1
|
Fulton RL, Downs DM. Modulators of a robust and efficient metabolism: Perspective and insights from the Rid superfamily of proteins. Adv Microb Physiol 2023; 83:117-179. [PMID: 37507158 PMCID: PMC10642521 DOI: 10.1016/bs.ampbs.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Metabolism is an integrated network of biochemical pathways that assemble to generate the robust, responsive physiologies of microorganisms. Despite decades of fundamental studies on metabolic processes and pathways, our understanding of the nuance and complexity of metabolism remains incomplete. The ability to predict and model metabolic network structure, and its influence on cellular fitness, is complicated by the persistence of genes of unknown function, even in the best-studied model organisms. This review describes the definition and continuing study of the Rid superfamily of proteins. These studies are presented with a perspective that illustrates how metabolic complexity can complicate the assignment of function to uncharacterized genes. The Rid superfamily of proteins has been divided into eight subfamilies, including the well-studied RidA subfamily. Aside from the RidA proteins, which are present in all domains of life and prevent metabolic stress, most members of the Rid superfamily have no demonstrated physiological role. Recent progress on functional assignment supports the hypothesis that, overall, proteins in the Rid superfamily modulate metabolic processes to ensure optimal organismal fitness.
Collapse
Affiliation(s)
- Ronnie L Fulton
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, United States.
| |
Collapse
|
2
|
Mitra D, Vega-Rubin-de-Celis S, Royla N, Bernhardt S, Wilhelm H, Tarade N, Poschet G, Buettner M, Binenbaum I, Borgoni S, Vetter M, Kantelhardt EJ, Thomssen C, Chatziioannou A, Hell R, Kempa S, Müller-Decker K, Wiemann S. Abrogating GPT2 in triple-negative breast cancer inhibits tumor growth and promotes autophagy. Int J Cancer 2021; 148:1993-2009. [PMID: 33368291 DOI: 10.1002/ijc.33456] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Uncontrolled proliferation and altered metabolic reprogramming are hallmarks of cancer. Active glycolysis and glutaminolysis are characteristic features of these hallmarks and required for tumorigenesis. A fine balance between cancer metabolism and autophagy is a prerequisite of homeostasis within cancer cells. Here we show that glutamate pyruvate transaminase 2 (GPT2), which serves as a pivot between glycolysis and glutaminolysis, is highly upregulated in aggressive breast cancers, particularly the triple-negative breast cancer subtype. Abrogation of this enzyme results in decreased tricarboxylic acid cycle intermediates, which promotes the rewiring of glucose carbon atoms and alterations in nutrient levels. Concordantly, loss of GPT2 results in an impairment of mechanistic target of rapamycin complex 1 activity as well as the induction of autophagy. Furthermore, in vivo xenograft studies have shown that autophagy induction correlates with decreased tumor growth and that markers of induced autophagy correlate with low GPT2 levels in patient samples. Taken together, these findings indicate that cancer cells have a close network between metabolic and nutrient sensing pathways necessary to sustain tumorigenesis and that aminotransferase reactions play an important role in maintaining this balance.
