1
|
Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 2019; 43:304-339. [PMID: 30721976 PMCID: PMC6524683 DOI: 10.1093/femsre/fuz001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
2
|
Charlier D, Nguyen Le Minh P, Roovers M. Regulation of carbamoylphosphate synthesis in Escherichia coli: an amazing metabolite at the crossroad of arginine and pyrimidine biosynthesis. Amino Acids 2018; 50:1647-1661. [PMID: 30238253 PMCID: PMC6245113 DOI: 10.1007/s00726-018-2654-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
In all organisms, carbamoylphosphate (CP) is a precursor common to the synthesis of arginine and pyrimidines. In Escherichia coli and most other Gram-negative bacteria, CP is produced by a single enzyme, carbamoylphosphate synthase (CPSase), encoded by the carAB operon. This particular situation poses a question of basic physiological interest: what are the metabolic controls coordinating the synthesis and distribution of this high-energy substance in view of the needs of both pathways? The study of the mechanisms has revealed unexpected moonlighting gene regulatory activities of enzymes and functional links between mechanisms as diverse as gene regulation and site-specific DNA recombination. At the level of enzyme production, various regulatory mechanisms were found to cooperate in a particularly intricate transcriptional control of a pair of tandem promoters. Transcription initiation is modulated by an interplay of several allosteric DNA-binding transcription factors using effector molecules from three different pathways (arginine, pyrimidines, purines), nucleoid-associated factors (NAPs), trigger enzymes (enzymes with a second unlinked gene regulatory function), DNA remodeling (bending and wrapping), UTP-dependent reiterative transcription initiation, and stringent control by the alarmone ppGpp. At the enzyme level, CPSase activity is tightly controlled by allosteric effectors originating from different pathways: an inhibitor (UMP) and two activators (ornithine and IMP) that antagonize the inhibitory effect of UMP. Furthermore, it is worth noticing that all reaction intermediates in the production of CP are extremely reactive and unstable, and protected by tunneling through a 96 Å long internal channel.
Collapse
Affiliation(s)
- Daniel Charlier
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Phu Nguyen Le Minh
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Martine Roovers
- LABIRIS Institut de Recherches, Av. Emile Gryson 1, 1070, Brussels, Belgium
| |
Collapse
|
3
|
Abstract
Early investigations on arginine biosynthesis brought to light basic features of metabolic regulation. The most significant advances of the last 10 to 15 years concern the arginine repressor, its structure and mode of action in both E. coli and Salmonella typhimurium, the sequence analysis of all arg structural genes in E. coli and Salmonella typhimurium, the resulting evolutionary inferences, and the dual regulation of the carAB operon. This review provides an overall picture of the pathways, their interconnections, the regulatory circuits involved, and the resulting interferences between arginine and polyamine biosynthesis. Carbamoylphosphate is a precursor common to arginine and the pyrimidines. In both Escherichia coli and Salmonella enterica serovar Typhimurium, it is produced by a single synthetase, carbamoylphosphate synthetase (CPSase), with glutamine as the physiological amino group donor. This situation contrasts with the existence of separate enzymes specific for arginine and pyrimidine biosynthesis in Bacillus subtilis and fungi. Polyamine biosynthesis has been particularly well studied in E. coli, and the cognate genes have been identified in the Salmonella genome as well, including those involved in transport functions. The review summarizes what is known about the enzymes involved in the arginine pathway of E. coli and S. enterica serovar Typhimurium; homologous genes were identified in both organisms, except argF (encoding a supplementary OTCase), which is lacking in Salmonella. Several examples of putative enzyme recruitment (homologous enzymes performing analogous functions) are also presented.
Collapse
|
4
|
Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol Mol Biol Rev 2008; 72:266-300, table of contents. [PMID: 18535147 DOI: 10.1128/mmbr.00001-08] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY DNA-binding repressor proteins that govern transcription initiation in response to end products generally regulate bacterial biosynthetic genes, but this is rarely true for the pyrimidine biosynthetic (pyr) genes. Instead, bacterial pyr gene regulation generally involves mechanisms that rely only on regulatory sequences embedded in the leader region of the operon, which cause premature transcription termination or translation inhibition in response to nucleotide signals. Studies with Escherichia coli and Bacillus subtilis pyr genes reveal a variety of regulatory mechanisms. Transcription attenuation via UTP-sensitive coupled transcription and translation regulates expression of the pyrBI and pyrE operons in enteric bacteria, whereas nucleotide effects on binding of the PyrR protein to pyr mRNA attenuation sites control pyr operon expression in most gram-positive bacteria. Nucleotide-sensitive reiterative transcription underlies regulation of other pyr genes. With the E. coli pyrBI, carAB, codBA, and upp-uraA operons, UTP-sensitive reiterative transcription within the initially transcribed region (ITR) leads to nonproductive transcription initiation. CTP-sensitive reiterative transcription in the pyrG ITRs of gram-positive bacteria, which involves the addition of G residues, results in the formation of an antiterminator RNA hairpin and suppression of transcription attenuation. Some mechanisms involve regulation of translation rather than transcription. Expression of the pyrC and pyrD operons of enteric bacteria is controlled by nucleotide-sensitive transcription start switching that produces transcripts with different potentials for translation. In Mycobacterium smegmatis and other bacteria, PyrR modulates translation of pyr genes by binding to their ribosome binding site. Evidence supporting these conclusions, generalizations for other bacteria, and prospects for future research are presented.
