1
|
Evolutionary Rescue and Drug Resistance on Multicopy Plasmids. Genetics 2020; 215:847-868. [PMID: 32461266 DOI: 10.1534/genetics.119.303012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/15/2020] [Indexed: 11/18/2022] Open
Abstract
Bacteria often carry "extra DNA" in the form of plasmids in addition to their chromosome. Many plasmids have a copy number greater than one such that the genes encoded on these plasmids are present in multiple copies per cell. This has evolutionary consequences by increasing the mutational target size, by prompting the (transitory) co-occurrence of mutant and wild-type alleles within the same cell, and by allowing for gene dosage effects. We develop and analyze a mathematical model for bacterial adaptation to harsh environmental change if adaptation is driven by beneficial alleles on multicopy plasmids. Successful adaptation depends on the availability of advantageous alleles and on their establishment probability. The establishment process involves the segregation of mutant and wild-type plasmids to the two daughter cells, allowing for the emergence of mutant homozygous cells over the course of several generations. To model this process, we use the theory of multitype branching processes, where a type is defined by the genetic composition of the cell. Both factors-the availability of advantageous alleles and their establishment probability-depend on the plasmid copy number, and they often do so antagonistically. We find that in the interplay of various effects, a lower or higher copy number may maximize the probability of evolutionary rescue. The decisive factor is the dominance relationship between mutant and wild-type plasmids and potential gene dosage effects. Results from a simple model of antibiotic degradation indicate that the optimal plasmid copy number may depend on the specific environment encountered by the population.
Collapse
|
2
|
|
3
|
Yang Q, Li M, Spiller OB, Andrey DO, Hinchliffe P, Li H, MacLean C, Niumsup P, Powell L, Pritchard M, Papkou A, Shen Y, Portal E, Sands K, Spencer J, Tansawai U, Thomas D, Wang S, Wang Y, Shen J, Walsh T. Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nat Commun 2017; 8:2054. [PMID: 29233990 PMCID: PMC5727292 DOI: 10.1038/s41467-017-02149-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/09/2017] [Indexed: 12/20/2022] Open
Abstract
MCR-1 is a lipid A modifying enzyme that confers resistance to the antibiotic colistin. Here, we analyse the impact of MCR-1 expression on E. coli morphology, fitness, competitiveness, immune stimulation and virulence. Increased expression of mcr-1 results in decreased growth rate, cell viability, competitive ability and significant degradation in cell membrane and cytoplasmic structures, compared to expression of catalytically inactive MCR-1 (E246A) or MCR-1 soluble component. Lipopolysaccharide (LPS) extracted from mcr-1 strains induces lower production of IL-6 and TNF, when compared to control LPS. Compared to their parent strains, high-level colistin resistance mutants (HLCRMs) show reduced fitness (relative fitness is 0.41-0.78) and highly attenuated virulence in a Galleria mellonella infection model. Furthermore, HLCRMs are more susceptible to most antibiotics than their respective parent strains. Our results show that the bacterium is challenged to find a delicate equilibrium between expression of MCR-1-mediated colistin resistance and minimalizing toxicity and thus ensuring cell survival.
Collapse
Affiliation(s)
- Qiue Yang
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK.
| | - Mei Li
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - Owen B Spiller
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - Diego O Andrey
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
- Service of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva, Switzerland
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Craig MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Pannika Niumsup
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Lydia Powell
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Manon Pritchard
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Andrei Papkou
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Yingbo Shen
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Edward Portal
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - Kirsty Sands
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Uttapoln Tansawai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - David Thomas
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Shaolin Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yang Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Timothy Walsh
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
4
|
pBR322 vectors having tetracycline-dependent replication. Plasmid 2016; 84-85:20-6. [PMID: 26876942 DOI: 10.1016/j.plasmid.2016.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/04/2016] [Accepted: 02/10/2016] [Indexed: 12/16/2022]
Abstract
Few Escherichia coli cloning vectors are available that can both be stably maintained and efficiently cured. One such vector is pAM34, a pBR332 derivative constructed by Gil and Bouché (1991). Replication of this plasmid is driven by the lacZYA promoter under control of a gratuitous inducer. However, lac operator-repressor interactions are also used to regulate many expression systems which limit the utility of pAM34. In this report pAM34 has been modified by replacement of the lac regulatory elements with those of the transposon Tn10 tetracycline resistance module. This resulted in medium copy number plasmids that are dependent on the presence of tetracycline (or less satisfactorily, anhydrotetracycline) for replication. The tetracycline-dependent plasmids are rapidly lost in the absence of tetracycline and plasmid loss is markedly accelerated when the host strain expresses a tetracycline efflux pump.
Collapse
|
5
|
Heravi KM, Watzlawick H, Altenbuchner J. Development of an anhydrotetracycline-inducible expression system for expression of a neopullulanase in B. subtilis. Plasmid 2015; 82:35-42. [PMID: 26455535 DOI: 10.1016/j.plasmid.2015.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 11/25/2022]
Abstract
Bacillus subtilis is a widely used bacterium for production of heterologous and homologous proteins. The primary challenge in the production of proteins in B. subtilis is choosing a relevant expression system. In this study, we developed a robust expression system based on optimized PtetR of transposon Tn1721, which is repressible by its specific repressor, TetR. The first step of this work was focused on the optimization of structure and core elements of Tn1721 anhydrotetracycline-inducible promoters, PtetA and PtetR. Both promoters were inserted upstream of eGFP on a pUB110-derivative with high copy number. Reduction of the 18 bp spacer region of both PtetA and PtetR to 17 bp significantly increased their strength in B. subtilis. Nevertheless, only the optimized PtetR with 17 bp spacer region (PtetR2) directed high level of eGFP expression. In the second step, regulation of the system was optimized by testing the expression of tetR using well-known promoters, such as PmtlA, PmtlR, PptsG and PpenP. Expression of tetR by PptsG resulted in a tight regulation of PtetR2-eGFP showing 44-fold induction. By using the final expression plasmid in B. subtilis, neopullulanase was produced up to 15% of the total soluble protein.
Collapse
Affiliation(s)
- Kambiz Morabbi Heravi
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Hildegard Watzlawick
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Josef Altenbuchner
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
A series of medium and high copy number arabinose-inducible Escherichia coli expression vectors compatible with pBR322 and pACYC184. Plasmid 2015; 81:21-6. [PMID: 26021570 DOI: 10.1016/j.plasmid.2015.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/24/2015] [Accepted: 03/03/2015] [Indexed: 11/22/2022]
Abstract
The original pBAD24 plasmid and the derived lower copy number (the pBAD322 series) expression vectors have been widely used in Escherichia coli, Salmonella enterica, and related bacteria. However, a flexible pBAD expression system has been available only in pMB1 (ColE1) vectors. We report a series of pBAD vectors that replicate using the origin of plasmid RSF1030 that are compatible with pMB1 (ColE1) and p15A (pACYC) vectors. Both high (≥pBAD24) and medium (~pBAD322) copy number plasmids encoding resistance to ampicillin, chloramphenicol, kanamycin, tetracycline, spectinomycin/streptomycin, gentamycin, or trimethoprim are available.
