1
|
Khan E, Mera PE. Cell size regulation in bacteria: a tale of old regulators with new mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.22.639668. [PMID: 40027726 PMCID: PMC11870628 DOI: 10.1101/2025.02.22.639668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Proper function in a bacterial cell relies on intrinsic cell size regulation. The molecular mechanisms underlying how bacteria maintain their cell size remain unclear. The conserved regulator DnaA, the initiator of chromosome replication, is associated to size regulation by controlling the number of origins of replication ( oriC ) per cell. In this study, we identify and characterize a new mechanism in which DnaA modulates cell size independently of oriC -copy number. By altering the levels of DnaA without impacting chromosome replication, we demonstrate that DnaA's activity as a transcription factor can slow down cell elongation rate resulting in cells that are ∼20% smaller. We identify the peptidoglycan biosynthetic enzyme MurD as a key player of cell size regulation in Caulobacter crescentus and in the evolutionarily distant bacterium Escherichia coli . Collectively, our findings provide mechanistic insights to the complex regulation of cell size in bacteria.
Collapse
Affiliation(s)
- Ezza Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paola E. Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
2
|
Abner K, Šverns P, Arold J, Lints T, Eller NA, Morell I, Seiman A, Adamberg K, Vilu R. The design of unit cells by combining the self-reproduction systems and metabolic cushioning loads. Commun Biol 2025; 8:241. [PMID: 39955448 PMCID: PMC11830011 DOI: 10.1038/s42003-025-07655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Recently, we published a comprehensive theoretical analysis of the self-reproduction processes in proto-cells (doubling of their components) composed of different combinations of cellular subsystems. In this paper, we extend the detailed analysis of structural and functional peculiarities of self-reproduction processes to unit cells of the Cooper-Helmstetter-Donachie cell cycle theory. We show that: 1. Our modelling framework allows to calculate physiological parameters (numbers of cell components, flux patterns, cellular composition, etc.) of unit cells, including also unit cell mass that determines the DNA replication initiation conditions. 2. Unit cells might have additional cell (cushioning) components that are responsible not only for carrying out various special functions, but also for regulating cell size and stabilizing the growth of cells. 3. The optimal productivity of the synthesis of cushioning components (useful cellular load) is observed at doubling time approximately two times longer than the minimal doubling time of the unit cells.
Collapse
Affiliation(s)
- Kristo Abner
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Peter Šverns
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Janar Arold
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Taivo Lints
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Neeme-Andreas Eller
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Indrek Morell
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Andrus Seiman
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Kaarel Adamberg
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Raivo Vilu
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia.
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| |
Collapse
|
3
|
Norris V. Hunting the Cell Cycle Snark. Life (Basel) 2024; 14:1213. [PMID: 39459514 PMCID: PMC11509034 DOI: 10.3390/life14101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
In this very personal hunt for the meaning of the bacterial cell cycle, the snark, I briefly revisit and update some of the mechanisms we and many others have proposed to regulate the bacterial cell cycle. These mechanisms, which include the dynamics of calcium, membranes, hyperstructures, and networks, are based on physical and physico-chemical concepts such as ion condensation, phase transition, crowding, liquid crystal immiscibility, collective vibrational modes, reptation, and water availability. I draw on ideas from subjects such as the 'prebiotic ecology' and phenotypic diversity to help with the hunt. Given the fundamental nature of the snark, I would expect that its capture would make sense of other parts of biology. The route, therefore, followed by the hunt has involved trying to answer questions like "why do cells replicate their DNA?", "why is DNA replication semi-conservative?", "why is DNA a double helix?", "why do cells divide?", "is cell division a spandrel?", and "how are catabolism and anabolism balanced?". Here, I propose some relatively unexplored, experimental approaches to testing snark-related hypotheses and, finally, I propose some possibly original ideas about DNA packing, about phase separations, and about computing with populations of virtual bacteria.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76000 Rouen, France
| |
Collapse
|
4
|
Hallgren J, Jonas K. Nutritional control of bacterial DNA replication. Curr Opin Microbiol 2024; 77:102403. [PMID: 38035509 DOI: 10.1016/j.mib.2023.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
All cells must ensure precise regulation of DNA replication initiation in coordination with growth rate and in response to nutrient availability. According to a long-standing model, DNA replication initiation is tightly coupled to cell mass increase in bacteria. Despite controversies regarding this model, recent studies have provided additional support of this idea. The exact molecular mechanisms linking cell growth with DNA replication under different nutrient conditions remain elusive. However, recent studies in Caulobacter crescentus and Escherichia coli have provided insights into the regulation of DNA replication initiation in response to starvation. These mechanisms include the starvation-dependent regulation of DnaA abundance as well as mechanisms involving the small signaling molecule (p)ppGpp. In this review, we discuss these mechanisms in the context of previous findings. We highlight species-dependent similarities and differences and consider the precise growth conditions, in which the different mechanisms are active.
Collapse
Affiliation(s)
- Joel Hallgren
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Kristina Jonas
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
5
|
Govers SK, Campos M, Tyagi B, Laloux G, Jacobs-Wagner C. Apparent simplicity and emergent robustness in the control of the Escherichia coli cell cycle. Cell Syst 2024; 15:19-36.e5. [PMID: 38157847 DOI: 10.1016/j.cels.2023.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/15/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
To examine how bacteria achieve robust cell proliferation across diverse conditions, we developed a method that quantifies 77 cell morphological, cell cycle, and growth phenotypes of a fluorescently labeled Escherichia coli strain and >800 gene deletion derivatives under multiple nutrient conditions. This approach revealed extensive phenotypic plasticity and deviating mutant phenotypes were often nutrient dependent. From this broad phenotypic landscape emerged simple and robust unifying rules (laws) that connect DNA replication initiation, nucleoid segregation, FtsZ ring formation, and cell constriction to specific aspects of cell size (volume, length, or added length) at the population level. Furthermore, completion of cell division followed the initiation of cell constriction after a constant time delay across strains and nutrient conditions, identifying cell constriction as a key control point for cell size determination. Our work provides a population-level description of the governing principles by which E. coli integrates cell cycle processes and growth rate with cell size to achieve its robust proliferative capability. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Sander K Govers
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; de Duve Institute, UCLouvain, Brussels, Belgium; Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuel Campos
- Centre de Biologie Intégrative de Toulouse, Laboratoire de Microbiologie et Génétique Moléculaires, Université de Toulouse, Toulouse, France
| | - Bhavyaa Tyagi
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Christine Jacobs-Wagner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Sarafan Chemistry, Engineering Medicine for Human Health Institute, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Cao Q, Huang W, Zhang Z, Chu P, Wei T, Zheng H, Liu C. The Quantification of Bacterial Cell Size: Discrepancies Arise from Varied Quantification Methods. Life (Basel) 2023; 13:1246. [PMID: 37374027 PMCID: PMC10302572 DOI: 10.3390/life13061246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
The robust regulation of the cell cycle is critical for the survival and proliferation of bacteria. To gain a comprehensive understanding of the mechanisms regulating the bacterial cell cycle, it is essential to accurately quantify cell-cycle-related parameters and to uncover quantitative relationships. In this paper, we demonstrate that the quantification of cell size parameters using microscopic images can be influenced by software and by the parameter settings used. Remarkably, even if the consistent use of a particular software and specific parameter settings is maintained throughout a study, the type of software and the parameter settings can significantly impact the validation of quantitative relationships, such as the constant-initiation-mass hypothesis. Given these inherent characteristics of microscopic image-based quantification methods, it is recommended that conclusions be cross-validated using independent methods, especially when the conclusions are associated with cell size parameters that were obtained under different conditions. To this end, we presented a flexible workflow for simultaneously quantifying multiple bacterial cell-cycle-related parameters using microscope-independent methods.
Collapse
Affiliation(s)
- Qian’andong Cao
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqi Huang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Zhang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Chu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wei
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Zheng
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenli Liu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Helmstetter CE. Fifty-Five Years of Research on B, C and D in Escherichia coli. Life (Basel) 2023; 13:life13040977. [PMID: 37109506 PMCID: PMC10141973 DOI: 10.3390/life13040977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The basic properties of the Escherichia coli duplication process can be defined by two time periods: C, the time for a round of chromosome replication, and D, the time between the end of a round of replication and cell division. Given the durations of these periods, the pattern of chromosome replication during the cell cycle can be determined for cells growing with any doubling time. In the 55 years since these parameters were identified, there have been numerous investigations into their durations and into the elements that determine their initiations. In this review, I discuss the history of our involvement in these studies from the very beginning, some of what has been learned over the years by measuring the durations of C and D, and what might be learned with additional investigations.