Collapse
|
5
|
Traxler MF, Summers SM, Nguyen HT, Zacharia VM, Smith JT, Conway T. The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 2008; 68:1128-48. [PMID: 18430135 PMCID: PMC3719176 DOI: 10.1111/j.1365-2958.2008.06229.x] [Citation(s) in RCA: 396] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The stringent response to amino acid starvation, whereby stable RNA synthesis is curtailed in favour of transcription of amino acid biosynthetic genes, is controlled by the alarmone ppGpp. To elucidate the extent of gene expression effected by ppGpp, we designed an experimental system based on starvation for isoleucine, which could be applied to both wild-type Escherichia coli and the multiauxotrophic relA spoT mutant (ppGpp(0)). We used microarrays to profile the response to amino acid starvation in both strains. The wild-type response included induction of the general stress response, downregulation of genes involved in production of macromolecular structures and comprehensive restructuring of metabolic gene expression, but not induction of amino acid biosynthesis genes en masse. This restructuring of metabolism was confirmed using kinetic Biolog assays. These responses were profoundly altered in the ppGpp(0) strain. Furthermore, upon isoleucine starvation, the ppGpp(0) strain exhibited a larger cell size and continued growth, ultimately producing 50% more biomass than the wild-type, despite producing a similar amount of protein. This mutant phenotype correlated with aberrant gene expression in diverse processes, including DNA replication, cell division, and fatty acid and membrane biosynthesis. We present a model that expands and functionally integrates the ppGpp-mediated stringent response to include control of virtually all macromolecular synthesis and intermediary metabolism.
Collapse
Affiliation(s)
- Matthew F. Traxler
- Advanced Center for Genome Technology, University of Oklahoma, Norman, OK 73019
| | - Sean M. Summers
- Advanced Center for Genome Technology, University of Oklahoma, Norman, OK 73019
| | - Huyen-Tran Nguyen
- Advanced Center for Genome Technology, University of Oklahoma, Norman, OK 73019
| | | | - Joel T. Smith
- Department of Chemistry, Southeastern Oklahoma State University, Durant, OK, USA 74701
| | - Tyrrell Conway
- Advanced Center for Genome Technology, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
6
|
Berney M, Weilenmann HU, Egli T. Gene expression of Escherichia coli in continuous culture during adaptation to artificial sunlight. Environ Microbiol 2006; 8:1635-47. [PMID: 16913923 DOI: 10.1111/j.1462-2920.2006.01057.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Escherichia coli growing in continuous culture under continuous UVA irradiation exhibits growth inhibition with a subsequent adaptation to the stress. Transcriptome analysis was performed during transient growth inhibition and in the UVA light-adapted growth state. The results indicate that UVA light induces stringent response and an additional response that includes the upregulation of the synthesis of valine, isoleucine, leucine, phenylalanine, histidine and glutamate. The induction of several SOS response-genes strongly points to DNA damage as a result of UVA exposure. The involvement of oxidative stress was observed with the induction of ahpCF. Taken together it supports the hypothesis of the production of reactive oxygen species by UVA light. In the UVA-adapted cell population strong repression of the acid tolerance response was found. We identified the enzyme chorismate mutase as a possible chromophore for UVA light-inactivation and found strong repression of the pyrBI operon and the gene mgtA encoding for an ATP-dependent Mg2+ transporter. Furthermore, our results indicate that the role of RpoS may not be as important in the adaptation of E. coli to UVA light as it was implicated by previous results with starved cells, but that RpoS might be of crucial importance for the resistance under transient light exposure.
Collapse
Affiliation(s)
- Michael Berney
- Swiss Federal Institute for Aquatic Science and Technology, Eawag, PO Box 611, CH-8600 Dübendorf, Switzerland
| | | | | |
Collapse
|
7
|
Eymann C, Homuth G, Scharf C, Hecker M. Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol 2002; 184:2500-20. [PMID: 11948165 PMCID: PMC134987 DOI: 10.1128/jb.184.9.2500-2520.2002] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stringent response in Bacillus subtilis was characterized by using proteome and transcriptome approaches. Comparison of protein synthesis patterns of wild-type and relA mutant cells cultivated under conditions which provoke the stringent response revealed significant differences. According to their altered synthesis patterns in response to DL-norvaline, proteins were assigned to four distinct classes: (i) negative stringent control, i.e., strongly decreased protein synthesis in the wild type but not in the relA mutant (e.g., r-proteins); (ii) positive stringent control, i.e., induction of protein synthesis in the wild type only (e.g., YvyD and LeuD); (iii) proteins that were induced independently of RelA (e.g., YjcI); and (iv) proteins downregulated independently of RelA (e.g., glycolytic enzymes). Transcriptome studies based on DNA macroarray techniques were used to complement the proteome data, resulting in comparable induction and repression patterns of almost all corresponding genes. However, a comparison of both approaches revealed that only a subset of RelA-dependent genes or proteins was detectable by proteomics, demonstrating that the transcriptome approach allows a more comprehensive global gene expression profile analysis. The present study presents the first comprehensive description of the stringent response of a bacterial species and an almost complete map of protein-encoding genes affected by (p)ppGpp. The negative stringent control concerns reactions typical of growth and reproduction (ribosome synthesis, DNA synthesis, cell wall synthesis, etc.). Negatively controlled unknown y-genes may also code for proteins with a specific function during growth and reproduction (e.g., YlaG). On the other hand, many genes are induced in a RelA-dependent manner, including genes coding for already-known and as-yet-unknown proteins. A passive model is preferred to explain this positive control relying on the redistribution of the RNA polymerase under the influence of (p)ppGpp.
Collapse
Affiliation(s)
- Christine Eymann
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| | | | | | | |
Collapse
|
8
|
Wright BE, Longacre A, Reimers JM. Hypermutation in derepressed operons of Escherichia coli K12. Proc Natl Acad Sci U S A 1999; 96:5089-94. [PMID: 10220423 PMCID: PMC21821 DOI: 10.1073/pnas.96.9.5089] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This article presents evidence that starvation for leucine in an Escherichia coli auxotroph triggers metabolic activities that specifically target the leu operon for derepression, increased rates of transcription, and mutation. Derepression of the leu operon was a prerequisite for its activation by the signal nucleotide, guanosine tetraphosphate, which accumulates in response to nutritional stress (the stringent response). A quantitative correlation was established between leuB mRNA abundance and leuB- reversion rates. To further demonstrate that derepression increased mutation rates, the chromosomal leu operon was placed under the control of the inducible tac promoter. When the leu operon was induced by isopropyl-D-thiogalactoside, both leuB mRNA abundance and leuB- reversion rates increased. These investigations suggest that guanosine tetraphosphate may contribute as much as attenuation in regulating leu operon expression and that higher rates of mutation are specifically associated with the derepressed leu operon.
