1
|
Barden CJ, Wu F, Fernandez-Murray JP, Lu E, Sun S, Taylor MM, Rushton AL, Williams J, Tavasoli M, Meek A, Reddy AS, Doyle LM, Sagamanova I, Sivamuthuraman K, Boudreau RTM, Byers DM, Weaver DF, McMaster CR. Computer-aided drug design to generate a unique antibiotic family. Nat Commun 2024; 15:8317. [PMID: 39333560 PMCID: PMC11436758 DOI: 10.1038/s41467-024-52797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/23/2024] [Indexed: 09/29/2024] Open
Abstract
The World Health Organization has identified antibiotic resistance as one of the three greatest threats to human health. The need for antibiotics is a pressing matter that requires immediate attention. Here, computer-aided drug design is used to develop a structurally unique antibiotic family targeting holo-acyl carrier protein synthase (AcpS). AcpS is a highly conserved enzyme essential for bacterial survival that catalyzes the first step in lipid synthesis. To the best of our knowledge, there are no current antibiotics targeting AcpS making this drug development program of high interest. We synthesize a library of > 700 novel compounds targeting AcpS, from which 33 inhibit bacterial growth in vitro at ≤ 2 μg/mL. We demonstrate that compounds from this class have stand-alone activity against a broad spectrum of Gram-positive organisms and synergize with colistin to enable coverage of Gram-negative species. We demonstrate efficacy against clinically relevant multi-drug resistant strains in vitro and in animal models of infection in vivo including a difficult-to-treat ischemic infection exemplified by diabetic foot ulcer infections in humans. This antibiotic family could form the basis for several multi-drug-resistant antimicrobial programs.
Collapse
Affiliation(s)
- Christopher J Barden
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Fan Wu
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | | | - Erhu Lu
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Shengguo Sun
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Marcia M Taylor
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Annette L Rushton
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Jason Williams
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Mahtab Tavasoli
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Autumn Meek
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Alla Siva Reddy
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Lisa M Doyle
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Irina Sagamanova
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | | | | | - David M Byers
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Hari A, Zarrabi A, Lobo D. mergem: merging, comparing, and translating genome-scale metabolic models using universal identifiers. NAR Genom Bioinform 2024; 6:lqae010. [PMID: 38312936 PMCID: PMC10836943 DOI: 10.1093/nargab/lqae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Numerous methods exist to produce and refine genome-scale metabolic models. However, due to the use of incompatible identifier systems for metabolites and reactions, computing and visualizing the metabolic differences and similarities of such models is a current challenge. Furthermore, there is a lack of automated tools that can combine the strengths of multiple reconstruction pipelines into a curated single comprehensive model by merging different drafts, which possibly use incompatible namespaces. Here we present mergem, a novel method to compare, merge, and translate two or more metabolic models. Using a universal metabolic identifier mapping system constructed from multiple metabolic databases, mergem robustly can compare models from different pipelines, merge their common elements, and translate their identifiers to other database systems. mergem is implemented as a command line tool, a Python package, and on the web-application Fluxer, which allows simulating and visually comparing multiple models with different interactive flux graphs. The ability to merge, compare, and translate diverse genome scale metabolic models can facilitate the curation of comprehensive reconstructions and the discovery of unique and common metabolic features among different organisms.
Collapse
Affiliation(s)
- Archana Hari
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA
| | - Arveen Zarrabi
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA
| | - Daniel Lobo
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA
- Greenebaum Comprehensive Cancer Center and Center for Stem Cell Biology & Regenerative Medicine, University of Maryland, School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Proteomic Profiling of Outer Membrane Vesicles Released by Escherichia coli LPS Mutants Defective in Heptose Biosynthesis. J Pers Med 2022; 12:jpm12081301. [PMID: 36013250 PMCID: PMC9410366 DOI: 10.3390/jpm12081301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli releases outer membrane vesicles (OMVs) into the extracellular environment. OMVs, which contain the outer membrane protein, lipopolysaccharides (LPS), and genetic material, play an important role in immune response modulation. An isobaric tag for relative and absolute quantitation (iTRAQ) analysis was used to investigate OMV constituent proteins and their functions in burn trauma. OMV sizes ranged from 50 to 200 nm. Proteomics and Gene Ontology analysis revealed that ΔrfaC and ΔrfaG were likely involved in the upregulation of the structural constituent of ribosomes for the outer membrane and of proteins involved in protein binding and OMV synthesis. ΔrfaL was likely implicated in the downregulation of the structural constituent of the ribosome, translation, and cytosolic large ribosomal subunit. Kyoto Encyclopedia of Genes and Genomes analysis indicated that ΔrfaC and ΔrfaG downregulated ACP, ACEF, and ADHE genes; ΔrfaL upregulated ACP, ACEF, and ADHE genes. Heat map analysis demonstrated upregulation of galF, clpX, accA, fabB, and grpE and downregulation of pspA, ydiY, rpsT, and rpmB. These results suggest that RfaC, RfaG, and RfaL proteins were involved in outer membrane and LPS synthesis. Therefore, direct contact between wounds and LPS may lead to apoptosis, reduction in local cell proliferation, and delayed wound healing.
Collapse
|
4
|
Bhatia I, Yadav S, Biswal BK. Identification, structure determination and analysis of Mycobacterium smegmatis acyl-carrier protein synthase (AcpS) crystallized serendipitously. Acta Crystallogr F Struct Biol Commun 2022; 78:252-264. [PMID: 35787552 PMCID: PMC9254898 DOI: 10.1107/s2053230x22005738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 11/11/2022] Open
Abstract
The unintended crystallization of proteins which generally originate from the expression host instead of the target recombinant proteins is periodically reported. Despite the massive technological advances in the field, assigning a structural model to the corresponding diffraction data is not a trivial task. Here, the structure of acyl-carrier protein synthase (AcpS) from Mycobacterium smegmatis (msAcpS), which crystallized inadvertently in an experimental setup to grow crystals of a Mycobacterium tuberculosis protein using M. smegmatis as an expression system, is reported. After numerous unsuccessful attempts to solve the structure of the target protein by the molecular-replacement method no convincing solutions were obtained, indicating that the diffraction data may correspond to a crystal of an artifactual protein, which was finally identified by the Sequence-Independent Molecular replacement Based on Available Databases (SIMBAD) server. The msAcpS structure was solved at 2.27 Å resolution and structural analysis showed an overall conserved fold. msAcpS formed a trimeric structure similar to those of other reported structures of AcpS from various organisms; however, the residues involved in trimer formation are not strictly conserved. An unrelated metal ion (Ni2+), which was possibly incorporated during protein purification, was observed in the proximity of His49 and His116. Structural and sequence differences were observed in the loop connecting the α3 and α4 helices that is responsible for the open and closed conformations of the enzyme. Moreover, the structural analysis of msAcpS augments the current understanding of this enzyme, which plays a crucial role in the functional activation of acyl-carrier proteins in the fatty-acid biosynthesis pathway.