Collapse
|
7
|
Abstract
The origin of mutations under selection has been intensively studied using the Cairns-Foster system, in which cells of an Escherichia coli lac mutant are plated on lactose and give rise to 100 Lac+ revertants over several days. These revertants have been attributed variously to stress-induced mutagenesis of nongrowing cells or to selective improvement of preexisting weakly Lac+ cells with no mutagenesis. Most revertant colonies (90%) contain stably Lac+ cells, while others (10%) contain cells with an unstable amplification of the leaky mutant lac allele. Evidence is presented that both stable and unstable Lac+ revertant colonies are initiated by preexisting cells with multiple copies of the F'lac plasmid, which carries the mutant lac allele. The tetracycline analog anhydrotetracycline (AnTc) inhibits growth of cells with multiple copies of the tetA gene. Populations with tetA on their F'lac plasmid include rare cells with an elevated plasmid copy number and multiple copies of both the tetA and lac genes. Pregrowth of such populations with AnTc reduces the number of cells with multiple F'lac copies and consequently the number of Lac+ colonies appearing under selection. Revertant yield is restored rapidly by a few generations of growth without AnTc. We suggest that preexisting cells with multiple F'lac copies divide very little under selection but have enough energy to replicate their F'lac plasmids repeatedly until reversion initiates a stable Lac+ colony. Preexisting cells whose high-copy plasmid includes an internal lac duplication grow under selection and produce an unstable Lac+ colony. In this model, all revertant colonies are initiated by preexisting cells and cannot be stress induced.
Collapse
|
8
|
Quiroz TS, Nieto PA, Tobar HE, Salazar-Echegarai FJ, Lizana RJ, Quezada CP, Santiviago CA, Araya DV, Riedel CA, Kalergis AM, Bueno SM. Excision of an unstable pathogenicity island in Salmonella enterica serovar Enteritidis is induced during infection of phagocytic cells. PLoS One 2011; 6:e26031. [PMID: 22039432 PMCID: PMC3198454 DOI: 10.1371/journal.pone.0026031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 09/15/2011] [Indexed: 12/28/2022] Open
Abstract
The availability of the complete genome sequence of several Salmonella enterica serovars has revealed the presence of unstable genetic elements in these bacteria, such as pathogenicity islands and prophages. This is the case of Salmonella enterica serovar Enteritidis (S. Enteritidis), a bacterium that causes gastroenteritis in humans and systemic infection in mice. The whole genome sequence analysis for S. Enteritidis unveiled the presence of several genetic regions that are absent in other Salmonella serovars. These regions have been denominated “regions of difference” (ROD). In this study we show that ROD21, one of such regions, behaves as an unstable pathogenicity island. We observed that ROD21 undergoes spontaneous excision by two independent recombination events, either under laboratory growth conditions or during infection of murine cells. Importantly, we also found that one type of excision occurred at higher rates when S. Enteritidis was residing inside murine phagocytic cells. These data suggest that ROD21 is an unstable pathogenicity island, whose frequency of excision depends on the environmental conditions found inside phagocytic cells.
Collapse
Affiliation(s)
- Tania S. Quiroz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela A. Nieto
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo E. Tobar
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco J. Salazar-Echegarai
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo J. Lizana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina P. Quezada
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Daniela V. Araya
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Facultad de Ciencias Biológicas y Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
9
|
Meyer JR, Agrawal AA, Quick RT, Dobias DT, Schneider D, Lenski RE. Parallel changes in host resistance to viral infection during 45,000 generations of relaxed selection. Evolution 2010; 64:3024-34. [PMID: 20550574 DOI: 10.1111/j.1558-5646.2010.01049.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dynamics of host susceptibility to parasites are often influenced by trade-offs between the costs and benefits of resistance. We assayed changes in the resistance to three viruses in six lines of Escherichia coli that had been evolving for almost 45,000 generations in their absence. The common ancestor of these lines was completely resistant to T6, partially resistant to T6* (a mutant of T6 with altered host range), and sensitive to λ. None of the populations changed with respect to resistance to T6, whereas all six evolved increased susceptibility to T6*, probably ameliorating a cost of resistance. More surprisingly, however, the majority of lines evolved complete resistance to λ, despite not encountering that virus during this period. By coupling our results with previous work, we infer that resistance to λ evolved as a pleiotropic effect of a beneficial mutation that downregulated an unused metabolic pathway. The strong parallelism between the lines implies that selection had almost deterministic effects on the evolution of these patterns of host resistance. The opposite outcomes for resistance to T6* and λ demonstrate that the evolution of host resistance under relaxed selection cannot be fully predicted by simple trade-off models.
Collapse
Affiliation(s)
- Justin R Meyer
- Program in Ecology, Evolutionary Biology & Behavior, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Jacobs AC, Hood I, Boyd KL, Olson PD, Morrison JM, Carson S, Sayood K, Iwen PC, Skaar EP, Dunman PM. Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect Immun 2010; 78:1952-62. [PMID: 20194595 PMCID: PMC2863507 DOI: 10.1128/iai.00889-09] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/01/2009] [Accepted: 02/08/2010] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is an emerging bacterial pathogen of considerable health care concern. Nonetheless, relatively little is known about the organism's virulence factors or their regulatory networks. Septicemia and ventilator-associated pneumonia are two of the more severe forms of A. baumannii disease. To identify virulence factors that may contribute to these disease processes, genetically diverse A. baumannii clinical isolates were evaluated for the ability to proliferate in human serum. A transposon mutant library was created in a strain background that propagated well in serum and screened for members with decreased serum growth. The results revealed that disruption of A. baumannii phospholipase D (PLD) caused a reduction in the organism's ability to thrive in serum, a deficiency in epithelial cell invasion, and diminished pathogenesis in a murine model of pneumonia. Collectively, these results suggest that PLD is an A. baumannii virulence factor.
Collapse
Affiliation(s)
- Anna C. Jacobs
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, Department of Microbiology and Immunology, Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588-0511
| | - Indriati Hood
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, Department of Microbiology and Immunology, Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588-0511
| | - Kelli L. Boyd
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, Department of Microbiology and Immunology, Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588-0511
| | - Patrick D. Olson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, Department of Microbiology and Immunology, Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588-0511
| | - John M. Morrison
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, Department of Microbiology and Immunology, Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588-0511
| | - Steven Carson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, Department of Microbiology and Immunology, Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588-0511
| | - Khalid Sayood
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, Department of Microbiology and Immunology, Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588-0511
| | - Peter C. Iwen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, Department of Microbiology and Immunology, Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588-0511
| | - Eric P. Skaar
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, Department of Microbiology and Immunology, Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588-0511
| | - Paul M. Dunman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, Department of Microbiology and Immunology, Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588-0511
| |
Collapse
|
11
|
Palmer AC, Angelino E, Kishony R. Chemical decay of an antibiotic inverts selection for resistance. Nat Chem Biol 2010; 6:105-7. [PMID: 20081825 PMCID: PMC2811317 DOI: 10.1038/nchembio.289] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 11/10/2009] [Indexed: 11/09/2022]
Abstract
Antibiotics are often unstable, decaying into various compounds with potential biological activities. We found that as tetracycline degrades, the competitive advantage conferred to bacteria by resistance not only diminishes, but reverses to become a prolonged disadvantage due to the activities of more stable degradation products. Tetracycline decay can lead to net selection against resistance, which may help explain the puzzling coexistence of sensitive and resistant strains in natural environments.