Collapse
Affiliation(s)
- B E Wright
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | | | |
Collapse
|
9
|
Petersen C. Inhibition of cellular growth by increased guanine nucleotide pools. Characterization of an Escherichia coli mutant with a guanosine kinase that is insensitive to feedback inhibition by GTP. J Biol Chem 1999; 274:5348-56. [PMID: 10026143 DOI: 10.1074/jbc.274.9.5348] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli the enzyme guanosine kinase phosphorylates guanosine to GMP, which is further phosphorylated to GDP and GTP by other enzymes. Here I report that guanosine kinase is subject to efficient feedback inhibition by the end product of the pathway, GTP, and that this regulation is abolished by a previously described mutation, gsk-3, in the structural gene for guanosine kinase (Hove-Jensen, B., and Nygaard, P. (1989) J. Gen. Microbiol. 135, 1263-1273). Consequently, the gsk-3 mutant strain was extremely sensitive to guanosine, which caused the guanine nucleotide pools to increase dramatically, thereby initiating a cascade of metabolic changes that eventually led to growth arrest. By isolation and characterization of guanosine-resistant derivatives of the gsk-3 mutant, some of the crucial steps in this deleterious cascade of events were found to include the following: first, conversion of GMP to adenine nucleotides via GMP reductase, encoded by the guaC gene; second, inhibition of phosphoribosylpyrophosphate synthetase by an adenine nucleotide, presumably ADP, causing starvation for histidine, tryptophan, and pyrimidines, all of which require PRPP for their synthesis; third, accumulation of the regulatory nucleotide guanosine 5',3'-bispyrophosphate (ppGpp), a general transcriptional inhibitor synthesized by the relA gene product in response to amino acid starvation.
Collapse
Affiliation(s)
- C Petersen
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, Solvgade 83H, DK-1307 Copenhagen K, Denmark
| |
Collapse
|
10
|
Zhou YN, Jin DJ. The rpoB mutants destabilizing initiation complexes at stringently controlled promoters behave like "stringent" RNA polymerases in Escherichia coli. Proc Natl Acad Sci U S A 1998; 95:2908-13. [PMID: 9501189 PMCID: PMC19668 DOI: 10.1073/pnas.95.6.2908] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In Escherichia coli, stringently controlled genes are highly transcribed during rapid growth, but "turned off" under nutrient limiting conditions, a process called the stringent response. To understand how transcriptional initiation at these promoters is coordinately regulated, we analyzed the interactions between RNA polymerase (RNAP) (both wild type and mutants) and four stringently controlled promoters. Our results show that the interactions between RNAP and stringently controlled promoters are intrinsically unstable and can alternate between relatively stable and metastable states. The mutant RNAPs appear to specifically further weaken interactions with these promoters in vitro and behave like "stringent" RNAPs in the absence of the stringent response in vivo, constituting a novel class of mutant RNAPs. Consistently, these mutant RNAPs also activate the expression of other genes that normally require the response. We propose that the stability of initiation complexes is coupled to the transcription of stringently controlled promoters, and this unique feature coordinates the expression of genes positively and negatively regulated by the stringent response.
Collapse
Affiliation(s)
- Y N Zhou
- Laboratory of Molecular Biology, Building 37, Room 2E14, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | |
Collapse
|
11
|
Becker J, Brendel M. Molecular cloning and characterization of the pyrB gene of Lactobacillus leichmannii encoding aspartate transcarbamylase. Biochimie 1996; 78:3-13. [PMID: 8725005 DOI: 10.1016/0300-9084(96)81323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Lactobacillus leichmannii pyrB gene, encoding pyrimidine biosynthetic enzyme aspartate transcarbamylase (ATCase), was cloned from a partial genomic library lying on a 1468 bp Sa/I/BstXI fragment. The predicted polypeptide sequence extending over 351 amino acid residues (M(r) 39 855 Da) was compared to those of various other organisms revealing clear identities towards them and important conservative stretches, implying that these proteins are closely related. Transcriptional initiation was mapped by primer extension and occurred 54 bp upstream of the pyrB open reading frame (ORF). Northern blot analysis indicates that the pyrB gene is transcribed as a single mRNA and not together with the following overlapping pyrC gene as a bicistronic mRNA. At high copy number the pyrB gene of L leichmannii seems to be lethal for its E coli host; inserted in a low copy vector it complements the uracil auxotrophy of an E coli pyrB mutant which shows distinct ATCase activity in the cell extract. With an excess of uracil in the growth medium the gene is apparently repressed and no ATCase activity can be measured.