Collapse
Affiliation(s)
- Indu Bhatia
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Savita Yadav
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Bichitra K. Biswal
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
5
|
Patil NA, Thombare VJ, Li R, He X, Lu J, Yu HH, Wickremasinghe H, Pamulapati K, Azad MAK, Velkov T, Roberts KD, Li J. An Efficient Approach for the Design and Synthesis of Antimicrobial Peptide-Peptide Nucleic Acid Conjugates. Front Chem 2022; 10:843163. [PMID: 35372270 PMCID: PMC8964499 DOI: 10.3389/fchem.2022.843163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 01/23/2023] Open
Abstract
Peptide-Peptide Nucleic Acid (PNA) conjugates targeting essential bacterial genes have shown significant potential in developing novel antisense antimicrobials. The majority of efforts in this area are focused on identifying different PNA targets and the selection of peptides to deliver the peptide-PNA conjugates to Gram-negative bacteria. Notably, the selection of a linkage strategy to form peptide-PNA conjugate plays an important role in the effective delivery of PNAs. Recently, a unique Cysteine- 2-Cyanoisonicotinamide (Cys-CINA) click chemistry has been employed for the synthesis of cyclic peptides. Considering the high selectivity of this chemistry, we investigated the efficiency of Cys-CINA conjugation to synthesize novel antimicrobial peptide-PNA conjugates. The PNA targeting acyl carrier protein gene (acpP), when conjugated to the membrane-active antimicrobial peptides (polymyxin), showed improvement in antimicrobial activity against multidrug-resistant Gram-negative Acinetobacter baumannii. Thus, indicating that the Cys-CINA conjugation is an effective strategy to link the antisense oligonucleotides with antimicrobial peptides. Therefore, the Cys-CINA conjugation opens an exciting prospect for antimicrobial drug development.
Collapse
Affiliation(s)
- Nitin A. Patil
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- *Correspondence: Nitin A. Patil,
| | - Varsha J. Thombare
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| | - Rong Li
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Xiaoji He
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jing Lu
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| | - Heidi H. Yu
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Hasini Wickremasinghe
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Kavya Pamulapati
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Mohammad A. K. Azad
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kade D. Roberts
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jian Li
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Whaley SG, Radka CD, Subramanian C, Frank MW, Rock CO. Malonyl-acyl carrier protein decarboxylase activity promotes fatty acid and cell envelope biosynthesis in Proteobacteria. J Biol Chem 2021; 297:101434. [PMID: 34801557 PMCID: PMC8666670 DOI: 10.1016/j.jbc.2021.101434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Bacterial fatty acid synthesis in Escherichia coli is initiated by the condensation of an acetyl-CoA with a malonyl-acyl carrier protein (ACP) by the β-ketoacyl-ACP synthase III enzyme, FabH. E. coli ΔfabH knockout strains are viable because of the yiiD gene that allows FabH-independent fatty acid synthesis initiation. However, the molecular function of the yiiD gene product is not known. Here, we show the yiiD gene product is a malonyl-ACP decarboxylase (MadA). MadA has two independently folded domains: an amino-terminal N-acetyl transferase (GNAT) domain (MadAN) and a carboxy-terminal hot dog dimerization domain (MadAC) that encodes the malonyl-ACP decarboxylase function. Members of the proteobacterial Mad protein family are either two domain MadA (GNAT-hot dog) or standalone MadB (hot dog) decarboxylases. Using structure-guided, site-directed mutagenesis of MadB from Shewanella oneidensis, we identified Asn45 on a conserved catalytic loop as critical for decarboxylase activity. We also found that MadA, MadAC, or MadB expression all restored normal cell size and growth rates to an E. coli ΔfabH strain, whereas the expression of MadAN did not. Finally, we verified that GlmU, a bifunctional glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase that synthesizes the key intermediate UDP-GlcNAc, is an ACP binding protein. Acetyl-ACP is the preferred glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase substrate, in addition to being the substrate for the elongation-condensing enzymes FabB and FabF. Thus, we conclude that the Mad family of malonyl-ACP decarboxylases supplies acetyl-ACP to support the initiation of fatty acid, lipopolysaccharide, peptidoglycan, and enterobacterial common antigen biosynthesis in Proteobacteria.
Collapse
Affiliation(s)
- Sarah G Whaley
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christopher D Radka
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chitra Subramanian
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew W Frank
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
7
|
Williams TJ, Allen MA, Ivanova N, Huntemann M, Haque S, Hancock AM, Brazendale S, Cavicchioli R. Genome Analysis of a Verrucomicrobial Endosymbiont With a Tiny Genome Discovered in an Antarctic Lake. Front Microbiol 2021; 12:674758. [PMID: 34140946 PMCID: PMC8204192 DOI: 10.3389/fmicb.2021.674758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/23/2021] [Indexed: 01/25/2023] Open
Abstract
Organic Lake in Antarctica is a marine-derived, cold (−13∘C), stratified (oxic-anoxic), hypersaline (>200 gl–1) system with unusual chemistry (very high levels of dimethylsulfide) that supports the growth of phylogenetically and metabolically diverse microorganisms. Symbionts are not well characterized in Antarctica. However, unicellular eukaryotes are often present in Antarctic lakes and theoretically could harbor endosymbionts. Here, we describe Candidatus Organicella extenuata, a member of the Verrucomicrobia with a highly reduced genome, recovered as a metagenome-assembled genome with genetic code 4 (UGA-to-Trp recoding) from Organic Lake. It is closely related to Candidatus Pinguicocccus supinus (163,218 bp, 205 genes), a newly described cytoplasmic endosymbiont of the freshwater ciliate Euplotes vanleeuwenhoeki (Serra et al., 2020). At 158,228 bp (encoding 194 genes), the genome of Ca. Organicella extenuata is among the smallest known bacterial genomes and similar to the genome of Ca. Pinguicoccus supinus (163,218 bp, 205 genes). Ca. Organicella extenuata retains a capacity for replication, transcription, translation, and protein-folding while lacking any capacity for the biosynthesis of amino acids or vitamins. Notably, the endosymbiont retains a capacity for fatty acid synthesis (type II) and iron–sulfur (Fe-S) cluster assembly. Metagenomic analysis of 150 new metagenomes from Organic Lake and more than 70 other Antarctic aquatic locations revealed a strong correlation in abundance between Ca. Organicella extenuata and a novel ciliate of the genus Euplotes. Like Ca. Pinguicoccus supinus, we infer that Ca. Organicella extenuata is an endosymbiont of Euplotes and hypothesize that both Ca. Organicella extenuata and Ca. Pinguicocccus supinus provide fatty acids and Fe-S clusters to their Euplotes host as the foundation of a mutualistic symbiosis. The discovery of Ca. Organicella extenuata as possessing genetic code 4 illustrates that in addition to identifying endosymbionts by sequencing known symbiotic communities and searching metagenome data using reference endosymbiont genomes, the potential exists to identify novel endosymbionts by searching for unusual coding parameters.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Natalia Ivanova
