1
|
Zhang J, Cui H, Zhang Z, Wang W, Jiang F, Sun E, Zhu Y, Li F, Bu Z, Zhao D. Identification of Escherichia coli 166 isolate as an effective inhibitor of African swine fever virus replication. Microbiol Spectr 2025; 13:e0300924. [PMID: 40008879 PMCID: PMC11960076 DOI: 10.1128/spectrum.03009-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
African swine fever is a lethal disease with mortality rates approaching 100% in both domestic pigs and wild boars. With no effective vaccines or treatments available, there is an urgent need for new biologics to combat the African swine fever virus (ASFV). In this study, we isolated bacteria from the intestinal contents of wild boar using culture-based methods and identified them through 16S ribosomal DNA (rDNA) sequencing. These isolates underwent high-throughput screening to evaluate their immunomodulatory effects on J774-Dual cells and their ability to inhibit ASFV replication in vitro. Among them, an Escherichia coli strain, designated as E. coli 166, exhibited strong inhibitory effects on various ASFV strains' replication, including three genotype II strains: virulent strain HLJ/18, moderately virulent strain HLJ/HRB1/20, genetically modified low-virulent strain HLJ/18-6GD, and one genotype I low-virulent strain SD/DY-I/21. Notably, this inhibition did not require direct interaction between the bacteria and porcine alveolar macrophages (PAMs). Both live and heat-inactivated E. coli 166 demonstrated a strong inhibitory effect on ASFV replication. Genetic modification of E. coli 166 did not alter its inhibitory phenotype. Further analysis revealed that PAMs pretreated with E. coli 166 showed upregulation of NF-κB and downregulation of CD163 at different time points post-infection, whereas PAMs only infected with ASFV exhibited the opposite trend. These findings suggest that E. coli 166 holds promise as a biological agent for controlling ASFV infection, through indirect mechanisms involving bacterial metabolites or lysis products. Future studies should focus on identifying the specific components responsible for its antiviral effects.IMPORTANCEThe emergence of the African swine fever virus (ASFV) as a devastating pathogen in swine populations necessitates the development of novel strategies for its control. In this study, Escherichia coli strain 166 (E. coli 166) demonstrated a remarkable ability to inhibit the replication of multiple ASFV strains in porcine alveolar macrophages (PAMs), even without direct bacterial contact. Both live and heat-inactivated E. coli 166 retained this inhibitory effect, suggesting that secreted metabolites or lysis products may play a key role. Furthermore, pretreatment of PAMs with E. coli 166 resulted in upregulated NF-κB activity and downregulated expression of the ASFV entry receptor CD163, presenting an immune-modulatory mechanism distinct from PAMs solely infected with ASFV. These findings highlight the potential of E. coli 166 as a biological agent to combat ASFV, offering a promising alternative or complementary approach to traditional antiviral strategies.
Collapse
MESH Headings
- African Swine Fever Virus/physiology
- Animals
- Swine
- Virus Replication
- Escherichia coli/isolation & purification
- Escherichia coli/genetics
- Escherichia coli/physiology
- Escherichia coli/classification
- African Swine Fever/virology
- Macrophages, Alveolar/virology
- Macrophages, Alveolar/immunology
- Sus scrofa/microbiology
- Cell Line
- CD163 Antigen
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- RNA, Ribosomal, 16S/genetics
Collapse
Affiliation(s)
- Jinya Zhang
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhenjiang Zhang
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenqing Wang
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fengwei Jiang
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Encheng Sun
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuanmao Zhu
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Li
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongming Zhao
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Gu X, Wu Q, Chai Y, Huang X, Zhou X, Han M, Wu T, Zhang X, Zhong F. Epidemiological and molecular characteristics of extraintestinal pathogenic escherichia coli isolated from diseased cattle and sheep in Xinjiang, China from 2015 to 2019. BMC Vet Res 2025; 21:42. [PMID: 39885526 PMCID: PMC11783789 DOI: 10.1186/s12917-025-04502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Escherichia coli has become a common causative agent of infections in animals, inflicting serious economic losses on livestock production and posing a threat to public health. Escherichia coli infection is common and tends to be complex in Xinjiang, a major region of cattle and sheep breeding in China. This study aims to explore the current status and molecular characteristics of Escherichia coli infection in cattle and sheep in Xinjiang, as part of the disease prevention and control strategy. Herein we isolated Extraintestinal pathogenic Escherichia coli (ExPEC) from the liver, spleen, lung, heart, and lymph nodes of infected cattle and sheep (Xinjiang, China), and phylogenetic grouping, serotyping, and multilocus sequence typing were performed to determine epidemic and molecular characteristics. We also assessed their biofilm formation ability. A total of 132 strains of ExPEC were identified from diseased cattle and sheep, belonging to 7 phylogenetic groups. A and B1 are advantageous groups. Further, 22 serogroups were found, with O101 (26/132), O154 (14/132), and O65 (8/132) being the predominant ones. Among the seven sequence types identified by multilocus sequence typing, ST10 was the most common, followed by ST23 and ST457. Of 132, 105 (79.5%) strains were able to form biofilms: 15 strains (11.4%) were strong, 28 (21.2%) were medium, and 62 (47%) were weak biofilm producers. These findings will contribute to a better understanding of the molecular epidemiology of ExPEC in Xinjiang, China, and can be applied to the development, prevention, and disease control of future diagnostic tools and vaccine.
Collapse
Affiliation(s)
- Xiaoxiao Gu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Qin Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yingjin Chai
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xin Huang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China.
| | - Xia Zhou
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China.
| | - Mengli Han
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China
| | - Tongzhong Wu
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China
| | - Xingxing Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China
| | - Fagang Zhong
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China
| |
Collapse
|
3
|
Li Q, Dai JJ, Chen SY, Sun RY, Wang D, Bai SC, Wang MG, Sun J, Liao XP, Liu YH, Fang LX. Prevalence and molecular characteristics of intestinal pathogenic Escherichia coli isolated from diarrheal pigs in Southern China. Vet Microbiol 2024; 296:110171. [PMID: 38981202 DOI: 10.1016/j.vetmic.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Intestinal pathogenic Escherichia coli (InPEC) is one of the most common causes of bacterial diarrhea in farm animals, including profuse neonatal diarrhea and post weaning diarrhea (PWD) in piglets. In this study, we investigated the prevalence of InPEC and associated primary virulence factors among 543 non-duplicate E. coli isolates from diarrheal pigs from 15 swine farms in southern China. Six major virulence genes associated with InPEC were identified among 69 (12.71 %) E. coli isolates and included est (6.62 %), K88 (4.79 %), elt (3.68 %), eae (1.47 %), stx2 (0.92 %) and F18 (0.55 %). Three pathotypes of InPEC were identified including ETEC (8.10 %), EPEC (1.29 %) and STEC/ETEC (0.92 %). In particular, K88 was only found in ETEC from breeding farms, whereas F18 was only present in STEC/ETEC hybrid from finishing farms. Whole genome sequence analysis of 37 E. coli isolates revealed that InPEC strains frequently co-carried multiple antibiotic resistance gene (ARG). est, elt and F18 were also found to co-locate with ARGs on a single IncFIB/IncFII plasmid. InPEC isolates from different pathotypes also possessed different profiles of virulence genes and antimicrobial resistance genes. Population structure analysis demonstrated that InPEC isolates from different pathotypes were highly heterogeneous whereas those of the same pathotype were extremely similar. Plasmid analysis revealed that K88 and/or est/elt were found on pGX18-2-like/pGX203-2-like and pGX203-1-like IncFII plasmids, while F18 and elt/est, as well as diverse ARGs were found to co-locate on IncFII/IncFIB plasmids with a non-typical backbone. Moreover, these key virulence genes were flanked by or adjacent to IS elements. Our findings indicated that both clonal expansion and horizontal spread of epidemic IncFII plasmids contributed to the prevalence of InPEC and the specific virulence genes (F4, F18, elt and est) in the tested swine farms.
Collapse
Affiliation(s)
- Qian Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jing-Jing Dai
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Shu-Yi Chen
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ruan-Yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Dong Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Shuan-Cheng Bai
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Min-Ge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses Yangzhou University, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses Yangzhou University, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses Yangzhou University, China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses Yangzhou University, China.
| |
Collapse
|
4
|
Gambino M, Kushwaha SK, Wu Y, van Haastrecht P, Klein-Sousa V, Lutz VT, Bejaoui S, Jensen CMC, Bojer MS, Song W, Xiao M, Taylor NMI, Nobrega FL, Brøndsted L. Diversity and phage sensitivity to phages of porcine enterotoxigenic Escherichia coli. Appl Environ Microbiol 2024; 90:e0080724. [PMID: 38940562 PMCID: PMC11267873 DOI: 10.1128/aem.00807-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a diverse and poorly characterized E. coli pathotype that causes diarrhea in humans and animals. Phages have been proposed for the veterinary biocontrol of ETEC, but effective solutions require understanding of porcine ETEC diversity that affects phage infection. Here, we sequenced and analyzed the genomes of the PHAGEBio ETEC collection, gathering 79 diverse ETEC strains isolated from European pigs with post-weaning diarrhea (PWD). We identified the virulence factors characterizing the pathotype and several antibiotic resistance genes on plasmids, while phage resistance genes and other virulence factors were mostly chromosome encoded. We experienced that ETEC strains were highly resistant to Enterobacteriaceae phage infection. It was only by enrichment of numerous diverse samples with different media and conditions, using the 41 ETEC strains of our collection as hosts, that we could isolate two lytic phages that could infect a large part of our diverse ETEC collection: vB_EcoP_ETEP21B and vB_EcoS_ETEP102. Based on genome and host range analyses, we discussed the infection strategies of the two phages and identified components of lipopolysaccharides ( LPS) as receptors for the two phages. Our detailed computational structural analysis highlights several loops and pockets in the tail fibers that may allow recognition and binding of ETEC strains, also in the presence of O-antigens. Despite the importance of receptor recognition, the diversity of the ETEC strains remains a significant challenge for isolating ETEC phages and developing sustainable phage-based products to address ETEC-induced PWD.IMPORTANCEEnterotoxigenic Escherichia coli (ETEC)-induced post-weaning diarrhea is a severe disease in piglets that leads to weight loss and potentially death, with high economic and animal welfare costs worldwide. Phage-based approaches have been proposed, but available data are insufficient to ensure efficacy. Genome analysis of an extensive collection of ETEC strains revealed that phage defense mechanisms were mostly chromosome encoded, suggesting a lower chance of spread and selection by phage exposure. The difficulty in isolating lytic phages and the molecular and structural analyses of two ETEC phages point toward a multifactorial resistance of ETEC to phage infection and the importance of extensive phage screenings specifically against clinically relevant strains. The PHAGEBio ETEC collection and these two phages are valuable tools for the scientific community to expand our knowledge on the most studied, but still enigmatic, bacterial species-E. coli.
Collapse
Affiliation(s)
- Michela Gambino
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Conservation, The Royal Danish Academy, Copenhagen, Denmark
| | - Simran Krishnakant Kushwaha
- School of Biological Sciences, Faculty of Environmental & Life Sciences, University of Southampton, Southampton, United Kingdom
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Yi Wu
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Pauline van Haastrecht
- School of Biological Sciences, Faculty of Environmental & Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Victor Klein-Sousa
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Veronika T. Lutz
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Semeh Bejaoui
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Martin S. Bojer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Nicholas M. I. Taylor
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Franklin L. Nobrega
- School of Biological Sciences, Faculty of Environmental & Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
5
|
von Mentzer A, Svennerholm AM. Colonization factors of human and animal-specific enterotoxigenic Escherichia coli (ETEC). Trends Microbiol 2024; 32:448-464. [PMID: 38052687 DOI: 10.1016/j.tim.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Colonization factors (CFs) are major virulence factors of enterotoxigenic Escherichia coli (ETEC). This pathogen is among the most common causes of bacterial diarrhea in children in low- and middle-income countries, travelers, and livestock. CFs are major candidate antigens in vaccines under development as preventive measures against ETEC infections in humans and livestock. Recent molecular studies have indicated that newly identified CFs on human ETEC are closely related to animal ETEC CFs. Increased knowledge of pathogenic mechanisms, immunogenicity, regulation, and expression of ETEC CFs, as well as the possible spread of animal ETEC to humans, may facilitate the future development of ETEC vaccines for humans and animals. Here, we present an updated review of CFs in ETEC.