Collapse
Affiliation(s)
- J Becker
- Institut für Mikrobiologie, JW Goethe-Universität, Frankfurt/Main, Germany
| | | |
Collapse
|
12
|
Qi F, Liu C, Heath LS, Turnbough CL. In vitro assay for reiterative transcription during transcriptional initiation by Escherichia coli RNA polymerase. Methods Enzymol 1996; 273:71-85. [PMID: 8791600 DOI: 10.1016/s0076-6879(96)73007-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- F Qi
- Department of Oral Biology, University of Alabama at Birmingham 35294, USA
| | | | | | | |
Collapse
|
13
|
Liu C, Heath LS, Turnbough CL. Regulation of pyrBI operon expression in Escherichia coli by UTP-sensitive reiterative RNA synthesis during transcriptional initiation. Genes Dev 1994; 8:2904-12. [PMID: 7527789 DOI: 10.1101/gad.8.23.2904] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pyrimidine-mediated regulation of pyrBI operon expression in Escherichia coli K-12 occurs through UTP-sensitive transcriptional attenuation and through a second mechanism that functions at the level of transcriptional initiation. In this study we demonstrate that this second control mechanism is based on UTP-sensitive reiterative RNA synthesis within a run of three T-A base pairs in the pyrBI initially transcribed region. Our results show that high UTP levels induce the synthesis in vitro of nascent transcripts with the sequence AAUUUUn (where n = 1 to > 30), which are not extended downstream to include pyrBI sequences. Synthesis of these transcripts, which are initiated at the predominant in vivo transcriptional start site, inhibits the production of full-length pyrBI transcripts. A TTT to GTA mutation in the pyrBI initially transcribed region eliminates reiterative transcription and stimulates productive transcription in vitro. When introduced into the E. coli chromosome, this mutation causes a sevenfold increase in pyrBI expression in cells grown under conditions of pyrimidine excess and nearly abolishes pyrimidine-mediated regulation of pyrBI expression when coupled with a mutation that eliminates attenuation control. Additional experiments indicate that the context of the three T-A base pairs within the pyrBI initially transcribed region is important for reiterative transcription. A possible mechanism for reiterative transcription and the likely involvement of this process in the regulation of other genes are discussed.
Collapse
Affiliation(s)
- C Liu
- Department of Microbiology, University of Alabama at Birmingham 35294
| | | | | |
Collapse
|
14
|
Nucleotide-specific transcriptional pausing in the pyrBI leader region of Escherichia coli K-12. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32433-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Liu C, Donahue JP, Heath LS, Turnbough CL. Genetic evidence that promoter P2 is the physiologically significant promoter for the pyrBI operon of Escherichia coli K-12. J Bacteriol 1993; 175:2363-9. [PMID: 8468295 PMCID: PMC204525 DOI: 10.1128/jb.175.8.2363-2369.1993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The pyrBI operon of Escherichia coli K-12 encodes the two nonidentical subunits of the pyrimidine biosynthetic enzyme aspartate transcarbamylase (ATCase). Expression of this operon is negatively regulated by pyrimidine availability primarily through UTP-sensitive transcriptional attenuation and, to a lesser extent, at the level of transcriptional initiation. Previous studies indicated that the pyrBI operon was transcribed from tandem sigma 70 promoters designated P1 and P2, with the large majority of transcription initiated at the more downstream promoter P2. To more clearly define the roles of these promoters, mutations that severely impair or inactivate individual promoters were constructed in the chromosomal pyrBI operon, and their effects on ATCase synthesis were measured. In cells grown under conditions of either pyrimidine excess or pyrimidine limitation, more than 99% of all ATCase synthesis was directed by transcripts initiated at promoter P2, indicating that it is the only physiologically significant pyrBI promoter. However, mutations that effectively inactivate promoter P1 caused a 15% reduction in ATCase levels, apparently by inhibiting transcription from promoter P2 by an unknown mechanism. Support for this explanation was provided by the demonstration that little, if any, transcriptional initiation occurred at promoter P1 in a transcriptional fusion vector whereas a high level of transcription was initiated at promoter P2 in an equivalent construction. Our results also provide evidence for pyrimidine-mediated regulation of transcriptional initiation at promoter P2 over a severalfold range and show that cells can grow reasonably well with very low levels of ATCase, apparently because of changes in the concentration of allosteric effectors that increase the specific activity of the enzyme.
Collapse
Affiliation(s)
- C Liu
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | | | | | |
Collapse
|
16
|
Characterization of transcriptional initiation from promoters P1 and P2 of the pyrBI operon of Escherichia coli K12. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30629-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
O'Donovan GA, Herlick S, Beck DE, Dutta PK. UTP/CTP ratio, an important regulatory parameter for ATCase expression. Arch Microbiol 1989; 153:19-25. [PMID: 2692533 DOI: 10.1007/bf00277535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Intracellular nucleotides of Salmonella typhimurium were separated and quantified by high performance liquid chromatography (HPLC). Wild type and specially constructed strains of S. typhimurium, in which uridine and cytidine nucleotides could be manipulated independently, were used in this study. By varying growth conditions it was possible to create different concentrations of uridine and cytidine nucleotides in the cell. The specific activity of ATCase was determined for each condition. Generally, a direct correlation was found: at high nucleotide (UTP) concentrations, maximal repression of ATCase was usually seen; at low nucleotide (UTP) concentrations ATCase was derepressed. However, it was the ratio of the concentrations of UTP-to-CTP rather than either the concentration of UTP or CTP alone that best determined the extent of ATCase expression. This applied to all conditions in the present work as well as to all conditions in work hitherto reported by others. The ratio of UTP/CTP is proposed as a key regulatory parameter for pyr enzyme expression.
Collapse
Affiliation(s)
- G A O'Donovan
- Department of Biological Sciences, University of North Texas, Denton 76203
| | | | | | | |
Collapse
|
18
|
Liu CG, Turnbough CL. Multiple control mechanisms for pyrimidine-mediated regulation of pyrBI operon expression in Escherichia coli K-12. J Bacteriol 1989; 171:3337-42. [PMID: 2656651 PMCID: PMC210055 DOI: 10.1128/jb.171.6.3337-3342.1989] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Expression of the pyrBI operon of Escherichia coli K-12, which encodes the subunits of the pyrimidine biosynthetic enzyme aspartate transcarbamylase, is negatively regulated over a several-hundredfold range by pyrimidine availability. This regulation occurs, at least in large part, through a UTP-sensitive attenuation control mechanism in which transcriptional termination at the pyrBI attenuator, a rho-independent transcriptional terminator located immediately upstream of the pyrB structural gene, is regulated by the relative rates of transcription and translation within the pyrBI leader region. There is suggestive evidence that an additional, attenuator-independent control mechanism also contributes to this regulation. To measure the level of regulation that occurs through the attenuation and attenuator-independent control mechanisms, we constructed a mutant strain in which a 9-base-pair deletion was introduced into the attenuator of the chromosomal pyrBI operon. This deletion, which removes the run of thymidine residues at the end of the attenuator, completely abolishes rho-independent transcriptional termination activity. When the mutant strain was grown under conditions of pyrimidine excess, the level of operon expression was 51-fold greater than that of an isogenic pyrBI+ strain. Under conditions of pyrimidine limitation, operon expression was increased an additional 6.5-fold in the mutant. These results demonstrate that the attenuation control mechanism is primarily responsible for pyrimidine-mediated regulation but that there is a significant contribution by an attenuator-independent control mechanism.