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | - Marcel Huntemann
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | - Sabrina Haque
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Alyce M Hancock
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Sarah Brazendale
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Antenucci F, Ovsepian A, Wrobel A, Winther-Larsen HC, Bojesen AM. Design and Characterization of a Novel Tool for the Antigenic Enrichment of Actinobacillus pleuropneumoniae Outer Membrane. Pathogens 2020; 9:E1014. [PMID: 33276526 PMCID: PMC7761619 DOI: 10.3390/pathogens9121014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Production and isolation of recombinant proteins are costly and work-intensive processes, especially in immunology when tens or hundreds of potential immunogens need to be purified for testing. Here we propose an alternative method for fast screening of immunogen candidates, based on genetic engineering of recombinant bacterial strains able to express and expose selected antigens on their outer membrane. In Actinobacillus pleuropneumoniae, a Gram-negative porcine pathogen responsible for extensive economic losses worldwide, we identified a conserved general secretion pathway (GSP) domain in the N-terminal part of the outer membrane protein ApfA (ApfA stem: ApfAs). ApfAs was used as an outer membrane anchor, to which potential immunogens can be attached. To enable confirmation of correct positioning, ApfAs, was cloned in combination with the modified acyl carrier protein (ACP) fluorescent tag ACP mini (ACPm) and the putative immunogen VacJ. The chimeric construct was inserted in the pMK-express vector, subsequently transformed into A. pleuropneumoniae for expression. Flow cytometry, fluorescence imaging and mass spectrometry analysis were employed to demonstrate that the outer membrane of the transformed strain was enriched with the chimeric ApfAs-ACPm-VacJ antigen. Our results confirmed correct positioning of the chimeric ApfAs-ACPm-VacJ antigen and supported this system's potential as platform technology enabling antigenic enrichment of the outer membrane of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Fabio Antenucci
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Copenhagen, Denmark; (F.A.); (A.O.)
| | - Armen Ovsepian
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Copenhagen, Denmark; (F.A.); (A.O.)
| | - Agnieszka Wrobel
- Section of Pharmaceutical Biosciences, Centre of Integrative Microbial Evolution, Department of Pharmacy, University of Oslo, Sem Sælandsvei 3, 0316 Oslo, Norway; (A.W.); (H.C.W.-L.)
| | - Hanne Cecilie Winther-Larsen
- Section of Pharmaceutical Biosciences, Centre of Integrative Microbial Evolution, Department of Pharmacy, University of Oslo, Sem Sælandsvei 3, 0316 Oslo, Norway; (A.W.); (H.C.W.-L.)
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Copenhagen, Denmark; (F.A.); (A.O.)
| |
Collapse
|
9
|
Comparative structure, dynamics and evolution of acyl-carrier proteins from Borrelia burgdorferi, Brucella melitensis and Rickettsia prowazekii. Biochem J 2020; 477:491-508. [PMID: 31922183 DOI: 10.1042/bcj20190797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022]
Abstract
Acyl carrier proteins (ACPs) are small helical proteins found in all kingdoms of life, primarily involved in fatty acid and polyketide biosynthesis. In eukaryotes, ACPs are part of the fatty acid synthase (FAS) complex, where they act as flexible tethers for the growing lipid chain, enabling access to the distinct active sites in FAS. In the type II synthesis systems found in bacteria and plastids, these proteins exist as monomers and perform various processes, from being a donor for synthesis of various products such as endotoxins, to supplying acyl chains for lipid A and lipoic acid FAS (quorum sensing), but also as signaling molecules, in bioluminescence and activation of toxins. The essential and diverse nature of their functions makes ACP an attractive target for antimicrobial drug discovery. Here, we report the structure, dynamics and evolution of ACPs from three human pathogens: Borrelia burgdorferi, Brucella melitensis and Rickettsia prowazekii, which could facilitate the discovery of new inhibitors of ACP function in pathogenic bacteria.
Collapse
|
10
|
Jaiswal AK, Tiwari S, Jamal SB, de Castro Oliveira L, Alves LG, Azevedo V, Ghosh P, Oliveira CJF, Soares SC. The pan-genome of Treponema pallidum reveals differences in genome plasticity between subspecies related to venereal and non-venereal syphilis. BMC Genomics 2020; 21:33. [PMID: 31924165 PMCID: PMC6953169 DOI: 10.1186/s12864-019-6430-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/24/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Spirochetal organisms of the Treponema genus are responsible for causing Treponematoses. Pathogenic treponemes is a Gram-negative, motile, spirochete pathogen that causes syphilis in human. Treponema pallidum subsp. endemicum (TEN) causes endemic syphilis (bejel); T. pallidum subsp. pallidum (TPA) causes venereal syphilis; T. pallidum subsp. pertenue (TPE) causes yaws; and T. pallidum subsp. Ccarateum causes pinta. Out of these four high morbidity diseases, venereal syphilis is mediated by sexual contact; the other three diseases are transmitted by close personal contact. The global distribution of syphilis is alarming and there is an increasing need of proper treatment and preventive measures. Unfortunately, effective measures are limited. RESULTS Here, the genome sequences of 53 T. pallidum strains isolated from different parts of the world and a diverse range of hosts were comparatively analysed using pan-genomic strategy. Phylogenomic, pan-genomic, core genomic and singleton analysis disclosed the close connection among all strains of the pathogen T. pallidum, its clonal behaviour and showed increases in the sizes of the pan-genome. Based on the genome plasticity analysis of the subsets containing the subspecies T pallidum subsp. pallidum, T. pallidum subsp. endemicum and T. pallidum subsp. pertenue, we found differences in the presence/absence of pathogenicity islands (PAIs) and genomic islands (GIs) on subsp.-based study. CONCLUSIONS In summary, we identified four pathogenicity islands (PAIs), eight genomic islands (GIs) in subsp. pallidum, whereas subsp. endemicum has three PAIs and seven GIs and subsp. pertenue harbours three PAIs and eight GIs. Concerning the presence of genes in PAIs and GIs, we found some genes related to lipid and amino acid biosynthesis that were only present in the subsp. of T. pallidum, compared to T. pallidum subsp. endemicum and T. pallidum subsp. pertenue.