Collapse
Affiliation(s)
- Astrid von Mentzer
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Sweden; Wellcome Sanger Institute, Hinxton, UK.
| | - Ann-Mari Svennerholm
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
6
|
Göpel L, Prenger-Berninghoff E, Wolf SA, Semmler T, Bauerfeind R, Ewers C. Repeated Occurrence of Mobile Colistin Resistance Gene-Carrying Plasmids in Pathogenic Escherichia coli from German Pig Farms. Microorganisms 2024; 12:729. [PMID: 38674671 PMCID: PMC11052496 DOI: 10.3390/microorganisms12040729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
The global spread of plasmid-mediated mobile colistin resistance (mcr) genes threatens the vital role of colistin as a drug of last resort. We investigated whether the recurrent occurrence of specific E. coli pathotypes and plasmids in individual pig farms resulted from the continued presence or repeated reintroduction of distinct E. coli strains. E. coli isolates (n = 154) obtained from three pig farms with at least four consecutive years of mcr detection positive for virulence-associated genes (VAGs) predicting an intestinal pathogenic pathotype via polymerase chain reaction were analyzed. Detailed investigation of VAGs, antimicrobial resistance genes and plasmid Inc types was conducted using whole genome sequencing for 87 selected isolates. Sixty-one E. coli isolates harbored mcr-1, and one isolate carried mcr-4. On Farm 1, mcr-positive isolates were either edema disease E. coli (EDEC; 77.3%) or enterotoxigenic E. coli (ETEC; 22.7%). On Farm 2, all mcr-positive strains were ETEC, while mcr-positive isolates from Farm 3 showed a wider range of pathotypes. The mcr-1.1 gene was located on IncHI2 (Farm 1), IncX4 (Farm 2) or IncX4 and IncI2 plasmids (Farm 3). These findings suggest that various pathogenic E. coli strains play an important role in maintaining plasmid-encoded colistin resistance genes in the pig environment over time.
Collapse
Affiliation(s)
- Lisa Göpel
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, 35392 Giessen, Germany;
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538 Luebeck, Germany
| | - Ellen Prenger-Berninghoff
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Silver A. Wolf
- Microbial Genomics, Robert Koch Institute, 13353 Berlin, Germany
| | - Torsten Semmler
- Microbial Genomics, Robert Koch Institute, 13353 Berlin, Germany
| | - Rolf Bauerfeind
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, 35392 Giessen, Germany;
| |
Collapse
|
7
|
Xu C, She Y, Fu F, Xu C. Production of a new tetravalent vaccine targeting fimbriae and enterotoxin of enterotoxigenic Escherichia coli. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2024; 88:38-44. [PMID: 38595949 PMCID: PMC11000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 04/11/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important type of pathogenic bacteria that causes diarrhea in pigs. The objective of this study was to prepare a novel tetravalent vaccine to effectively prevent piglet diarrhea caused by E. coli. In order to realize the production of K88ac-K99-ST1-LTB tetravalent inactivated vaccine, the biological characteristics, stability, preservation conditions, and safety of the recombinant strain BL21(DE3) (pXKKSL4) were studied, and the vaccine efficacy and minimum immune dose were measured. The results indicated that the biological characteristics, target protein expression, and immunogenicity of the 1st to 10th generations of the strain were stable. Therefore, the basic seed generation was preliminarily set as the 1st to 10th generations. The results of the efficacy tests showed that the immune protection rate could reach 90% with 1 minimum lethal dose (MLD) virulent strain attack in mice. The immunogenicity was stable, and the minimum immune dose was 0.1 mL per mouse. Our research showed that the genetically engineered vaccine developed in this way could prevent piglet diarrhea caused by enterotoxigenic E. coli through adhesin and enterotoxin. In order to realize industrial production of the vaccine as soon as possible, we conducted immunological tests and production process research on the constructed K88ac-K99-ST1-LTB tetravalent inactivated vaccine. The results of this study provide scientific experimental data for the commercial production of vaccines and lay a solid foundation for their industrial production.
Collapse
Affiliation(s)
- ChongLi Xu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing 401331, PR China (Xu, She, Fu); School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China (Xu)
| | - Yuhan She
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing 401331, PR China (Xu, She, Fu); School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China (Xu)
| | - Fengyang Fu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing 401331, PR China (Xu, She, Fu); School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China (Xu)
| | - ChongBo Xu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing 401331, PR China (Xu, She, Fu); School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China (Xu)
| |
Collapse
|
8
|
Subramani P, Menichincheri G, Pirolo M, Arcari G, Kudirkiene E, Polani R, Carattoli A, Damborg P, Guardabassi L. Genetic background of neomycin resistance in clinical Escherichia coli isolated from Danish pig farms. Appl Environ Microbiol 2023; 89:e0055923. [PMID: 37787538 PMCID: PMC10617424 DOI: 10.1128/aem.00559-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/28/2023] [Indexed: 10/04/2023] Open
Abstract
Neomycin is the first-choice antibiotic for the treatment of porcine enteritis caused by enterotoxigenic Escherichia coli. Resistance to this aminoglycoside is on the rise after the increased use of neomycin due to the ban on zinc oxide. We identified the neomycin resistance determinants and plasmid contents in a historical collection of 128 neomycin-resistant clinical E. coli isolates from Danish pig farms. All isolates were characterized by whole-genome sequencing and antimicrobial susceptibility testing, followed by conjugation experiments and long-read sequencing of eight selected representative strains. We detected 35 sequence types (STs) with ST100 being the most prevalent lineage (38.3%). Neomycin resistance was associated with two resistance genes, namely aph(3')-Ia and aph(3')-Ib, which were identified in 93% and 7% of the isolates, respectively. The aph(3')-Ia was found on different large conjugative plasmids belonging to IncI1α, which was present in 67.2% of the strains, on IncHI1, IncHI2, and IncN, as well as on a multicopy ColRNAI plasmid. All these plasmids except ColRNAI carried genes encoding resistance to other antimicrobials or heavy metals, highlighting the risk of co-selection. The aph(3')-Ib gene occurred on a 19 kb chimeric, mobilizable plasmid that contained elements tracing back its origin to distantly related genera. While aph(3')-Ia was flanked by either Tn903 or Tn4352 derivatives, no clear association was observed between aph(3')-Ib and mobile genetic elements. In conclusion, the spread of neomycin resistance in porcine clinical E. coli is driven by two resistance determinants located on distinct plasmid scaffolds circulating within a highly diverse population dominated by ST100. IMPORTANCE Neomycin is the first-choice antibiotic for the management of Escherichia coli enteritis in pigs. This work shows that aph(3')-Ia and to a lesser extent aph(3')-Ib are responsible for the spread of neomycin resistance that has been recently observed among pig clinical isolates and elucidates the mechanisms of dissemination of these two resistance determinants. The aph(3')-Ia gene is located on different conjugative plasmid scaffolds and is associated with two distinct transposable elements (Tn903 and Tn4352) that contributed to its spread. The diffusion of aph(3')-Ib is mediated by a small non-conjugative, mobilizable chimeric plasmid that likely derived from distantly related members of the Pseudomonadota phylum and was not associated with any detectable mobile genetic element. Although the spread of neomycin resistance is largely attributable to horizontal transfer, both resistance determinants have been acquired by a predominant lineage (ST100) associated with enterotoxigenic E. coli, which accounted for approximately one-third of the strains.
Collapse
Affiliation(s)
- Prabha Subramani
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Frederiksberg C, Denmark
- Department of Molecular Medicine Sapienza, University of Rome, Rome, Italy
| | - Gaia Menichincheri
- Department of Molecular Medicine Sapienza, University of Rome, Rome, Italy
| | - Mattia Pirolo
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Frederiksberg C, Denmark
| | - Gabriele Arcari
- Department of Molecular Medicine Sapienza, University of Rome, Rome, Italy
| | - Egle Kudirkiene
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Frederiksberg C, Denmark
| | - Riccardo Polani
- Department of Molecular Medicine Sapienza, University of Rome, Rome, Italy
| | | | - Peter Damborg
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Frederiksberg C, Denmark
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
9
|
Barros MM, Castro J, Araújo D, Campos AM, Oliveira R, Silva S, Outor-Monteiro D, Almeida C. Swine Colibacillosis: Global Epidemiologic and Antimicrobial Scenario. Antibiotics (Basel) 2023; 12:antibiotics12040682. [PMID: 37107044 PMCID: PMC10135039 DOI: 10.3390/antibiotics12040682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Swine pathogenic infection caused by Escherichia coli, known as swine colibacillosis, represents an epidemiological challenge not only for animal husbandry but also for health authorities. To note, virulent E. coli strains might be transmitted, and also cause disease, in humans. In the last decades, diverse successful multidrug-resistant strains have been detected, mainly due to the growing selective pressure of antibiotic use, in which animal practices have played a relevant role. In fact, according to the different features and particular virulence factor combination, there are four different pathotypes of E. coli that can cause illness in swine: enterotoxigenic E. coli (ETEC), Shiga toxin-producing E. coli (STEC) that comprises edema disease E. coli (EDEC) and enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), and extraintestinal pathogenic E. coli (ExPEC). Nevertheless, the most relevant pathotype in a colibacillosis scenario is ETEC, responsible for neonatal and postweaning diarrhea (PWD), in which some ETEC strains present enhanced fitness and pathogenicity. To explore the distribution of pathogenic ETEC in swine farms and their diversity, resistance, and virulence profiles, this review summarizes the most relevant works on these subjects over the past 10 years and discusses the importance of these bacteria as zoonotic agents.
Collapse
Affiliation(s)
- Maria Margarida Barros
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Joana Castro
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
| | - Daniela Araújo
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
| | - Ana Maria Campos
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
| | - Ricardo Oliveira
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sónia Silva
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Divanildo Outor-Monteiro
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Carina Almeida
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
10
|
Xu C, Peng K, She Y, Fu F, Shi Q, Lin Y, Xu C. Preparation of novel trivalent vaccine against enterotoxigenic Escherichia coli for preventing newborn piglet diarrhea. Am J Vet Res 2023; 84:ajvr.22.10.0183. [PMID: 36576801 DOI: 10.2460/ajvr.22.10.0183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To develop a trivalent genetically engineered inactivated Escherichia coli vaccine (K88ac-3STa-LTB) that neutralizes the STa toxin by targeting fimbriae and entertoxins for the treatment of enterotoxigenic E coli. ANIMALS 18- to 22-g mice, rabbits, pregnant sows. PROCEDURES Using PCR, the K88ac gene and LTB gene were cloned separately from the template C83902 plasmid. At the same time, the 3 STa mutant genes were also amplified by using the gene-directed mutation technology. Immune protection experiments were performed, and the minimum immune dose was determined in mice and pregnant sows. RESULTS The ELISA test could be recognized by the STa, LTB, and K88ac antibodies. Intragastric administration in the suckling mouse confirmed that the protein had lost the toxicity of the natural STa enterotoxin. The results of the immune experiments showed that K88ac-3STa-LTB protein could stimulate rabbits to produce serum antibodies and neutralize the toxicity of natural STa enterotoxin. The efficacy test of the K88ac-3STa-LTB-inactivated vaccine showed that the immune protection rate of the newborn piglets could reach 85% on the first day after suckling. At the same time, it was determined that the minimum immunization doses for mice and pregnant sows were 0.2 and 2.5 mL, respectively. CLINICAL RELEVANCE This research indicates that the K88ac-3STa-LTB trivalent genetically engineered inactivated vaccine provides a broad immune spectrum for E coli diarrhea in newborn piglets and prepares a new genetically engineered vaccine candidate strain for prevention of E coli diarrhea in piglets.
Collapse
Affiliation(s)
- ChongLi Xu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Kun Peng
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Yuhan She
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Fengyang Fu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Qinhong Shi
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Yimin Lin
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - ChongBo Xu
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, People's Republic of China
| |
Collapse
|
11
|
Occurrence of Escherichia coli Pathotypes in Diarrheic Calves in a Low-Income Setting. Pathogens 2022; 12:pathogens12010042. [PMID: 36678390 PMCID: PMC9861035 DOI: 10.3390/pathogens12010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Different E. coli pathotypes are common zoonotic agents. Some of these pathotypes cause recurrent and widespread calf diarrhea and contribute to significant economic losses in the livestock sector worldwide in addition to putting humans at risk. Here, we investigated the occurrence of E. coli pathotypes in diarrheic calves in Ethiopia kept under various calf management practices. One hundred fecal samples were collected from diarrheic calves in 98 different farms. E. coli was isolated in the samples from 99 of the diarrheic calves, and virulence genes were detected in 80% of the samples. The occurrence of E. coli pathotypes in the samples was 32% ETEC, 23% STEC, 18% STEC/ETEC, 3% EPEC, 2% EAEC, and 1% EHEC. No diarrheic calves were positive for the EIEC and DAEC pathotypes. The occurrence of pathotypes was positively associated with female calves (EPEC, p = 0.006), aged less than 2 weeks (STEC, p = 0.059), and calves fed colostrum via the hand method (STEC, p = 0.008 and EAEC, p = 0.003). This study revealed that several E. coli pathotypes occurred among calves affected with diarrhea. Moreover, the presence of a mixed STEC/ETEC pathotypes infection was present in the studied low-income setting. These findings indicate a considerable risk for the zoonotic transmission from calves to humans and the options to provide the better management for younger calves in order to reduce the economic loss.
