1
|
Doni L, Azzola A, Oliveri C, Bosi E, Auguste M, Morri C, Bianchi CN, Montefalcone M, Vezzulli L. Genome-resolved metagenomics revealed novel microbial taxa with ancient metabolism from macroscopic microbial mat structures inhabiting anoxic deep reefs of a Maldivian Blue Hole. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13315. [PMID: 39267241 PMCID: PMC11392830 DOI: 10.1111/1758-2229.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/12/2024] [Indexed: 09/17/2024]
Abstract
Blue holes are vertical water-filled openings in carbonate rock that exhibit complex morphology, ecology, and water chemistry. In this study, macroscopic microbial mat structures found in complete anoxic conditions in the Faanu Mudugau Blue Hole (Maldives) were studied by metagenomic methods. Such communities have likely been evolutionary isolated from the surrounding marine environment for more than 10,000 years since the Blue Hole formation during the last Ice Age. A total of 48 high-quality metagenome-assembled genomes (MAGs) were recovered, predominantly composed of the phyla Chloroflexota, Proteobacteria and Desulfobacterota. None of these MAGs have been classified to species level (<95% ANI), suggesting the discovery of several new microbial taxa. In particular, MAGs belonging to novel bacterial genera within the order Dehalococcoidales accounted for 20% of the macroscopic mat community. Genome-resolved metabolic analysis of this dominant microbial fraction revealed a mixotrophic lifestyle based on energy conservation via fermentation, hydrogen metabolism and anaerobic CO2 fixation through the Wood-Ljungdahl pathway. Interestingly, these bacteria showed a high proportion of ancestral genes in their genomes providing intriguing perspectives on mechanisms driving microbial evolution in this peculiar environment. Overall, our results provide new knowledge for understanding microbial life under extreme conditions in blue hole environments.
Collapse
Affiliation(s)
- Lapo Doni
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Annalisa Azzola
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Caterina Oliveri
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
| | - Emanuele Bosi
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Manon Auguste
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Carla Morri
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Genoa Marine Centre (GMC), Genoa, Italy
| | - Carlo Nike Bianchi
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Genoa Marine Centre (GMC), Genoa, Italy
| | - Monica Montefalcone
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
2
|
Wang Y, Zhao Z, Lin J, Ma Q, Chen L. A new bio-oxidation method for removing iron deposits from waterlogged wood of Nanhai I shipwreck, Guangdong, China. ENGINEERING MICROBIOLOGY 2024; 4:100107. [PMID: 39628788 PMCID: PMC11610945 DOI: 10.1016/j.engmic.2023.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 12/06/2024]
Abstract
The widespread presence of iron and sulfur compounds such as pyrite in marine waterlogged archeological wood (WAW) can cause irreversible damage to the safety of its preservation. This issue has been a longstanding concern for cultural heritage conservation communities. In this study, we examined the distribution and phase composition of Fe and sulfur compounds in wood samples obtained from the Nanhai I shipwreck using ESEM-EDS, micro-Raman spectroscopy, and an X-ray diffractometer. The removal of iron from WAW samples of the Nanhai I shipwreck using Acidithiobacillus ferrooxidans (A. ferrooxidans) was evaluated using conductivity and ICP-AES analysis. The results showed that A. ferrooxidans effectively improved the removal of iron from WAW. The degradation of fresh healthy wood during treatment was also analyzed using infrared spectroscopy, and the results showed that the treatment had little effect on the samples over a short period. This study demonstrates, for the first time, the feasibility of iron extraction from marine WAW by A.ferrooxidans. This was also the first attempt in China to apply biological oxidation to the removal of iron from marine archeological materials.