Collapse
Affiliation(s)
- Adam C Palmer
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
12
|
Sapunaric FM, Levy SB. Substitutions in the interdomain loop of the Tn10 TetA efflux transporter alter tetracycline resistance and substrate specificity. Microbiology (Reading) 2005; 151:2315-2322. [PMID: 16000721 DOI: 10.1099/mic.0.27997-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cysteine replacement of Asp190, Glu192 and Ser201 residues in the cytoplasmic interdomain loop of the TetA(B) tetracycline efflux antiporter from Tn10 reduces tetracycline resistance [Tamura, N., Konishi, S., Iwaki, S., Kimura-Someya, T., Nada, S. & Yamaguchi, A. (2001). J Biol Chem 276, 20330-20339]. It was found that these Cys substitutions altered the substrate specificity of TetA(B), increasing the relative resistance to doxycycline and minocycline over that to tetracycline by three- to sixfold. Substitutions of Asp190 and Glu192 by Ala, Asn and Gln also impaired the ability of TetA(B) to mediate tetracycline resistance while Ser201Ala and Ser201Thr substitutions did not. A Leu9Phe substitution in the first transmembrane helix of TetA(B) suppressed the Ser201Cys mutation, undoing the alterations in resistance and specificity. That the interdomain loop might contact substrate during transport, as is suggested from its role in substrate specificity, is unexpected considering that the primary sequence in the loop is not conserved among a group of otherwise homologous TetA proteins. However, in the interdomain loop of 11 of 14 homologous TetA efflux proteins, computational analysis revealed a short alpha-helix, which includes some residues affecting activity and substrate specificity. Perhaps this conserved secondary structure accounts for the role of the non-conserved interdomain loop in TetA function.
Collapse
Affiliation(s)
- Frédéric M Sapunaric
- The Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | - Stuart B Levy
- The Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
13
|
Gibreel A, Tracz DM, Nonaka L, Ngo TM, Connell SR, Taylor DE. Incidence of antibiotic resistance in Campylobacter jejuni isolated in Alberta, Canada, from 1999 to 2002, with special reference to tet(O)-mediated tetracycline resistance. Antimicrob Agents Chemother 2004; 48:3442-50. [PMID: 15328109 PMCID: PMC514748 DOI: 10.1128/aac.48.9.3442-3450.2004] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Of 203 human clinical isolates of Campylobacter jejuni from Alberta, Canada (1999 to 2002), 101 isolates (50%) were resistant to at least 64 microg of tetracycline/ml, with four isolates exhibiting higher levels of tetracycline resistance (512 microg/ml). In total, the MICs for 37% of tetracycline-resistant isolates (256 to 512 microg/ml) were higher than those previously reported in C. jejuni (64 to 128 microg/ml). In the tetracycline-resistant clinical isolates, 67% contained plasmids and all contained the tet(O) gene. Four isolates resistant to high levels of tetracycline (MIC = 512 microg/ml) contained plasmids carrying the tet(O) gene, which could be transferred to other isolates of C. jejuni. The tetracycline MICs for transconjugants were comparable to those of the donors. Cloning of tet(O) from the four high-level tetracycline-resistant isolates conferred an MIC of 32 microg/ml for Escherichia coli DH5alpha. In contrast, transfer to a strain of C. jejuni by using mobilization conferred an MIC of 128 microg/ml. DNA sequence analysis determined that the tet(O) genes encoding lower MICs (64 to 128 microg/ml) were identical to one other, although the tet(O) genes encoding a 512-microg/ml MIC demonstrated several nucleotide substitutions. The quinolone resistance determining region of four ciprofloxacin-resistant isolates (2%) was analyzed, and resistance was associated with a chromosomal mutation in the gyrA gene resulting in a Thr-86-Ile substitution. In addition, six kanamycin-resistant isolates contained large plasmids that carry the aphA-3 marker coding for 3'-aminoglycoside phosphotransferase. Resistance to erythromycin was not detected in 203 isolates. In general, resistance to most antibiotics in C. jejuni remains low, except for resistance to tetracycline, which has increased from about 8 to 50% over the past 20 years.
Collapse
Affiliation(s)
- Amera Gibreel
- Department of Medical Microbiology and Immunology, 1-28 Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Gene regulation by tetracyclines has become a widely-used tool to study gene functions in pro- and eukaryotes. This regulatory system originates from Gram-negative bacteria, in which it fine-tunes expression of a tetracycline-specific export protein mediating resistance against this antibiotic. This review attempts to describe briefly the selective pressures governing the evolution of tetracycline regulation, which have led to the unique regulatory properties underlying its success in manifold applications. After discussing the basic mechanisms we will present the large variety of designed alterations of activities which have contributed to the still growing tool-box of components available for adjusting the regulatory properties to study gene functions in different organisms or tissues. Finally, we provide an overview of the various experimental setups available for pro- and eukaryotes, and touch upon some highlights discovered by the use of tetracycline-dependent gene regulation.
Collapse
Affiliation(s)
- Christian Berens
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | | |
Collapse
|
15
|
Sapunaric FM, Levy SB. Second-site suppressor mutations for the serine 202 to phenylalanine substitution within the interdomain loop of the tetracycline efflux protein Tet(C). J Biol Chem 2003; 278:28588-92. [PMID: 12766164 DOI: 10.1074/jbc.m302658200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine 202 to phenylalanine substitution within the cytoplasmic interdomain loop of Tet(C) greatly reduces tetracycline resistance and efflux activity (Saraceni-Richards, C. A., and Levy, S. B. (2000) J. Biol. Chem. 275, 6101-6106). Second-site suppressor mutations were identified following hydroxylamine and nitrosoguanidine mutagenesis. Three mutations, L11F in transmembrane 1 (TM1), A213T in the central interdomain loop, and A270V in cytoplasmic loop 8-9, restored a wild type level of resistance and an active efflux activity in Escherichia coli cells bearing the mutant tet(C) gene. The Tet S202F protein with the additional A270V mutation was expressed in amounts comparable with the original mutant, whereas L11F and A213T Tet(C) protein mutants were overexpressed. Introduction of each single mutation into the wild type tet(C) gene by site-directed mutagenesis did not alter tetracycline resistance or efflux activity. These secondary mutations may restore resistance by promoting a conformational change in the protein to accommodate the S202F mutation. The data demonstrate an interaction of the interdomain loop with other distant regions of the protein and support a role of the interdomain loop in mediating tetracycline resistance.