Collapse
|
12
|
Al Mamun AAM, Kissoon K, Kishida K, Shropshire WC, Hanson B, Christie PJ. IncFV plasmid pED208: Sequence analysis and evidence for translocation of maintenance/leading region proteins through diverse type IV secretion systems. Plasmid 2022; 123-124:102652. [PMID: 36228885 PMCID: PMC10018792 DOI: 10.1016/j.plasmid.2022.102652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022]
Abstract
Two phylogenetically distantly-related IncF plasmids, F and pED208, serve as important models for mechanistic and structural studies of F-like type IV secretion systems (T4SSFs) and F pili. Here, we present the pED208 sequence and compare it to F and pUMNF18, the closest match to pED208 in the NCBI database. As expected, gene content of the three cargo regions varies extensively, although the maintenance/leading regions (MLRs) and transfer (Tra) regions also carry novel genes or motifs with predicted modulatory effects on plasmid stability, dissemination and host range. By use of a Cre recombinase assay for translocation (CRAfT), we recently reported that pED208-carrying donors translocate several products of the MLR (ParA, ParB1, ParB2, SSB, PsiB, PsiA) intercellularly through the T4SSF. Here, we extend these findings by reporting that pED208-carrying donors translocate 10 additional MLR proteins during conjugation. In contrast, two F plasmid-encoded toxin components of toxin-antitoxin (TA) modules, CcdB and SrnB, were not translocated at detectable levels through the T4SSF. Remarkably, most or all of the pED208-encoded MLR proteins and CcdB and SrnB were translocated through heterologous T4SSs encoded by IncN and IncP plasmids pKM101 and RP4, respectively. Together, our sequence analyses underscore the genomic diversity of the F plasmid superfamily, and our experimental data demonstrate the promiscuous nature of conjugation machines for protein translocation. Our findings raise intriguing questions about the nature of T4SS translocation signals and of the biological and evolutionary consequences of conjugative protein transfer.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America.
| | - Kimberly Kissoon
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America
| | - Kouhei Kishida
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America
| | - William C Shropshire
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA; Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, TX, USA
| | - Blake Hanson
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA; Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, TX, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America.
| |
Collapse
|
13
|
Ohmura-Hoshino M, Miyaki Y, Yashima S. A one-step multiplex PCR-based assay for simultaneous detection and classification of virulence factors to identify five diarrheagenic E. coli pathotypes. Heliyon 2022; 8:e10231. [PMID: 36046532 PMCID: PMC9421181 DOI: 10.1016/j.heliyon.2022.e10231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/22/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
Human diarrhea-causing strains of Escherichia coli are referred to as diarrheagenic E. coli (DEC). DEC can be divided into five main categories based on distinct epidemiological and clinical features, specific virulence determinants, and association with certain serotypes. In the present study, a simple and rapid one-step single reaction multiplex PCR (mPCR) assay was developed for the simultaneous identification and differentiation of five currently established DEC pathotypes causing gastrointestinal diseases. The mPCR incorporated 10 primer pairs to amplify 10 virulence genes specific to the different pathotypes (i.e., stx1 and stx2 for EHEC, elt and sth for ETEC, eaeA and bfpA for EPEC, aggR and astA for EAEC, and ipaH and invE for EIEC) and to generate DNA fragments of sufficiently different sizes to be unequivocally resolved. All strains were detected at concentrations ranging from 104 to 107 CFU/mL. To demonstrate the utility of the mPCR assay, 236 clinically isolated strains of DEC from two hospitals were successfully categorized. One-step mPCR technique reduced the cost and effort involved in the identification of various virulence factors in DEC. Thus, we demonstrated that the newly developed mPCR assay has the potential to be introduced as a diagnostic tool that can be utilized for the detection of DEC as an additional check in clinical laboratories and for confirmation in health and environment institutes, health centers, and reference laboratories. We developed a one-step single reaction mPCR to detect DEC strains. 10 prominently expressed genes characteristic to the five pathotypes were assayed. All the strains were detected at concentrations ranging from 104 to 107 CFU/mL. We show cost- and time-effective detection of DEC in clinical cultured samples.
Collapse
Affiliation(s)
- Mari Ohmura-Hoshino
- Department of Medical Technology, School of Nursing and Medical Care, Yokkaichi Nursing and Medical Care University, Yokkaichi, Japan
| | | | | |
Collapse
|
14
|
Bastidas-Caldes C, Ochoa J, Guerrero-Latorre L, Moyota-Tello C, Tapia W, Rey-Pérez JM, Baroja MI. Removal of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli, ST98, in Water for Human Consumption by Black Ceramic Water Filters in Low-Income Ecuadorian Highlands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4736. [PMID: 35457602 PMCID: PMC9028703 DOI: 10.3390/ijerph19084736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023]
Abstract
Fecal contamination in natural water sources is a common problem in low-income countries. Several health risks are associated with unprotected water sources, such as gastrointestinal infections caused by parasites, viruses, and bacteria. Moreover, antibiotic-resistant bacteria in water sources have become an increasing problem worldwide. This study aimed to evaluate the bacterial pathogens present in water within a rural context in Ecuador, along with the efficiency of black ceramic water filters (BCWFs) as a sustainable household water treatment. We monitored five natural water sources that were used for human consumption in the highlands of Ecuador and analyzed the total coliforms and E. coli before and after BCWF installation. The results indicated a variable bacterial contamination (29-300 colony-forming units/100mL) in all unfiltered samples, and they were considered as high risk for human consumption, but after filtration, no bacteria were present. Moreover, extended-spectrum beta-lactamase-producing E. coli with blaTEM, blaCTX-M9, and blaCTX-M1 genes, and two E. coli classified in the clonal complex ST10 (ST98) were detected in two of the locations sampled; these strains can severely impact public health. The clonal complex ST10, found in the E. coli isolates, possesses the potential to spread bacteria-resistant genes to humans and animals. The results of the use of BCWFs, however, argue for the filters' potential impact within those contexts, as the BCWFs completely removed even antibiotic-resistant contaminants from the water.
Collapse
Affiliation(s)
- Carlos Bastidas-Caldes
- One Health Research Group, Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas (FICA), Universidad de las Américas (UDLA), Quito 170125, Ecuador
- Programa de Doctorado en Salud Pública y Animal, Universidad de Extremadura, 10003 Mérida, Spain
| | - Juan Ochoa
- Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas (FICA), Universidad de las Américas (UDLA), Quito 170125, Ecuador; (J.O.); (C.M.-T.); (W.T.)
| | - Laura Guerrero-Latorre
- Catalan Institute for Water Research (ICRA), Water Quality Area, Emili Grahit 101, 17003 Girona, Spain;
| | - Carlos Moyota-Tello
- Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas (FICA), Universidad de las Américas (UDLA), Quito 170125, Ecuador; (J.O.); (C.M.-T.); (W.T.)
| | - Wilson Tapia
- Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas (FICA), Universidad de las Américas (UDLA), Quito 170125, Ecuador; (J.O.); (C.M.-T.); (W.T.)
| | - Joaquín María Rey-Pérez
- Unidad de Patología Infecciosa, Facultad de Veterinaria, Universidad de Extremadura, 10003 Mérida, Spain;
| | - Maria Isabel Baroja
- Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas (FICA), Universidad de las Américas (UDLA), Quito 170125, Ecuador; (J.O.); (C.M.-T.); (W.T.)
- Programa de Doctorado en Biología Molecular y Celular, Biomedicina y Biotecnología, Universidad de Extremadura, 10003 Mérida, Spain
| |
Collapse
|
15
|
Fiil BK, Thrane SW, Pichler M, Kittilä T, Ledsgaard L, Ahmadi S, Maigaard Hermansen GM, Jelsbak L, Lauridsen C, Brix S, Laustsen AH. Orally-active bivalent VHH construct prevents proliferation of F4+ enterotoxigenic Escherichia coli in weaned piglets. iScience 2022; 25:104003. [PMID: 35310945 PMCID: PMC8931358 DOI: 10.1016/j.isci.2022.104003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/21/2021] [Accepted: 02/25/2022] [Indexed: 11/25/2022] Open
Abstract
A major challenge in industrial pig production is the prevalence of post-weaning diarrhea (PWD) in piglets, often caused by enterotoxigenic Escherichia coli (ETEC). The increased use of antibiotics and zinc oxide to treat PWD has raised global concerns regarding antimicrobial resistance development and environmental pollution. Still, alternative treatments targeting ETEC and counteracting PWD are largely lacking. Here, we report the design of a pH, temperature, and protease-stable bivalent VHH-based protein BL1.2 that cross-links a F4+ ETEC model strain by selectively binding to its fimbriae. This protein inhibits F4+ ETEC adhesion to porcine epithelial cells ex vivo and decreases F4+ ETEC proliferation when administrated as a feed additive to weaned F4+ ETEC challenged piglets. These findings highlight the potential of a highly specific bivalent VHH-based feed additive in effectively delimiting pathogenic F4+ ETEC bacteria proliferation in piglets and may represent a sustainable solution for managing PWD while circumventing antimicrobial resistance development. A binding protein was designed as a bivalent VHH construct with a (GGGGS)3 linker The protein can cross-link F4+ enterotoxigenic Escherichia coli (ETEC) in vitro The protein can prevent adhesion of F4+ ETEC to porcine epithelial cells ex vivo The protein can prevent proliferation of F4+ ETEC in piglets
Collapse
|
16
|
Perrat A, Branchu P, Decors A, Turci S, Bayon-Auboyer MH, Petit G, Grosbois V, Brugère H, Auvray F, Oswald E. Wild Boars as Reservoir of Highly Virulent Clone of Hybrid Shiga Toxigenic and Enterotoxigenic Escherichia coli Responsible for Edema Disease, France. Emerg Infect Dis 2022; 28:382-393. [PMID: 35075992 PMCID: PMC8798679 DOI: 10.3201/eid2802.211491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Edema disease is an often fatal enterotoxemia caused by specific strains of Shiga toxin–producing Escherichia coli (STEC) that affect primarily healthy, rapidly growing nursery pigs. Recently, outbreaks of edema disease have also emerged in France in wild boars. Analysis of STEC strains isolated from wild boars during 2013–2019 showed that they belonged to the serotype O139:H1 and were positive for both Stx2e and F18 fimbriae. However, in contrast to classical STEC O139:H1 strains circulating in pigs, they also possessed enterotoxin genes sta1 and stb, typical of enterotoxigenic E. coli. In addition, the strains contained a unique accessory genome composition and did not harbor antimicrobial-resistance genes, in contrast to domestic pig isolates. These data thus reveal that the emergence of edema disease in wild boars was caused by atypical hybrid of STEC and enterotoxigenic E. coli O139:H1, which so far has been restricted to the wildlife environment.
Collapse
|
17
|
The Pheno- and Genotypic Characterization of Porcine Escherichia coli Isolates. Microorganisms 2021; 9:microorganisms9081676. [PMID: 34442755 PMCID: PMC8400056 DOI: 10.3390/microorganisms9081676] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Escherichia (E.) coli is the main causative pathogen of neonatal and post-weaning diarrhea and edema disease in swine production. There is a significant health concern due to an increasing number of human infections associated with food and/or environmental-borne pathogenic and multidrug-resistant E. coli worldwide. Monitoring the presence of pathogenic and antimicrobial-resistant E. coli isolates is essential for sustainable disease management in livestock and human medicine. A total of 102 E. coli isolates of diseased pigs were characterized by antimicrobial and biocide susceptibility testing. Antimicrobial resistance genes, including mobile colistin resistance genes, were analyzed by PCR and DNA sequencing. The quinolone resistance-determining regions of gyrA and parC in ciprofloxacin-resistant isolates were analyzed. Clonal relatedness was investigated by two-locus sequence typing (CH clonotyping). Phylotyping was performed by the Clermont multiplex PCR method. Virulence determinants were analyzed by customized DNA-based microarray technology developed in this study for fast and economic molecular multiplex typing. Thirty-five isolates were selected for whole-genome sequence-based analysis. Most isolates were resistant to ampicillin and tetracycline. Twenty-one isolates displayed an ESBL phenotype and one isolate an AmpC β-lactamase-producing phenotype. Three isolates had elevated colistin minimal inhibitory concentrations and carried the mcr-1 gene. Thirty-seven isolates displayed a multi-drug resistance phenotype. The most predominant β-lactamase gene classes were blaTEM-1 (56%) and blaCTX-M-1 (13.71%). Mutations in QRDR were observed in 14 ciprofloxacin-resistant isolates. CH clonotyping divided all isolates into 51 CH clonotypes. The majority of isolates belonged to phylogroup A. Sixty-four isolates could be assigned to defined pathotypes wherefrom UPEC was predominant. WGS revealed that the most predominant sequence type was ST100, followed by ST10. ST131 was detected twice in our analysis. This study highlights the importance of monitoring antimicrobial resistance and virulence properties of porcine E. coli isolates. This can be achieved by applying reliable, fast, economic and easy to perform technologies such as DNA-based microarray typing. The presence of high-risk pathogenic multi-drug resistant zoonotic clones, as well as those that are resistant to critically important antibiotics for humans, can pose a risk to public health. Improved protocols may be developed in swine farms for preventing infections, as well as the maintenance and distribution of the causative isolates.