Collapse
Affiliation(s)
- Yishu Wang
- International Joint Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao 266237, China
| | - Zijun Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qinglin Ma
- International Joint Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao 266237, China
| | - Linxu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Ibáñez A, Garrido-Chamorro S, Coque JJR, Barreiro C. From Genes to Bioleaching: Unraveling Sulfur Metabolism in Acidithiobacillus Genus. Genes (Basel) 2023; 14:1772. [PMID: 37761912 PMCID: PMC10531304 DOI: 10.3390/genes14091772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Sulfur oxidation stands as a pivotal process within the Earth's sulfur cycle, in which Acidithiobacillus species emerge as skillful sulfur-oxidizing bacteria. They are able to efficiently oxidize several reduced inorganic sulfur compounds (RISCs) under extreme conditions for their autotrophic growth. This unique characteristic has made these bacteria a useful tool in bioleaching and biological desulfurization applications. Extensive research has unraveled diverse sulfur metabolism pathways and their corresponding regulatory systems. The metabolic arsenal of the Acidithiobacillus genus includes oxidative enzymes such as: (i) elemental sulfur oxidation enzymes, like sulfur dioxygenase (SDO), sulfur oxygenase reductase (SOR), and heterodisulfide reductase (HDR-like system); (ii) enzymes involved in thiosulfate oxidation pathways, including the sulfur oxidation (Sox) system, tetrathionate hydrolase (TetH), and thiosulfate quinone oxidoreductase (TQO); (iii) sulfide oxidation enzymes, like sulfide:quinone oxidoreductase (SQR); and (iv) sulfite oxidation pathways, such as sulfite oxidase (SOX). This review summarizes the current state of the art of sulfur metabolic processes in Acidithiobacillus species, which are key players of industrial biomining processes. Furthermore, this manuscript highlights the existing challenges and barriers to further exploring the sulfur metabolism of this peculiar extremophilic genus.
Collapse
Affiliation(s)
- Ana Ibáñez
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (J.J.R.C.)
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Área de Investigación Agrícola, 47071 Valladolid, Spain
| | - Sonia Garrido-Chamorro
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
| | - Juan J. R. Coque
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (J.J.R.C.)
| | - Carlos Barreiro
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
| |
Collapse
|
4
|
AHL-mediated quorum sensing to regulate bacterial substance and energy metabolism: A review. Microbiol Res 2022; 262:127102. [DOI: 10.1016/j.micres.2022.127102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023]
|
5
|
Malik L, Hedrich S. Ferric Iron Reduction in Extreme Acidophiles. Front Microbiol 2022; 12:818414. [PMID: 35095822 PMCID: PMC8790237 DOI: 10.3389/fmicb.2021.818414] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Biochemical processes are a key element of natural cycles occurring in the environment and enabling life on earth. With regard to microbially catalyzed iron transformation, research predominantly has focused on iron oxidation in acidophiles, whereas iron reduction played a minor role. Microbial conversion of ferric to ferrous iron has however become more relevant in recent years. While there are several reviews on neutrophilic iron reducers, this article summarizes the research on extreme acidophilic iron reducers. After the first reports of dissimilatory iron reduction by acidophilic, chemolithoautotrophic Acidithiobacillus strains and heterotrophic Acidiphilium species, many other prokaryotes were shown to reduce iron as part of their metabolism. Still, little is known about the exact mechanisms of iron reduction in extreme acidophiles. Initially, hypotheses and postulations for the occurring mechanisms relied on observations of growth behavior or predictions based on the genome. By comparing genomes of well-studied neutrophilic with acidophilic iron reducers (e.g., Ferroglobus placidus and Sulfolobus spp.), it became clear that the electron transport for iron reduction proceeds differently in acidophiles. Moreover, transcriptomic investigations indicated an enzymatically-mediated process in Acidithiobacillus ferrooxidans using respiratory chain components of the iron oxidation in reverse. Depending on the strain of At. ferrooxidans, further mechanisms were postulated, e.g., indirect iron reduction by hydrogen sulfide, which may form by disproportionation of elemental sulfur. Alternative scenarios include Hip, a high potential iron-sulfur protein, and further cytochromes. Apart from the anaerobic iron reduction mechanisms, sulfur-oxidizing acidithiobacilli have been shown to mediate iron reduction at low pH (< 1.3) under aerobic conditions. This presumably non-enzymatic process may be attributed to intermediates formed during sulfur/tetrathionate and/or hydrogen oxidation and has already been successfully applied for the reductive bioleaching of laterites. The aim of this review is to provide an up-to-date overview on ferric iron reduction by acidophiles. The importance of this process in anaerobic habitats will be demonstrated as well as its potential for application.