Collapse
Affiliation(s)
- Frederic M Sapunaric
- Center for Adaptation Genetics and Drug Resistance and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
16
|
Berens C, Hillen W. Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3109-21. [PMID: 12869186 DOI: 10.1046/j.1432-1033.2003.03694.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Tet repressor protein (TetR) regulates transcription of a family of tetracycline (tc) resistance determinants in Gram-negative bacteria. The resistance protein TetA, a membrane-spanning H+-[tc.M]+ antiporter, must be sensitively regulated because its expression is harmful in the absence of tc, yet it has to be expressed before the drugs' concentration reaches cytoplasmic levels inhibitory for protein synthesis. Consequently, TetR shows highly specific tetO binding to reduce basal expression and high affinity to tc to ensure sensitive induction. Tc can cross biological membranes by diffusion enabling this inducer to penetrate the majority of cells. These regulatory and pharmacological properties are the basis for application of TetR to selectively control the expression of single genes in lower and higher eukaryotes. TetR can be used for that purpose in some organisms without further modifications. In mammals and in a large variety of other organisms, however, eukaryotic transcriptional activator or repressor domains are fused to TetR to turn it into an efficient regulator. Mechanistic understanding and the ability to engineer and screen for mutants with specific properties allow tailoring of the DNA recognition specificity, the response to inducer tc and the dimerization specificity of TetR-based eukaryotic regulators. This review provides an overview of the TetR properties as they evolved in bacteria, the functional modifications necessary to transform it into a convenient, specific and efficient regulator for use in eukaryotes and how the interplay between structure--function studies in bacteria and specific requirements of particular applications in eukaryotes have made it a versatile and highly adaptable regulatory system.
Collapse
Affiliation(s)
- Christian Berens
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
17
|
Kimura T, Ohnuma M, Sawai T, Yamaguchi A. Membrane topology of the transposon 10-encoded metal-tetracycline/H+ antiporter as studied by site-directed chemical labeling. J Biol Chem 1997; 272:580-5. [PMID: 8995300 DOI: 10.1074/jbc.272.1.580] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The transposon (Tn) 10-encoded metal-tetracycline/H+ antiporter (Tn10-TetA) is predicted to have a membrane topology involving 12 transmembrane domains on the basis of the hydropathy profile of its sequence and the results of limited proteolysis; however, the experimental results of limited proteolysis are not enough to confirm the topology because proteases cannot gain access from the periplasmic side (Eckert, B., and Beck, C. F. (1989) J. Biol. Chem. 264, 11663-11670). One or two cysteine residues were introduced into each predicted hydrophilic loop or the N-terminal segment of Tn10-TetA by site-directed mutagenesis, and then the topology of the protein was determined by examining whether labeling of the introduced Cys residue by membrane-permeant [14C]N-ethylmaleimide ([14C]NEM) was prevented by preincubation of intact cells with the membrane-impermeant maleimide, 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid (AMS). The binding of [14C]NEM to the S36C (loop 1-2), L97C (loop 3-4), S156C (loop 5-6), R238C (loop 7-8), S296C (loop 9-10), Y357C, and D365C (loop 10-11) mutants was completely blocked by pretreatment with AMS, indicating that these residues are located on the periplasmic surface. In contrast, [14C]NEM binding to the S4C (N-terminal segment), S65C (loop 2-3), D120C (loop 4-5), S199C and S201C (loop 6-7), T270C (loop 8-9), and S328C (loop 10-11) mutants was not affected by pretreatment with AMS, indicating that these residues are on the cytoplasmic surface. These results for the first time thoroughly confirm the 12-transmembrane topology of the metal-tetracycline/H+ antiporter.
Collapse
Affiliation(s)
- T Kimura
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Japan
| | | | | | | |
Collapse
|
18
|
Kimura T, Yamaguchi A. Asp-285 of the metal-tetracycline/H+ antiporter of Escherichia coli is essential for substrate binding. FEBS Lett 1996; 388:50-2. [PMID: 8654589 DOI: 10.1016/0014-5793(96)00514-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The transposon Tn10-encoded metal-tetracycline/H+ antiporter (TetA(B)) was preferentially photolabeled when [3H]tetracycline was irradiated in the presence of energized inverted membrane vesicles containing the TetA protein. The degree of labeling depended on the duration of irradiation and the energization of the membrane. Photolabeling was not observed in vesicles containing the Asp-285 --> Asn mutant TetA protein, indicating that Asp-285 participates in the substrate binding or the step(s) prior to substrate binding.
Collapse
Affiliation(s)
- T Kimura
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | | |
Collapse
|
19
|
Abstract
We have constructed a cloning vector based on plasmid mini-F for use in Escherichia coli. Plasmid pZC320 consists of the ori-2 replication unit of F that confers very low copy number (lcn), and includes the sop partition functions to insure stable plasmid maintenance in the absence of selection. A multiple cloning site (MCS) containing 16 unique restriction sites is located within the 5' end of the lacZ alpha gene. Expression of lacZ alpha is under the control of the wild-type lactose operator/promoter (lacOP) region and is efficiently repressed by the lacI repressor. Clones containing inserts can be detected using the blue/white screen for beta-galactosidase (beta Gal). A T7 promoter allows transcription of cloned inserts in the presence of T7 RNA polymerase. We have demonstrated the use of this lcn vector for cloning the regulated tetracycline-resistance genes from Tn10, which confer only low-level resistance when present at high copy number.
Collapse
Affiliation(s)
- J Shi
- Department of Microbiology and Immunology, University of Kentucky, Lexington 40536-0084, USA
| | | |
Collapse
|
20
|
McMurry LM, Levy SB. The NH2-terminal half of the Tn10-specified tetracycline efflux protein TetA contains a dimerization domain. J Biol Chem 1995; 270:22752-7. [PMID: 7559401 DOI: 10.1074/jbc.270.39.22752] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The 43.1-kDa tetracycline-cation/proton antiporter TetA from Tn10 comprises two equal-sized domains, alpha and beta (amino-terminal and carboxyl-terminal halves, respectively). An inactivating mutation in the alpha domain can complement a mutation on a second polypeptide in the beta domain to restore partial tetracycline resistance in bacterial cells, suggesting that intermolecular interactions permit this transport protein to act as a multimer. In the present studies, multimer formation was examined in mixtures of dodecylmaltoside extracts of membranes from Escherichia coli cells containing different TetA derivatives. TetA, TetA alpha, and TetA beta were each fused genetically to a six-histidine carboxyl-terminal tail. The ability of these fusions, immobilized on a nickel affinity column, to bind wild type TetA or other Tet fusions was determined. An interaction between alpha domains on different polypeptides which resulted in multimerization was seen. The binding was specific for Tet protein and did not occur with other membrane proteins or another polyhistidine fusion protein. No alpha-beta interactions were detected by this method, although they are postulated to occur in the intact cell based on the alpha-beta genetic complementations. A dimeric model for TetA having intermolecular alpha-alpha and alpha-beta interactions is presented.