Collapse
|
18
|
Comparative Pathogenomics of Escherichia coli: Polyvalent Vaccine Target Identification through Virulome Analysis. Infect Immun 2021; 89:e0011521. [PMID: 33941580 PMCID: PMC8281228 DOI: 10.1128/iai.00115-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics of bacterial pathogens has been useful for revealing potential virulence factors. Escherichia coli is a significant cause of human morbidity and mortality worldwide but can also exist as a commensal in the human gastrointestinal tract. With many sequenced genomes, it has served as a model organism for comparative genomic studies to understand the link between genetic content and potential for virulence. To date, however, no comprehensive analysis of its complete “virulome” has been performed for the purpose of identifying universal or pathotype-specific targets for vaccine development. Here, we describe the construction of a pathotype database of 107 well-characterized completely sequenced pathogenic and nonpathogenic E. coli strains, which we annotated for major virulence factors (VFs). The data are cross referenced for patterns against pathotype, phylogroup, and sequence type, and the results were verified against all 1,348 complete E. coli chromosomes in the NCBI RefSeq database. Our results demonstrate that phylogroup drives many of the “pathotype-associated” VFs, and ExPEC-associated VFs are found predominantly within the B2/D/F/G phylogenetic clade, suggesting that these phylogroups are better adapted to infect human hosts. Finally, we used this information to propose polyvalent vaccine targets with specificity toward extraintestinal strains, targeting key invasive strategies, including immune evasion (group 2 capsule), iron acquisition (FyuA, IutA, and Sit), adherence (SinH, Afa, Pap, Sfa, and Iha), and toxins (Usp, Sat, Vat, Cdt, Cnf1, and HlyA). While many of these targets have been proposed before, this work is the first to examine their pathotype and phylogroup distribution and how they may be targeted together to prevent disease.
Collapse
|
19
|
García-Meniño I, García V, Alonso MP, Blanco JE, Blanco J, Mora A. Clones of enterotoxigenic and Shiga toxin-producing Escherichia coli implicated in swine enteric colibacillosis in Spain and rates of antibiotic resistance. Vet Microbiol 2020; 252:108924. [PMID: 33203576 DOI: 10.1016/j.vetmic.2020.108924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Shiga toxin-producing E. coli (STEC) and enterotoxigenic E. coli (ETEC) are the main agents of swine colibacillosis, an infectious disease which implies important economic losses. We characterized here 186 diarrheagenic E. coli from Spanish industrial pig farms (2005-2017) to know which clones were involved in this syndrome, and the rates of antibiotic resistance. The PCR based on pathotype-associated virulence genes determined that 161 of 186 isolates (86.5 %) exhibited the ETEC pathotype, 10 (5.4 %) the STEC pathotype, and 15 (8.1 %) the hybrid ETEC/STEC pathotype. The majority of the isolates showed phylogroup A (85.5 %), clonotype CH11-24 (72 %) and belonged to the clonal complex (CC) 10, including two ETEC clones accounting for around 50 % of the 186 isolates: O157:HNM-A-ST10 (CH11-24), which exhibited mostly the fimbrial antigen F4ac; and O108:HNM-A-ST10 (CH11-24), which exhibited mainly F18. Other associations were O139:H1-E-ST1 (CH2-54) with the STEC pathotype, and both O141:H4-A-CC10 (CH11-24) and O138:HNM-E-ST42 (CH28-41) with ETEC/STEC. We found that 87.1 % of the isolates were multidrug-resistant, including 9% ESBL-producers, with the highest rates to nalidixic acid (82 %), colistin (77 %), ticarcillin (76 %) and ampicillin (76 %). Besides, more than 50 % of isolates showed non-susceptibility to gentamicin, tobramycin, doxycycline, ciprofloxacin, trimethoprim-sufamethoxazole and chloramphenicol. Additionally, 11 out of 17 ESBL-producing isolates were mcr-carriers. Results suggest that O108:HNM-A-ST10 (CH11-24) F18 is an emerging clone taking space left by other classical serogroups. Further follow-up studies on predominant clones in pig colibacillosis are essential for the update of vaccines, as alternative to the use of antibiotics.
Collapse
Affiliation(s)
- Isidro García-Meniño
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Vanesa García
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Pilar Alonso
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Unidad de Microbiología, Hospital Universitario Lucus Augusti (HULA), Lugo, Spain
| | - Jesús E Blanco
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Jorge Blanco
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
20
|
Kamal SM, Cimdins-Ahne A, Lee C, Li F, Martín-Rodríguez AJ, Seferbekova Z, Afasizhev R, Wami HT, Katikaridis P, Meins L, Lünsdorf H, Dobrindt U, Mogk A, Römling U. A recently isolated human commensal Escherichia coli ST10 clone member mediates enhanced thermotolerance and tetrathionate respiration on a P1 phage-derived IncY plasmid. Mol Microbiol 2020; 115:255-271. [PMID: 32985020 PMCID: PMC7984374 DOI: 10.1111/mmi.14614] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022]
Abstract
The ubiquitous human commensal Escherichia coli has been well investigated through its model representative E. coli K‐12. In this work, we initially characterized E. coli Fec10, a recently isolated human commensal strain of phylogroup A/sequence type ST10. Compared to E. coli K‐12, the 4.88 Mbp Fec10 genome is characterized by distinct single‐nucleotide polymorphisms and acquisition of genomic islands. In addition, E. coli Fec10 possesses a 155.86 kbp IncY plasmid, a composite element based on phage P1. pFec10 harbours multiple cargo genes such as coding for a tetrathionate reductase and its corresponding regulatory two‐component system. Among the cargo genes is also the Transmissible Locus of Protein Quality Control (TLPQC), which mediates tolerance to lethal temperatures in bacteria. The disaggregase ClpGGI of TLPQC constitutes a major determinant of the thermotolerance of E. coli Fec10. We confirmed stand‐alone disaggregation activity, but observed distinct biochemical characteristics of ClpGGI‐Fec10 compared to the nearly identical Pseudomonas aeruginosa ClpGGI‐SG17M. Furthermore, we noted a unique contribution of ClpGGI‐Fec10 to the exquisite thermotolerance of E. coli Fec10, suggesting functional differences between both disaggregases in vivo. Detection of thermotolerance in 10% of human commensal E. coli isolates hints to the successful establishment of food‐borne heat‐resistant strains in the human gut.
Collapse
Affiliation(s)
- Shady Mansour Kamal
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | | | - Changhan Lee
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fengyang Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Zaira Seferbekova
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Robert Afasizhev
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
| | | | - Panagiotis Katikaridis
- Center for Molecular Biology, University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lena Meins
- Center for Molecular Biology, University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Axel Mogk
- Center for Molecular Biology, University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
de Lagarde M, Vanier G, Desmarais G, Kohan-Ghadr HR, Arsenault J, Fairbrother JM. A new multidrug-resistant enterotoxigenic Escherichia coli pulsed-field gel electrophoresis cluster associated with enrofloxacin non-susceptibility in diseased pigs. J Appl Microbiol 2020; 130:707-721. [PMID: 32767832 PMCID: PMC7984379 DOI: 10.1111/jam.14816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022]
Abstract
Aims To describe the temporal trends in Escherichia coli pathotypes and antimicrobial resistance detected in isolates from diseased‐pig cases submitted to the EcL from 2008 to 2016, in Quebec, Canada, and to investigate the presence of spatiotemporal and phylogenetic clusters. Methods and Results Detection of 12 genes coding for virulence factors in pathogenic E. coli in pigs by PCR and antimicrobial resistance standard disc diffusion assay were performed. Demographic and clinical data were entered in the Animal Pathogenic and Zoonotic E. coli (APZEC) database. ETEC:F4 was the most prevalent pathovirotype among the 3773 cases submitted. The LT:STb:F4 virotype was predominant until 2014, then was overtaken by the LT:STb:STa:F4 virotype. More than 90% of the ETEC:F4 isolates were multidrug resistant. A spatiotemporal cluster of LT:STb:STa:F4 isolates non‐susceptible to enrofloxacin was detected between 4/2015 and 9/2016. Pulsed‐field gel electrophoresis analysis of 137 ETEC:F4 isolates revealed the presence of a cluster composed mainly of LT:STb:STa:F4 isolates non‐susceptible to enrofloxacin. Conclusions The APZEC database was useful to highlight temporal trends in E. coli pathotypes. A high‐risk ETEC:F4 clone might disseminate in the pig population in Quebec since 2015. Significance and Impact of the Study Surveillance is crucial to identify new clones and develop control strategies.
Collapse
Affiliation(s)
- M de Lagarde
- OIE Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - G Vanier
- OIE Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - G Desmarais
- OIE Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - H-R Kohan-Ghadr
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - J Arsenault
- Swine and Poultry Infectious Research Center (CRIPA-FQRNT), and Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - J M Fairbrother
- OIE Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Swine and Poultry Infectious Research Center (CRIPA-FQRNT), and Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
22
|
Guo L, Wang J, Wang S, Su J, Wang X, Zhu Y. Genome Characterization of mcr-1-Positive Escherichia coli Isolated From Pigs With Postweaning Diarrhea in China. Front Vet Sci 2020; 7:503. [PMID: 33005637 PMCID: PMC7479848 DOI: 10.3389/fvets.2020.00503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/02/2020] [Indexed: 11/22/2022] Open
Abstract
Diarrheagenic Escherichia coli is the causative agent of diarrhea in infants and animals worldwide. Many isolated strains recovered from pigs with postweaning diarrhea are multidrug resistance (MDR), and hybrids of E. coli are potentially more virulent, as enterotoxigenic E. coli (ETEC)/Shiga-toxigenic E. coli (STEC) hybrids. Here, we used whole-genome sequencing to analyze clinical isolates of the five colistin-resistant E. coli. The E. coli CAU15104, CAU15134, and CAU16060 belonged to ETEC/STEC hybrids, displaying the same serotype O3:H45 and sequence type ST4214. The E. coli CAU16175 and CAU16177 belonged to atypical enteropathogenic E. coli (aEPEC), display O4:H11 and O103:H2, ST29, and ST20, respectively. The E. coli CAU16175 carries six plasmids. An IncHI2-type plasmid, pCAU16175_1, harbors an IS26-enriched MDR region, which includes 16 antimicrobial-resistant genes. An IncFII-type plasmid, pCAU16175_3, harbors mcr-1.1, tet(M), and blaTEM−1B, whereas mcr-1.1 is located within a Tn2 derivative. Our findings indicate that the ETEC/STEC strains of the O3:H45 serotype as well as the aEPEC strains of the O4:H11 and O103:H2 serotypes are associated with postweaning diarrhea in swine and that some of diarrheagenic E. coli contains IS26-enriched MDR region and the mcr-1 gene located within a Tn2 derivative on IncFII plasmid.
Collapse
Affiliation(s)
- Liang Guo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shenghua Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhui Su
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xue Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yaohong Zhu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Abstract
Escherichia coli is a commensal of the vertebrate gut that is increasingly involved in various intestinal and extra-intestinal infections as an opportunistic pathogen. Numerous pathotypes that represent groups of strains with specific pathogenic characteristics have been described based on heterogeneous and complex criteria. The democratization of whole-genome sequencing has led to an accumulation of genomic data that render possible a population phylogenomic approach to the emergence of virulence. Few lineages are responsible for the pathologies compared with the diversity of commensal strains. These lineages emerged multiple times during E. coli evolution, mainly by acquiring virulence genes located on mobile elements, but in a specific chromosomal phylogenetic background. This repeated emergence of stable and cosmopolitan lineages argues for an optimization of strain fitness through epistatic interactions between the virulence determinants and the remaining genome.