Collapse
Affiliation(s)
- Charles E Helmstetter
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
8
|
Sanders S, Joshi K, Levin PA, Iyer-Biswas S. Beyond the average: An updated framework for understanding the relationship between cell growth, DNA replication, and division in a bacterial system. PLoS Genet 2023; 19:e1010505. [PMID: 36602967 DOI: 10.1371/journal.pgen.1010505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Our understanding of the bacterial cell cycle is framed largely by population-based experiments that focus on the behavior of idealized average cells. Most famously, the contributions of Cooper and Helmstetter help to contextualize the phenomenon of overlapping replication cycles observed in rapidly growing bacteria. Despite the undeniable value of these approaches, their necessary reliance on the behavior of idealized average cells masks the stochasticity inherent in single-cell growth and physiology and limits their mechanistic value. To bridge this gap, we propose an updated and agnostic framework, informed by extant single-cell data, that quantitatively accounts for stochastic variations in single-cell dynamics and the impact of medium composition on cell growth and cell cycle progression. In this framework, stochastic timers sensitive to medium composition impact the relationship between cell cycle events, accounting for observed differences in the relationship between cell cycle events in slow- and fast-growing cells. We conclude with a roadmap for potential application of this framework to longstanding open questions in the bacterial cell cycle field.
Collapse
Affiliation(s)
- Sara Sanders
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kunaal Joshi
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Srividya Iyer-Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
9
|
Meunier A, Cornet F, Campos M. Bacterial cell proliferation: from molecules to cells. FEMS Microbiol Rev 2021; 45:fuaa046. [PMID: 32990752 PMCID: PMC7794046 DOI: 10.1093/femsre/fuaa046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Bacterial cell proliferation is highly efficient, both because bacteria grow fast and multiply with a low failure rate. This efficiency is underpinned by the robustness of the cell cycle and its synchronization with cell growth and cytokinesis. Recent advances in bacterial cell biology brought about by single-cell physiology in microfluidic chambers suggest a series of simple phenomenological models at the cellular scale, coupling cell size and growth with the cell cycle. We contrast the apparent simplicity of these mechanisms based on the addition of a constant size between cell cycle events (e.g. two consecutive initiation of DNA replication or cell division) with the complexity of the underlying regulatory networks. Beyond the paradigm of cell cycle checkpoints, the coordination between the DNA and division cycles and cell growth is largely mediated by a wealth of other mechanisms. We propose our perspective on these mechanisms, through the prism of the known crosstalk between DNA replication and segregation, cell division and cell growth or size. We argue that the precise knowledge of these molecular mechanisms is critical to integrate the diverse layers of controls at different time and space scales into synthetic and verifiable models.
Collapse
Affiliation(s)
- Alix Meunier
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| | - François Cornet
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| | - Manuel Campos
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| |
Collapse
|
10
|
Zhang Q, Zhang Z, Shi H. Cell Size Is Coordinated with Cell Cycle by Regulating Initiator Protein DnaA in E. coli. Biophys J 2020; 119:2537-2557. [PMID: 33189684 DOI: 10.1016/j.bpj.2020.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/22/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022] Open
Abstract
Sixty years ago, bacterial cell size was found to be an exponential function of growth rate. Fifty years ago, a more general relationship was proposed, in which cell mass was equal to the initiation mass multiplied by 2 to the power of the ratio of the total time of C and D periods to the doubling time. This relationship has recently been experimentally confirmed by perturbing doubling time, C period, D period, or initiation mass. However, the underlying molecular mechanism remains unclear. Here, we developed a theoretical model for initiator protein DnaA mediating DNA replication initiation in Escherichia coli. We introduced an initiation probability function for competitive binding of DnaA-ATP and DnaA-ADP at oriC. We established a kinetic description of regulatory processes (e.g., expression regulation, titration, inactivation, and reactivation) of DnaA. Cell size as a spatial constraint also participates in the regulation of DnaA. By simulating DnaA kinetics, we obtained a regular DnaA oscillation coordinated with cell cycle and a converged cell size that matches replication initiation frequency to the growth rate. The relationship between the simulated cell size and growth rate, C period, D period, or initiation mass reproduces experimental results. The model also predicts how DnaA number and initiation mass vary with perturbation parameters, comparable with experimental data. The results suggest that 1) when growth rate, C period, or D period changes, the regulation of DnaA determines the invariance of initiation mass; 2) ppGpp inhibition of replication initiation may be important for the growth rate independence of initiation mass because three possible mechanisms therein produce different DnaA dynamics, which is experimentally verifiable; and 3) perturbation of some DnaA regulatory process causes a changing initiation mass or even an abnormal cell cycle. This study may provide clues for concerted control of cell size and cell cycle in synthetic biology.
Collapse
Affiliation(s)
- Qing Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China.
| | - Zhichao Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Hualin Shi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Fernández-Coll L, Cashel M. Possible Roles for Basal Levels of (p)ppGpp: Growth Efficiency Vs. Surviving Stress. Front Microbiol 2020; 11:592718. [PMID: 33162969 PMCID: PMC7581894 DOI: 10.3389/fmicb.2020.592718] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 11/18/2022] Open
Abstract
Two (p)ppGpp nucleotide analogs, sometimes abbreviated simply as ppGpp, are widespread in bacteria and plants. Their name alarmone reflects a view of their function as intracellular hormone-like protective alarms that can increase a 100-fold when sensing any of an array of physical or nutritional dangers, such as abrupt starvation, that trigger lifesaving adjustments of global gene expression and physiology. The diversity of mechanisms for stress-specific adjustments of this sort is large and further compounded by almost infinite microbial diversity. The central question raised by this review is whether the small basal levels of (p)ppGpp functioning during balanced growth serve very different roles than alarmone-like functions. Recent discoveries that abrupt amino acid starvation of Escherichia coli, accompanied by very high levels of ppGpp, occasion surprising instabilities of transfer RNA (tRNA), ribosomal RNA (rRNA), and ribosomes raises new questions. Is this destabilization, a mode of regulation linearly related to (p)ppGpp over the entire continuum of (p)ppGpp levels, including balanced growth? Are regulatory mechanisms exerted by basal (p)ppGpp levels fundamentally different than for high levels? There is evidence from studies of other organisms suggesting special regulatory features of basal levels compared to burst of (p)ppGpp. Those differences seem to be important even during bacterial infection, suggesting that unbalancing the basal levels of (p)ppGpp may become a future antibacterial treatment. A simile for this possible functional duality is that (p)ppGpp acts like a car’s brake, able to stop to avoid crashes as well as to slow down to drive safely.
Collapse
Affiliation(s)
- Llorenç Fernández-Coll
- Intramural Research Program, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, United States
| | - Michael Cashel
- Intramural Research Program, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, United States
| |
Collapse
|
12
|
General quantitative relations linking cell growth and the cell cycle in Escherichia coli. Nat Microbiol 2020; 5:995-1001. [PMID: 32424336 DOI: 10.1038/s41564-020-0717-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/01/2020] [Indexed: 01/15/2023]
Abstract
Growth laws emerging from studies of cell populations provide essential constraints on the global mechanisms that coordinate cell growth1-3. The foundation of bacterial cell cycle studies relies on two interconnected dogmas that were proposed more than 50 years ago-the Schaechter-Maaloe-Kjeldgaard growth law that relates cell mass to growth rate1 and Donachie's hypothesis of a growth-rate-independent initiation mass4. These dogmas spurred many efforts to understand their molecular bases and physiological consequences5-14. Although they are generally accepted in the fast-growth regime, that is, for doubling times below 1 h, extension of these dogmas to the slow-growth regime has not been consistently achieved. Here, through a quantitative physiological study of Escherichia coli cell cycles over an extensive range of growth rates, we report that neither dogma holds in either the slow- or fast-growth regime. In their stead, linear relations between the cell mass and the rate of chromosome replication-segregation were found across the range of growth rates. These relations led us to propose an integral-threshold model in which the cell cycle is controlled by a licensing process, the rate of which is related in a simple way to chromosomal dynamics. These results provide a quantitative basis for predictive understanding of cell growth-cell cycle relationships.