Collapse
Affiliation(s)
- L M McMurry
- Center for Adaptation Genetics and Drug Resistance, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
21
|
Cherepanov PP, Wackernagel W. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 1995; 158:9-14. [PMID: 7789817 DOI: 10.1016/0378-1119(95)00193-a] [Citation(s) in RCA: 1518] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two cassettes with tetracycline-resistance (TcR) and kanamycin-resistance (KmR) determinants have been developed for the construction of insertion and deletion mutants of cloned genes in Escherichia coli. In both cassettes, the resistance determinants are flanked by the short direct repeats (FRT sites) required for site-specific recombination mediated by the yeast Flp recombinase. In addition, a plasmid with temperature-sensitive replication for temporal production of the Flp enzyme in E. coli has been constructed. After a gene disruption or deletion mutation is constructed in vitro by insertion of one of the cassettes into a given gene, the mutated gene is transferred to the E. coli chromosome by homologous recombination and selection for the antibiotic resistance provided by the cassette. If desired, the resistance determinant can subsequently be removed from the chromosome in vivo by Flp action, leaving behind a short nucleotide sequence with one FRT site and with no polar effect on downstream genes. This system was applied in the construction of an E. coli endA deletion mutation which can be transduced by P1 to the genetic background of interest using TcR as a marker. The transductant can then be freed of the TcR if required.
Collapse
|
22
|
KARCHER SUSANJ. TRANSPOSON MUTAGENESIS OF Escherichia coli. Mol Biol 1995. [DOI: 10.1016/b978-012397720-5.50035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
ANTIBIOTIC INFORMATION. Mol Biol 1995. [DOI: 10.1016/b978-012397720-5.50044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Allen NE. Biochemical mechanisms of resistance to non-cell wall antibacterial agents. PROGRESS IN MEDICINAL CHEMISTRY 1995; 32:157-238. [PMID: 8577918 DOI: 10.1016/s0079-6468(08)70454-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- N E Allen
- Infectious Disease Research, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
25
|
Griffith JK, Cuellar DH, Fordyce CA, Hutchings KG, Mondragon AA. Structure and function of the class C tetracycline/H+ antiporter: three independent groups of phenotypes are conferred by TetA (C). Mol Membr Biol 1994; 11:271-7. [PMID: 7711837 DOI: 10.3109/09687689409160437] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The class C tetracycline/H+ antiporter, TetA(C), confers nine distinct phenotypes in Escherichia coli: resistance to tetracycline, reduced culture density at stationary phase (growth yield), increased supercoiling of plasmid DNA, delayed growth in succinate minimal medium, complementation of potassium uptake defects, increased susceptibility to cadmium, increased susceptibility to fusaric acid, increased susceptibility to bleomycin and increased susceptibility to several classes of cationic aminoglycoside antibiotics. These nine phenotypes were resolved into three 'linkage' groups based on their patterns of suppression by mutations of the tetA(C) gene of plasmid pBR322. Group I includes resistance to tetracycline, increased susceptibility to cadmium and reduced growth yield. Group II includes delayed growth in succinate minimal medium and complementation of potassium uptake defects. Group III includes increased supercoiling of plasmid DNA and increased susceptibilities to fusaric acid, bleomycin and cationic aminoglycosides. Phenotypes of Groups II and III, but not Group I, also were conferred by a chimeric gene encoding a fusion between the N-terminal 34 residues of TetA(C) and the C-terminal 429 residues of a structurally-similar protein, the E. coli galactose/H+ symporter, GalP. In contrast, none of these phenotypes was conferred by a chimeric gene encoding a fusion between the N-terminal 34 residues of TetA(C) and a structurally-dissimilar protein, TEM beta-lactamase. These results demonstrate that the three groups of linked phenotypes are dependent on different elements of the TetA(C) amino acid sequence, implying that TetA(C) confers these phenotypes by at least three independent mechanisms.
Collapse
Affiliation(s)
- J K Griffith
- Department of Cell Biology, University of New Mexico School of Medicine, Albuquerque 87131
| | | | | | | | | |
Collapse
|
26
|
Lenski RE, Simpson SC, Nguyen TT. Genetic analysis of a plasmid-encoded, host genotype-specific enhancement of bacterial fitness. J Bacteriol 1994; 176:3140-7. [PMID: 8195066 PMCID: PMC205481 DOI: 10.1128/jb.176.11.3140-3147.1994] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In the absence of antibiotics, carriage of pACYC184 reduces the competitive fitness of an Escherichia coli B genotype that was not previously selected for plasmid carriage, relative to that of an isogenic plasmid-free competitor. However, a host genotype propagated with the plasmid for 500 generations evolved an unexpected competitive advantage from plasmid carriage, relative to its own isogenic plasmid-free segregant. We manipulated the pACYC184 genome in order to identify the plasmid-encoded function that was required for the enhancement of the coevolved host genotype's competitive fitness. Inactivation of the plasmid-encoded tetracycline resistance gene, by deletion of either the promoter region or the entire gene, eliminated the beneficial effect of plasmid carriage for the coevolved host. This beneficial effect for the coevolved host was also manifest with pBR322, which contains a tetracycline resistance gene identical to that of pACYC184 but is otherwise heterologous.
Collapse
Affiliation(s)
- R E Lenski
- Center for Microbial Ecology, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
27
|
Lenski RE, Souza V, Duong LP, Phan QG, Nguyen TN, Bertrand KP. Epistatic effects of promoter and repressor functions of the Tn10 tetracycline-resistance operon of the fitness of Escherichia coli. Mol Ecol 1994; 3:127-35. [PMID: 8019689 DOI: 10.1111/j.1365-294x.1994.tb00113.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have been studying the effects of expression of plasmid-borne, Tn10-encoded, tetracycline resistance on the fitness of Escherichia coli K12. We previously demonstrated large reductions in fitness resulting from induced or constitutive expression of the resistance protein; however, any residual expression by the repressed operon was so slight that possession of an inducible resistance function imposed essentially no burden in the absence of antibiotic. Here, we demonstrate two distinct disadvantages for inducible genotypes relative to isogenic constitutive constructs. During the transition from antibiotic-free to antibiotic-containing media, the inducible genotype experiences a longer lag phase prior to growth. In the sustained presence of antibiotic, full induction of the resistance function in the inducible genotype is prevented by the continued action of its repressor. However, these disadvantages may be reduced by increasing the strength of the promoter for the resistance gene in the inducible genotype. Simultaneous consideration of the mode of gene regulation (i.e. constitutive or inducible) and the strength of the resistance-gene promoter (i.e. maximum level of expression) indicates an adaptive landscape with very strong epistasis and, perhaps, multiple fitness peaks.