Collapse
Affiliation(s)
- Arun Kumar Jaiswal
- PG Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Immunology, Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Sandeep Tiwari
- PG Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, Rawalpindi, Punjab, 46000, Pakistan
| | - Letícia de Castro Oliveira
- PG Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Immunology, Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Leandro Gomes Alves
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Vasco Azevedo
- PG Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA-23284, USA
| | - Carlo Jose Freira Oliveira
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Siomar C Soares
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil.
| |
Collapse
|
11
|
Sastre DE, Basso LGM, Trastoy B, Cifuente JO, Contreras X, Gueiros-Filho F, de Mendoza D, Navarro MVAS, Guerin ME. Membrane fluidity adjusts the insertion of the transacylase PlsX to regulate phospholipid biosynthesis in Gram-positive bacteria. J Biol Chem 2019; 295:2136-2147. [PMID: 31796629 DOI: 10.1074/jbc.ra119.011122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
PlsX plays a central role in the coordination of fatty acid and phospholipid biosynthesis in Gram-positive bacteria. PlsX is a peripheral membrane acyltransferase that catalyzes the conversion of acyl-ACP to acyl-phosphate, which is in turn utilized by the polytopic membrane acyltransferase PlsY on the pathway of bacterial phospholipid biosynthesis. We have recently studied the interaction between PlsX and membrane phospholipids in vivo and in vitro, and observed that membrane association is necessary for the efficient transfer of acyl-phosphate to PlsY. However, understanding the molecular basis of such a channeling mechanism remains a major challenge. Here, we disentangle the binding and insertion events of the enzyme to the membrane, and the subsequent catalysis. We show that PlsX membrane binding is a process mostly mediated by phospholipid charge, whereas fatty acid saturation and membrane fluidity remarkably influence the membrane insertion step. Strikingly, the PlsXL254E mutant, whose biological functionality was severely compromised in vivo but remains catalytically active in vitro, was able to superficially bind to phospholipid vesicles, nevertheless, it loses the insertion capacity, strongly supporting the importance of membrane insertion in acyl-phosphate delivery. We propose a mechanism in which membrane fluidity governs the insertion of PlsX and thus regulates the biosynthesis of phospholipids in Gram-positive bacteria. This model may be operational in other peripheral membrane proteins with an unprecedented impact in drug discovery/development strategies.
Collapse
Affiliation(s)
- Diego E Sastre
- Grupo de Biofísica Molecular "Sergio Mascarenhas," Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brasil.
| | - Luis G M Basso
- Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Beatriz Trastoy
- Structural Biology Unit, CIC bioGUNE Technological Park of Bizkaia, Derio, Vizcaya, Spain
| | - Javier O Cifuente
- Structural Biology Unit, CIC bioGUNE Technological Park of Bizkaia, Derio, Vizcaya, Spain
| | - Xabier Contreras
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; Instituto Biofisika, Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, 48940 Bizkaia, Spain; Departamento de Bioquímica, Universidad del País Vasco, Leioa, 48940 Bizkaia, Spain
| | - Frederico Gueiros-Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR), Rosario, Santa Fe, Argentina
| | - Marcos V A S Navarro
- Grupo de Biofísica Molecular "Sergio Mascarenhas," Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brasil
| | - Marcelo E Guerin
- Structural Biology Unit, CIC bioGUNE Technological Park of Bizkaia, Derio, Vizcaya, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
12
|
Ramos PIP, Fernández Do Porto D, Lanzarotti E, Sosa EJ, Burguener G, Pardo AM, Klein CC, Sagot MF, de Vasconcelos ATR, Gales AC, Marti M, Turjanski AG, Nicolás MF. An integrative, multi-omics approach towards the prioritization of Klebsiella pneumoniae drug targets. Sci Rep 2018; 8:10755. [PMID: 30018343 PMCID: PMC6050338 DOI: 10.1038/s41598-018-28916-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
Klebsiella pneumoniae (Kp) is a globally disseminated opportunistic pathogen that can cause life-threatening infections. It has been found as the culprit of many infection outbreaks in hospital environments, being particularly aggressive towards newborns and adults under intensive care. Many Kp strains produce extended-spectrum β-lactamases, enzymes that promote resistance against antibiotics used to fight these infections. The presence of other resistance determinants leading to multidrug-resistance also limit therapeutic options, and the use of 'last-resort' drugs, such as polymyxins, is not uncommon. The global emergence and spread of resistant strains underline the need for novel antimicrobials against Kp and related bacterial pathogens. To tackle this great challenge, we generated multiple layers of 'omics' data related to Kp and prioritized proteins that could serve as attractive targets for antimicrobial development. Genomics, transcriptomics, structuromic and metabolic information were integrated in order to prioritize candidate targets, and this data compendium is freely available as a web server. Twenty-nine proteins with desirable characteristics from a drug development perspective were shortlisted, which participate in important processes such as lipid synthesis, cofactor production, and core metabolism. Collectively, our results point towards novel targets for the control of Kp and related bacterial pathogens.
Collapse
Affiliation(s)
- Pablo Ivan Pereira Ramos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Darío Fernández Do Porto
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Esteban Lanzarotti
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Ezequiel J Sosa
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Germán Burguener
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustín M Pardo
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Cecilia C Klein
- Inria Grenoble Rhône-Alpes, Grenoble, France
- Université Claude Bernard Lyon 1, Lyon, France
- Centre for Genomic Regulation (CRG), Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marie-France Sagot
- Inria Grenoble Rhône-Alpes, Grenoble, France
- Université Claude Bernard Lyon 1, Lyon, France
| | | | - Ana Cristina Gales
- Laboratório Alerta. Division of Infectious Diseases, Department of Internal Medicine. Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo Marti
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Adrián G Turjanski
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina.
| | - Marisa F Nicolás
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Marcella AM, Barb AW. Acyl-coenzyme A:(holo-acyl carrier protein) transacylase enzymes as templates for engineering. Appl Microbiol Biotechnol 2018; 102:6333-6341. [PMID: 29858956 DOI: 10.1007/s00253-018-9114-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/18/2023]
Abstract
This review will cover the structure, enzymology, and related aspects that are important for structure-based engineering of the transacylase enzymes from fatty acid biosynthesis and polyketide synthesis. Furthermore, this review will focus on in vitro characteristics and not cover engineering of the upstream or downstream reactions or strategies to manipulate metabolic flux in vivo. The malonyl-coenzyme A(CoA)-holo-acyl-carrier protein (holo-ACP) transacylase (FabD) from Escherichia coli serves as a model for this enzyme with thorough descriptions of structure, enzyme mechanism, and effects of mutation on substrate binding presented in the literature. Here, we discuss multiple practical and theoretical considerations regarding engineering transacylase enzymes to accept non-cognate substrates and form novel acyl-ACPs for downstream reactions.