Collapse
Affiliation(s)
- C G Liu
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | |
Collapse
|
19
|
Andrews SC, Guest JR. Nucleotide sequence of the gene encoding the GMP reductase of Escherichia coli K12. Biochem J 1988; 255:35-43. [PMID: 2904262 PMCID: PMC1135187 DOI: 10.1042/bj2550035] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
(1) The nucleotide sequence of a 1991 bp segment of DNA that expresses the GMP reductase (guaC) gene of Escherichia coli K12 was determined. (2) This gene comprises 1038 bp, 346 codons (including the initiation codon but excluding the termination codon), and it encodes a polypeptide of Mr 37,437 which is in good agreement with previous maxicell studies. (3) The sequence contains a putative promoter 102 bp upstream of the translational start codon, and this is immediately followed by a (G + C)-rich discriminator sequence suggesting that guaC expression may be under stringent control (4) The GMP reductase exhibits a high degree of sequence identity (34%) with IMP dehydrogenase (the guaB gene product) indicative of a close evolutionary relationship between the salvage pathway and the biosynthetic enzymes, GMP reductase and IMP dehydrogenase, respectively. (5) A single conserved cysteine residue, possibly involved in IMP binding to IMP dehydrogenase, was located within a region that possesses some of the features of a nucleotide binding site. (6) The IMP dehydrogenase polypeptide contains an internal segment of 123 amino acid residues that has no counterpart in GMP reductase and may represent an independent folding domain flanked by (alanine + glycine)-rich interdomain linkers.
Collapse
Affiliation(s)
- S C Andrews
- Department of Microbiology, University of Sheffield, U.K
| | | |
Collapse
|
20
|
Turnbough C, Kerr K, Funderburg W, Donahue J, Powell F. Nucleotide sequence and characterization of the pyrF operon of Escherichia coli K12. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61103-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Poulsen P, Jensen KF. Effect of UTP and GTP pools on attenuation at the pyrE gene of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1987; 208:152-8. [PMID: 3302606 DOI: 10.1007/bf00330436] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have used the galK gene, minus its promoter, to quantitate transcription of the orfE--pyrE operon of Escherichia coli in front of and after the intercistronic attenuator. Expression of the hybrid genes was studied in a bacterium with mutations that permit changes in the UTP and GTP pools during exponential growth. It was found that the greater part of pyrE gene regulation by the nucleotides takes place at the intercistronic attenuator and that promoter control contributes only little, ca. twofold. When pools of both UTP and GTP were high only 5%-6% of the mRNA chains were continued into the pyrE gene. However, when the UTP pool was reduced (from 1.3 to 0.2 mumol/g dry weight) nearly 100% of transcription passed the attenuator. Likewise, a reduction in the GTP pool (from 3.2 to 0.8 mumol/g dry weight) resulted in 25%-30% escape of attenuation. Regulation by attenuation disappeared when a premature stop-codon was introduced near the end of orfE such that translational coupling to transcription was prevented in the attenuator area. Therefore, we attribute the modulation of attenuation to nucleotide-induced variations in the kinetics of mRNA chain elongation. In support for this it was found that an RNA polymerase mutant with reduced RNA chain growth rate transcribed past the pyrE attenuator at a high frequency in the presence of a high UTP pool, but only when coupling of translation to transcription was allowed at the end of orfE.
Collapse
|
22
|
Bäckström D, Sjöberg RM, Lundberg LG. Nucleotide sequence of the structural gene for dihydroorotase of Escherichia coli K12. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 160:77-82. [PMID: 2876892 DOI: 10.1111/j.1432-1033.1986.tb09942.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nucleotide sequence of the dihydroorotase structural gene, pyrC, of Escherichia coli K12 has been determined. The DNA sequence predicts a polypeptide chain of 347 amino acid residues corresponding in size and composition to the previously purified dihydroorotase subunit. Nuclease S1 mapping indicated that transcription of pyrC is initiated around 40 base pairs upstream from the translational start. The transcriptional leader region contains a region of dyad symmetry, which allows a stable hairpin to be formed. This sequence may have regulatory functions since similar structures are found in other pyr genes. The nucleotide sequence also contains a 186-codon open reading frame in front of pyrC. Nuclease Bal31-deletion derivatives of pyrC plasmids indicate that this gene does not affect the expression of pyrC. The predicted polypeptide chain shows a putative signal sequence. Downstream from the structural gene a sequence similar to a rho-independent transcriptional terminator is found. This unknown gene may thus encode a membrane protein of unknown function.