Collapse
Affiliation(s)
- R E Lenski
- Centre for Microbial Ecology, Michigan State University, East Lansing 48824
| | | | | | | | | | | |
Collapse
|
28
|
Allard JD, Bertrand KP. Sequence of a class E tetracycline resistance gene from Escherichia coli and comparison of related tetracycline efflux proteins. J Bacteriol 1993; 175:4554-60. [PMID: 8331085 PMCID: PMC204899 DOI: 10.1128/jb.175.14.4554-4560.1993] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We determined the nucleotide sequence of the class E tetA gene on plasmid pSL1456 from Escherichia coli SLH1456A. The deduced amino acid sequence of the class E TetA protein shows 50 to 56% identity with the sequences of five related TetA proteins (classes A through D and G). Hydrophobicity profiles identify 12 putative transmembrane segments with similar boundaries in all six TetA sequences. The N-terminal alpha domain of the six sequences is more highly conserved than the C-terminal beta domain; the central hydrophilic loop connecting the alpha and beta domains is the least conserved region. Amino acid residues that have been shown to be important for class B (Tn10) TetA function are conserved in all six TetA sequences. Unlike the class B tetA gene, the class D and E tetA genes do not exhibit a negative gene dosage effect when present on multicopy plasmids derived from pACYC177.
Collapse
Affiliation(s)
- J D Allard
- Department of Microbiology, Washington State University, Pullman 99164
| | | |
Collapse
|
29
|
Lenski RE. Evaluating the fate of genetically modified microorganisms in the environment: are they inherently less fit? EXPERIENTIA 1993; 49:201-9. [PMID: 8458406 DOI: 10.1007/bf01923527] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Genetically modified microorganisms hold great promise for environmental applications. Nonetheless, some may have unintended adverse effects. Of particular concern for risk assessment is the simple fact that microorganisms are self-replicating entities, so that it may be impossible to control an adverse effect simply by discontinuing further releases of the organism. It has been suggested, however, that genetically modified microorganisms will be poor competitors and therefore unable to persist in the wild due to energetic inefficiency, disruption of genomic coadaptation, or domestication. Many studies support the hypothesis that genetically modified microorganisms are less fit than their progenitors, but there are a few noteworthy counter-examples in which genetic modifications unexpectedly enhance competitive fitness. Furthermore, subsequent evolution may eliminate the maladaptive effects of some genes, increasing the likelihood that a modified organism or its engineered genes will persist. Evaluating the likelihood that a genetically modified microorganism or its engineered genes will persist is a complex ecological and evolutionary problem. Therefore, an efficient regulatory framework would require such evaluations only when there are plausible scenarios for significant adverse environmental effects.
Collapse
Affiliation(s)
- R E Lenski
- Center for Microbial Ecology, Michigan State University, East Lansing 48824-1325
| |
Collapse
|
30
|
Guay GG, Rothstein DM. Expression of the tetK gene from Staphylococcus aureus in Escherichia coli: comparison of substrate specificities of TetA(B), TetA(C), and TetK efflux proteins. Antimicrob Agents Chemother 1993; 37:191-8. [PMID: 8452348 PMCID: PMC187637 DOI: 10.1128/aac.37.2.191] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The tetK gene, which encodes a tetracycline efflux pump from Staphylococcus aureus, was expressed in Escherichia coli by using an inducible, low-level expression system. The tetK gene, as well as the tetA(B) gene from the transposon Tn10 and the tetA(C) gene from plasmid pBR322, was subjected to the regulatory control of the lac repressor, and resistance to tetracycline was measured as a function of the isopropyl-beta-D-thiogalactopyranoside concentration. The maximum resistance of the E. coli strain containing the tetK construct was comparable to the maximum resistance of the strain containing the tetA(C) construct but was less than the resistance of the strain containing the tetA(B) construct. Overexpression of the tetK, tetA(B), or tetA(C) genes was toxic. When expression was regulated so that resistance to tetracycline was comparable, then the TetA(B) and TetA(C) proteins conferred very similar levels of resistance to a variety of tetracycline derivatives. In contrast, the TetK protein was less capable of conferring resistance to the tetracycline derivatives minocycline, 6-deoxy-6-demethyltetracycline, and doxycycline. The implications for the recognition of various tetracycline substituents by the TetK protein are discussed.
Collapse
Affiliation(s)
- G G Guay
- Department of Microbial Genetics, Lederle Laboratories, Pearl River, New York 10965
| | | |
Collapse
|
31
|
Yamaguchi A, Someya Y, Sawai T. Metal-tetracycline/H+ antiporter of Escherichia coli encoded by transposon Tn10. The role of a conserved sequence motif, GXXXXRXGRR, in a putative cytoplasmic loop between helices 2 and 3. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41755-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Allard J, Bertrand K. Membrane topology of the pBR322 tetracycline resistance protein. TetA-PhoA gene fusions and implications for the mechanism of TetA membrane insertion. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37116-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Yamaguchi A, Akasaka T, Ono N, Someya Y, Nakatani M, Sawai T. Metal-tetracycline/H+ antiporter of Escherichia coli encoded by transposon Tn10. Roles of the aspartyl residues located in the putative transmembrane helices. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42544-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
34
|
Roof SK, Allard JD, Bertrand KP, Postle K. Analysis of Escherichia coli TonB membrane topology by use of PhoA fusions. J Bacteriol 1991; 173:5554-7. [PMID: 1885532 PMCID: PMC208271 DOI: 10.1128/jb.173.17.5554-5557.1991] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alkaline phosphatase (PhoA) fusions to TonB amino acids 32, 60, 125, 207, and 239 (the carboxy terminus) all showed high PhoA activity; a PhoA fusion to TonB amino acid 12 was inactive. The full-length TonB-PhoA fusion protein was associated with the cytoplasmic membrane and retained partial TonB function. These results support a model in which TonB is anchored in the cytoplasmic membrane by its hydrophobic amino terminus, with the remainder of the protein, including its hydrophobic carboxy terminus, extending into the periplasm.