Collapse
Affiliation(s)
- Aaron M Marcella
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, rm 4210, Ames, IA, 50011, USA
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, rm 4210, Ames, IA, 50011, USA.
| |
Collapse
|
14
|
Marcella AM, Culbertson SJ, Shogren-Knaak MA, Barb AW. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex. J Mol Biol 2017; 429:3763-3775. [DOI: 10.1016/j.jmb.2017.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023]
|
15
|
Marcella AM, Barb AW. The R117A variant of the Escherichia coli transacylase FabD synthesizes novel acyl-(acyl carrier proteins). Appl Microbiol Biotechnol 2017; 101:8431-8441. [DOI: 10.1007/s00253-017-8586-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/29/2017] [Accepted: 10/09/2017] [Indexed: 11/24/2022]
|
16
|
Guan X, Okazaki Y, Lithio A, Li L, Zhao X, Jin H, Nettleton D, Saito K, Nikolau BJ. Discovery and Characterization of the 3-Hydroxyacyl-ACP Dehydratase Component of the Plant Mitochondrial Fatty Acid Synthase System. PLANT PHYSIOLOGY 2017; 173:2010-2028. [PMID: 28202596 PMCID: PMC5373057 DOI: 10.1104/pp.16.01732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/08/2017] [Indexed: 05/06/2023]
Abstract
We report the characterization of the Arabidopsis (Arabidopsis thaliana) 3-hydroxyacyl-acyl carrier protein dehydratase (mtHD) component of the mitochondrial fatty acid synthase (mtFAS) system, encoded by AT5G60335. The mitochondrial localization and catalytic capability of mtHD were demonstrated with a green fluorescent protein transgenesis experiment and by in vivo complementation and in vitro enzymatic assays. RNA interference (RNAi) knockdown lines with reduced mtHD expression exhibit traits typically associated with mtFAS mutants, namely a miniaturized morphological appearance, reduced lipoylation of lipoylated proteins, and altered metabolomes consistent with the reduced catalytic activity of lipoylated enzymes. These alterations are reversed when mthd-rnai mutant plants are grown in a 1% CO2 atmosphere, indicating the link between mtFAS and photorespiratory deficiency due to the reduced lipoylation of glycine decarboxylase. In vivo biochemical feeding experiments illustrate that sucrose and glycolate are the metabolic modulators that mediate the alterations in morphology and lipid accumulation. In addition, both mthd-rnai and mtkas mutants exhibit reduced accumulation of 3-hydroxytetradecanoic acid (i.e. a hallmark of lipid A-like molecules) and abnormal chloroplastic starch granules; these changes are not reversible by the 1% CO2 atmosphere, demonstrating two novel mtFAS functions that are independent of photorespiration. Finally, RNA sequencing analysis revealed that mthd-rnai and mtkas mutants are nearly equivalent to each other in altering the transcriptome, and these analyses further identified genes whose expression is affected by a functional mtFAS system but independent of photorespiratory deficiency. These data demonstrate the nonredundant nature of the mtFAS system, which contributes unique lipid components needed to support plant cell structure and metabolism.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Blotting, Western
- Carbon Dioxide/metabolism
- Fatty Acid Synthase, Type II/genetics
- Fatty Acid Synthase, Type II/metabolism
- Fatty Acid Synthases/genetics
- Fatty Acid Synthases/metabolism
- Gene Expression Regulation, Plant
- Glycolates/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Hydro-Lyases/genetics
- Hydro-Lyases/metabolism
- Metabolomics/methods
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Mitochondria/enzymology
- Mitochondria/ultrastructure
- Mutation
- Myristic Acids/metabolism
- Plants, Genetically Modified
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, RNA/methods
- Sequence Homology, Amino Acid
- Sucrose/metabolism
Collapse
Affiliation(s)
- Xin Guan
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Yozo Okazaki
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Andrew Lithio
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Ling Li
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Xuefeng Zhao
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Huanan Jin
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Dan Nettleton
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Kazuki Saito
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Basil J Nikolau
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011;
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| |
Collapse
|
17
|
Lauciello L, Lack G, Scapozza L, Perozzo R. A high yield optimized method for the production of acylated ACPs enabling the analysis of enzymes involved in P. falciparum fatty acid biosynthesis. Biochem Biophys Rep 2016; 8:310-317. [PMID: 28955970 PMCID: PMC5613970 DOI: 10.1016/j.bbrep.2016.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022] Open
Abstract
The natural substrates of the enzymes involved in type-II fatty acid biosynthesis (FAS-II) are acylated acyl carrier proteins (acyl-ACPs). The state of the art method to produce acyl-ACPs involves the transfer of a phosphopantetheine moiety from CoA to apo-ACP by E. coli holo-ACP synthase (EcACPS), yielding holo-ACP which subsequently becomes thioesterified with free fatty acids by the E. coli acyl-ACP synthase (EcAAS). Alternatively, acyl-ACPs can be synthesized by direct transfer of acylated phosphopantetheine moieties from acyl-CoA to apo-ACP by means of EcACPS. The need for native substrates to characterize the FAS-II enzymes of P. falciparum prompted us to investigate the potential and limit of the two methods to efficiently acylate P. falciparum ACP (PfACP) with respect to chain length and β-modification and in preparative amounts. The EcAAS activity is found to be independent from the oxidation state at the β-position and accepts fatty acids as substrates with chain lengths starting from C8 to C20, whereas EcACPS accepts very efficiently acyl-CoAs with chain lengths up to C16, and with decreasing activity also longer chains (C18 to C20). Methods were developed to synthesize and purify preparative amounts of high quality natural substrates that are fully functional for the enzymes of the P. falciparum FAS-II system. The apo-form of P. falciparum ACP (PfACP) has been purified to homogeneity. PfACP can be acylated very efficiently and in preparative amounts using the improved EcACPS and EcAAS methods. Small and long chain fatty acids can be transferred. The acylation reaction is independent of the oxidation state at the β-position of the acyl-chains. Acyl-PfACPs are fully functional substrates of the corresponding P. falciparum FAS-II enzymes.