Collapse
|
13
|
The Absence of (p)ppGpp Renders Initiation of Escherichia coli Chromosomal DNA Synthesis Independent of Growth Rates. mBio 2020; 11:mBio.03223-19. [PMID: 32156825 PMCID: PMC7064777 DOI: 10.1128/mbio.03223-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The initiation of Escherichia coli chromosomal DNA replication starts with the oligomerization of the DnaA protein at repeat sequences within the origin (ori) region. The amount of ori DNA per cell directly correlates with the growth rate. During fast growth, the cell generation time is shorter than the time required for complete DNA replication; therefore, overlapping rounds of chromosome replication are required. Under these circumstances, the ori region DNA abundance exceeds the DNA abundance in the termination (ter) region. Here, high ori/ter ratios are found to persist in (p)ppGpp-deficient [(p)ppGpp0] cells over a wide range of balanced exponential growth rates determined by medium composition. Evidently, (p)ppGpp is necessary to maintain the usual correlation of slow DNA replication initiation with a low growth rate. Conversely, ori/ter ratios are lowered when cell growth is slowed by incrementally increasing even low constitutive basal levels of (p)ppGpp without stress, as if (p)ppGpp alone is sufficient for this response. There are several previous reports of (p)ppGpp inhibition of chromosomal DNA synthesis initiation that occurs with very high levels of (p)ppGpp that stop growth, as during the stringent starvation response or during serine hydroxamate treatment. This work suggests that low physiological levels of (p)ppGpp have significant functions in growing cells without stress through a mechanism involving negative supercoiling, which is likely mediated by (p)ppGpp regulation of DNA gyrase.IMPORTANCE Bacterial cells regulate their own chromosomal DNA synthesis and cell division depending on the growth conditions, producing more DNA when growing in nutritionally rich media than in poor media (i.e., human gut versus water reservoir). The accumulation of the nucleotide analog (p)ppGpp is usually viewed as serving to warn cells of impending peril due to otherwise lethal sources of stress, which stops growth and inhibits DNA, RNA, and protein synthesis. This work importantly finds that small physiological changes in (p)ppGpp basal levels associated with slow balanced exponential growth incrementally inhibit the intricate process of initiation of chromosomal DNA synthesis. Without (p)ppGpp, initiations mimic the high rates present during fast growth. Here, we report that the effect of (p)ppGpp may be due to the regulation of the expression of gyrase, an important enzyme for the replication of DNA that is a current target of several antibiotics.
Collapse
|
14
|
Norris V. Successive Paradigm Shifts in the Bacterial Cell Cycle and Related Subjects. Life (Basel) 2019; 9:E27. [PMID: 30866455 PMCID: PMC6462897 DOI: 10.3390/life9010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 11/26/2022] Open
Abstract
A paradigm shift in one field can trigger paradigm shifts in other fields. This is illustrated by the paradigm shifts that have occurred in bacterial physiology following the discoveries that bacteria are not unstructured, that the bacterial cell cycle is not controlled by the dynamics of peptidoglycan, and that the growth rates of bacteria in the same steady-state population are not at all the same. These paradigm shifts are having an effect on longstanding hypotheses about the regulation of the bacterial cell cycle, which appear increasingly to be inadequate. I argue that, just as one earthquake can trigger others, an imminent paradigm shift in the regulation of the bacterial cell cycle will have repercussions or "paradigm quakes" on hypotheses about the origins of life and about the regulation of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen, 76821 Mont Saint Aignan, France.
| |
Collapse
|
15
|
Tabata KV, Sogo T, Moriizumi Y, Noji H. Regeneration of Escherichia coli Giant Protoplasts to Their Original Form. Life (Basel) 2019; 9:life9010024. [PMID: 30832265 PMCID: PMC6463199 DOI: 10.3390/life9010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 11/20/2022] Open
Abstract
The spheroplasts and protoplasts of cell wall-deficient (CWD) bacteria are able to revert to their original cellular morphologies through the regeneration of their cell walls. However, whether this is true for giant protoplasts (GPs), which can be as large as 10 μm in diameter, is unknown. GPs can be prepared from various bacteria, including Escherichia coli and Bacillus subtilis, and also from fungi, through culture in the presence of inhibitors for cell wall synthesis or mitosis. In this report, we prepared GPs from E. coli and showed that they can return to rod-shaped bacterium, and that they are capable of colony formation. Microscopic investigation revealed that the regeneration process took place through a variety of morphological pathways. We also report the relationship between GP division and GP volume. Finally, we show that FtsZ is crucial for GP division. These results indicate that E. coli is a highly robust organism that can regenerate its original form from an irregular state, such as GP.
Collapse
Affiliation(s)
- Kazuhito V Tabata
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Japan.
| | - Takao Sogo
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Japan.
| | - Yoshiki Moriizumi
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Japan.
| | - Hiroyuki Noji
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Japan.
| |
Collapse
|
16
|
|
17
|
Yasid NA, Rolfe MD, Green J, Williamson MP. Homeostasis of metabolites in Escherichia coli on transition from anaerobic to aerobic conditions and the transient secretion of pyruvate. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160187. [PMID: 27853594 PMCID: PMC5108944 DOI: 10.1098/rsos.160187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
We have developed a method for rapid quenching of samples taken from chemostat cultures of Escherichia coli that gives reproducible and reliable measurements of extracellular and intracellular metabolites by 1H NMR and have applied it to study the major central metabolites during the transition from anaerobic to aerobic growth. Almost all metabolites showed a gradual change after perturbation with air, consistent with immediate inhibition of pyruvate formate-lyase, dilution of overflow metabolites and induction of aerobic enzymes. Surprisingly, although pyruvate showed almost no change in intracellular concentration, the extracellular concentration transiently increased. The absence of intracellular accumulation of pyruvate suggested that one or more glycolytic enzymes might relocate to the cell membrane. To test this hypothesis, chromosomal pyruvate kinase (pykF) was modified to express either PykF-green fluorescent protein or PykF-FLAG fusion proteins. Measurements showed that PykF-FLAG relocates to the cell membrane within 5 min of aeration and then slowly returns to the cytoplasm, suggesting that on aeration, PykF associates with the membrane to facilitate secretion of pyruvate to maintain constant intracellular levels.
Collapse
|
18
|
Khlebodarova TM, Likhoshvai VA. New evidence of an old problem: The coupling of genome replication to cell growth in bacteria. RUSS J GENET+ 2014. [DOI: 10.1134/s102279541408002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Likhoshvai VA, Khlebodarova TM. Mathematical modeling of bacterial cell cycle: the problem of coordinating genome replication with cell growth. J Bioinform Comput Biol 2014; 12:1450009. [PMID: 24969747 DOI: 10.1142/s0219720014500097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we perform an analysis of bacterial cell-cycle models implementing different strategies to coordinately regulate genome replication and cell growth dynamics. It has been shown that the problem of coupling these processes does not depend directly on the dynamics of cell volume expansion, but does depend on the type of cell growth law. Our analysis has distinguished two types of cell growth laws, "exponential" and "linear", each of which may include both exponential and linear patterns of cell growth. If a cell grows following a law of the "exponential" type, including the exponential V(t) = V(0) exp (kt) and linear V(t) = V(0)(1 + kt) dynamic patterns, then the cell encounters the problem of coupling growth rates and replication. It has been demonstrated that to solve the problem, it is sufficient for a cell to have a repressor mechanism to regulate DNA replication initiation. For a cell expanding its volume by a law of the "linear" type, including exponential V(t) = V(0) + V(1) exp (kt) and linear V(t) = V(0) + kt dynamic patterns, the problem of coupling growth rates and replication does not exist. In other words, in the context of the coupling problem, a repressor mechanism to regulate DNA replication, and cell growth laws of the "linear" type displays the attributes of universality. The repressor-type mechanism allows a cell to follow any growth dynamic pattern, while the "linear" type growth law allows a cell to use any mechanism to regulate DNA replication.