Collapse
|
23
|
|
24
|
Jensen KF, Fast R, Karlström O, Larsen JN. Association of RNA polymerase having increased Km for ATP and UTP with hyperexpression of the pyrB and pyrE genes of Salmonella typhimurium. J Bacteriol 1986; 166:857-65. [PMID: 3086291 PMCID: PMC215205 DOI: 10.1128/jb.166.3.857-865.1986] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We investigated the transcription kinetics of RNA polymerase from an rpoBC mutant of Salmonella typhimurium which showed highly elevated, constitutive expression of the pyrB and pyrE genes as well as an increased cellular pool of UTP. When bacterial cultures containing an F' lac+ episome were induced for lac operon expression, the first active molecules of beta-galactosidase were formed with a delay of 73 +/- 3 s in rpo+ cells. The corresponding time was 104 to 125 s for cells carrying the rpoBC allele, indicating that this mutation causes a reduced RNA chain growth rate. In vitro the purified mutant RNA polymerase elongated transcripts of both T7 DNA and synthetic templates more slowly than the parental enzyme at a given concentration of nucleoside triphosphates. This defect was found to result from four- to sixfold-higher Km values for the saturation of the elongation site by ATP and UTP. The saturation kinetics of the RNA chain initiation step also seemed to be affected. The maximal elongation rate and Km for GTP and CTP were less influenced by the rpoBC mutation. Open complex formation at the promoters of T7 DNA and termination of the 7,100-nucleotide transcript showed no significant difference between the parental and mutant enzymes. Together with the phenotype of the rpoBC mutant, these results indicate that expression of pyrB and pyrE is regulated by the mRNA chain growth rate, which is controlled by the cellular UTP pool. The rate of gene expression is high when the saturation of RNA polymerase with UTP is low and vice versa.
Collapse
|
25
|
Roland KL, Powell FE, Turnbough CL. Role of translation and attenuation in the control of pyrBI operon expression in Escherichia coli K-12. J Bacteriol 1985; 163:991-9. [PMID: 3928602 PMCID: PMC219230 DOI: 10.1128/jb.163.3.991-999.1985] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Expression of the pyrBI operon of Escherichia coli K-12, which encodes the subunits of the pyrimidine biosynthetic enzyme aspartate transcarbamylase, is negatively regulated by the intracellular levels of UTP. Previous experiments suggested a unique model for regulation of operon expression in which low UTP levels cause close coupling of transcription and translation of the pyrBI leader region. This close coupling suppresses transcriptional termination at an attenuator preceding the structural genes. In this study, we examined the regulatory role of translation and attenuation in operon expression. To determine whether the leader region is translated, we constructed a plasmid, designated pBHM17, in which the pyrBI promoter(s) and the first 11 codons for a putative 44-amino acid leader polypeptide are fused to codon 9 of lacZ. A transformant carrying this plasmid synthesized a beta-galactosidase fusion protein with the amino-terminal sequence of the leader polypeptide, demonstrating that the signals required for leader polypeptide synthesis function in vivo. Synthesis of the fusion protein was nearly insensitive to pyrimidine availability. In uracil-grown cells, the level of fusion protein synthesis encoded by plasmid pBHM17 was much greater than that encoded by a similar plasmid containing a pyrB::lacZ gene fusion, in which the pyrBI promoter-regulatory region is intact. These results indicate that the downstream leader sequence which includes the attenuator is required for regulation and functions as a transcriptional barrier. Oligonucleotide-directed mutagenesis was used to change the ATG leader polypeptide initiation codon of the intact pyrBI operon to ACG, which was shown to strongly inhibit translational initiation. This mutation greatly reduced operon expression and regulation as predicted by the attenuation control model.
Collapse
|
26
|
Turnbough CL, Bochner BR. Toxicity of the pyrimidine biosynthetic pathway intermediate carbamyl aspartate in Salmonella typhimurium. J Bacteriol 1985; 163:500-5. [PMID: 3894327 PMCID: PMC219150 DOI: 10.1128/jb.163.2.500-505.1985] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Growth of Salmonella typhimurium pyrC or pyrD auxotrophs was severely inhibited in media that caused derepressed pyr gene expression. No such inhibition was observed with derepressed pyrA and pyrB auxotrophs. Growth inhibition was not due to the depletion of essential pyrimidine biosynthetic pathway intermediates or substrates. This result and the pattern of inhibition indicated that the accumulation of the pyrimidine biosynthetic pathway intermediate carbamyl aspartate was toxic. This intermediate is synthesized by the sequential action of the first two enzymes of the pathway encoded by pyrA and pyrB and is a substrate for the pyrC gene product. It should accumulate to high levels in pyrC or pyrD mutants when expression of the pyrA and pyrB genes is elevated. The introduction of either a pyrA or pyrB mutation into a pyrC strain eliminated the observed growth inhibition. Additionally, a direct correlation was shown between the severity of growth inhibition of a pyrC auxotroph and the levels of the enzymes that synthesize carbamyl aspartate. The mechanism of carbamyl aspartate toxicity was not identified, but many potential sites of growth inhibition were excluded. Carbamyl aspartate toxicity was shown to be useful as a phenotypic trait for classifying pyrimidine auxotrophs and may also be useful for positive selection of pyrA or pyrB mutants. Finally, we discuss ways of overcoming growth inhibition of pyrC and pyrD mutants under derepressing conditions.