Collapse
|
18
|
Suppression of fabB Mutation by fabF1 Is Mediated by Transcription Read-through in Shewanella oneidensis. J Bacteriol 2016; 198:3060-3069. [PMID: 27573012 DOI: 10.1128/jb.00463-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/20/2016] [Indexed: 12/19/2022] Open
Abstract
As type II fatty acid synthesis is essential for the growth of Escherichia coli, its many components are regarded as potential targets for novel antibacterial drugs. Among them, β-ketoacyl-acyl carrier protein (ACP) synthase (KAS) FabB is the exclusive factor for elongation of the cis-3-decenoyl-ACP (cis-3-C10-ACP). In our previous study, we presented evidence to suggest that this may not be the case in Shewanella oneidensis, an emerging model gammaproteobacterium renowned for its respiratory versatility. Here, we identified FabF1, another KAS, as a functional replacement for FabB in S. oneidensis In fabB+ or desA+ (encoding a desaturase) cells, which are capable of making unsaturated fatty acids (UFA), FabF1 is barely produced. However, UFA auxotroph mutants devoid of both fabB and desA genes can be spontaneously converted to suppressor strains, which no longer require exogenous UFAs for growth. Suppression is caused by a TGTTTT deletion in the region upstream of the fabF1 gene, resulting in enhanced FabF1 production. We further demonstrated that the deletion leads to transcription read-through of the terminator for acpP, an acyl carrier protein gene immediately upstream of fabF1 There are multiple tandem repeats in the region covering the terminator, and the TGTTTT deletion, as well as others, compromises the terminator efficacy. In addition, FabF2 also shows an ability to complement the FabB loss, albeit substantially less effectively than FabF1. IMPORTANCE It has been firmly established that FabB for UFA synthesis via type II fatty acid synthesis in FabA-containing bacteria such as E. coli is essential. However, S. oneidensis appears to be an exception. In this bacterium, FabF1, when sufficiently expressed, is able to fully complement the FabB loss. Importantly, such a capability can be obtained by spontaneous mutations, which lead to transcription read-through. Therefore, our data, by identifying the functional overlap between FabB and FabFs, provide new insights into the current understanding of KAS and help reveal novel ways to block UFA synthesis for therapeutic purposes.
Collapse
|
19
|
Balish MF, Distelhorst SL. Potential Molecular Targets for Narrow-Spectrum Agents to Combat Mycoplasma pneumoniae Infection and Disease. Front Microbiol 2016; 7:205. [PMID: 26941728 PMCID: PMC4766277 DOI: 10.3389/fmicb.2016.00205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/08/2016] [Indexed: 12/17/2022] Open
Abstract
As Mycoplasma pneumoniae macrolide resistance grows and spreads worldwide, it is becoming more important to develop new drugs to prevent infection or limit disease. Because other mycoplasma species have acquired resistance to other classes of antibiotics, it is reasonable to presume that M. pneumoniae can do the same, so switching to commonly used antibiotics like fluoroquinolones will not result in forms of therapy with long-term utility. Moreover, broad-spectrum antibiotics can have serious consequences for the patient, as these drugs may have severe impacts on the natural microbiota of the individual, compromising the health of the patient either short-term or long-term. Therefore, developing narrow-spectrum antibiotics that effectively target only M. pneumoniae and no more than a small portion of the microbiota is likely to yield impactful, positive results that can be used perhaps indefinitely to combat M. pneumoniae. Development of these agents requires a deep understanding of the basic biology of M. pneumoniae, in many areas deeper than what is currently known. In this review, we discuss potential targets for new, narrow-spectrum agents and both the positive and negative aspects of selecting these targets, which include toxic molecules, metabolic pathways, and attachment and motility. By gathering this information together, we anticipate that it will be easier for researchers to evaluate topics of priority for study of M. pneumoniae.
Collapse
|
20
|
Abstract
The pathways in Escherichia coli and (largely by analogy) S. enterica remain the paradigm of bacterial lipid synthetic pathways, although recently considerable diversity among bacteria in the specific areas of lipid synthesis has been demonstrated. The structural biology of the fatty acid synthetic proteins is essentially complete. However, the membrane-bound enzymes of phospholipid synthesis remain recalcitrant to structural analyses. Recent advances in genetic technology have allowed the essentialgenes of lipid synthesis to be tested with rigor, and as expected most genes are essential under standard growth conditions. Conditionally lethal mutants are available in numerous genes, which facilitates physiological analyses. The array of genetic constructs facilitates analysis of the functions of genes from other organisms. Advances in mass spectroscopy have allowed very accurate and detailed analyses of lipid compositions as well as detection of the interactions of lipid biosynthetic proteins with one another and with proteins outside the lipid pathway. The combination of these advances has resulted in use of E. coli and S. enterica for discovery of new antimicrobials targeted to lipid synthesis and in deciphering the molecular actions of known antimicrobials. Finally,roles for bacterial fatty acids other than as membrane lipid structural components have been uncovered. For example, fatty acid synthesis plays major roles in the synthesis of the essential enzyme cofactors, biotin and lipoic acid. Although other roles for bacterial fatty acids, such as synthesis of acyl-homoserine quorum-sensing molecules, are not native to E. coli introduction of the relevant gene(s) synthesis of these foreign molecules readily proceeds and the sophisticated tools available can used to decipher the mechanisms of synthesis of these molecules.
Collapse
|
21
|
Marcella AM, Jing F, Barb AW. Preparation of holo- and malonyl-[acyl-carrier-protein] in a manner suitable for analog development. Protein Expr Purif 2015; 115:39-45. [PMID: 26008118 DOI: 10.1016/j.pep.2015.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/31/2022]
Abstract
The fatty acid biosynthetic pathway generates highly reduced carbon based molecules. For this reason fatty acid synthesis is a target of pathway engineering to produce novel specialty or commodity chemicals using renewable techniques to supplant molecules currently derived from petroleum. Malonyl-[acyl carrier protein] (malonyl-ACP) is a key metabolite in the fatty acid pathway and donates two carbon units to the growing fatty acid chain during each step of biosynthesis. Attempts to test engineered fatty acid biosynthesis enzymes in vitro will require malonyl-ACP or malonyl-ACP analogs. Malonyl-ACP is challenging to prepare due to the instability of the carboxylate leaving group and the multiple steps of post-translational modification required to activate ACP. Here we report the expression and purification of holo- and malonyl-ACP from Escherichia coli with high yields (>15 mg per L of expression). The malonyl-ACP is efficiently recognized by the E. coli keto-acyl synthase enzyme, FabH. A FabH assay using malonyl-ACP and a coumarin-based fluorescent reagent is described that provides a high throughput alternative to reported radioactive assays.