Collapse
Affiliation(s)
- Vitaly A Likhoshvai
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentieva 10, Novosibirsk 630090, Russia , Novosibirsk State University, av. Pirogova 2, Novosibirsk 630090, Russia
| | | |
Collapse
|
20
|
Deris JB, Kim M, Zhang Z, Okano H, Hermsen R, Groisman A, Hwa T. The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria. Science 2013; 342:1237435. [PMID: 24288338 DOI: 10.1126/science.1237435] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To predict the emergence of antibiotic resistance, quantitative relations must be established between the fitness of drug-resistant organisms and the molecular mechanisms conferring resistance. These relations are often unknown and may depend on the state of bacterial growth. To bridge this gap, we have investigated Escherichia coli strains expressing resistance to translation-inhibiting antibiotics. We show that resistance expression and drug inhibition are linked in a positive feedback loop arising from an innate, global effect of drug-inhibited growth on gene expression. A quantitative model of bacterial growth based on this innate feedback accurately predicts the rich phenomena observed: a plateau-shaped fitness landscape, with an abrupt drop in the growth rates of cultures at a threshold drug concentration, and the coexistence of growing and nongrowing populations, that is, growth bistability, below the threshold.
Collapse
Affiliation(s)
- J Barrett Deris
- Department of Physics, University of California at San Diego, La Jolla, CA 92093-0374, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang Q, Shi H. Coupling chromosomal replication to cell growth by the initiator protein DnaA in Escherichia coli. J Theor Biol 2012; 314:164-72. [DOI: 10.1016/j.jtbi.2012.08.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022]
|
22
|
Norris V, Amar P. Chromosome Replication in Escherichia coli: Life on the Scales. Life (Basel) 2012; 2:286-312. [PMID: 25371267 PMCID: PMC4187155 DOI: 10.3390/life2040286] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/01/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022] Open
Abstract
At all levels of Life, systems evolve on the 'scales of equilibria'. At the level of bacteria, the individual cell must favor one of two opposing strategies and either take risks to grow or avoid risks to survive. It has been proposed in the Dualism hypothesis that the growth and survival strategies depend on non-equilibrium and equilibrium hyperstructures, respectively. It has been further proposed that the cell cycle itself is the way cells manage to balance the ratios of these types of hyperstructure so as to achieve the compromise solution of living on the two scales. Here, we attempt to re-interpret a major event, the initiation of chromosome replication in Escherichia coli, in the light of scales of equilibria. This entails thinking in terms of hyperstructures as responsible for intensity sensing and quantity sensing and how this sensing might help explain the role of the DnaA protein in initiation of replication. We outline experiments and an automaton approach to the cell cycle that should test and refine the scales concept.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, EA 3829, Department of Biology, University of Rouen, 76821, Mont Saint Aignan, France.
| | - Patrick Amar
- Laboratoire de Recherche en Informatique, Université Paris-Sud, and INRIA Saclay - Ile de France, AMIB Project, Orsay, France.
| |
Collapse
|
23
|
Domach MM, Shuler ML. A finite representation model for an asynchronous culture of E. coli. Biotechnol Bioeng 2012; 26:877-84. [PMID: 18553472 DOI: 10.1002/bit.260260810] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A computer model is described which models an asynchronous population of E. coli by using a large, but finite number of representative single cells. Asynchrony generation and maintenance occurs at the single cell level by modulating the activity of an enzyme responsible for septum formation. Such modulation introduces cycle time imprecision and does not require the introduction of any new parameters into the single-cell model. Based on comparisons to experiment, reasonable predictions are possible for changes of cellular dry weight during exponential growth and turbidostat washout, and overall chemostat cell yields and changes in cell number, glucose concentration, and cell size distribution for a chemostat subject to a step change in dilution rate. Additionally, a correlation between cell RNA content and size is predicted as is an inertial effect when chemostat residence time is decreased under conditions of initially high glucose concentrations. Limitations imposed by the model's finite nature and their solutions are discussed.
Collapse
Affiliation(s)
- M M Domach
- School of Chemical Engineering, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
24
|
Volkmer B, Heinemann M. Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling. PLoS One 2011; 6:e23126. [PMID: 21829590 PMCID: PMC3146540 DOI: 10.1371/journal.pone.0023126] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 07/12/2011] [Indexed: 11/19/2022] Open
Abstract
Systems biology modeling typically requires quantitative experimental data such as intracellular concentrations or copy numbers per cell. In order to convert population-averaging omics measurement data to intracellular concentrations or cellular copy numbers, the total cell volume and number of cells in a sample need to be known. Unfortunately, even for the often studied model bacterium Escherichia coli this information is hardly available and furthermore, certain measures (e.g. cell volume) are also dependent on the growth condition. In this work, we have determined these basic data for E. coli cells when grown in 22 different conditions so that respective data conversions can be done correctly. First, we determine growth-rate dependent cell volumes. Second, we show that in a 1 ml E. coli sample at an optical density (600 nm) of 1 the total cell volume is around 3.6 µl for all conditions tested. Third, we demonstrate that the cell number in a sample can be determined on the basis of the sample's optical density and the cells' growth rate. The data presented will allow for conversion of E. coli measurement data normalized to optical density into volumetric cellular concentrations and copy numbers per cell--two important parameters for systems biology model development.
Collapse
Affiliation(s)
- Benjamin Volkmer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Life Science Zurich PhD Program on Systems Biology of Complex Diseases, Zurich, Switzerland
| | - Matthias Heinemann
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
25
|
Klumpp S. Growth-rate dependence reveals design principles of plasmid copy number control. PLoS One 2011; 6:e20403. [PMID: 21647376 PMCID: PMC3103578 DOI: 10.1371/journal.pone.0020403] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/25/2011] [Indexed: 02/02/2023] Open
Abstract
Genetic circuits in bacteria are intimately coupled to the cellular growth rate as many parameters of gene expression are growth-rate dependent. Growth-rate dependence can be particularly pronounced for genes on plasmids; therefore the native regulatory systems of a plasmid such as its replication control system are characterized by growth-rate dependent parameters and regulator concentrations. This natural growth-rate dependent variation of regulator concentrations can be used for a quantitative analysis of the design of such regulatory systems. Here we analyze the growth-rate dependence of parameters of the copy number control system of ColE1-type plasmids in E. coli. This analysis allows us to infer the form of the control function and suggests that the Rom protein increases the sensitivity of control.
Collapse
Affiliation(s)
- Stefan Klumpp
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
26
|
Vendeville A, Larivière D, Fourmentin E. An inventory of the bacterial macromolecular components and their spatial organization. FEMS Microbiol Rev 2011; 35:395-414. [DOI: 10.1111/j.1574-6976.2010.00254.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
27
|
Norris V. Speculations on the initiation of chromosome replication in Escherichia coli: the dualism hypothesis. Med Hypotheses 2011; 76:706-16. [PMID: 21349650 DOI: 10.1016/j.mehy.2011.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 01/23/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
The exact nature of the mechanism that triggers initiation of chromosome replication in the best understood of all organisms, Escherichia coli, remains mysterious. Here, I suggest that this mechanism evolved in response to the problems that arise if chromosome replication does not occur. E. coli is now known to be highly structured. This leads me to propose a mechanism for initiation of replication based on the dynamics of large assemblies of molecules and macromolecules termed hyperstructures. In this proposal, hyperstructures and their constituents are put into two classes, non-equilibrium and equilibrium, that spontaneously separate and that are appropriate for life in either good or bad conditions. Maintaining the right ratio(s) of non-equilibrium to equilibrium hyperstructures is therefore a major challenge for cells. I propose that this maintenance entails a major transfer of material from equilibrium to non-equilibrium hyperstructures once per cell and I further propose that this transfer times the cell cycle. More specifically, I speculate that the dialogue between hyperstructures involves the structuring of water and the condensation of cations and that one of the outcomes of ion condensation on ribosomal hyperstructures and decondensation from the origin hyperstructure is the separation of strands at oriC responsible for triggering initiation of replication. The dualism hypothesis that comes out of these speculations may help integrate models for initiation of replication, chromosome segregation and cell division with the 'prebiotic ecology' scenario of the origins of life.