Collapse
|
27
|
Regulation of aspartate transcarbamoylase synthesis in Escherichia coli: analysis of deletion mutations in the promoter region of the pyrBI operon. Proc Natl Acad Sci U S A 1985; 82:4643-7. [PMID: 2991885 PMCID: PMC390442 DOI: 10.1073/pnas.82.14.4643] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The catalytic and regulatory polypeptide chains of Escherichia coli aspartate transcarbamoylase are encoded by the pyrB and pyrI genes, respectively, which constitute a single transcriptional unit in the pyrBI operon. The DNA sequence immediately preceding the first structural gene, pyrB, contains a short open reading frame that could encode a 44-amino acid leader peptide and a (G+C)-rich region of dyad symmetry followed by eight thymidine residues. Synthesis of the enzyme is negatively controlled at the level of transcription depending on the cellular level of UTP, and an attenuation mechanism has been proposed to account for the 70-fold increase in pyrBI expression on pyrimidine starvation. The potential role of the dyad and eight thymidines as an attenuator was tested with a plasmid containing the promoter region of the pyrBI operon upstream of the galK coding sequence. When cells containing this plasmid, pPYRB10, were grown in a medium low in uracil, there was an 83-fold increase in galactokinase activity compared with the same cells grown at high uracil levels. This regulation is similar to that for aspartate transcarbamoylase synthesis in cells depleted of pyrimidines. Deletions constructed in the promoter region of pPYRB10 from the 3' side produced one plasmid that retained normal control of galK expression and five that exhibited greatly reduced regulation. Nucleotide sequence determination showed that the one deletion mutation that was functionally similar to the wild-type plasmid contained the entire region of dyad symmetry, including the eight thymidines. The plasmids with more extensive deletions lacked the region with dyad symmetry and the eight thymidines. One of the deletion mutants that exhibited very low levels of regulation lacks the entire sequence coding for the putative leader peptide up to the major promoter. The results demonstrating the crucial role of a 19-nucleotide sequence (from -33 to -15) support an attenuation model but indicate that other mechanisms also contribute to the regulation of the pyrBI operon.
Collapse
|
28
|
Kirchman D, K'nees E, Hodson R. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl Environ Microbiol 1985; 49:599-607. [PMID: 3994368 PMCID: PMC373556 DOI: 10.1128/aem.49.3.599-607.1985] [Citation(s) in RCA: 349] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Leucine incorporation was examined as a method for estimating rates of protein synthesis by bacterial assemblages in natural aquatic systems. The proportion of the total bacterial population that took up leucine in three marine environments was high (greater than 50%). Most of the leucine (greater than 90%) taken up was incorporated into protein, and little (less than 20%) was degraded to other amino acids, except in two oligotrophic marine environments. In samples from these two environments, ca. 50% of the leucine incorporated had been degraded to other amino acids, which were subsequently incorporated into protein. The degree of leucine degradation appears to depend on the organic carbon supply, as the proportion of 3H-radioactivity incorporated into protein that was recovered as [3H]leucine after acid hydrolysis increased with the addition of pyruvate to oligotrophic water samples. The addition of extracellular leucine inhibited total incorporation of [14C]pyruvate (a precursor for leucine biosynthesis) into protein. Furthermore, the proportion of [14C]pyruvate incorporation into protein that was recovered as [14C]leucine decreased with the addition of extracellular leucine. These results show that the addition of extracellular leucine inhibits leucine biosynthesis by marine bacterial assemblages. The molar fraction of leucine in a wide variety of proteins is constant, indicating that changes in leucine incorporation rates reflect changes in rates of protein synthesis rather than changes in the leucine content of proteins. The results demonstrate that the incorporation rate of [3H]leucine into a hot trichloroacetic acid-insoluble cell fraction can serve as an index of protein synthesis by bacterial assemblages in aquatic systems.
Collapse
|
29
|
Abstract
Overlapping restriction fragments of DNA carrying the gua promoter region of Escherichia coli have been cloned using promoter-probe plasmids. Antibiotic resistance conferred by the constructed plasmids is repressed by guanine and enhanced by adenine, two features characteristic of expression of the gua operon. The nucleotide sequence of these fragments reveals the gua promoter 43 bp upstream of the translational start codon for inosine 5'-monophosphate (IMP) dehydrogenase. The promoter is preceded by an A + T-rich region and several potential polymerase secondary binding sites, and is immediately followed by a G + C-rich discriminator, suggesting that the gua operon may be under stringent control. A sequence with twofold symmetry overlaps both promoter and discriminator and is therefore located where repressor binding could interfere with transcription initiation. A stem and loop can be formed from the leader mRNA, thus sequestering the ribosome-binding site.
Collapse
|
30
|
Piette J, Nyunoya H, Lusty CJ, Cunin R, Weyens G, Crabeel M, Charlier D, Glansdorff N, Piérard A. DNA sequence of the carA gene and the control region of carAB: tandem promoters, respectively controlled by arginine and the pyrimidines, regulate the synthesis of carbamoyl-phosphate synthetase in Escherichia coli K-12. Proc Natl Acad Sci U S A 1984; 81:4134-8. [PMID: 6330744 PMCID: PMC345383 DOI: 10.1073/pnas.81.13.4134] [Citation(s) in RCA: 119] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The carAB operon of Escherichia coli K-12, which encodes the two subunits of carbamoyl-phosphate synthetase (glutamine hydrolyzing) [carbon-dioxide: L-glutamine amido-ligase (ADP-forming, carbamate-phosphorylating); EC 6.3.5.5], is cumulatively repressed by arginine and the pyrimidines. We describe the structure of the control region of carAB and the sequence of the carA gene. Nuclease S1 mapping experiments show that two adjacent tandem promoters within the carAB control region serve as initiation sites. The upstream promoter P1 is controlled by pyrimidines; the downstream promoter P2 is regulated by arginine. Attenuation control does not appear to be involved in the expression of carAB. A possible mechanism by which control at these promoters concurs to produce a cumulative pattern of repression is discussed. The translational start of carA is atypical; it consists of a UUG or AUU codon.
Collapse
|
31
|
Bouvier J, Patte JC, Stragier P. Multiple regulatory signals in the control region of the Escherichia coli carAB operon. Proc Natl Acad Sci U S A 1984; 81:4139-43. [PMID: 6377309 PMCID: PMC345384 DOI: 10.1073/pnas.81.13.4139] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The first reaction in pyrimidine and arginine biosynthesis in Escherichia coli is catalyzed by a single enzyme, carbamoyl-phosphate synthetase (EC 6.3.5.5), the product of the carAB operon. Expression of this operon is cumulatively repressed by arginine and pyrimidines. The nucleotide sequence of the carAB control region was determined and transcriptional starts were localized. Two adjacent promoters, 70 base pairs apart, appear to be used in vivo, the downstream one overlapping a typical arginine operator. The absence of any attenuation-like sequence excludes such a mechanism for pyrimidine-mediated repression. Various fragments of the carA promoter-proximal region were fused in vitro with the lacZ gene. Results obtained with these fusions indicate that (i) translation of the carA gene can be initiated in vivo without an AUG codon but very likely with an UUG or an AUU codon; (ii) the carAB downstream promoter is repressed by arginine; and (iii) the carAB upstream promoter is repressed by pyrimidines and subject to stringent control. When carried by a multicopy plasmid the carAB control region escapes repression by arginine and pyrimidines. The existence of a pyrimidine repressor, present in limiting amounts in the cell, is therefore postulated.