Collapse
Affiliation(s)
- Aaron M Marcella
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, United States
| | - Fuyuan Jing
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, United States
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
22
|
Yao J, Maxwell JB, Rock CO. Resistance to AFN-1252 arises from missense mutations in Staphylococcus aureus enoyl-acyl carrier protein reductase (FabI). J Biol Chem 2013; 288:36261-71. [PMID: 24189061 DOI: 10.1074/jbc.m113.512905] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AFN-1252 is a potent antibiotic against Staphylococcus aureus that targets the enoyl-acyl carrier protein reductase (FabI). A thorough screen for AFN-1252-resistant strains was undertaken to identify the spectrum of mechanisms for acquired resistance. A missense mutation in fabI predicted to encode FabI(M99T) was isolated 49 times, and a single isolate was predicted to encode FabI(Y147H). AFN-1252 only bound to the NADPH form of FabI, and the close interactions between the drug and Met-99 and Tyr-147 explained how the mutations would result in resistant enzymes. The clone expressing FabI(Y147H) had a pronounced growth defect that was rescued by exogenous fatty acid supplementation, and the purified protein had less than 5% of the enzymatic activity of FabI. FabI(Y147F) was also catalytically defective but retained its sensitivity to AFN-1252, illustrating the importance of the conserved Tyr-147 hydroxyl group in FabI function. The strains expressing FabI(M99T) exhibited normal growth, and the biochemical properties of the purified protein were indistinguishable from those of FabI. The AFN-1252 Ki(app) increased from 4 nm in FabI to 69 nm in FabI(M99T), accounting for the increased resistance of the corresponding mutant strain. The low activity of FabI(Y147H) precluded an accurate Ki measurement. The strain expressing FabI(Y147H) was also resistant to triclosan; however, the strain expressing FabI(M99T) was more susceptible. Strains with higher levels of AFN-1252 resistance were not obtained. The AFN-1252-resistant strains remained sensitive to submicromolar concentrations of AFN-1252, which blocked growth through inhibition of fatty acid biosynthesis at the FabI step.
Collapse
Affiliation(s)
- Jiangwei Yao
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | |
Collapse
|
23
|
Rumbo-Feal S, Gómez MJ, Gayoso C, Álvarez-Fraga L, Cabral MP, Aransay AM, Rodríguez-Ezpeleta N, Fullaondo A, Valle J, Tomás M, Bou G, Poza M. Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells. PLoS One 2013; 8:e72968. [PMID: 24023660 PMCID: PMC3758355 DOI: 10.1371/journal.pone.0072968] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
Acinetobacterbaumannii has emerged as a dangerous opportunistic pathogen, with many strains able to form biofilms and thus cause persistent infections. The aim of the present study was to use high-throughput sequencing techniques to establish complete transcriptome profiles of planktonic (free-living) and sessile (biofilm) forms of A. baumannii ATCC 17978 and thereby identify differences in their gene expression patterns. Collections of mRNA from planktonic (both exponential and stationary phase cultures) and sessile (biofilm) cells were sequenced. Six mRNA libraries were prepared following the mRNA-Seq protocols from Illumina. Reads were obtained in a HiScanSQ platform and mapped against the complete genome to describe the complete mRNA transcriptomes of planktonic and sessile cells. The results showed that the gene expression pattern of A. baumannii biofilm cells was distinct from that of planktonic cells, including 1621 genes over-expressed in biofilms relative to stationary phase cells and 55 genes expressed only in biofilms. These differences suggested important changes in amino acid and fatty acid metabolism, motility, active transport, DNA-methylation, iron acquisition, transcriptional regulation, and quorum sensing, among other processes. Disruption or deletion of five of these genes caused a significant decrease in biofilm formation ability in the corresponding mutant strains. Among the genes over-expressed in biofilm cells were those in an operon involved in quorum sensing. One of them, encoding an acyl carrier protein, was shown to be involved in biofilm formation as demonstrated by the significant decrease in biofilm formation by the corresponding knockout strain. The present work serves as a basis for future studies examining the complex network systems that regulate bacterial biofilm formation and maintenance.
Collapse
Affiliation(s)
- Soraya Rumbo-Feal
- Department of Microbiology, Biomedical Research Institute, University Hospital, A Coruña, Spain
| | - Manuel J. Gómez
- Department of Molecular Evolution, Center for Astrobiology, INTA-CSIC, Madrid, Spain
| | - Carmen Gayoso
- Department of Microbiology, Biomedical Research Institute, University Hospital, A Coruña, Spain
| | - Laura Álvarez-Fraga
- Department of Microbiology, Biomedical Research Institute, University Hospital, A Coruña, Spain
| | - María P. Cabral
- Department of Microbiology, Biomedical Research Institute, University Hospital, A Coruña, Spain
| | - Ana M. Aransay
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Derio, Spain
| | - Naiara Rodríguez-Ezpeleta
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Derio, Spain
- Marine Research Division, AZTI, Tecnalia, Sukarrieta, Spain
| | - Ane Fullaondo
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Derio, Spain
| | - Jaione Valle
- Department of Microbial biofilms, Agrobiotechnology Institute, Navarra, Spain
| | - María Tomás
- Department of Microbiology, Biomedical Research Institute, University Hospital, A Coruña, Spain
| | - Germán Bou
- Department of Microbiology, Biomedical Research Institute, University Hospital, A Coruña, Spain
- * E-mail: (MP); (GB)
| | - Margarita Poza
- Department of Microbiology, Biomedical Research Institute, University Hospital, A Coruña, Spain
- * E-mail: (MP); (GB)
| |
Collapse
|
24
|
Nair DR, Ghosh R, Manocha A, Mohanty D, Saran S, Gokhale RS. Two functionally distinctive phosphopantetheinyl transferases from amoeba Dictyostelium discoideum. PLoS One 2011; 6:e24262. [PMID: 21931666 PMCID: PMC3171403 DOI: 10.1371/journal.pone.0024262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/03/2011] [Indexed: 12/16/2022] Open
Abstract
The life cycle of Dictyostelium discoideum is proposed to be regulated by expression of small metabolites. Genome sequencing studies have revealed a remarkable array of genes homologous to polyketide synthases (PKSs) that are known to synthesize secondary metabolites in bacteria and fungi. A crucial step in functional activation of PKSs involves their post-translational modification catalyzed by phosphopantetheinyl transferases (PPTases). PPTases have been recently characterized from several bacteria; however, their relevance in complex life cycle of protozoa remains largely unexplored. Here we have identified and characterized two phosphopantetheinyl transferases from D. discoideum that exhibit distinct functional specificity. DiAcpS specifically modifies a stand-alone acyl carrier protein (ACP) that possesses a mitochondrial import signal. DiSfp in contrast is specific to Type I multifunctional PKS/fatty acid synthase proteins and cannot modify the stand-alone ACP. The mRNA of two PPTases can be detected during the vegetative as well as starvation-induced developmental pathway and the disruption of either of these genes results in non-viable amoebae. Our studies show that both PPTases play an important role in Dictyostelium biology and provide insight into the importance of PPTases in lower eukaryotes.