Collapse
Affiliation(s)
- Vic Norris
- AMMIS Laboratory, EA 3829, Department of Biology, University of Rouen, 76821 Mont Saint Aignan, France.
| |
Collapse
|
28
|
Nitharwal RG, Verma V, Dasgupta S, Dhar SK. Helicobacter pylori chromosomal DNA replication: current status and future perspectives. FEBS Lett 2010; 585:7-17. [PMID: 21093441 DOI: 10.1016/j.febslet.2010.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/03/2010] [Accepted: 11/12/2010] [Indexed: 11/30/2022]
Abstract
Helicobacter pylori causes gastritis, gastric ulcer and gastric cancer. Though DNA replication and its control are central to bacterial proliferation, pathogenesis, virulence and/or dormancy, our knowledge of DNA synthesis in slow growing pathogenic bacteria like H. pylori is still preliminary. Here, we review the current understanding of DNA replication, replication restart and recombinational repair in H. pylori. Several differences have been identified between the H. pylori and Escherichia coli replication machineries including the absence of DnaC, the helicase loader usually conserved in gram-negative bacteria. These differences suggest different mechanisms of DNA replication at initiation and restart of stalled forks in H. pylori.
Collapse
Affiliation(s)
- Ram Gopal Nitharwal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
29
|
Abstract
Adaptation to fluctuations in nutrient availability is a fact of life for single-celled organisms in the 'wild'. A decade ago our understanding of how bacteria adjust cell cycle parameters to accommodate changes in nutrient availability stemmed almost entirely from elegant physiological studies completed in the 1960s. In this Opinion article we summarize recent groundbreaking work in this area and discuss potential mechanisms by which nutrient availability and metabolic status are coordinated with cell growth, chromosome replication and cell division.
Collapse
|
30
|
Haeusser DP, Levin PA. The great divide: coordinating cell cycle events during bacterial growth and division. Curr Opin Microbiol 2008; 11:94-9. [PMID: 18396093 DOI: 10.1016/j.mib.2008.02.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
The relationship between events during the bacterial cell cycle has been the subject of frequent debate. While early models proposed a relatively rigid view in which DNA replication was inextricably coupled to attainment of a specific cell mass, and cell division was triggered by the completion of chromosome replication, more recent data suggest these models were oversimplified. Instead, an intricate set of intersecting, and at times opposing, forces coordinate DNA replication, cell division, and cell growth with one another, thereby ensuring the precise spatial and temporal control of cell cycle events.
Collapse
Affiliation(s)
- Daniel P Haeusser
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
31
|
Wunschel DS, Hill EA, McLean JS, Jarman K, Gorby YA, Valentine N, Wahl K. Effects of varied pH, growth rate and temperature using controlled fermentation and batch culture on matrix assisted laser desorption/ionization whole cell protein fingerprints. J Microbiol Methods 2005; 62:259-71. [PMID: 15979749 DOI: 10.1016/j.mimet.2005.04.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 02/26/2005] [Accepted: 04/04/2005] [Indexed: 10/25/2022]
Abstract
Rapid identification of microorganisms using matrix assisted laser desorption/ionization (MALDI) is a rapidly growing area of research due to the minimal sample preparation, speed of analysis and broad applicability of the technique. This approach relies on expressed biochemical markers, often proteins, to identify microorganisms. Therefore, variations in culture conditions that affect protein expression may limit the ability of MALDI-MS to correctly identify an organism. We have expanded our efforts to investigate the effects of culture conditions on MALDI-MS signatures to specifically examine the effects of pH, growth rate and temperature. Continuous cultures maintained in bioreactors were used to maintain specific growth rates and pH for E. coli HB 101. Despite measurable morphological differences between growth conditions, the MALDI-MS data associated each culture with the appropriate library entry (E. coli HB 101 generated using batch culture on a LB media), independent of pH or growth rate. The lone exception was for a biofilm sample collected from one of the reactors which had no appreciable degree of association with the correct library entry. Within the data set for planktonic organisms, variations in growth rate created the largest variation between fingerprints. The effect of varying growth temperature on Y. enterocolitica was also examined. While the anticipated effects on phenotype were observed, the MALDI-MS technique provided the proper identification.
Collapse
Affiliation(s)
- David S Wunschel
- Analytical Chemistry, Pacific Northwest National Laboratory, MS P8-08, PO Box 999, Richland WA 99352, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Castellanos M, Wilson DB, Shuler ML. A modular minimal cell model: purine and pyrimidine transport and metabolism. Proc Natl Acad Sci U S A 2004; 101:6681-6. [PMID: 15090651 PMCID: PMC404105 DOI: 10.1073/pnas.0400962101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Indexed: 12/27/2022] Open
Abstract
A more complete understanding of the relationship of cell physiology to genomic structure is desirable. Because of the intrinsic complexity of biological organisms, only the simplest cells will allow complete definition of all components and their interactions. The theoretical and experimental construction of a minimal cell has been suggested as a tool to develop such an understanding. Our ultimate goal is to convert a "coarse-grain" lumped parameter computer model of Escherichia coli into a genetically and chemically detailed model of a "minimal cell." The base E. coli model has been converted into a generalized model of a heterotrophic bacterium. This coarse-grain minimal cell model is functionally complete, with growth rate, composition, division, and changes in cell morphology as natural outputs from dynamic simulations where only the initial composition of the cell and of the medium are specified. A coarse-grain model uses pseudochemical species (or modules) that are aggregates of distinct chemical species that share similar chemistry and metabolic dynamics. This model provides a framework in which these modules can be "delumped" into chemical and genetic descriptions while maintaining connectivity to all other functional elements. Here we demonstrate that a detailed description of nucleotide precursors transport and metabolism is successfully integrated into the whole-cell model. This nucleotide submodel requires fewer (12) genes than other theoretical predictions in minimal cells. The demonstration of modularity suggests the possibility of developing modules in parallel and recombining them into a fully functional chemically and genetically detailed model of a prokaryote cell.
Collapse
Affiliation(s)
- M. Castellanos
- School of Chemical and Biomolecular Engineering and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-5201
| | - D. B. Wilson
- School of Chemical and Biomolecular Engineering and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-5201
| | - M. L. Shuler
- School of Chemical and Biomolecular Engineering and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-5201
| |
Collapse
|
33
|
Boye E, Nordström K. Coupling the cell cycle to cell growth. EMBO Rep 2003; 4:757-60. [PMID: 12897798 PMCID: PMC1326335 DOI: 10.1038/sj.embor.embor895] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 05/26/2003] [Indexed: 11/08/2022] Open
Abstract
In order to multiply, both prokaryotic and eukaryotic cells go through a series of events that are collectively called the cell cycle. However, DNA replication, mitosis and cell division may also be viewed as having their own, in principle independent, cycles, which are tied together by mechanisms extrinsic to the cell cycle--the checkpoints--that maintain the order of events. We propose that our understanding of cell-cycle regulation is enhanced by viewing each event individually, as an independently regulated process. The nature of the parameters that regulate cell-cycle events is discussed and, in particular, we argue that cell mass is not such a parameter.
Collapse
Affiliation(s)
- Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Montebello, Oslo, Norway.
| | | |
Collapse
|
34
|
Bremer H, Dennis P, Ehrenberg M. Free RNA polymerase and modeling global transcription in Escherichia coli. Biochimie 2003; 85:597-609. [PMID: 12829377 DOI: 10.1016/s0300-9084(03)00105-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Growth rate-dependent changes in the cytoplasmic concentration of free functional RNA polymerase, [R(f)], affect the activity of all bacterial genes. Since [R(f)] is not accessible to direct experimental quantitation, it can only be found indirectly from an evaluation of promoter activity data. Here, a theory has been derived to calculate [R(f)] from the concentrations of total RNA polymerase and promoters in a model system with known Michaelis-Menten constants for the polymerase-promoter interactions. The theory takes transcript lengths and elongation rates into account and predicts how [R(f)] changes with varying gene dosages. From experimental data on total concentrations of RNA polymerase and kinetic properties of different classes of promoters, the theory was developed into a mathematical model that reproduces the global transcriptional control in Escherichia coli growing at different rates. The model allows an estimation of the concentrations of free and DNA-bound RNA polymerase, as well as the partitioning of RNA polymerase into mRNA and stable RNA synthesizing fractions. According to this model, [R(f)] is about 0.4 and 1.2 microM at growth rates corresponding to 1.0 and 2.5 doublings/h, respectively. The model accurately reflects a number of further experimental observations and suggests that the free RNA polymerase concentration increases with increasing growth rate.