Collapse
Affiliation(s)
- Devina Mitra
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Silvia Vega-Rubin-de-Celis
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Nadine Royla
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Stephan Bernhardt
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Heike Wilhelm
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nooraldeen Tarade
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Michael Buettner
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Ilona Binenbaum
- Department of Biology, University of Patras, Patras, Greece
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
- Division of Medical Informatics for Translational Oncology, German Cancer Research Centre, Heidelberg, Germany
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, Greece
| | - Simone Borgoni
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Martina Vetter
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Eva Johanna Kantelhardt
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Aristotelis Chatziioannou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
- e-NIOS PC, Athens, Greece
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Stefan Kempa
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute of Health (BIH), Berlin, Germany
| | - Karin Müller-Decker
- DKFZ Tumor Models Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Glutamate Racemase Is the Primary Target of β-Chloro-d-Alanine in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2016; 60:6091-9. [PMID: 27480853 PMCID: PMC5038272 DOI: 10.1128/aac.01249-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/21/2016] [Indexed: 01/18/2023] Open
Abstract
The increasing global prevalence of drug resistance among many leading human pathogens necessitates both the development of antibiotics with novel mechanisms of action and a better understanding of the physiological activities of preexisting clinically effective drugs. Inhibition of peptidoglycan (PG) biosynthesis and cross-linking has traditionally enjoyed immense success as an antibiotic target in multiple bacterial pathogens, except in Mycobacterium tuberculosis, where it has so far been underexploited. d-Cycloserine, a clinically approved antituberculosis therapeutic, inhibits enzymes within the d-alanine subbranch of the PG-biosynthetic pathway and has been a focus in our laboratory for understanding peptidoglycan biosynthesis inhibition and for drug development in studies of M. tuberculosis. During our studies on alternative inhibitors of the d-alanine pathway, we discovered that the canonical alanine racemase (Alr) inhibitor β-chloro–d-alanine (BCDA) is a very poor inhibitor of recombinant M. tuberculosis Alr, despite having potent antituberculosis activity. Through a combination of enzymology, microbiology, metabolomics, and proteomics, we show here that BCDA does not inhibit the d-alanine pathway in intact cells, consistent with its poor in vitro activity, and that it is instead a mechanism-based inactivator of glutamate racemase (MurI), an upstream enzyme in the same early stage of PG biosynthesis. This is the first report to our knowledge of inhibition of MurI in M. tuberculosis and thus provides a valuable tool for studying this essential and enigmatic enzyme and a starting point for future MurI-targeted antibacterial development.
Collapse
|
4
|
Downs DM, Ernst DC. From microbiology to cancer biology: the Rid protein family prevents cellular damage caused by endogenously generated reactive nitrogen species. Mol Microbiol 2015; 96:211-9. [PMID: 25620221 DOI: 10.1111/mmi.12945] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 01/03/2023]
Abstract
The Rid family of proteins is highly conserved and broadly distributed throughout the domains of life. Genetic and biochemical studies, primarily in Salmonella enterica, have defined a role for RidA in responding to endogenously generated reactive metabolites. The data show that 2-aminoacrylate (2AA), a reactive enamine intermediate generated by some pyridoxal 5'-phosphate-dependent enzymes, accumulates in the absence of RidA. The accumulation of 2AA leads to covalent modification and inactivation of several enzymes involved in essential metabolic processes. This review describes the 2AA hydrolyzing activity of RidA and the effect of this biochemical activity on the metabolic network, which impacts organism fitness. The reported activity of RidA and the consequences encountered in vivo when RidA is absent have challenged fundamental assumptions in enzymology, biochemistry and cell metabolism regarding the fate of transiently generated reactive enamine intermediates. The current understanding of RidA in Salmonella and the broad distribution of Rid family proteins provide exciting opportunities for future studies to define metabolic roles of Rid family members from microbes to man.
Collapse
Affiliation(s)
- Diana M Downs
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602-2605, USA
| | | |
Collapse
|
5
|
Lambrecht JA, Schmitz GE, Downs DM. RidA proteins prevent metabolic damage inflicted by PLP-dependent dehydratases in all domains of life. mBio 2013; 4:e00033-13. [PMID: 23386433 PMCID: PMC3565831 DOI: 10.1128/mbio.00033-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 11/30/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is a coenzyme synthesized by all forms of life. Relevant to the work reported here is the mechanism of the PLP-dependent threonine/serine dehydratases, which generate reactive enamine/imine intermediates that are converted to keto acids by members of the RidA family of enzymes. The RidA protein of Salmonella enterica serovar Typhimurium LT2 is the founding member of this broadly conserved family of proteins (formerly known as YjgF/YER057c/UK114). RidA proteins were recently shown to be enamine deaminases. Here we demonstrate the damaging potential of enamines in the absence of RidA proteins. Notably, S. enterica strains lacking RidA have decreased activity of the PLP-dependent transaminase B enzyme IlvE, an enzyme involved in branched-chain amino acid biosynthesis. We reconstituted the threonine/serine dehydratase (IlvA)-dependent inhibition of IlvE in vitro, show that the in vitro system reflects the mechanism of RidA function in vivo, and show that IlvE inhibition is prevented by RidA proteins from all domains of life. We conclude that 2-aminoacrylate (2AA) inhibition represents a new type of metabolic damage, and this finding provides an important physiological context for the role of the ubiquitous RidA family of enamine deaminases in preventing damage by 2AA. IMPORTANCE External stresses that disrupt metabolic components can perturb cellular functions and affect growth. A similar consequence is expected if endogenously generated metabolites are reactive and persist in the cellular environment. Here we show that the metabolic intermediate 2-aminoacrylate (2AA) causes significant cellular damage if allowed to accumulate aberrantly. Furthermore, we show that the widely conserved protein RidA prevents this accumulation by facilitating conversion of 2AA to a stable metabolite. This work demonstrates that the reactive metabolite 2AA, previously considered innocuous in the cell due to a short half-life in aqueous solution, can survive in the cellular environment long enough to cause damage. This work provides insights into the roles and persistence of reactive metabolites in vivo and shows that the RidA family of proteins is able to prevent damage caused by a reactive intermediate that is created as a consequence of PLP-dependent chemistry.