Collapse
|
24
|
Schierack P, Heiden SE, Khan MM, Nikolaus L, Kolenda R, Stubbe M, Lkhagvasuren D, Rödiger S, Guenther S, Schaufler K. Genomic and Phenotypic Analysis of an ESBL-Producing E. coli ST1159 Clonal Lineage From Wild Birds in Mongolia. Front Microbiol 2020; 11:1699. [PMID: 32793163 PMCID: PMC7385280 DOI: 10.3389/fmicb.2020.01699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/29/2020] [Indexed: 12/05/2022] Open
Abstract
Background In addition to the broad dissemination of pathogenic extended-spectrum beta-lactamase (ESBL)-producing Escherichia (E.) coli in human and veterinary medicine and the community, their occurrence in wildlife and the environment is a growing concern. Wild birds in particular often carry clinically relevant ESBL-producing E. coli. Objectives We analyzed ESBL-producing and non-ESBL-producing E. coli obtained from wild birds in Mongolia to identify phylogenetic and functional characteristics that would explain the predominance of a particular E. coli clonal lineage in this area. Methods We investigated ESBL-producing E. coli using whole-genome sequencing and phylogenetics to describe the population structure, resistance and virulence features and performed phenotypic experiments like biofilm formation and adhesion to epithelial cells. We compared the phenotypic characteristics to non-ESBL-producing E. coli from the same background (Mongolian wild birds) and genomic results to publicly available genomes. Results and Conclusion We found ESBL-producing E. coli sequence type (ST) 1159 among wild birds in Mongolia. This clonal lineage carried virulence features typical for extra-intestinal pathogenic or enterotoxigenic E. coli. Comparative functional experiments suggested no burden of resistance in the ST1159 isolates, which is despite their carriage of ESBL-plasmids. Wild birds will likely disseminate these antibiotic-resistant pathogens further during migration.
Collapse
Affiliation(s)
- Peter Schierack
- Multiparametric Diagnostics, Brandenburg University of Technology Cottbus - Senftenberg, Senftenberg, Germany
| | - Stefan E Heiden
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Muhammad Moman Khan
- Multiparametric Diagnostics, Brandenburg University of Technology Cottbus - Senftenberg, Senftenberg, Germany
| | - Lena Nikolaus
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Rafal Kolenda
- Multiparametric Diagnostics, Brandenburg University of Technology Cottbus - Senftenberg, Senftenberg, Germany
| | - Michael Stubbe
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Davaa Lkhagvasuren
- Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Stefan Rödiger
- Multiparametric Diagnostics, Brandenburg University of Technology Cottbus - Senftenberg, Senftenberg, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Senftenberg, Germany
| | | | | |
Collapse
|
25
|
Comparison of the inhibitory potential of benzyl isothiocyanate and phenethyl isothiocyanate on Shiga toxin-producing and enterotoxigenic Escherichia coli. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Diversity of P1 phage-like elements in multidrug resistant Escherichia coli. Sci Rep 2019; 9:18861. [PMID: 31827120 PMCID: PMC6906374 DOI: 10.1038/s41598-019-54895-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/19/2019] [Indexed: 11/16/2022] Open
Abstract
The spread of multidrug resistance via mobile genetic elements is a major clinical and veterinary concern. Pathogenic Escherichia coli harbour antibiotic resistance and virulence genes mainly on plasmids, but also bacteriophages and hybrid phage-like plasmids. In this study, the genomes of three E. coli phage-like plasmids, pJIE250-3 from a human E. coli clinical isolate, pSvP1 from a porcine ETEC O157 isolate, and pTZ20_1P from a porcine commensal E. coli, were sequenced (PacBio RSII), annotated and compared. All three elements are coliphage P1 variants, each with unique adaptations. pJIE250-3 is a P1-derivative that has lost lytic functions and contains no accessory genes. In pTZ20_1P and pSvP1, a core P1-like genome is associated with insertion sequence-mediated acquisition of plasmid modules encoding multidrug resistance and virulence, respectively. The transfer ability of pTZ20_1P, carrying antibiotic resistance markers, was also tested and, although this element was not able to transfer by conjugation, it was able to lysogenize a commensal E. coli strain with consequent transfer of resistance. The incidence of P1-like plasmids (~7%) in our E. coli collections correlated well with that in public databases. This study highlights the need to investigate the contribution of phage-like plasmids to the successful spread of antibiotic resistant pathotypes.
Collapse
|
27
|
García-Meniño I, Díaz-Jiménez D, García V, de Toro M, Flament-Simon SC, Blanco J, Mora A. Genomic Characterization of Prevalent mcr-1, mcr-4, and mcr-5 Escherichia coli Within Swine Enteric Colibacillosis in Spain. Front Microbiol 2019; 10:2469. [PMID: 31736909 PMCID: PMC6838222 DOI: 10.3389/fmicb.2019.02469] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial agents are crucial for the treatment of many bacterial diseases in pigs, however, the massive use of critically important antibiotics such as colistin, fluoroquinolones and 3rd-4th-generation cephalosporins often selects for co-resistance. Based on a comprehensive characterization of 35 colistin-resistant Escherichia coli from swine enteric colibacillosis, belonging to prevalent Spanish lineages, the aims of the present study were to investigate the characteristics of E. coli clones successfully spread in swine and to assess the correlation of the in vitro results with in silico predictions from WGS data. The resistome analysis showed six different mcr variants: mcr-1.1; mcr-1.10; mcr-4.1; mcr-4.2; mcr-4.5; and mcr-5.1. Additionally, bla CTX-M- 14, bla CTX-M- 32 and bla SHV- 12 genes were present in seven genomes. PlasmidFinder revealed that mcr-1.1 genes located mainly on IncHI2 and IncX4 types, and mcr-4 on ColE10-like plasmids. Twenty-eight genomes showed a gyrA S83L substitution, and 12 of those 28 harbored double-serine mutations gyrA S83L and parC S80I, correlating with in vitro quinolone-resistances. Notably, 16 of the 35 mcr-bearing genomes showed mutations in the PmrA (S39I) and PmrB (V161G) proteins. The summative presence of mechanisms, associated with high-level of resistance to quinolones/fluoroquinolones and colistin, could be conferring adaptive advantages to prevalent pig E. coli lineages, such as the ST10-A (CH11-24), as presumed for ST131. SerotypeFinder allowed the H-antigen identification of in vitro non-mobile (HNM) isolates, revealing that 15 of the 21 HNM E. coli analyzed were H39. Since the H39 is associated with the most prevalent O antigens worldwide within swine colibacillosis, such as O108 and O157, it would be probably playing a role in porcine colibacillosis to be considered as a valuable subunit antigen in the formulation of a broadly protective Enterotoxigenic E. coli (ETEC) vaccine. Our data show common features with other European countries in relation to a prevalent clonal group (CC10), serotypes (O108:H39, O138:H10, O139:H1, O141:H4), high plasmid content within the isolates and mcr location, which would support global alternatives to the use of antibiotics in pigs. Here, we report for first time a rare finding so far, which is the co-occurrence of double colistin-resistance mechanisms in a significant number of E. coli isolates.
Collapse
Affiliation(s)
- Isidro García-Meniño
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Dafne Díaz-Jiménez
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Vanesa García
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Saskia C Flament-Simon
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Jorge Blanco
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
28
|
Yamaguchi T, Kawahara R, Harada K, Teruya S, Nakayama T, Motooka D, Nakamura S, Nguyen PD, Kumeda Y, Van Dang C, Hirata K, Yamamoto Y. The presence of colistin resistance gene mcr-1 and -3 in ESBL producing Escherichia coli isolated from food in Ho Chi Minh City, Vietnam. FEMS Microbiol Lett 2019; 365:4978414. [PMID: 29684127 DOI: 10.1093/femsle/fny100] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/17/2018] [Indexed: 12/26/2022] Open
Abstract
Colistin is indicated for the treatment of multidrug-resistant gram-negative bacterial infections. However, the spread of colistin-resistant bacteria harbouring an mcr gene has become a serious concern. This study investigated local foods in Vietnam for contamination with colistin-resistant bacteria. A total of 261 extended-spectrum β-lactamase (ESBL)- and AmpC-producing Escherichia coli isolates from 330 meat and seafood products were analysed for colistin susceptibility and the presence of mcr genes. Approximately, 24% (62/261) of ESBL- or AmpC-producing E. coli isolates showed colistin resistance; 97% (60/62) of colistin-resistant isolates harboured mcr-1, whereas 3% (2/62) harboured mcr-3. As the result of plasmid analysis of two strains, both plasmids harbouring mcr-3 revealed that plasmid replicon type was IncFII. Sequencing analysis indicated that an insertion sequence was present near mcr-3, suggesting that IncFII plasmids harbouring mcr-3 could be transferred to other bacterial species by horizontal transfer of the plasmid or transfer with some insertion sequence. In conclusion, ESBL-producing E. coli and AmpC-producing E. coli have acquired colistin resistance because 24% of such isolates show colistin resistance and 3% of the colistin-resistant strains harbour mcr-3. We reported the present of the mcr-3-carrying ESBL-producing E. coli isolated from pork in Vietnam.
Collapse
Affiliation(s)
- Takahiro Yamaguchi
- Osaka Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka, Japan.,Graduate School of Pharmaceutical Sciences Osaka University, 1-6 Yamadaoka, Suita, Osaka, Japan
| | - Ryuji Kawahara
- Osaka Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka, Japan
| | - Kazuo Harada
- Graduate School of Pharmaceutical Sciences Osaka University, 1-6 Yamadaoka, Suita, Osaka, Japan.,Osaka University Center for Global Initiatives, 1-1 Yamadaoka, Suita, Osaka, Japan
| | - Shihono Teruya
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Tatsuya Nakayama
- National Institute of Health Science, 3-25-26 Tonomachi, Kanagawa-ku, Kanagawa, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Shota Nakamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Phuc Do Nguyen
- Institute of Public Health, Ho Chi Minh City, 159 Hung Phu, District 8, Ward 8, Ho Chi Minh City, Vietnam
| | - Yuko Kumeda
- Research Center for Microorganism Control Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, Japan
| | - Chinh Van Dang
- Institute of Public Health, Ho Chi Minh City, 159 Hung Phu, District 8, Ward 8, Ho Chi Minh City, Vietnam
| | - Kazumasa Hirata
- Graduate School of Pharmaceutical Sciences Osaka University, 1-6 Yamadaoka, Suita, Osaka, Japan
| | - Yoshimasa Yamamoto
- Graduate School of Pharmaceutical Sciences Osaka University, 1-6 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
29
|
Magaziner SJ, Zeng Z, Chen B, Salmond GPC. The Prophages of Citrobacter rodentium Represent a Conserved Family of Horizontally Acquired Mobile Genetic Elements Associated with Enteric Evolution towards Pathogenicity. J Bacteriol 2019; 201:e00638-18. [PMID: 30782635 PMCID: PMC6456863 DOI: 10.1128/jb.00638-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/23/2019] [Indexed: 01/08/2023] Open
Abstract
Prophage-mediated horizontal gene transfer (HGT) plays a key role in the evolution of bacteria, enabling access to new environmental niches, including pathogenicity. Citrobacter rodentium is a host-adapted intestinal mouse pathogen and important model organism for attaching and effacing (A/E) pathogens, including the clinically significant enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively). Even though C. rodentium contains 10 prophage genomic regions, including an active temperate phage, ΦNP, little was known regarding the nature of C. rodentium prophages in the bacterium's evolution toward pathogenicity. In this study, our characterization of ΦNP led to the discovery of a second, fully functional temperate phage, named ΦSM. We identify the bacterial host receptor for both phages as lipopolysaccharide (LPS). ΦNP and ΦSM are likely important mediators of HGT in C. rodentium Bioinformatic analysis of the 10 prophage regions reveals cargo genes encoding known virulence factors, including several type III secretion system (T3SS) effectors. C. rodentium prophages are conserved across a wide range of pathogenic enteric bacteria, including EPEC and EHEC as well as pathogenic strains of Salmonella enterica, Shigella boydii, and Klebsiella pneumoniae Phylogenetic analysis of core enteric backbone genes compared against prophage evolutionary models suggests that these prophages represent an important, conserved family of horizontally acquired enteric-bacterium-associated pathogenicity determinants. In addition to highlighting the transformative role of bacteriophage-mediated HGT in C. rodentium's evolution toward pathogenicity, these data suggest that the examination of conserved families of prophages in other pathogenic bacteria and disease outbreaks might provide deeper evolutionary and pathological insights otherwise obscured by more classical analysis.IMPORTANCE Bacteriophages are obligate intracellular parasites of bacteria. Some bacteriophages can confer novel bacterial phenotypes, including pathogenicity, through horizontal gene transfer (HGT). The pathogenic bacterium Citrobacter rodentium infects mice using mechanisms similar to those employed by human gastrointestinal pathogens, making it an important model organism. Here, we examined the 10 prophages of C. rodentium, investigating their roles in its evolution toward virulence. We characterized ΦNP and ΦSM, two endogenous active temperate bacteriophages likely important for HGT. We showed that the 10 prophages encode predicted virulence factors and are conserved within other intestinal pathogens. Phylogenetic analysis suggested that they represent a conserved family of horizontally acquired enteric-bacterium-associated pathogenic determinants. Consequently, similar analysis of prophage elements in other pathogens might further understanding of their evolution and pathology.