Collapse
Affiliation(s)
- Luise Malik
- Research Group Biohydrometallurgy and Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Sabrina Hedrich
- Research Group Biohydrometallurgy and Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
6
|
Unraveling the Central Role of Sulfur-Oxidizing Acidiphilium multivorum LMS in Industrial Bioprocessing of Gold-Bearing Sulfide Concentrates. Microorganisms 2021; 9:microorganisms9050984. [PMID: 34062882 PMCID: PMC8147356 DOI: 10.3390/microorganisms9050984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Acidiphilium multivorum LMS is an acidophile isolated from industrial bioreactors during the processing of the gold-bearing pyrite-arsenopyrite concentrate at 38–42 °C. Most strains of this species are obligate organoheterotrophs that do not use ferrous iron or reduced sulfur compounds as energy sources. However, the LMS strain was identified as one of the predominant sulfur oxidizers in acidophilic microbial consortia. In addition to efficient growth under strictly heterotrophic conditions, the LMS strain proved to be an active sulfur oxidizer both in the presence or absence of organic compounds. Interestingly, Ac. multivorum LMS was able to succeed more common sulfur oxidizers in microbial populations, which indicated a previously underestimated role of this bacterium in industrial bioleaching operations. In this study, the first draft genome of the sulfur-oxidizing Ac. multivorum was sequenced and annotated. Based on the functional genome characterization, sulfur metabolism pathways were reconstructed. The LMS strain possessed a complicated multi-enzyme system to oxidize elemental sulfur, thiosulfate, sulfide, and sulfite to sulfate as the final product. Altogether, the phenotypic description and genome analysis unraveled a crucial role of Ac. multivorum in some biomining processes and revealed unique strain-specific characteristics, including the ars genes conferring arsenic resistance, which are similar to those of phylogenetically distinct microorganisms.
Collapse
|
7
|
Gao XY, Fu CA, Hao L, Gu XF, Wang R, Lin JQ, Liu XM, Pang X, Zhang CJ, Lin JQ, Chen LX. The substrate-dependent regulatory effects of the AfeI/R system in Acidithiobacillus ferrooxidans reveals the novel regulation strategy of quorum sensing in acidophiles. Environ Microbiol 2020; 23:757-773. [PMID: 32656931 PMCID: PMC7984328 DOI: 10.1111/1462-2920.15163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/05/2020] [Indexed: 12/22/2022]
Abstract
A LuxI/R‐like quorum sensing (QS) system (AfeI/R) has been reported in the acidophilic and chemoautotrophic Acidithiobacillus spp. However, the function of AfeI/R remains unclear because of the difficulties in the genetic manipulation of these bacteria. Here, we constructed different afeI mutants of the sulfur‐ and iron‐oxidizer A. ferrooxidans, identified the N‐acyl homoserine lactones (acyl‐HSLs) synthesized by AfeI, and determined the regulatory effects of AfeI/R on genes expression, extracellular polymeric substance synthesis, energy metabolism, cell growth and population density of A. ferrooxidans in different energy substrates. Acyl‐HSLs‐mediated distinct regulation strategies were employed to influence bacterial metabolism and cell growth of A. ferrooxidans cultivated in either sulfur or ferrous iron. Based on these findings, an energy‐substrate‐dependent regulation mode of AfeI/R in A. ferrooxidans was illuminated that AfeI/R could produce different types of acyl‐HSLs and employ specific acyl‐HSLs to regulate specific genes in response to different energy substrates. The discovery of the AfeI/R‐mediated substrate‐dependent regulatory mode expands our knowledge on the function of QS system in the chemoautotrophic sulfur‐ and ferrous iron‐oxidizing bacteria, and provides new insights in understanding energy metabolism modulation, population control, bacteria‐driven bioleaching process, and the coevolution between the acidophiles and their acidic habitats.