Collapse
Affiliation(s)
- H Bremer
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | |
Collapse
|
35
|
Abstract
To obtain an estimate for the concentration of free functional RNA polymerase in the bacterial cytoplasm, the content of RNA polymerase beta and beta' subunits in DNA-free minicells from the minicell-producing Escherichia coli strain chi925 was determined. In bacteria grown in Luria-Bertani medium at 2.5 doublings/h, 1.0% of the total protein was RNA polymerase. The concentration of cytoplasmic RNA polymerase beta and beta' subunits in minicells produced by this strain corresponded to about 17% (or 2.5 microM) of the value found in whole cells. Literature data suggest that a similar portion of cytoplasmic RNA polymerase subunits is in RNA polymerase assembly intermediates and imply that free functional RNA polymerase can form a small percentage of the total functional enzyme in the cell. On infection with bacteriophage T7, 20% of the minicells produced progeny phage, whereas infection in 80% of the cells was abortive. RNA polymerase subunits in lysozyme-freeze-thaw lysates of minicells were associated with minicell envelopes and were without detectable activity in an in vitro transcription assay. Together, these results suggest that most functional RNA polymerase is associated with the DNA and that little if any segregates into DNA-free minicells.
Collapse
Affiliation(s)
- N Shepherd
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083-0688, USA
| | | | | |
Collapse
|
36
|
Domach MM, Leung SK, Cahn RE, Cocks GG, Shuler ML. Computer model for glucose-limited growth of a single cell of Escherichia coli B/r-A. Reprinted from Biotechnology and Bioengineering, Vol. 26, Issue 3, Pp 203-216 (1984). Biotechnol Bioeng 2000; 67:827-40. [PMID: 10699861 DOI: 10.1002/(sici)1097-0290(20000320)67:6<827::aid-bit18>3.0.co;2-n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A computer model is described which is capable of predicting changes in cell composition, cell size, cell shape, and the timing of chromosome synthesis in response to changes in external glucose limitation. The model is constructed primarily from information on unrestricted growth in glucose minimal medium. The ability of the model to make reasonable quantitative predictions under glucose-limitation is a test of the plausibility of the basic biochemical mechanisms included in the model. Such a model should be of use in differentiating among competing hypotheses for biological mechanisms and in suggesting as yet unobserved phenomena. The last two points are illustrated with the testing of a mechanism for the control of the initiation of DNA synthesis and predictions on cell-width variations during the division cycle.
Collapse
|
37
|
Liang S, Bipatnath M, Xu Y, Chen S, Dennis P, Ehrenberg M, Bremer H. Activities of constitutive promoters in Escherichia coli. J Mol Biol 1999; 292:19-37. [PMID: 10493854 DOI: 10.1006/jmbi.1999.3056] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The in vivo activities of seven constitutive promoters in Escherichia coli have been determined as functions of growth rate in wild-type relA+ spoT+ strains with normal levels of guanosine tetraphosphate (ppGpp) and in ppGpp-deficient DeltarelADeltaspoT derivatives. The promoters include (i) the spc ribosomal protein operon promotor Pspc; (ii) the beta-lactamase gene promotor Pblaof plasmid pBR322; (iii) the PLpromoter of phage lambda; (iv) and (v) the replication control promoters PRNAIand PRNAIIof plasmid pBR322; and (vi) and (vii) the P1 and P2 promoters of the rrnB ribosomal RNA operon. Each strain carried an operon fusion consisting of one of the respective promoter regions linked to lacZ and recombined into the chromosome at the mal locus of a lac deletion strain. The amount of 5'-terminal lacZ mRNA and of beta-galactosidase activity expressed from these promoters were determined by standard hybridization or enzyme activity assays, respectively. In addition, DNA, RNA and protein measurements were used to obtain information about gene dosage, rRNA synthesis and translation rates. By combining lacZ mRNA hybridization data with gene dosage and rRNA synthesis data, the absolute activity of the different promoters, in transcripts/minute per promoter, was determined. In ppGpp-proficient (relA+ spoT+) strains, the respective activities of rrnB P1 and P2 increased 40 and fivefold with increasing growth rate between 0.7 and 3.0 doublings/hour. The activities of Pspc, PL, Pbla, and PRNAIincreased two- to threefold and reached a maximum at growth rates above 2.0 doublings/hour. In contrast, PRNAIIactivity decreased threefold over this range of growth rates. In ppGpp-deficient (DeltarelA DeltaspoT) bacterial strains, the activities of rrnB P1 and P2 promoters both increased about twofold between 1.6 and 3.0 doublings/hour, whereas the activities of Pspc, PL, Pbla, and PRNAI, and PRNAIIwere about constant. To explain these observations, we suggest that the cellular concentration of free RNA polymerase increases with increasing growth rate; for saturation the P1 and P2 rRNA promoters require a high RNA polymerase concentration that is approached only at the highest growth rates, whereas the other promoters are saturated at lower polymerase concentrations achieved at intermediate growth rates. In addition, the data indicate that the respective rrnB P1 and PRNAIIpromoters were under negative and positive control by ppGpp. This caused a reduced activity of rrnB P1 and an increased activity of PRNAIIduring slow growth in wild-type (relA+ spoT+) relative to ppGpp-deficient (DeltarelA DeltaspoT) bacterial strains.
Collapse
Affiliation(s)
- S Liang
- Program in Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Carlson CR, Grallert B, Stokke T, Boye E. Regulation of the start of DNA replication in Schizosaccharomyces pombe. J Cell Sci 1999; 112 ( Pt 6):939-46. [PMID: 10036243 DOI: 10.1242/jcs.112.6.939] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cells of Schizosaccharomyces pombe were grown in minimal medium with different nitrogen sources under steady-state conditions, with doubling times ranging from 2.5 to 14 hours. Flow cytometry and fluorescence microscopy confirmed earlier findings that at rapid growth rates, the G1 phase was short and cell separation occurred at the end of S phase. For some nitrogen sources, the growth rate was greatly decreased, the G1 phase occupied 30–50% of the cell cycle, and cell separation occurred in early G1. In contrast, other nitrogen sources supported low growth rates without any significant increase in G1 duration. The method described allows manipulation of the length of G1 and the relative cell cycle position of S phase in wild-type cells. Cell mass was measured by flow cytometry as scattered light and as protein-associated fluorescence. The extensions of G1 were not related to cell mass at entry into S phase. Our data do not support the hypothesis that the cells must reach a certain fixed, critical mass before entry into S. We suggest that cell mass at the G1/S transition point is variable and determined by a set of molecular parameters. In the present experiments, these parameters were influenced by the different nitrogen sources in a way that was independent of the actual growth rate.
Collapse
Affiliation(s)
- C R Carlson
- Department of Cell Biology, Institute for Cancer Research, Montebello, Norway
| | | | | | | |
Collapse
|
39
|
Botello E, Nordström K. Effects of chromosome underreplication on cell division in Escherichia coli. J Bacteriol 1998; 180:6364-74. [PMID: 9829948 PMCID: PMC107724 DOI: 10.1128/jb.180.23.6364-6374.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The key processes of the bacterial cell cycle are controlled and coordinated to match cellular mass growth. We have studied the coordination between replication and cell division by using a temperature-controlled Escherichia coli intR1 strain. In this strain, the initiation time for chromosome replication can be displaced to later (underreplication) or earlier (overreplication) times in the cell cycle. We used underreplication conditions to study the response of cell division to a delayed initiation of replication. The bacteria were grown exponentially at 39 degreesC (normal DNA/mass ratio) and shifted to 38 and 37 degreesC. In the last two cases, new, stable, lower DNA/mass ratios were obtained. The rate of replication elongation was not affected under these conditions. At increasing degrees of underreplication, increasing proportions of the cells became elongated. Cell division took place in the middle in cells of normal size, whereas the longer cells divided at twice that size to produce one daughter cell of normal size and one three times as big. The elongated cells often produced one daughter cell lacking a chromosome; this was always the smallest daughter cells, and it was the size of a normal newborn cell. These results favor a model in which cell division takes place at only distinct cell sizes. Furthermore, the elongated cells had a lower probability of dividing than the cells of normal size, and they often contained more than two nucleoids. This suggests that for cell division to occur, not only must replication and nucleoid partitioning be completed, but also the DNA/mass ratio must be above a certain threshold value. Our data support the ideas that cell division has its own control system and that there is a checkpoint at which cell division may be abolished if previous key cell cycle processes have not run to completion.
