transmission, followed by exploitation of a mammalian host in which they cause long-lasting intra-erythrocytic bacteremia. Persistence in erythrocytes is considered an adaptation to transmission by bloodsucking arthropod vectors and a strategy to obtain heme required for Bartonella growth. Bartonella genomes do not encode for siderophore biosynthesis or a complete iron Fe3+ transport system. Only genes, sharing strong homology with all components of a Fe2+ transport system, are present in Bartonella genomes. Also, Bartonella genomes encode for a complete heme transport system. Bartonella must face various environments in their hosts and vectors. In mammals, free heme and iron are rare and oxygen concentration is low. In arthropod vectors, toxic heme levels are found in the gut where oxygen concentration is high. Bartonella genomes encode for 3–5 heme-binding proteins. In Bartonella henselae heme-binding proteins were shown to be involved in heme uptake process, oxidative stress response, and survival inside endothelial cells and in the flea. In this report, we discuss the use of the heme uptake and storage system of B. henselae during its infection cycle. Also, we establish a comparison with the iron and heme uptake systems of Yersinia pestis used during its infection cycle.
Collapse
Affiliation(s)
- Mafeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Avian Disease Research Center, Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu/Ya'an , Sichuan, China
| | | |
Collapse
|
48
|
Control of RNA stability by NrrF, an iron-regulated small RNA in Neisseria gonorrhoeae. J Bacteriol 2013; 195:5166-73. [PMID: 24039262 DOI: 10.1128/jb.00839-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Regulation of gene expression by small noncoding RNAs (sRNAs) plays a critical role in bacterial response to physiological stresses. NrrF, a trans-acting sRNA in Neisseria meningitidis and Neisseria gonorrhoeae, has been shown in the meningococcus to control indirectly, in response to iron (Fe) availability, the transcription of genes encoding subunits of succinate dehydrogenase, a Fe-requiring enzyme. Given that in other organisms, sRNAs target multiple mRNAs to control gene expression, we used a global approach to examine the role of NrrF in controlling gonococcal transcription. Three strains, including N. gonorrhoeae FA1090, an nrrF deletion mutant, and a complemented derivative, were examined using a custom CombiMatrix microarray to assess the role of this sRNA in controlling gene expression in response to Fe availability. In the absence of NrrF, the mRNA half-lives for 12 genes under Fe-depleted growth conditions were longer than those in FA1090. The 12 genes controlled by NrrF encoded proteins with biological functions including energy metabolism, oxidative stress, antibiotic resistance, and amino acid synthesis, as well as hypothetical proteins and a regulatory protein whose functions are not fully understood.
Collapse
|
49
|
Yan Y, Su S, Meng X, Ji X, Qu Y, Liu Z, Wang X, Cui Y, Deng Z, Zhou D, Jiang W, Yang R, Han Y. Determination of sRNA expressions by RNA-seq in Yersinia pestis grown in vitro and during infection. PLoS One 2013; 8:e74495. [PMID: 24040259 PMCID: PMC3770706 DOI: 10.1371/journal.pone.0074495] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 08/02/2013] [Indexed: 12/21/2022] Open
Abstract
Background Small non-coding RNAs (sRNAs) facilitate host-microbe interactions. They have a central function in the post-transcriptional regulation during pathogenic lifestyles. Hfq, an RNA-binding protein that many sRNAs act in conjunction with, is required for Y. pestis pathogenesis. However, information on how Yersinia pestis modulates the expression of sRNAs during infection is largely unknown. Methodology and Principal Findings We used RNA-seq technology to identify the sRNA candidates expressed from Y. pestis grown invitro and in the infected lungs of mice. A total of 104 sRNAs were found, including 26 previously annotated sRNAs, by searching against the Rfam database with 78 novel sRNA candidates. Approximately 89% (93/104) of these sRNAs from Y. pestis are shared with its ancestor Y. pseudotuberculosis. Ninety-seven percent of these sRNAs (101/104) are shared among more than 80 sequenced genomes of 135 Y. pestis strains. These 78 novel sRNAs include 62 intergenic and 16 antisense sRNAs. Fourteen sRNAs were selected for verification by independent Northern blot analysis. Results showed that nine selected sRNA transcripts were Hfq-dependent. Interestingly, three novel sRNAs were identified as new members of the transcription factor CRP regulon. Semi-quantitative analysis revealed that Y. pestis from the infected lungs induced the expressions of six sRNAs including RyhB1, RyhB2, CyaR/RyeE, 6S RNA, RybB and sR039 and repressed the expressions of four sRNAs, including CsrB, CsrC, 4.5S RNA and sR027. Conclusions and Significance This study is the first attempt to subject RNA from Y. pestis-infected samples to direct high-throughput sequencing. Many novel sRNAs were identified and the expression patterns of relevant sRNAs in Y. pestis during invitro growth and invivo infection were revealed. The annotated sRNAs accounted for the most abundant sRNAs either expressed in bacteria grown invitro or differentially expressed in the infected lungs. These findings suggested these sRNAs may have important functions in Y. pestis physiology or pathogenesis.
Collapse
Affiliation(s)
- Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shanchun Su
- Microbiology Laboratory, Sichuan Agricultural University, Yaan, Sichuan province, China
| | - Xiangrong Meng
- Clinical Laboratory, Huzhong Hispital, Guangzhou, Guangdong province, China
| | - Xiaolan Ji
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yi Qu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zizhong Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoyi Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhongliang Deng
- Department of Sanitary Inspection, School of Public Health, University of South China, Hengyang, Hunan province, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wencan Jiang
- Microbiology Laboratory, Sichuan Agricultural University, Yaan, Sichuan province, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (YH); (RY)
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (YH); (RY)
| |
Collapse
|
50
|
Zhang Y, Wang L, Fang N, Qu S, Tan Y, Guo Z, Qiu J, Zhou D, Yang R. Reciprocal regulation of pH 6 antigen gene loci by PhoP and RovA in Yersinia pestis biovar Microtus. Future Microbiol 2013; 8:271-80. [PMID: 23374131 DOI: 10.2217/fmb.12.146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM To explore the transcriptional regulation of the psaEF and psaABC loci by the RovA and PhoP regulators in Yersinia pestis. MATERIALS & METHODS Primer extension, LacZ fusion, gel mobility shift and DNase I footprinting assays were conducted in combination for this gene regulation study. RESULTS It was determined that PhoP and RovA recognized the promoter-proximal regions of psaEF and psaABC in order to repress and stimulate their transcription, respectively. The translation/transcription start sites, Shine-Dalgarno sequences (ribosomal binding site), core promoter -10 and -35 elements, PhoP and RovA sites and PhoP/RovA consensus-like sequences were identified to determine the structural organization of PhoP/RovA-dependent promoters of psaEF and psaABC. CONCLUSION RovA stimulated psaEF and psaABC, while PhoP repressed these two operons involving the direct association between RovA/PhoP and target promoter regions. The reciprocal regulation of psa genes by PhoP and RovA could contribute to the tightly controlled expression of the pH 6 antigen during infection.
Collapse
Affiliation(s)
- Yiquan Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | | | | | | | | | | | | | | | | |
Collapse
|