Collapse
Affiliation(s)
- Xue-Yan Gao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Chang-Ai Fu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99 Lincheng West Road, Guiyang, 550081, China.,CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| | - Xiu-Feng Gu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Rui Wang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Jian-Qiang Lin
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Xiang-Mei Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Xin Pang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Cheng-Jia Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| |
Collapse
|
8
|
Novel Strategy for Improvement of the Bioleaching Efficiency of Acidithiobacillus ferrooxidans Based on the AfeI/R Quorum Sensing System. MINERALS 2020. [DOI: 10.3390/min10030222] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acidithiobacillus ferrooxidans is an acidophilic and chemolithotrophic sulfur- and iron-oxidizing bacterium that has been widely used in the bioleaching process for extracting metals. Extracellular polymeric substances (EPS) are essential for bacteria-ore interactions, and the regulation of EPS synthesis could be an important way of influencing the efficiency of the bioleaching process. Therefore, exploring and utilizing the regulatory pathways of EPS synthesis to improve the bacterial bioleaching capability have posed a challenge in the study and application of bioleaching bacteria. Here, several engineering strains were constructed using genetic manipulation methods. And we revealed the regulatory function of the AfeI/R quorum sensing (QS) system in EPS synthesis and biofilm formation of A. ferrooxidans, and the AfeI/R-mediated EPS synthesis could influence bacteria-substrate interactions and the efficiency of bioleaching. Finally, an AfeI/R-mediated bioleaching model was proposed to illustrate the role of QS system in this process. This study provided new insights into and clues for developing highly efficient bioleaching bacteria and modulating the bioleaching process.
Collapse
|
9
|
Ren Y, Ngo HH, Guo W, Ni BJ, Liu Y. Linking the nitrous oxide production and mitigation with the microbial community in wastewater treatment: A review. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Wang R, Lin JQ, Liu XM, Pang X, Zhang CJ, Yang CL, Gao XY, Lin CM, Li YQ, Li Y, Lin JQ, Chen LX. Sulfur Oxidation in the Acidophilic Autotrophic Acidithiobacillus spp. Front Microbiol 2019; 9:3290. [PMID: 30687275 PMCID: PMC6335251 DOI: 10.3389/fmicb.2018.03290] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Sulfur oxidation is an essential component of the earth's sulfur cycle. Acidithiobacillus spp. can oxidize various reduced inorganic sulfur compounds (RISCs) with high efficiency to obtain electrons for their autotrophic growth. Strains in this genus have been widely applied in bioleaching and biological desulfurization. Diverse sulfur-metabolic pathways and corresponding regulatory systems have been discovered in these acidophilic sulfur-oxidizing bacteria. The sulfur-metabolic enzymes in Acidithiobacillus spp. can be categorized as elemental sulfur oxidation enzymes (sulfur dioxygenase, sulfur oxygenase reductase, and Hdr-like complex), enzymes in thiosulfate oxidation pathways (tetrathionate intermediate thiosulfate oxidation (S4I) pathway, the sulfur oxidizing enzyme (Sox) system and thiosulfate dehydrogenase), sulfide oxidation enzymes (sulfide:quinone oxidoreductase) and sulfite oxidation pathways/enzymes. The two-component systems (TCSs) are the typical regulation elements for periplasmic thiosulfate metabolism in these autotrophic sulfur-oxidizing bacteria. Examples are RsrS/RsrR responsible for S4I pathway regulation and TspS/TspR for Sox system regulation. The proposal of sulfur metabolic and regulatory models provide new insights and overall understanding of the sulfur-metabolic processes in Acidithiobacillus spp. The future research directions and existing barriers in the bacterial sulfur metabolism are also emphasized here and the breakthroughs in these areas will accelerate the research on the sulfur oxidation in Acidithiobacillus spp. and other sulfur oxidizers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
11
|
Norris PR, Laigle L, Slade S. Cytochromes in anaerobic growth of Acidithiobacillus ferrooxidans. Microbiology (Reading) 2018; 164:383-394. [DOI: 10.1099/mic.0.000616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Paul R. Norris
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Present address: Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Ludovic Laigle
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Present address: The Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Susan Slade