Collapse
|
6
|
Kim SH, Schneider BL, Reitzer L. Genetics and regulation of the major enzymes of alanine synthesis in Escherichia coli. J Bacteriol 2010; 192:5304-11. [PMID: 20729367 PMCID: PMC2950514 DOI: 10.1128/jb.00738-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/06/2010] [Indexed: 11/20/2022] Open
Abstract
Genetic analysis of alanine synthesis in the model genetic organism Escherichia coli has implicated avtA, the still uncharacterized alaA and alaB genes, and probably other genes. We identified alaA as yfbQ. We then transferred mutations in several transaminase genes into a yfbQ mutant and isolated a mutant that required alanine for optimal growth. For cells grown with carbon sources other than pyruvate, the major alanine-synthesizing transaminases are AvtA, YfbQ (AlaA), and YfdZ (which we designate AlaC). Growth with pyruvate as the carbon source and multicopy suppression suggest that several other transaminases can contribute to alanine synthesis. Expression studies showed that alanine modestly repressed avtA and yfbQ but had no effect on yfdZ. The leucine-responsive regulatory protein (Lrp) mediated control by alanine. We purified YfbQ and YfdZ and showed that both are dimers with K(m)s for pyruvate within the intracellular range of pyruvate concentration.
Collapse
Affiliation(s)
- Sok Ho Kim
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080
| | - Barbara L. Schneider
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080
| | - Larry Reitzer
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
7
|
Leyval D, Uy D, Delaunay S, Goergen JL, Engasser JM. Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J Biotechnol 2003; 104:241-52. [PMID: 12948642 DOI: 10.1016/s0168-1656(03)00162-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The enzyme activities of the valine biosynthetic pathway and their regulation have been studied in the valine-producing strain, Corynebacterium glutamicum 13032DeltailvApJC1ilvBNCD. In this micro-organism, this pathway might involve up to five enzyme activities: acetohydroxy acid synthase (AHAS), acetohydroxy acid isomeroreductase (AHAIR), dihydroxyacid dehydratase and transaminases B and C. For each enzyme, kinetic parameters (optimal temperature, optimal pH and affinity for substrates) were determined. The first enzyme of the pathway, AHAS, was shown to exhibit a weak affinity for pyruvate (K(m)=8.3 mM). It appeared that valine and leucine inhibited the three first steps of the pathway (AHAS, AHAIR and DHAD). Moreover, the AHAS activity was inhibited by isoleucine. Considering the kinetic data collected during this work, AHAS would be a key enzyme for further strain improvement intending to increase the valine production by C. glutamicum.
Collapse
Affiliation(s)
- D Leyval
- Laboratoire Bioprocédés Agro-Alimentaires, ENSAIA, Institut National Polytechnique de Lorraine-2, Avenue de la Forêt de Haye, BP 172, F-54505 Vandoeuvre-lès-Nancy cedex, France
| | | | | | | | | |
Collapse
|
8
|
Abstract
The Escherichia coli F factor mediates conjugal transfer of a plasmid such as pBR322 primarily by replicative transposition of transposon gamma delta (Tn1000) from F to that plasmid to form a cointegrate intermediate. Although resolution of this cointegrate always yields a plasmid containing a single gamma delta insertion, the occasional recovery of transposon-free plasmids after conjugal transfer has led to alternative hypotheses for F mobilization. We show here that gamma delta-free plasmids are found after F-mediated conjugal transfer only when the donor plasmid is a dimer and the recipient is Rec+.