Collapse
Affiliation(s)
- S K Roof
- Department of Microbiology, Washington State University, Pullman 99164-4233
| | | | | | | |
Collapse
|
35
|
|
36
|
|
37
|
Yamaguchi A, Ono N, Akasaka T, Noumi T, Sawai T. Metal-tetracycline/H+ antiporter of Escherichia coli encoded by a transposon, Tn10. The role of the conserved dipeptide, Ser65-Asp66, in tetracycline transport. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)55428-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Taylor DE, Brose EC, Sherburne R. Molecular organization and expression of the tetracycline resistance (TetB1) determinant specified by IncHI1 plasmids. Curr Microbiol 1989. [DOI: 10.1007/bf01568935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Merlin TL, Davis GE, Anderson WL, Moyzis RK, Griffith JK. Aminoglycoside uptake increased by tet gene expression. Antimicrob Agents Chemother 1989; 33:1549-52. [PMID: 2684011 PMCID: PMC172700 DOI: 10.1128/aac.33.9.1549] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The expression of extrachromosomal tet genes not only confers tetracycline resistance but also increases the susceptibilities of gram-negative bacteria to commonly used aminoglycoside antibiotics. We investigated the possibility that tet expression increases aminoglycoside susceptibility by increasing bacterial uptake of aminoglycoside. Studies of [3H]gentamicin uptake in paired sets of Escherichia coli HB101 and Salmonella typhimurium LT2 expressing and not expressing tet showed that tet expression accelerates energy-dependent [3H]gentamicin uptake. Increased [3H]gentamicin uptake was accompanied by decreased bacterial protein synthesis and bacterial growth. Increased aminoglycoside uptake occurred whether tet expression was constitutive or induced, whether the tet gene was class B or C, and whether the tet gene was plasmid borne or integrated into the bacterial chromosome. tet expression produced no measurable change in membrane potential, suggesting that tet expression increases aminoglycoside uptake either by increasing the availability of specific carriers or by lowering the minimum membrane potential that is necessary for uptake.
Collapse
Affiliation(s)
- T L Merlin
- Laboratory Service, Albuquerque Veterans Administration Medical Center, New Mexico 87108
| | | | | | | | | |
Collapse
|
40
|
Eckert B, Beck CF. Overproduction of transposon Tn10-encoded tetracycline resistance protein results in cell death and loss of membrane potential. J Bacteriol 1989; 171:3557-9. [PMID: 2542231 PMCID: PMC210086 DOI: 10.1128/jb.171.6.3557-3559.1989] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
High-level expression of the Tn10 tetracycline resistance protein TetA in Escherichia coli caused partial collapse of the membrane potential, arrest of growth, and killing of the cells. Since alpha-methylglucoside transport was not affected, the overproduced TetA protein may cause not destruction of membrane structure but rather unrestricted translocation of protons and/or ions across the membrane.
Collapse
Affiliation(s)
- B Eckert
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Federal Republic of Germany
| | | |
Collapse
|
41
|
Walter EG, Taylor DE. Comparison of tellurite resistance determinants from the IncP alpha plasmid RP4Ter and the IncHII plasmid pHH1508a. J Bacteriol 1989; 171:2160-5. [PMID: 2539362 PMCID: PMC209872 DOI: 10.1128/jb.171.4.2160-2165.1989] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The tellurite resistance (Ter) determinants of the IncHII plasmid pHH1508a and the broad host range IncP alpha plasmid RP4Ter were cloned into pUC8, creating plasmids pDT1364 and pDT1558, respectively. The Ter region of pDT1364 was localized to a 1.25-kilobase region by using Tn1000 insertion mutagenesis. Insertions of Tn1000 into pDT1558 which resulted in tellurite sensitivity spanned 1.75 kilobases of DNA. No similarity between the restriction maps of these two plasmids was observed, and no homology could be detected by DNA-DNA hybridization. Expression in an in vitro transcription-translation system showed that pDT1364 encoded two polypeptides with molecular masses of 23 and 12 kilodaltons (kDa) which were not expressed by pUC8. Some of the Tn1000 insertion mutants did not express the 23-kDa protein. pDT1558 encoded a 40-kDa polypeptide which was not expressed by pUC8. Both Ter determinants were expressed constitutively. Our findings suggest that the mechanisms of Ter encoded by these two plasmids are different.
Collapse
Affiliation(s)
- E G Walter
- Department of Medical Microbiology and Infectious Diseases, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
42
|
Daugherty BL, Hotta K, Kumar C, Ahn YH, Zhu JD, Pestka S. Antisense RNA: effect of ribosome binding sites, target location, size, and concentration on the translation of specific mRNA molecules. GENE ANALYSIS TECHNIQUES 1989; 6:1-16. [PMID: 2472339 DOI: 10.1016/0735-0651(89)90007-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of plasmids were constructed to generate RNA complementary to the beta-galactosidase messenger RNA under control of the phage lambda PL promoter. These plasmids generate anti-lacZ mRNA bearing or lacking a synthetic ribosome binding site adjacent to the lambda PL promoter and/or the lacZ ribosome binding site in reverse orientation. Fragments of lacZ DNA from the 5' and/or the 3' region were used in these constructions. When these anti-mRNA molecules were produced in Escherichia coli 294, maximal inhibition of beta-galactosidase synthesis occurred when a functional ribosome binding site was present near the 5' end of the anti-mRNA and the anti-mRNA synthesized was complementary to the 5' region of the mRNA corresponding to the lacZ ribosome binding site and/or the 5'-coding sequence. Anti-mRNAs producing maximal inhibition of beta-galactosidase synthesis exhibited an anti-lacZ mRNA:normal lacZ mRNA ratio of 100:1 or higher. Those showing lower levels of inhibition exhibited much lower anti-lacZ mRNA:normal lacZ mRNA ratios. A functional ribosome binding site at the 5'-end was found to decrease the decay rate of the anti-lacZ mRNAs. In addition, the incorporation of a transcription terminator just downstream of the antisense segment provided for more efficient inhibition of lacZ mRNA translation due to synthesis of smaller and more abundant anti-lacZ mRNAs. The optimal constructions produced undetectable levels of beta-galactosidase synthesis.
Collapse
Affiliation(s)
- B L Daugherty
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635
| | | | | | | | | | | |
Collapse
|
43
|
Mulvey MR, Sorby PA, Triggs-Raine BL, Loewen PC. Cloning and physical characterization of katE and katF required for catalase HPII expression in Escherichia coli. Gene X 1988; 73:337-45. [PMID: 2977357 DOI: 10.1016/0378-1119(88)90498-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two genes, katE and katF, affecting the synthesis of catalase HPII in Escherichia coli, have been cloned. The multistep cloning protocol involved: screening for the tet gene in a transposon interrupting the genes, selecting DNA adjacent to the transposon, and using it to probe a library of wild-type DNA to select clones from which katE and katF were subcloned into pAT153. The clones were physically characterized and the presence of the genes confirmed by complementation of their respective mutations. The location of the transposon insertions in the two genes was determined by Southern blotting of genomic digests to further confirm the identity of the cloned genes. A 93-kDa protein, the same size as the subunit of HPII, was encoded by the katE plasmid, indicating that katE was the structural gene for HPII. A 44-kDa protein was encoded by the katF plasmid.