Collapse
|
32
|
Jensen KF, Larsen JN, Schack L, Sivertsen A. Studies on the structure and expression of Escherichia coli pyrC, pyrD, and pyrF using the cloned genes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 140:343-52. [PMID: 6370696 DOI: 10.1111/j.1432-1033.1984.tb08107.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Escherichia coli pyrC, pyrD and pyrF genes were cloned on multicopy plasmids derived from pBR322 and analysed by means of restriction endonucleases. It was found that the pyrC gene is destroyed by cutting with the restriction endonuclease BamHI, that the entire pyrD gene can be isolated on a 1300-base pairs DNA fragment generated by EcoRI cleavage and that cutting with EcoRI removes the promotor and probably also the translational start site from the pyrF gene. More details on the restriction maps are presented. Further, it was found that the presence of a pyr gene in multiple copies on a plasmid does not significantly interfere with the activity of the chromosomal pyr genes. Using the 'minicell' technique, the polypeptides encoded by the three cloned pyr genes were identified. The relative molecular masses for the pyrC-encoded and pyrD-encoded polypeptides are 38 000-40 000 and 36 000-38 000, respectively. Thus in their native form, dihydroorotase and dihydroorotate oxidase appear to be dimeric proteins. The 'minicell' experiments positively identified a protein chain of Mr 23 000-24 000 as being a subunit of OMP decarboxylase encoded by pyrF. Moreover, the coding frame for this polypeptide seems to be expressed as the first gene in the operon with the coding frame for another protein chain of Mr 13 000-14 000. Since, however, the native OMP decarboxylase during sedimentation and gel filtration behaves as a protein of Mr 45 000 +/- 4000, this latter polypeptide (Mr 13 000-14 000) is hardly a component of the enzyme. Pyr-lac+ operon fusions were constructed by the Mu d1 procedure. By integrating an F'lac episome into the lac part of the fusions and determining the direction of chromosomal transfer from the resultant Hfr strains, the direction of pyrC transcription was found to be counter-clockwise, while pyrD and pyrF were found to be transcribed in a clockwise direction.
Collapse
|
33
|
Foltermann KF, Shanley MS, Wild JR. Assembly of the aspartate transcarbamoylase holoenzyme from transcriptionally independent catalytic and regulatory cistrons. J Bacteriol 1984; 157:891-8. [PMID: 6365893 PMCID: PMC215343 DOI: 10.1128/jb.157.3.891-898.1984] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The cistrons encoding the regulatory and catalytic polypeptides of aspartate transcarbamoylase (EC 2.1.3.2) from Escherichia coli K-12 have been cloned separately on plasmids from different incompatability groups. The catalytic cistron (pyrB) was carried by pACYC184 and expressed from its own promoter, whereas the regulatory cistron was expressed from the lac po of pBH20. The catalytic polypeptide chains assembled into enzymatically active trimers (c3) in vivo when expressed in the absence of regulatory subunits. Similarly, the regulatory polypeptide chains assembled into regulatory dimers (r2) in vivo in the absence of catalytic subunits. When cellular extracts containing regulatory dimers and catalytic trimers synthesized in separate cells were combined in vitro, partial spontaneous holoenzyme assembly occurred. When pyrB and pyrI were expressed from transcriptionally independent cistrons in the same cell, all detectable catalytic polypeptides were incorporated into the functional aspartate transcarbamoylase holoenzyme, 2(c3):3(r2). Thus, it is clear that the in vivo assembly of ATCase holoenzyme is a direct, spontaneous process involving the association of preformed regulatory subunits (r2) and catalytic subunits (c3). This procedure provides a general method for the construction of hybrid aspartate transcarbamoylase in vivo and may be applicable to other oligomeric enzymes constructed from different polypeptides.
Collapse
|
34
|
Nowlan SF, Kantrowitz ER. Identification of a trans-acting regulatory factor involved in the control of the pyrimidine pathway in E. coli. MOLECULAR & GENERAL GENETICS : MGG 1983; 192:264-71. [PMID: 6358797 DOI: 10.1007/bf00327676] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A pyrimidine auxotroph of Escherichia coli was isolated which contained a defect in its ability to synthesize both oroate phosphoribosyl transferase, the product of the gene pyrE, and orotidine monophosphate decarboxylase, product of the gene pyrF. A single location on the E. coli linkage map was found to be responsible for the loss of both enzyme activities. This gene was located near cysE at 80.55 min by a combination of Hfr crosses and P1 transductions. The pyrimidine requirement was also corrected by episome F'140 which was found not to carry any pyrimidine structural genes. These data confirm the existence of a new gene, pyrS, unlinked to any previously mapped pyrimidine structural gene, responsible for partial control of pyrimidine biosynthesis. A spontaneous revertant of the mutant strain was also identified which displayed constitutive levels of aspartate transcarbamylase, dihydroorotase, dihydroorotate dehydrogenase, orotidine monophosphate decarboxylase, and limited levels of orotate phosphoribosyl transferase. A model is proposed in which the pyrS gene product is an activator protein, necessary for the transcription of the pyrE and pyrF genes. This activator protein is nonfunctional in the original mutant strain, and partially functional in the revertant strain. The data presented here cannot rule out an alternative mechanism involving a repressor.
Collapse
|