Collapse
Affiliation(s)
- Samuel J Magaziner
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ziyue Zeng
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Bihe Chen
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Antibiotic Resistance Profile and Clonality of E. coli Isolated from Water and Paediatric Stool Samples in the North-West, Province South Africa. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.58] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Freitas DY, Araújo S, Folador ARC, Ramos RTJ, Azevedo JSN, Tacão M, Silva A, Henriques I, Baraúna RA. Extended Spectrum Beta-Lactamase-Producing Gram-Negative Bacteria Recovered From an Amazonian Lake Near the City of Belém, Brazil. Front Microbiol 2019; 10:364. [PMID: 30873145 PMCID: PMC6403167 DOI: 10.3389/fmicb.2019.00364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
Aquatic systems have been described as antibiotic resistance reservoirs, where water may act as a vehicle for the spread of resistant bacteria and resistance genes. We evaluated the occurrence and diversity of third generation cephalosporin-resistant gram-negative bacteria in a lake in the Amazonia region. This water is used for human activities, including consumption after appropriate treatment. Eighteen samples were obtained from six sites in October 2014. Water quality parameters were generally within the legislation limits. Thirty-three bacterial isolates were identified as Escherichia (n = 7 isolates), Acinetobacter, Enterobacter, and Klebsiella (n = 5 each), Pseudomonas (n = 4), Shigella (n = 3), and Chromobacterium, Citrobacter, Leclercia, Phytobacter (1 isolate each). Twenty nine out of 33 isolates (88%) were resistant to most beta-lactams, except carbapenems, and 88% (n = 29) were resistant to antibiotics included in at least three different classes. Among the beta-lactamase genes inspected, the blaCTX–M was the most prevalent (n = 12 positive isolates), followed by blaTEM (n = 5) and blaSHV (n = 4). blaCTX–M–15 (n = 5), blaCTX–M–14 (n = 1) and blaCTX–M–2 (n = 1) variants were detected in conserved genomic contexts: blaCTX–M–15 flanked by ISEcp1 and Orf477; blaCTX–M–14 flanked by ISEcp1 and IS903; and blaCTX–M–2 associated to an ISCR element. For 4 strains the transfer of blaCTX–M was confirmed by conjugation assays. Compared with the recipient, the transconjugants showed more than 500-fold increases in the MICs of cefotaxime and 16 to 32-fold increases in the MICs of ceftazidime. Two isolates (Escherichia coli APC43A and Acinetobacter baumannii APC25) were selected for whole genome analysis. APC43A was predicted as a E. coli pathogen of the high-risk clone ST471 and serotype O154:H18. blaCTX–M–15 as well as determinants related to efflux of antibiotics, were noted in APC43A genome. A. baumannii APC25 was susceptible to carbapenems and antibiotic resistance genes detected in its genome were intrinsic determinants (e.g., blaOXA–208 and blaADC–like). The strain was not predicted as a human pathogen and belongs to a new sequence type. Operons related to metal resistance were predicted in both genomes as well as pathogenicity and resistance islands. Results suggest a high dissemination of ESBL-producing bacteria in Lake Água Preta which, although not presenting characteristics of a strongly impacted environment, contains multi-drug resistant pathogenic strains.
Collapse
Affiliation(s)
- Dhara Y Freitas
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Susana Araújo
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Adriana R C Folador
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rommel T J Ramos
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Marta Tacão
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Artur Silva
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Isabel Henriques
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Rafael A Baraúna
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
32
|
Jiang F, Wu Z, Zheng Y, Frana TS, Sahin O, Zhang Q, Li G. Genotypes and Antimicrobial Susceptibility Profiles of Hemolytic Escherichia coli from Diarrheic Piglets. Foodborne Pathog Dis 2019; 16:94-103. [PMID: 30688527 DOI: 10.1089/fpd.2018.2480] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hemolytic Escherichia coli are important pathogens in neonatal and weaned pigs. In this study, we analyzed 95 hemolytic E. coli isolated from intestinal contents or fecal samples of diarrheic piglets in 15 states of the United States between November 2013 and December 2014. Phenotypic antimicrobial susceptibility was determined through Sensititre BOFO6F plates for all the strains. They were all resistant to clindamycin, penicillin, tiamulin, tilmicosin, and highly resistant to oxytetracycline (91.6%), chlortetracycline (78.9%), ampicillin (75.8%), and sulfadimethoxine (68.4%). 86.2% of them were multidrug resistant. Whole genome sequencing (WGS) showed that 55 strains were enterotoxigenic E. coli (ETEC) and 40 strains were non-ETEC, and the strains belonged to 22 known and 2 novel sequence types (STs). ST100 and ST10 were the main and predominant STs in ETEC strains, whereas the non-ETEC strains were diverse with ST23 and ST761 as the main STs. Antibiotic resistance gene/mutation profiling of the genomes confirmed the results of antimicrobial susceptibility test. Notably, significant differences were found in the susceptibility to enrofloxacin between ETEC and non-ETEC (58.2% vs. 5.0%) and gentamicin (32.7% vs. 7.5%). ampH, ampC2, and ampC1 were the most common beta-lactamase genes in all E. coli strains, and extended-spectrum beta-lactamase (ESBL) genes were rare in these isolates. This study provides new insights into antibiotic resistance and genotypes of intestinal pathogenic E. coli associated with swine disease in the United States, and support the utility of WGS in accurate prediction of resistance to most antibiotics.
Collapse
Affiliation(s)
- Fengwei Jiang
- 1 Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,2 Department of Veterinary Diagnostic and Production Animal Medicine and College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Zuowei Wu
- 3 Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Ying Zheng
- 2 Department of Veterinary Diagnostic and Production Animal Medicine and College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Timothy S Frana
- 2 Department of Veterinary Diagnostic and Production Animal Medicine and College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Orhan Sahin
- 2 Department of Veterinary Diagnostic and Production Animal Medicine and College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Qijing Zhang
- 3 Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Ganwu Li
- 1 Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,2 Department of Veterinary Diagnostic and Production Animal Medicine and College of Veterinary Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
33
|
Brilhante M, Perreten V, Donà V. Multidrug resistance and multivirulence plasmids in enterotoxigenic and hybrid Shiga toxin-producing/enterotoxigenic Escherichia coli isolated from diarrheic pigs in Switzerland. Vet J 2018; 244:60-68. [PMID: 30825896 DOI: 10.1016/j.tvjl.2018.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
Abstract
Enterovirulent Escherichia coli infections cause significant losses in the pig industry. However, information about the structures of the virulence and multidrug resistance (MDR) plasmids harboured by these strains is sparse. In this study, we used whole-genome sequencing with PacBio and Illumina platforms to analyse the molecular features of the multidrug-resistant enterotoxigenic E. coli (ETEC) strain 14OD0056 and the multidrug-resistant hybrid Shiga toxin-producing/enterotoxigenic E. coli (STEC/ETEC) strain 15OD0495 isolated from diarrheic pigs in Switzerland. Strain 14OD0056 possessed three virulence plasmids similar to others previously found in ETEC strains, while 15OD0495 harboured a 119-kb multivirulence IncFII/IncX1 hybrid STEC/ETEC plasmid (p15ODTXV) that co-carried virulence genes of both ETEC and STEC pathotypes, confirming the key role of plasmids in the emergence of hybrid pathotypes. All resistance genes of 14OD0056 that conferred resistance to ampicillin (blaTEM-1b), gentamicin (aac(3)-IIa), kanamycin (aph(3')-Ia), sulfonamide (sul1 and sul2), streptomycin (aph(3″)-Ib, aph(6)-Id), tetracycline (tet(B)) and trimethoprim (dfrA1) were identified on a single 207-kb conjugative MDR plasmid of incompatibility group (Inc) IncHI1/IncFIA (p14ODMR). Strain 15OD0495 carried two antimicrobial resistance plasmids (p15ODAR and p15ODMR). The 99-kb IncI1 plasmid p15ODAR harboured only aminoglycoside resistance genes (aac(3)-IIa, aph(3″)-Ib, aph(6)-Id, aph(4)-Ia), whilst the 49-kb IncN MDR plasmid p15ODMR carried genes conferring resistance to ampicillin (blaTEM-1b), sulfonamide (sul2), streptomycin (aph(6)-Id), tetracycline (tet(A)) and trimethoprim (dfrA14). Filter mating assays showed that p14ODMR, p15ODMR and p15ODAR were conjugative at room temperature and 37°C. The co-localization of multiple resistance genes on MDR conjugative plasmids such as p14ODMR and p15ODMR poses the risk of simultaneous selection of several resistance traits during empirical treatment. Thus, preventive strategies and targeted therapy following antibiotic susceptibility testing should be encouraged to avoid further dissemination of such plasmids.
Collapse
Affiliation(s)
- M Brilhante
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - V Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - V Donà
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
García-Meniño I, García V, Mora A, Díaz-Jiménez D, Flament-Simon SC, Alonso MP, Blanco JE, Blanco M, Blanco J. Swine Enteric Colibacillosis in Spain: Pathogenic Potential of mcr-1 ST10 and ST131 E. coli Isolates. Front Microbiol 2018; 9:2659. [PMID: 30455680 PMCID: PMC6230658 DOI: 10.3389/fmicb.2018.02659] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/18/2018] [Indexed: 12/25/2022] Open
Abstract
This is a wide epidemiological study of 499 E. coli isolates recovered from 179 outbreaks of enteric colibacillosis from pig production farms in Spain during a period of 10 years. Most samples were of diarrheagenic cases occurred during the post-wean period (PWD) which showed to be significantly associated with ETEC (67%) followed by aEPEC (21.7%). On the contrary, aEPEC was more prevalent (60.3%) among diarrheas of suckling piglets, followed by ETEC (38.8%). STEC/ETEC or STEC were recovered in 11.3 and 0.9% of PWD and neonatal diarrhea, respectively. Detection of the F4 colonization factor was not significantly different between isolates recovered from neonatal pigs and those recovered post wean (40.5 versus 27.7%) while F18 was only present among PWD isolates (51.5% of ETEC, STEC, and STEC/ETEC isolates). We also found a high prevalence of resistance to colistin related to the presence of the mcr-1 gene (25.6% of the diarreagenic isolates). The characterization of 65 representative mcr-1 isolates showed that all were phenotypically resistant to colistin (>2 μg/ml), and most (61 of 65) multidrug-resistant (MDR). Six ETEC and one STEC mcr-1 isolates were also carriers of ESBL genes. In addition, other seven mcr-1 isolates harbored mcr-4 (three ETEC) and mcr-5 (two ETEC and two aEPEC) genes. In the phylogenetic analysis of the 65 mcr-1 diarrheagenic isolates we found that more than 50% (38 out of 65) belonged to A-ST10 Cplx and from those, 29 isolates showed the clonotype CH11-24. In this study, we also recovered 18 ST131 isolates including seven mcr-1 carriers. To the best of our knowledge, this would be the first report of ST131 mcr-1 isolation in pigs. Worryingly, the swine mcr-1 ST131 carriers also showed MDR, including to trimethoprim-sulfamethoxazole, tobramycin, gentamicin and ciprofloxacin. In the PFGE-macrorestriction comparison of clinical swine and human ST131, we found high similarities (≥85%) between two pig and two human ST131 isolates of virotype D5. Acquisition of mcr-1 by this specific clone means an increased risk due to its special feature of congregating virulence and resistance traits, together with its spread capability. Here we show a potential zoonotic swine source of ST131.
Collapse
Affiliation(s)
- Isidro García-Meniño
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Vanesa García
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Dafne Díaz-Jiménez
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Saskia C Flament-Simon
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - María Pilar Alonso
- Unidad de Microbiología, Hospital Universitario Lucus Augusti (HULA), Lugo, Spain
| | - Jesús E Blanco
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Miguel Blanco
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Jorge Blanco
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| |
Collapse
|
35
|
Characterization of a novel plasmid encoding F4-like fimbriae present in a Shiga-toxin producing enterotoxigenic Escherichia coli isolated during the investigation on a case of hemolytic-uremic syndrome. Int J Med Microbiol 2018; 308:947-955. [PMID: 30030028 DOI: 10.1016/j.ijmm.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 11/21/2022] Open
Abstract
In February 2017 a case of Hemolytic-Uremic Syndrome (HUS) was reported to the National Registry of HUS in an adult living in Northern Italy. Stool specimens from the patient and his family contacts were collected and the analyses led to the isolation of a Locus of Enterocyte Effacement (LEE)-negative Shiga toxin 2 (Stx2)-producing Escherichia coli. The epidemiological investigations performed brought to collect fecal samples from the animals reared in a farm held by the case's family and a mixture of bovine and swine feces proved positive for Shiga toxin-producing E. coli (STEC) and yielded the isolation of a LEE-negative stx2-positive E. coli strain. Further characterization by whole genome sequencing led to identify the isolates as two identical O2:H27 hybrid Enterotoxigenic Shiga toxin-producing E. coli (ETEC-STEC). Sequencing of a high molecular weight plasmid present in the human isolate disclosed a peculiar plasmid harboring virulence genes characteristic for both pathotypes, including the enterohemolysin-coding gene and sta1, encoding the heat stable enterotoxin. Moreover, a complete fae locus encoding the ETEC F4 fimbriae could be identified, including a novel variant of faeG gene responsible for the production of the main structural subunit of the fimbriae. This novel faeG showed great diversity in the nucleotidic sequence when compared with the reference genes encoding the swine F4 allelic variants, whereas at the amino acid sequence level the predicted protein sequence showed some similarity with FaeG from E. coli strains of bovine origin. Further investigation on the plasmid region harboring the newly identified faeG allelic variant allowed to identify similar plasmids in NCBI sequence database, as part of the genome of other previously uncharacterized ETEC-STEC strains of bovine origin, suggesting that the novel F4-like fimbriae may play a role in bovine host specificity.