Collapse
Affiliation(s)
- E Botello
- Department of Microbiology, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | | |
Collapse
|
40
|
Bipatnath M, Dennis PP, Bremer H. Initiation and velocity of chromosome replication in Escherichia coli B/r and K-12. J Bacteriol 1998; 180:265-73. [PMID: 9440515 PMCID: PMC106881 DOI: 10.1128/jb.180.2.265-273.1998] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The macromolecular composition and a number of parameters affecting chromosome replication were examined over a range of exponential growth rates in two common Escherichia coli strains, B/r and K-12 AB1157. Based on improved measurements of DNA after treatment of exponential cultures with rifampin, the cell mass per chromosomal replication origin (initiation mass) and the time required to replicate the chromosome from origin to terminus (C period) were determined. For these two strains, the initiation mass approached values of 8 x 10(-10) and 10 x 10(-10) units of optical density (at 460 nm) of culture mass per oriC, respectively, at growth rates above 1 doubling/h (at 37 degrees C). The amount of protein per oriC decreased with increasing growth rate for AB1157 and remained nearly constant for the B/r strain. The C period decreased for both strains in an essentially identical manner from about 70 min at 0.6 doublings/h to about 33 min at 3 doublings/h. From the initiation mass and C period, relative or absolute copy numbers for genes with known map locations can be accurately determined at different growth rates. At growth rates above 2 doublings/h, when chromosomes are highly branched, genes near the origin are about threefold more prevalent than genes near the terminus. At a growth rate of 0.6 doubling/h, this ratio is only about 1.7, which reflects the lower degree of chromosome branching.
Collapse
Affiliation(s)
- M Bipatnath
- Molecular and Cell Biology Programs, University of Texas at Dallas, Richardson 75083-0688, USA
| | | | | |
Collapse
|
41
|
Boye E, Stokke T, Kleckner N, Skarstad K. Coordinating DNA replication initiation with cell growth: differential roles for DnaA and SeqA proteins. Proc Natl Acad Sci U S A 1996; 93:12206-11. [PMID: 8901558 PMCID: PMC37968 DOI: 10.1073/pnas.93.22.12206] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We describe here the development of a new approach to the analysis of Escherichia coli replication control. Cells were grown at low growth rates, in which case the bacterial cell cycle approximates that of eukaryotic cells with G1, S, and G2 phases: cell division is followed sequentially by a gap period without DNA replication, replication of the single chromosome, another gap period, and finally the next cell division. Flow cytometry of such slowly growing cells reveals the timing of replication initiation as a function of cell mass. The data show that initiation is normally coupled to cell physiology extremely tightly: the distribution of individual cell masses at the time of initiation in wild-type cells is very narrow, with a coefficient of variation of less than 9%. Furthermore, a comparison between wild-type and seqA mutant cells shows that initiation occurs at a 10-20% lower mass in the seqA mutant, providing direct evidence that SeqA is a bona fide negative regulator of replication initiation. In dnaA (Ts) mutants the opposite is found: the mass at initiation is dramatically increased and the variability in cell mass at initiation is much higher than that for wild-type cells. In contrast to wild-type and dnaA(Ts) cells, seqA mutant cells frequently go through two initiation events per cell division cycle, and all the origins present in each cell are not initiated in synchrony. The implications for the complex interplay amongst growth, cell division, and DNA replication are discussed.
Collapse
Affiliation(s)
- E Boye
- Department of Biophysics and Cell Biology, Institute for Cancer Research, Montebello, Oslo, Norway.
| | | | | | | |
Collapse
|
42
|
Zaritsky A, Helmstetter CE. Rate maintenance of cell division in Escherichia coli B/r: analysis of a simple nutritional shift-down. J Bacteriol 1992; 174:8152-5. [PMID: 1459964 PMCID: PMC207556 DOI: 10.1128/jb.174.24.8152-8155.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A competitive (nonmetabolizable) inhibitor of glucose uptake, alpha-methylglucoside, was used to limit the growth of Escherichia coli. Cell division during such a nutritional shift-down was studied in batch cultures and with the "baby-machine" technique. Following a brief delay, the rate of division was maintained for 60 to 70 min in batch cultures and for an extended period in the baby machine. Decreases in cell size were due, in part, to a possible reduction in the mass per chromosome origin at the time of replication initiation and a shorter time interval between initiation and the subsequent division. These unusual findings suggest that this method for abrupt change in growth rate without modifying repression patterns is useful for studying the control of various aspects of the bacterial cell.
Collapse
Affiliation(s)
- A Zaritsky
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | | |
Collapse
|
43
|
Dunlap PV. Mechanism for iron control of the Vibrio fischeri luminescence system: involvement of cyclic AMP and cyclic AMP receptor protein and modulation of DNA level. JOURNAL OF BIOLUMINESCENCE AND CHEMILUMINESCENCE 1992; 7:203-14. [PMID: 1325097 DOI: 10.1002/bio.1170070307] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Iron controls luminescence in Vibrio fischeri by an indirect but undefined mechanism. To gain insight into that mechanism, the involvement of cyclic AMP (cAMP) and cAMP receptor protein (CRP) and of modulation of DNA levels in iron control of luminescence were examined in V. fischeri and in Escherichia coli containing the cloned V. fischeri lux genes on plasmids. For V. fischeri and E. coli adenylate cyclase (cya) and CRP (crp) mutants containing intact lux genes (luxR luxICDABEG), presence of the iron chelator ethylenediamine-di(o-hydroxyphenyl acetic acid) (EDDHA) increased expression of the luminescence system like in the parent strains only in the cya mutants in the presence of added cAMP. In the E. coli strains containing a plasmid with a Mu dl(lacZ) fusion in luxR, levels of beta-galactosidase activity (expression from the luxR promoter) and luciferase activity (expression from the lux operon promoter) were both 2-3-fold higher in the presence of EDDHA in the parent strain, and for the mutants this response to EDDHA was observed only in the cya mutant in the presence of added cAMP. Therefore, cAMP and CRP are required for the iron restriction effect on luminescence, and their involvement in iron control apparently is distinct from the known differential control of transcription from the luxR and luxICDABEG promoters by cAMP-CRP. Furthermore, plasmid and chromosomal DNA levels were higher in E. coli and V. fischeri in the presence of EDDHA. The higher DNA levels correlated with an increase in expression of chromosomally encoded beta-galactosidase in E. coli and with a higher level of autoinducer in cultures of V. fischeri. These results implicate cAMP-CRP and modulation of DNA levels in the mechanism of iron control of the V. fischeri luminescence system.