Collapse
Affiliation(s)
- L Liu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-2131
| | | |
Collapse
|
9
|
Berg CM, Wang MD, Vartak NB, Liu L. Acquisition of new metabolic capabilities: multicopy suppression by cloned transaminase genes in Escherichia coli K-12. Gene 1988; 65:195-202. [PMID: 3044925 DOI: 10.1016/0378-1119(88)90456-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The four general transaminases of Escherichia coli K-12 have overlapping, but discrete, substrate specificities and participate in the final step in the synthesis of at least seven different amino acids. Through the use of strains that have mutations in one or more transaminase genes and carry a different wild-type (wt) gene on a multicopy plasmid, it was possible to detect instances in which an amplified wt gene suppressed nonallelic mutations. In these cases, overproduction of the enzyme permitted a broader range of substrates to be used at physiologically significant levels, either because a low catalytic efficiency (in the case analyzed here) or a low affinity of the enzyme towards the substrate prevented its effective utilization under normal conditions. Consequently, by compensating for a low catalytic reaction rate, enzyme overproduction circumvents the original lesion and restores biosynthetic activity to the mutant strain. The suppression of a mutation in one gene by amplified copies of a different wt gene is termed 'multicopy suppression'. This phenomenon is useful for detecting poorly expressed genes, for detecting duplicate genes, for identifying secondary functions of the products of known genes, and for elucidating the metabolic role of the product of the suppressed gene.
Collapse
Affiliation(s)
- C M Berg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06268
| | | | | | | |
Collapse
|
10
|
Wang MD, Buckley L, Berg CM. Cloning of genes that suppress an Escherichia coli K-12 alanine auxotroph when present in multicopy plasmids. J Bacteriol 1987; 169:5610-4. [PMID: 2890623 PMCID: PMC214003 DOI: 10.1128/jb.169.12.5610-5614.1987] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To facilitate molecular analyses of a previously uncharacterized gene involved in alanine synthesis, attempts were made to clone the wild-type allele of this gene, alaA, with a mini-Mu plasmid element used for in vivo cloning. Seventy-six independent Ala+ plasmids were isolated and characterized. Physiological, enzymological, and restriction endonuclease analyses indicated that three different genes, none of them alaA, were cloned. These genes were avtA+, which encodes the alanine-valine transaminase (transaminase C); tyrB+, which encodes the tyrosine-repressible transaminase (transaminase D); and a previously undescribed gene, called alaB, which encodes an alanine-glutamate transaminase.
Collapse
Affiliation(s)
- M D Wang
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06268
| | | | | |
Collapse
|
11
|
Wang MD, Liu L, Wang BM, Berg CM. Cloning and characterization of the Escherichia coli K-12 alanine-valine transaminase (avtA) gene. J Bacteriol 1987; 169:4228-34. [PMID: 3040683 PMCID: PMC213734 DOI: 10.1128/jb.169.9.4228-4234.1987] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
avtA, which encodes the alanine-valine transaminase, transaminase C, was cloned in vivo with high- and low-copy-number mini-Mu cloning vectors. The phenotype conferred by the cloned avtA+ gene usually depended upon the plasmid copy number; most high-copy-number avtA+ plasmids permitted isoleucine-requiring ilvE strains to grow in the absence of isoleucine (multicopy suppression), while low-copy-number avtA+ plasmids did not. avtA was mapped to a 1.25-kilobase segment by comparison of the restriction maps of 24 independent mini-Mu plasmids and then by gamma-delta (Tn1000) mutagenesis of a pBR322-avtA+ plasmid. The direction of transcription of avtA on the cloned fragment was determined with fusions to a promoterless lac gene.
Collapse
|
12
|
Wang BM, Liu L, Groisman EA, Casadaban MJ, Berg CM. High frequency generalized transduction by miniMu plasmid phage. Genetics 1987; 116:201-6. [PMID: 3301525 PMCID: PMC1203130 DOI: 10.1093/genetics/116.2.201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Deletion derivatives of phage Mu which replicate as multicopy plasmids, and also transpose and package like Mu, have been developed for the in vivo cloning of bacterial genes. We show here that these miniMu plasmid phage are also efficient at generalized transduction and that both in vivo cloning and generalized transduction of a given gene can be accomplished in a single experiment.
Collapse
|