Collapse
|
36
|
García V, García-Meniño I, Mora A, Flament-Simon SC, Díaz-Jiménez D, Blanco JE, Alonso MP, Blanco J. Co-occurrence of mcr-1, mcr-4 and mcr-5 genes in multidrug-resistant ST10 Enterotoxigenic and Shiga toxin-producing Escherichia coli in Spain (2006-2017). Int J Antimicrob Agents 2018; 52:104-108. [DOI: 10.1016/j.ijantimicag.2018.03.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 10/17/2022]
|
37
|
Koraimann G. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module. EcoSal Plus 2018; 8. [PMID: 30022749 PMCID: PMC11575672 DOI: 10.1128/ecosalplus.esp-0003-2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 02/06/2023]
Abstract
The F plasmid or F-factor is a large, 100-kbp, circular conjugative plasmid of Escherichia coli and was originally described as a vector for horizontal gene transfer and gene recombination in the late 1940s. Since then, F and related F-like plasmids have served as role models for bacterial conjugation. At present, more than 200 different F-like plasmids with highly related DNA transfer genes, including those for the assembly of a type IV secretion apparatus, are completely sequenced. They belong to the phylogenetically related MOBF12A group. F-like plasmids are present in enterobacterial hosts isolated from clinical as well as environmental samples all over the world. As conjugative plasmids, F-like plasmids carry genetic modules enabling plasmid replication, stable maintenance, and DNA transfer. In this plasmid backbone of approximately 60 kbp, the DNA transfer genes occupy the largest and mostly conserved part. Subgroups of MOBF12A plasmids can be defined based on the similarity of TraJ, a protein required for DNA transfer gene expression. In addition, F-like plasmids harbor accessory cargo genes, frequently embedded within transposons and/or integrons, which harness their host bacteria with antibiotic resistance and virulence genes, causing increasingly severe problems for the treatment of infectious diseases. Here, I focus on key genetic elements and their encoded proteins present on the F-factor and other typical F-like plasmids belonging to the MOBF12A group of conjugative plasmids.
Collapse
Affiliation(s)
- Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
38
|
Genome-wide analysis of codon usage bias patterns in an enterotoxigenic Escherichia coli F18 strain. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Yang SC, Lin CH, Aljuffali IA, Fang JY. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch Microbiol 2017; 199:811-825. [DOI: 10.1007/s00203-017-1393-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 05/15/2017] [Accepted: 05/30/2017] [Indexed: 11/30/2022]
|
40
|
Yu X, Åvall-Jääskeläinen S, Koort J, Lindholm A, Rintahaka J, von Ossowski I, Palva A, Hynönen U. A Comparative Characterization of Different Host-sourced Lactobacillus ruminis Strains and Their Adhesive, Inhibitory, and Immunomodulating Functions. Front Microbiol 2017; 8:657. [PMID: 28450859 PMCID: PMC5390032 DOI: 10.3389/fmicb.2017.00657] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022] Open
Abstract
Lactobacillus ruminis, an autochthonous member of the gastrointestinal microbiota of humans and many animals, is a less characterized but interesting species for many reasons, including its intestinal prevalence and possible positive roles in host–microbe crosstalk. In this study, we isolated a novel L. ruminis strain (GRL 1172) from porcine feces and analyzed its functional characteristics and niche adaptation factors in parallel with those of three other L. ruminis strains (a human isolate, ATCC 25644, and two bovine isolates, ATCC 27780 and ATCC 27781). All the strains adhered to fibronectin, type I collagen, and human colorectal adenocarcinoma cells (HT-29), but poorly to type IV collagen, porcine intestinal epithelial cells (IPEC-1), and human colon adenocarcinoma cells (Caco-2). In competition assays, all the strains were able to inhibit the adhesion of Yersinia enterocolitica and enterotoxigenic Escherichia coli (ETEC, F4+) to fibronectin, type I; collagen, IPEC-1, and Caco-2 cells, and the inhibition rates tended to be higher than in exclusion assays. The culture supernatants of the tested strains inhibited the growth of six selected pathogens to varying extents. The inhibition was solely based on the low pH resulting from acid production during growth. All four L. ruminis strains supported the barrier function maintenance of Caco-2 cells, as shown by the modest increase in trans-epithelial electrical resistance and the prevention of dextran diffusion during co-incubation. However, the strains could not prevent the barrier damage caused by ETEC in the Caco-2 cell model. All the tested strains and their culture supernatants were able to provoke Toll-like receptor (TLR) 2-mediated NF-κB activation and IL-8 production in vitro to varying degrees. The induction of TLR5 signaling revealed that flagella were expressed by all the tested strains, but to different extents. Flagella and pili were observed by electron microscopy on the newly isolated strain GRL 1172.
Collapse
Affiliation(s)
- Xia Yu
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Silja Åvall-Jääskeläinen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Joanna Koort
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Agneta Lindholm
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Johanna Rintahaka
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Ingemar von Ossowski
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Ulla Hynönen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| |
Collapse
|
41
|
Ban E, Yoshida Y, Wakushima M, Wajima T, Hamabata T, Ichikawa N, Abe H, Horiguchi Y, Hara-Kudo Y, Kage-Nakadai E, Yamamoto T, Wada T, Nishikawa Y. Characterization of unstable pEntYN10 from enterotoxigenic Escherichia coli (ETEC) O169:H41. Virulence 2016; 6:735-44. [PMID: 26575107 DOI: 10.1080/21505594.2015.1094606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) serotype O169:H41 has been an extremely destructive epidemic ETEC type worldwide. The strain harbors a large unstable plasmid that is regarded as responsible for its virulence, although its etiology has remained unknown. To examine its genetic background specifically on the unstable retention and responsibility in the unique adherence to epithelial cells and enterotoxin production, the complete sequence of a plasmid, pEntYN10, purified from the serotype strain was determined. The length is 145,082 bp; its GC content is 46.15%. It contains 182 CDSs, which include 3 colonization factors (CFs), an enterotoxin, and large number of insertion sequences. The repertory of plasmid stability genes was extraordinarily scant. Uniquely, results showed that 3 CFs, CS6, CS8 (CFA/III)-like, and K88 (F4)-like were encoded redundantly in the plasmid with unique variations among previously known subtypes. These three CFs preserved their respective gene structures similarly to those of other ETEC strains reported previously with unique sequence variations respectively. It is particularly interesting that the K88-like gene cluster of pEntYN10 had 2 paralogous copies of faeG, which encodes the major component of fimbrial structure. It remains to be verified how the unique variations found in the CFs respectively affect the affinity to infected cells, host range, and virulence of the ETEC strain.
Collapse
Affiliation(s)
- Erika Ban
- a Department of Food and Human Health Sciences ; Graduate School of Human Life Science; Osaka City University ; Osaka , Japan
| | - Yuka Yoshida
- a Department of Food and Human Health Sciences ; Graduate School of Human Life Science; Osaka City University ; Osaka , Japan
| | - Mitsuko Wakushima
- a Department of Food and Human Health Sciences ; Graduate School of Human Life Science; Osaka City University ; Osaka , Japan
| | - Takeaki Wajima
- b Department of Microbiology ; School of Pharmacy; Tokyo University of Pharmacy and Life Sciences ; Tokyo , Japan
| | - Takashi Hamabata
- c Research Institute; National Center for Global Health and Medicine ; Tokyo , Japan
| | - Naoki Ichikawa
- a Department of Food and Human Health Sciences ; Graduate School of Human Life Science; Osaka City University ; Osaka , Japan
| | - Hiroyuki Abe
- d Department of Molecular Bacteriology ; Research Institute for Microbial Diseases; Osaka University ; Osaka , Japan
| | - Yasuhiko Horiguchi
- d Department of Molecular Bacteriology ; Research Institute for Microbial Diseases; Osaka University ; Osaka , Japan
| | - Yukiko Hara-Kudo
- e Division of Microbiology; National Institute of Health Sciences ; Tokyo , Japan
| | - Eriko Kage-Nakadai
- f The OCU Advanced Research Institute for Natural Science and Technology; Osaka City University ; Osaka , Japan
| | - Taro Yamamoto
- g Department of International Health ; Institute of Tropical Medicine; Nagasaki University ; Nagasaki , Japan
| | - Takayuki Wada
- g Department of International Health ; Institute of Tropical Medicine; Nagasaki University ; Nagasaki , Japan
| | - Yoshikazu Nishikawa
- a Department of Food and Human Health Sciences ; Graduate School of Human Life Science; Osaka City University ; Osaka , Japan
| |
Collapse
|
42
|
Dubreuil JD, Isaacson RE, Schifferli DM. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0006-2016. [PMID: 27735786 PMCID: PMC5123703 DOI: 10.1128/ecosalplus.esp-0006-2016] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors: adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17, and F18 fimbriae. Once established in the animal small intestine, ETEC produce enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes: heat-labile toxins that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This review describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics, and the identification of potential new targets by genomics are presented in the context of animal ETEC.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Québec J2S 7C6, Canada
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Dieter M Schifferli
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
43
|
Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia sp. Cryptic Lineage 1 Strain 7v Harbors a Hybrid Plasmid. Appl Environ Microbiol 2016; 82:4309-4319. [PMID: 27208138 DOI: 10.1128/aem.01129-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Hybrid isolates of Shiga toxin-producing Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) encoding heat-stable enterotoxin (ST) are being reported with increasing frequency from a variety of sources. However, information regarding the plasmids that these strains harbor is scarce. In this study, we sequence and characterize a plasmid, p7v, from the STEC/ETEC hybrid strain 7v. Whole-genome phylogenetic analyses of STEC/ETEC hybrid strains and prototype E. coli isolates of other pathotypes placed 7v in the Escherichia sp. cryptic lineage 1 (CL1) clade. The complete plasmid, p7v, was determined to be 229,275 bp and encodes putative virulence factors that are typically carried on STEC plasmids as well as those often carried on ETEC plasmids, indicating that the hybrid nature of the strain extends beyond merely encoding the two toxins. Plasmid p7v carries two copies of sta with identical sequences, which were discovered to be divergent from the sta sequences found in the prototype human ETEC strains. Using a nomenclature scheme based on a phylogeny constructed from sta and stb sequences, the sta encoded on p7v is designated STa4. In silico analysis determined that p7v also encodes the K88 fimbria, a colonization factor usually associated with porcine ETEC plasmids. The p7v sequence and the presence of plasmid-encoded virulence factors are compared to those of other STEC/ETEC CL1 hybrid genomes and reveal gene acquisition/loss at the strain level. In addition, the interrogation of 24 STEC/ETEC hybrid genomes for identification of plasmid replicons, colonization factors, Stx and ST subtypes, and other plasmid-encoded virulence genes highlights the diversity of these hybrid strains. IMPORTANCE Hybrid Shiga toxin-producing Escherichia coli/enterotoxigenic Escherichia coli (STEC/ETEC) strains, which have been isolated from environmental, animal, and human clinical samples, may represent an emerging threat as food-borne pathogens. Characterization of these strains is important for assessing virulence potential, aiding in the development of pathogen detection methods, and understanding how the hybrid strains evolve to potentially have a greater impact on public health. This study represents, to our knowledge, both the first characterization of a closed plasmid sequence from a STEC/ETEC hybrid strain and the most comprehensive phylogenetic analysis of available STEC/ETEC hybrid genomes to date. The results demonstrate how the mobility of plasmid-associated virulence genes has resulted in the creation of a diverse plasmid repertoire within the STEC/ETEC hybrid strains.