Collapse
Affiliation(s)
- M R Mulvey
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
44
|
Smith LD, Bertrand KP. Mutations in the Tn10 tet repressor that interfere with induction. Location of the tetracycline-binding domain. J Mol Biol 1988; 203:949-59. [PMID: 3062183 DOI: 10.1016/0022-2836(88)90120-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tetracycline induces transcription of the Tn10 tetracycline resistance gene (tetA) by binding to the tet repressor, thereby reducing the repressor's affinity for two operator sites that overlap the tet promoters. We characterized mutations in the tet repressor (tetRs mutations) that interfere with induction of tetA expression. The mutations were isolated on multicopy Tn10 tet plasmids by selecting for resistance to the inducer 5a,6-anhydrotetracycline. Under these conditions, maximal induction of tetA expression inhibits the growth of Escherichia coli K-12. DNA sequence analysis of 25 spontaneous tetRs mutations identified amino acid changes at 13 different positions clustered near the middle of the 207 amino acid residue sequence of tet repressor. This region (residues 64 to 107) is distinct from the bihelical DNA-binding motif of tet repressor (residues 26 to 47). The capacity of tetRs repressors to bind tet operator DNA and to respond to inducer was examined in vivo in tetA-lacZ fusion strains. In three cases, the capacity of tetRs repressors to bind tetracycline was examined in vitro using cell extracts enriched in repressor. Mutations 64Y (His64----Tyr) and 82H (Asn82----His) reduce the repressor's affinity for tetracycline more than 1000-fold and more than 100-fold, respectively, suggesting that His64 and Asn82 may be part of the inducer-binding site or directly involved in maintaining its conformation. Mutation 103I (Thr103----Ile) reduces the repressor's affinity for tetracycline less than tenfold, yet it interferes with induction to a greater extent than either 64Y or 82H, suggesting that 103I may also reduce the repressor's capacity to undergo a conformational change required for induction. The properties of tetRs mutants suggest that the region of amino acid residues 64 to 107 is involved in inducer binding and in signalling between the inducer-binding and operator-binding domains of the repressor.
Collapse
Affiliation(s)
- L D Smith
- Department of Microbiology and Molecular Genetics, University of California, Irvine 92717
| | | |
Collapse
|
45
|
|
46
|
Taylor DE, Walter EG, Sherburne R, Bazett-Jones DP. Structure and location of tellurium deposited in Escherichia coli cells harbouring tellurite resistance plasmids. JOURNAL OF ULTRASTRUCTURE AND MOLECULAR STRUCTURE RESEARCH 1988; 99:18-26. [PMID: 3042886 DOI: 10.1016/0889-1605(88)90029-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The plasmids RP4Ter and pHH1508a, which belong to the P and HII incompatibility groups, respectively, confer resistance to potassium tellurite (K2TeO3) on Escherichia coli. The genes for tellurite resistance were cloned from each plasmid onto the vector pUC8 to create pDT1366 and pD1364, respectively. Unstained, unfixed bacteria carrying these plasmids contained black intracellular deposits when grown on media containing tellurite. Thin sections of these bacteria fixed with glutaraldehyde were prepared and examined by electron microscopy. The black deposits were located inside the cell and were frequently associated with the inner membrane of the bacterium. Bacteria containing pDT1366 or pDT1364, and therefore a higher gene dosage of the Ter determinant, contained more black deposits, but had a decreased resistance, as measured by the minimum inhibitory concentration using the agar dilution method. Using the technique of electron spectroscopic imaging, the black intracellular deposits were shown to contain predominantly reduced metallic tellurium, and significant amounts of oxygen or carbon, thereby confirming earlier results using X-ray diffraction analysis of whole cells.
Collapse
Affiliation(s)
- D E Taylor
- Department of Medical Microbiology and Infectious Diseases, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
47
|
Griffith JK, Kogoma T, Corvo DL, Anderson WL, Kazim AL. An N-terminal domain of the tetracycline resistance protein increases susceptibility to aminoglycosides and complements potassium uptake defects in Escherichia coli. J Bacteriol 1988; 170:598-604. [PMID: 3276661 PMCID: PMC210696 DOI: 10.1128/jb.170.2.598-604.1988] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Expression of extrachromosomal tet genes increased the susceptibility of gram-negative bacteria to specific aminoglycoside antibiotics. The magnitude of the increase in susceptibility was dependent on the amount and the class of the tet gene product (designated Tet) and the bacterial species in which the tet gene was expressed. Truncated Tet proteins that contained more than the first 33, but not more than the first 97, N-terminal amino acids of Tet also increased the susceptibility to aminoglycosides and complemented the potassium uptake defects in Escherichia coli. The primary structure of this N-terminal Tet fragment has the hydropathic characteristics of a multimeric, transmembrane structure and is highly conserved in three different classes of Tet proteins.
Collapse
Affiliation(s)
- J K Griffith
- Department of Cell Biology, University of New Mexico School of Medicine, Albuquerque 87131
| | | | | | | | | |
Collapse
|
48
|
Berg CM, Liu L, Wang B, Wang MD. Rapid identification of bacterial genes that are lethal when cloned on multicopy plasmids. J Bacteriol 1988; 170:468-70. [PMID: 3275630 PMCID: PMC210670 DOI: 10.1128/jb.170.1.468-470.1988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A procedure to identify genes that are lethal when cloned on multicopy plasmids was developed. It depends on the ability of mini-Mu plasmid elements to be used for both in vivo cloning and generalized transduction of enterobacterial genes. The feasibility of this procedure was demonstrated by using the tetA gene of Tn10, which is lethal when in multiple copies in the presence of 25 micrograms of tetracycline per ml.
Collapse
Affiliation(s)
- C M Berg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06268
| | | | | | | |
Collapse
|
49
|
Keeler KH. Can we guarantee the safety of genetically engineered organisms in the environment? Crit Rev Biotechnol 1988; 8:85-97. [PMID: 3063389 DOI: 10.3109/07388558809150538] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Concern about the safety of genetically engineered organisms in the environment arises from the undesirable results of earlier new technologies and introduced organisms. Progress towards safe release is complicated by the varied views of a diverse society, confusion of process and product, problems with existing methods, and the lack of practical experience with real releases. No categorically safe novel organisms exist, but a progressive series of releases should allow risks to be systematically reduced.
Collapse
Affiliation(s)
- K H Keeler
- School of Biological Sciences, University of Nebraska, Lincoln
| |
Collapse
|
50
|
Abstract
Antibiotic use is often blamed for increases in the prevalence of infections due to antibiotic-resistance bacteria. This paper clarifies the effects of antibiotic exposure on bacterial antibiotic resistance by developing models that describe the growth of competing bacterial strains whose antibiotic sensitivities differ. The analysis generalizes logistic growth models to include first-order growth parameters that are arbitrary functions of antibiotic levels. It derives closed-form solutions for population size, composition, and average antibiotic sensitivities as functions of antibiotic exposure. Strategies to minimize the bacterial population size are analyzed in the context of the model. These heuristic models explore in formal terms the population dynamics thought to underlie resistance development.
Collapse
Affiliation(s)
- A M Garber
- Department of Medicine, Stanford University School of Medicine, California 94305
| |
Collapse
|