Collapse
Affiliation(s)
- P V Dunlap
- Biology Department, Redfield Laboratory, Woods Hole Oceanographic Institution, MA 02543
| |
Collapse
|
44
|
Dunlap PV, Kuo A. Cell density-dependent modulation of the Vibrio fischeri luminescence system in the absence of autoinducer and LuxR protein. J Bacteriol 1992; 174:2440-8. [PMID: 1313412 PMCID: PMC205879 DOI: 10.1128/jb.174.8.2440-2448.1992] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Expression of the Vibrio fischeri luminescence genes (luxR and luxICDABEG) in Escherichia coli requires autoinducer (N-3-oxohexanoyl homoserine lactone) and LuxR protein, which activate transcription of luxICDABEG (genes for autoinducer synthase and the luminescence enzymes), and cyclic AMP (cAMP) and cAMP receptor protein (CRP), which activate transcription of the divergently expressed luxR gene. In E. coli and in V. fischeri, the autoinducer-LuxR protein-dependent induction of luxICDABEG transcription (called autoinduction) is delayed by glucose, whereas it is promoted by iron restriction, but the mechanisms for these effects are not clear. To examine in V. fischeri control of lux gene expression by autoinducer, cAMP, glucose, and iron, lux::Mu dI(lacZ) and lux deletion mutants of V. fischeri were constructed by conjugation and gene replacement procedures. beta-Galactosidase synthesis in a luxC::lacZ mutant exhibited autoinduction. In a luxR::lacZ mutant, complementation by the luxR gene was necessary for luminescence, and addition of cAMP increased beta-galactosidase activity four- to sixfold. Furthermore, a luxI::lacZ mutant produced no detectable autoinducer but responded to its addition with induced synthesis of beta-galactosidase. These results confirm in V. fischeri key features of lux gene regulation derived from studies with E. coli. However, beta-galactosidase specific activity in the luxI::lacZ mutant, without added autoinducer, exhibited an eight- to tenfold decrease and rise back during growth, as did beta-galactosidase and luciferase specific activities in the luxR::lacZ mutant and luciferase specific activity in a delta(luxR luxICD) mutant. The presence of glucose delayed the rise back in beta-galactosidase and luciferase specific activities in these strains, whereas iron restriction promoted it. Thus, in addition to transcriptional control by autoinducer and LuxR protein, the V. fischeri lux system exhibits a cell density-dependent modulation of expression that does not require autoinducer, LuxR protein, or known lux regulatory sites. The response of autoinducer-LuxR protein-independent modulation to glucose and iron may account for how these environmental factors control lux gene expressions.
Collapse
Affiliation(s)
- P V Dunlap
- Biology Department, Woods Hole Oceanographic Institution, Massachusetts 02543
| | | |
Collapse
|
45
|
Dunlap PV. Iron control of the Vibrio fischeri luminescence system in Escherichia coli. Arch Microbiol 1992; 157:235-41. [PMID: 1510556 DOI: 10.1007/bf00245156] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Iron influences luminescence in Vibrio fischeri; cultures iron-restricted for growth rate induce luminescence at a lower optical density (OD) than faster growing, iron-replete cultures. An iron restriction effect analogous to that in V. fischeri (slower growth, induction of luminescence at a lower OD) was established using Escherichia coli tonB and tonB+ strains transformed with recombinant plasmids containing the V. fischeri lux genes (luxR luxICDABEG) and grown in the presence and absence of the iron chelator ethylenediamine-di(o-hydroxylphenyl acetic acid) (EDDHA). This permitted the mechanism of iron control of luminescence to be examined. A fur mutant and its parent strain containing the intact lux genes exhibited no difference in the OD at induction of luminescence. Therefore, an iron-binding repressor protein apparently is not involved in iron control of luminescence. Furthermore, in the tonB and in tonB+ strains containing lux plasmids with Mu dI(lacZ) fusions in luxR, levels of beta-galactosidase activity (expression from the luxR promoter) and luciferase activity (expression from the luxICDABEG promoter) both increased by a similar amount (8-9 fold each for tonB, 2-3 fold each for tonB+) in the presence of EDDHA. Similar results were obtained with the luxR gene present on a complementing plasmid. The previously identified regulatory factors that control the lux system (autoinducer-LuxR protein, cyclic AMP-cAMP receptor protein) differentially control expression from the luxR and luxICDABEG promoters, increasing expression from one while decreasing expression from the other. Consequently, these results suggest that the effect of iron on the V. fischeri luminescence system is indirect.
Collapse
Affiliation(s)
- P V Dunlap
- Biology Department, Redfield Laboratory, Woods Hole Oceanographic Institution, MA 02543
| |
Collapse
|
46
|
Abstract
The biochemical basis for cyclic initiation of bacterial chromosome replication is reviewed to define the processes involved and to focus on the putative oscillator mechanism which generates the replication clock. The properties required for a functional oscillator are defined, and their implications are discussed. We show that positive control models, but not negative ones, can explain cyclic initiation. In particular, the widely accepted idea that DnaA protein controls the timing of initiation is examined in detail. Our analysis indicates that DnaA protein is not involved in the oscillator mechanism. We conclude that the generations of a single leading to cyclic initiation is separate from the initiation process itself and propose a heuristic model to focus attention on possible oscillator mechanisms.
Collapse
Affiliation(s)
- H Bremer
- Program in Molecular and Cell Biology, University of Texas at Dallas, Richardson 75083
| | | |
Collapse
|
47
|
|
48
|
Goebel T, Manen D, Alff-Steinberger C, Xia GX, Caro L. Analysis of a copy number mutant of plasmid pSC101: co-maintenance of wild type and mutant plasmids. Res Microbiol 1991; 142:141-9. [PMID: 1925012 DOI: 10.1016/0923-2508(91)90022-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have isolated a high copy number mutant of plasmid pSC101 which is maintained at a level 4 times higher than that of the wild type. The mutation is a single base change that maps in codon 93 of the initiation protein RepA. We find that the mutation relaxes the autoregulation of the protein but increases its affinity for the repeated sequences in the origin. The wild type and the mutant repA genes are co-dominant and the mutated protein acts in trans even in the presence of the wild type protein. Co-maintenance of the two types of plasmids results in an intermediate copy number. Computer simulation indicates that simple models can explain the behaviour of the two plasmids.
Collapse
Affiliation(s)
- T Goebel
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Cánovas JL, Cuadrado A, Escalera M, Navarrete MH. The probability of G1 cells to enter into S increases with their size while S length decreases with cell enlargement in Allium cepa. Exp Cell Res 1990; 191:163-70. [PMID: 2257874 DOI: 10.1016/0014-4827(90)90001-q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The distribution of cell surface area projection (cell size) has been measured at birth and at initiation of DNA synthesis in steady-state populations of Allium cepa root meristems. The conditional probability, P(I/G1), that initiation occurs given that the event of being in G1 also occurs has been estimated from these data. P(I/G1) was found to increase when cells became larger. The distribution of G1 duration has been constructed from indicated cell size distributions. The absolute frequencies of G1 times showed a maximum in the zone of cells with short G1 periods; about 14% of cells appear to enter into S with G1 congruent to 1 h. These results suggest that the increase of P(I/G1) was due to cell enlargement and not to cell aging. By comparing the cell size distribution at initiation of S and at the end of this period, a drastic reduction of cell size variability during DNA replication was observed and both curves were seen as rather similar in shape although they obviously had different modal points. These observations support that there is a negative correlation between the initiation size and the duration of genome duplication, and that cells which initiate DNA synthesis with the same size have a similar replication time. From this hypothesis, a plot of S duration versus cell size at initiation of this period was constructed by comparing the distributions of cell size at start and end of replication; this plot was also consistent with the existence of a negative correlation between cell initiation size and S length.
Collapse
Affiliation(s)
- J L Cánovas
- Centro de Investigaciones Biológicas, CSIC, Velázquez, Madrid, Spain
| | | | | | | |
Collapse
|
50
|
Puyet A, Cánovas JL. Changes of Escherichia coli cell cycle parameters during fast growth and throughout growth with limiting amounts of thymine. Arch Microbiol 1989; 152:578-83. [PMID: 2686574 DOI: 10.1007/bf00425490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It is generally accepted that during fast growth of Escherichia coli, the time (D) between the end of a round of DNA replication and cell division is constant. This concept is not consistent with the fact that average cell mass of a culture is an exponential function of the growth rate, if it is also accepted that average cell mass per origin of DNA replication (Mi) changes with growth rate and negative exponential cell age distribution is taken into account. Data obtained from cell composition analysis of E. coli OV-2 have shown that not only Mi but also D varied with growth rate at generation times (tau) between 54 and 30 min. E. coli OV-2 is a thymine auxotroph in which the replication time (C) can be lengthened, without inducing changes in tau, by growth with limiting amounts of thymine. This property has been used to study the relationship between cell size and division from cell composition measurements during growth with different amounts of thymine. When C increased, average cell mass at the end of a round of DNA replication also increased while D decreased, but only the time lapse (d) between the end of a replication round and cell constriction initiation appeared to be affected because the constriction period remained fairly constant. We propose that the rate at which cells proceed to constriction initiation from the end of replication is regulated by cell mass at this event, big cells having shorter d times than small cells.
Collapse
Affiliation(s)
- A Puyet
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | |
Collapse
|