Collapse
|
44
|
Wyrsch ER, Roy Chowdhury P, Chapman TA, Charles IG, Hammond JM, Djordjevic SP. Genomic Microbial Epidemiology Is Needed to Comprehend the Global Problem of Antibiotic Resistance and to Improve Pathogen Diagnosis. Front Microbiol 2016; 7:843. [PMID: 27379026 PMCID: PMC4908116 DOI: 10.3389/fmicb.2016.00843] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/22/2016] [Indexed: 11/18/2022] Open
Abstract
Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Ethan R Wyrsch
- The ithree Institute, University of Technology Sydney, Sydney NSW, Australia
| | - Piklu Roy Chowdhury
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia; NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, SydneyNSW, Australia
| | - Toni A Chapman
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Sydney NSW, Australia
| | - Ian G Charles
- Institute of Food Research, Norwich Research Park Norwich, UK
| | - Jeffrey M Hammond
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Sydney NSW, Australia
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Sydney NSW, Australia
| |
Collapse
|
45
|
Kwon T, Kim JB, Bak YS, Yu YB, Kwon KS, Kim W, Cho SH. Draft genome sequence of non-shiga toxin-producing Escherichia coli O157 NCCP15738. Gut Pathog 2016; 8:13. [PMID: 27096008 PMCID: PMC4835932 DOI: 10.1186/s13099-016-0096-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/04/2016] [Indexed: 11/21/2022] Open
Abstract
Background The non-shiga toxin-producing Escherichia coli (non-STEC) O157 is a pathogenic strain that cause diarrhea but does not cause hemolytic-uremic syndrome, or hemorrhagic colitis. Here, we present the 5-Mb draft genome sequence of non-STEC O157 NCCP15738, which was isolated from the feces of a Korean patient with diarrhea, and describe its features and the structural basis for its genome evolution. Results A total of 565-Mbp paired-end reads were generated using the Illumina-HiSeq 2000 platform. The reads were assembled into 135 scaffolds throughout the de novo assembly. The assembled genome size of NCCP15738 was 5,005,278 bp with an N50 value of 142,450 bp and 50.65 % G+C content. Using Rapid Annotation using Subsystem Technology analysis, we predicted 4780 ORFs and 31 RNA genes. The evolutionary tree was inferred from multiple sequence alignment of 45 E. coli species. The most closely related neighbor of NCCP15738 indicated by whole-genome phylogeny was E. coli UMNK88, but that indicated by multilocus sequence analysis was E. coli DH1(ME8569). Conclusions A comparison between the NCCP15738 genome and those of reference strains, E. coli K-12 substr. MG1655 and EHEC O157:H7 EDL933 by bioinformatics analyses revealed unique genes in NCCP15738 associated with lysis protein S, two-component signal transduction system, conjugation, the flagellum, nucleotide-binding proteins, and metal-ion binding proteins. Notably, NCCP15738 has a dual flagella system like that in Vibrio parahaemolyticus, Aeromonas spp., and Rhodospirillum centenum. The draft genome sequence and the results of bioinformatics analysis of NCCP15738 provide the basis for understanding the genomic evolution of this strain. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0096-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taesoo Kwon
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea ; Division of Biosafety Evaluation and Control, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| | - Jung-Beom Kim
- Department of Food Science and Technology, Sunchon National University, Sunchon, Jeonnam 540-950 Republic of Korea
| | - Young-Seok Bak
- Department of Emergency Medical Service, College of Medical Science, Konyang University, Daejeon, 302-832 Republic of Korea
| | - Young-Bin Yu
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, 302-832 Republic of Korea
| | - Ki Sung Kwon
- New Hazardous Substances Team, National Institute of Food and Drug Safety Evaluation, Cheongju, 363-700 Republic of Korea
| | - Won Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| |
Collapse
|
46
|
Emergence of a Multidrug-Resistant Shiga Toxin-Producing Enterotoxigenic Escherichia coli Lineage in Diseased Swine in Japan. J Clin Microbiol 2016; 54:1074-81. [PMID: 26865687 DOI: 10.1128/jcm.03141-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/30/2016] [Indexed: 01/30/2023] Open
Abstract
EnterotoxigenicEscherichia coli(ETEC) and Shiga toxin-producingE. coli(STEC) are important causes of diarrhea and edema disease in swine. The majority of swine-pathogenicE. colistrains belong to a limited range of O serogroups, including O8, O138, O139, O141, O147, O149, and O157, which are the most frequently reported strains worldwide. However, the circumstances of ETEC and STEC infections in Japan remain unknown; there have been few reports on the prevalence or characterization of swine-pathogenicE. coli In the present study, we determined the O serogroups of 967E. coliisolates collected between 1991 and 2014 from diseased swine in Japan, and we found that O139, O149, O116, and OSB9 (O serogroup ofShigella boydiitype 9) were the predominant serogroups. We further analyzed these four O serogroups using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing, and virulence factor profiling. Most of the O139 and O149 strains formed serogroup-specific PFGE clusters (clusters I and II, respectively), whereas the O116 and OSB9 strains were grouped together in the same cluster (cluster III). All of the cluster III strains belonged to a single sequence type (ST88) and carried genes encoding both enterotoxin and Shiga toxin. This PFGE cluster III/ST88 lineage exhibited a high level of multidrug resistance (to a median of 10 antimicrobials). Notably, these bacteria were resistant to fluoroquinolones. Thus, this lineage should be considered a significant risk to animal production due to the toxigenicity and antimicrobial resistance of these bacteria.
Collapse
|
47
|
Mohammed M, Cormican M. Whole genome sequencing provides possible explanations for the difference in phage susceptibility among two Salmonella Typhimurium phage types (DT8 and DT30) associated with a single foodborne outbreak. BMC Res Notes 2015; 8:728. [PMID: 26613761 PMCID: PMC4661946 DOI: 10.1186/s13104-015-1687-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/10/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Phage typing has been used for decades as a rapid, low cost approach for the epidemiological surveillance of Salmonella enterica subsp. enterica serovar Typhimurium. Although molecular methods are replacing phage typing the system is still in use and provides a valuable model for study of phage-host interaction. Phage typing depends on the pattern of bacterial resistance or sensitivity to a panel of specific bacteriophages. In the phage typing scheme, S. Typhimurium definitive phage types (DT) 8 and 30 differ greatly in their susceptibility to the 30 typing phages of S. Typhimurium; DT8 is susceptible to 11 phages whereas DT30 is resistant to all typing phages except one phage although both DT8 and DT30 were reported to be associated with a single foodborne salmonellosis outbreak in Ireland between 2009 and 2011. We wished to study the genomic correlates of the DT8 and DT30 difference in phage susceptibility using the whole genome sequence (WGS) of S. Typhimurium DT8 and DT30 representatives. RESULTS Comparative genome analysis revealed that both S. Typhimurium DT8 and DT30 are lysogenic for three prophages including two S. Typhimurium associated prophages (Gifsy-2 and ST64B) and one S. Enteritidis associated prophage (Enteritidis lysogenic phage S) which has not been detected previously in S. Typhimurium. Furthermore, DT8 and DT30 contain identical clustered regularly interspaced short palindromic repeats (CRISPRs). Interestingly, S. Typhimurium DT8 harbours an accessory genome represented by a virulence plasmid that is highly related to the pSLT plasmid of S. Typhimurium strain LT2 (phage typed as DT4) and codes a unique methyltransferase (MTase); M.EcoGIX related MTase. This plasmid is not detected in DT30. On the other hand, DT30 carries a unique genomic island similar to the integrative and conjugative element (ICE) of Enterotoxigenic Escherichia coli (ETEC) and encodes type IV secretion pathway system (T4SS) and several hypothetical proteins. This genomic island is not detected in DT8. CONCLUSIONS We suggest that differences in phage susceptibility between DT8 and DT30 may be related to acquisition of ICE in DT30 and loss of pSLT like plasmid that might be associated with DT30 resistance to almost all phages used in the typing scheme. Additional studies are required to determine the significance of the differences among DT8 and DT30 in relation to the difference in phage susceptibility. This study represents an initial step toward understanding the molecular basis of this host-phage relationship.
Collapse
Affiliation(s)
- Manal Mohammed
- School of Medicine, National University of Ireland Galway, Galway, Ireland.
| | - Martin Cormican
- School of Medicine, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
48
|
Nyholm O, Halkilahti J, Wiklund G, Okeke U, Paulin L, Auvinen P, Haukka K, Siitonen A. Comparative Genomics and Characterization of Hybrid Shigatoxigenic and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains. PLoS One 2015; 10:e0135936. [PMID: 26313149 PMCID: PMC4551483 DOI: 10.1371/journal.pone.0135936] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 07/29/2015] [Indexed: 12/15/2022] Open
Abstract
Background Shigatoxigenic Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) cause serious foodborne infections in humans. These two pathogroups are defined based on the pathogroup-associated virulence genes: stx encoding Shiga toxin (Stx) for STEC and elt encoding heat-labile and/or est encoding heat-stable enterotoxin (ST) for ETEC. The study investigated the genomics of STEC/ETEC hybrid strains to determine their phylogenetic position among E. coli and to define the virulence genes they harbor. Methods The whole genomes of three STEC/ETEC strains possessing both stx and est genes were sequenced using PacBio RS sequencer. Two of the strains were isolated from the patients, one with hemolytic uremic syndrome, and one with diarrhea. The third strain was of bovine origin. Core genome analysis of the shared chromosomal genes and comparison with E. coli and Shigella spp. reference genomes was performed to determine the phylogenetic position of the STEC/ETEC strains. In addition, a set of virulence genes and ETEC colonization factors were extracted from the genomes. The production of Stx and ST were studied. Results The human STEC/ETEC strains clustered with strains representing ETEC, STEC, enteroaggregative E. coli, and commensal and laboratory-adapted E. coli. However, the bovine STEC/ETEC strain formed a remote cluster with two STECs of bovine origin. All three STEC/ETEC strains harbored several other virulence genes, apart from stx and est, and lacked ETEC colonization factors. Two STEC/ETEC strains produced both toxins and one strain Stx only. Conclusions This study shows that pathogroup-associated virulence genes of different E. coli can co-exist in strains originating from different phylogenetic lineages. The possibility of virulence genes to be associated with several E. coli pathogroups should be taken into account in strain typing and in epidemiological surveillance. Development of novel hybrid E. coli strains may cause a new public health risk, which challenges the traditional diagnostics of E. coli infections.
Collapse
Affiliation(s)
- Outi Nyholm
- Bacterial Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare (THL), Helsinki, Finland
- * E-mail:
| | - Jani Halkilahti
- Bacterial Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Gudrun Wiklund
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Uche Okeke
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kaisa Haukka
- Bacterial Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare (THL), Helsinki, Finland
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anja Siitonen
- Bacterial Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare (THL), Helsinki, Finland
| |
Collapse
|
49
|
Craft ME. Infectious disease transmission and contact networks in wildlife and livestock. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140107. [PMID: 25870393 PMCID: PMC4410373 DOI: 10.1098/rstb.2014.0107] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 12/26/2022] Open
Abstract
The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools.
Collapse
Affiliation(s)
- Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
50
|
Relationship between heat-labile enterotoxin secretion capacity and virulence in wild type porcine-origin enterotoxigenic Escherichia coli strains. PLoS One 2015; 10:e0117663. [PMID: 25768732 PMCID: PMC4358887 DOI: 10.1371/journal.pone.0117663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/30/2014] [Indexed: 02/07/2023] Open
Abstract
Heat-labile enterotoxin (LT) is an important virulence factor secreted by some strains of enterotoxigenic Escherichia coli (ETEC). The prototypic human-origin strain H10407 secretes LT via a type II secretion system (T2SS). We sought to determine the relationship between the capacity to secrete LT and virulence in porcine-origin wild type (WT) ETEC strains. Sixteen WT ETEC strains isolated from cases of severe diarrheal disease were analyzed by GM1ganglioside enzyme-linked immunosorbent assay to measure LT concentrations in culture supernatants. All strains had detectable LT in supernatants by 2 h of culture and 1 strain, which was particularly virulent in gnotobiotic piglets (3030-2), had the highest LT secretion level all porcine-origin WT strains tested (P<0.05). The level of LT secretion (concentration in supernatants at 6-h culture) explained 92% of the variation in time-to-a-moribund-condition (R2 = 0.92, P<0.0001) in gnotobiotic piglets inoculated with either strain 3030-2, or an ETEC strain of lesser virulence (2534-86), or a non-enterotoxigenic WT strain (G58-1). All 16 porcine ETEC strains were positive by PCR analysis for the T2SS genes, gspD and gspK, and bioinformatic analysis of 4 porcine-origin strains for which complete genomic sequences were available revealed a T2SS with a high degree of homology to that of H10407. Maximum Likelihood phylogenetic trees constructed using T2SS genes gspC, gspD, gspE and homologs showed that strains 2534-86 and 3030-2 clustered together in the same clade with other porcine-origin ETEC strains in the database, UMNK88 and UMN18. Protein modeling of the ATPase gene (gspE) further revealed a direct relationship between the predicted ATP-binding capacities and LT secretion levels as follows: H10407, -8.8 kcal/mol and 199 ng/ml; 3030-2, -8.6 kcal/mol and 133 ng/ml; and 2534-86, -8.5 kcal/mol and 80 ng/ml. This study demonstrated a direct relationship between predicted ATP-binding capacity of GspE and LT secretion, and between the latter and virulence.
Collapse
|