Collapse
Affiliation(s)
- Divya R Nair
- National Institute of Immunology, New Delhi, India
| | | | | | | | | | | |
Collapse
|
25
|
Roberts AA, Copp JN, Marahiel MA, Neilan BA. The Synechocystis sp. PCC6803 Sfp-Type Phosphopantetheinyl Transferase Does Not Possess Characteristic Broad-Range Activity. Chembiochem 2009; 10:1869-77. [DOI: 10.1002/cbic.200900095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Cronan JE, Thomas J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 2009; 459:395-433. [PMID: 19362649 DOI: 10.1016/s0076-6879(09)04617-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This review presents the most thoroughly studied bacterial fatty acid synthetic pathway, that of Escherichia coli and then discusses the exceptions to the E. coli pathway present in other bacteria. The known interrelationships between the fatty acid and polyketide synthetic pathways are also assessed, mainly in the Streptomyces group of bacteria. Finally, we present a compendium of methods for analysis of bacterial fatty acid synthetic pathways.
Collapse
Affiliation(s)
- John E Cronan
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | | |
Collapse
|
27
|
Abstract
Pantothenic acid, a precursor of coenzyme A (CoA), is essential for the growth of pathogenic microorganisms. Since the structure of pantothenic acid was determined, many analogues of this essential metabolite have been prepared. Several have been demonstrated to exert an antimicrobial effect against a range of microorganisms by inhibiting the utilization of pantothenic acid, validating pantothenic acid utilization as a potential novel antimicrobial drug target. This review commences with an overview of the mechanisms by which various microorganisms acquire the pantothenic acid they require for growth, and the universal CoA biosynthesis pathway by which pantothenic acid is converted into CoA. A detailed survey of studies that have investigated the inhibitory activity of analogues of pantothenic acid and other precursors of CoA follows. The potential of inhibitors of both pantothenic acid utilization and biosynthesis as novel antibacterial, antifungal and antimalarial agents is discussed, focusing on inhibitors and substrates of pantothenate kinase, the enzyme catalysing the rate-limiting step of CoA biosynthesis in many organisms. The best strategies are considered for identifying inhibitors of pantothenic acid utilization and biosynthesis that are potent and selective inhibitors of microbial growth and that may be suitable for use as chemotherapeutic agents in humans.
Collapse
Affiliation(s)
- Christina Spry
- School of Biochemistry and Molecular Biology, The Australian National University, Canberra, Australia
| | | | | |
Collapse
|
28
|
Pfleger BF, Lee JY, Somu RV, Aldrich CC, Hanna PC, Sherman DH. Characterization and analysis of early enzymes for petrobactin biosynthesis in Bacillus anthracis. Biochemistry 2007; 46:4147-57. [PMID: 17346033 DOI: 10.1021/bi6023995] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, iron acquisition and, more specifically, enzymes involved in siderophore biosynthesis have become attractive targets for discovery of new antibiotics. Accordingly, targeted inhibition of the biosynthesis of petrobactin, a virulence-associated siderophore encoded by the asb locus in Bacillus anthracis, may hold promise as a potential therapy against anthrax. This study describes the biochemical characterization of AsbC, the first reported 3,4-dihydroxybenzoic acid-AMP ligase, and a key component in the biosynthesis of DHB-spermidine (DHB-SP), the first isolable intermediate in petrobactin biosynthesis. AsbC catalyzes adenylation to the corresponding AMP ester of the unusual precursor 3,4-dihydroxybenzoate, in addition to benzoate substrates bearing hydrogen bond-donating substituents at the para and meta positions on the phenyl ring. In a second reaction, AsbC catalyzes transfer of the activated starter unit to AsbD, an aryl carrier protein similar to acyl and peptidyl carrier proteins that function in fatty acid, polyketide, and nonribosomal peptide biosynthesis. A third protein, AsbE, is shown to be responsible for condensation of 3,4-dihydroxybenzoyl-AsbD with spermidine, providing the DHB-spermidine arms that are linked to citrate for assembly of petrobactin. On the basis of the selective substrate profile of AsbC, a nonhydrolyzable analogue of 3,4-DHB-AMP was synthesized and shown to effectively inhibit AsbC function in vitro.
Collapse
Affiliation(s)
- Brian F Pfleger
- Life Sciences Institute and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | | | | | | | | |
Collapse
|
29
|
Gong H, Murphy A, McMaster CR, Byers DM. Neutralization of acidic residues in helix II stabilizes the folded conformation of acyl carrier protein and variably alters its function with different enzymes. J Biol Chem 2006; 282:4494-4503. [PMID: 17179150 DOI: 10.1074/jbc.m608234200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acyl carrier protein (ACP), a small protein essential for bacterial growth and pathogenesis, interacts with diverse enzymes during the biosynthesis of fatty acids, phospholipids, and other specialized products such as lipid A. NMR and hydrodynamic studies have previously shown that divalent cations stabilize native helical ACP conformation by binding to conserved acidic residues at two sites (A and B) at either end of the "recognition" helix II. To examine the roles of these amino acids in ACP structure and function, site-directed mutagenesis was used to replace individual site A (Asp-30, Asp-35, Asp-38) and site B (Glu-47, Glu-53, Asp-56) residues in recombinant Vibrio harveyi ACP with the corresponding amides, along with combined mutations at each site (SA, SB) or both sites (SA/SB). Like native V. harveyi ACP, all individual mutants were unfolded at neutral pH but adopted a helical conformation in the presence of millimolar Mg(2+) or upon fatty acylation. Mg(2+) binding to sites A or B independently stabilized native ACP conformation, whereas mutant SA/SB was folded in the absence of Mg(2+), suggesting that charge neutralization is largely responsible for ACP stabilization by divalent cations. Asp-35 in site A was critical for holo-ACP synthase activity, while acyl-ACP synthetase and UDP-N-acetylglucosamine acyltransferase (LpxA) activities were more affected by mutations in site B. Both sites were required for fatty acid synthase activity. Overall, our results indicate that divalent cation binding site mutations have predicted effects on ACP conformation but unpredicted and variable consequences on ACP function with different enzymes.
Collapse
Affiliation(s)
- Huansheng Gong
- Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | - Anne Murphy
- Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | - Christopher R McMaster
- Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | - David M Byers
- Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
| |
Collapse
|