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Present address: Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, UK
| |
Collapse
|
12
|
Wu W, Pang X, Lin J, Liu X, Wang R, Lin J, Chen L. Discovery of a new subgroup of sulfur dioxygenases and characterization of sulfur dioxygenases in the sulfur metabolic network of Acidithiobacillus caldus. PLoS One 2017; 12:e0183668. [PMID: 28873420 PMCID: PMC5584763 DOI: 10.1371/journal.pone.0183668] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/08/2017] [Indexed: 11/24/2022] Open
Abstract
Acidithiobacillus caldus is a chemolithoautotrophic sulfur-oxidizing bacterium that is widely used for bioleaching processes. Acidithiobacillus spp. are suggested to contain sulfur dioxygenases (SDOs) that facilitate sulfur oxidation. In this study, two putative sdo genes (A5904_0421 and A5904_1112) were detected in the genome of A. caldus MTH-04 by BLASTP searching with the previously identified SDO (A5904_0790). We cloned and expressed these genes, and detected the SDO activity of recombinant protein A5904_0421 by a GSH-dependent in vitro assay. Phylogenetic analysis indicated that A5904_0421and its homologous SDOs, mainly found in autotrophic bacteria, were distantly related to known SDOs and were categorized as a new subgroup of SDOs. The potential functions of genes A5904_0421 (termed sdo1) and A5904_0790 (termed sdo2) were investigated by generating three knockout mutants (Δsdo1, Δsdo2 and Δsdo1&2), two sdo overexpression strains (OE-sdo1 and OE-sdo2) and two sdo complemented strains (Δsdo1/sdo1’ and Δsdo2/sdo2’) of A. caldus MTH-04. Deletion or overexpression of the sdo genes did not obviously affect growth of the bacteria on S0, indicating that the SDOs did not play an essential role in the oxidation of extracellular elemental sulfur in A. caldus. The deletion of sdo1 resulted in complete inhibition of growth on tetrathionate, slight inhibition of growth on thiosulfate and increased GSH-dependent sulfur oxidation activity on S0. Transcriptional analysis revealed a strong correlation between sdo1 and the tetrathionate intermediate pathway. The deletion of sdo2 promoted bacterial growth on tetrathionate and thiosulfate, and overexpression of sdo2 altered gene expression patterns of sulfide:quinone oxidoreductase and rhodanese. Taken together, the results suggest that sdo1 is essential for the survival of A. caldus when tetrathionate is used as the sole energy resource, and sdo2 may also play a role in sulfur metabolism.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Xin Pang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Jianqiang Lin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Xiangmei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Rui Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
- * E-mail: (JL); (LC)
| | - Linxu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
- * E-mail: (JL); (LC)
| |
Collapse
|
13
|
Wang H, Liu S, Liu X, Li X, Wen Q, Lin J. Identification and characterization of an ETHE1-like sulfur dioxygenase in extremely acidophilic Acidithiobacillus spp. Appl Microbiol Biotechnol 2014; 98:7511-22. [PMID: 24893664 DOI: 10.1007/s00253-014-5830-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/11/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
Elemental sulfur (S(0)) oxidation in Acidithiobacillus spp. is an important process in metal sulfide bioleaching. However, the gene that encodes the sulfur dioxygenase (SDO) for S(0) oxidation has remained unclarified in Acidithiobacillus spp. By BLASTP with the eukaryotic mitochondrial sulfur dioxygenases (ETHE1s), the putative sdo genes (AFE_0269 and ACAL_0790) were recovered from the genomes of Acidithiobacillus ferrooxidans ATCC 23270 and Acidithiobacillus caldus MTH-04. The purified recombinant proteins of AFE_0269 and ACAL_0790 exhibited remarkable SDO activity at optimal mildly alkaline pH by using the GSH-dependent in vitro assay. Then, a sdo knockout mutant and a sdo overexpression strain of A. ferrooxidans ATCC 23270 were constructed and characterized. By overexpressing sdo in A. ferrooxidans ATCC 23270, a significantly increased transcriptional level of sdo (91-fold) and a 2.5-fold increase in SDO activity were observed when S(0) was used as sole energy source. The sdo knockout mutant of A. ferrooxidans displayed a slightly reduced growth capacity in S(0)-medium compared with the wild type but still maintained high S(0)-oxidizing activity, suggesting that there is at least one other S(0)-oxidizing enzyme besides SDO in A. ferrooxidans ATCC 23270 cells. In addition, no obvious changes in transcriptional levels of selected genes related to sulfur oxidation was observed in response to the sdo overexpression or knockout in A. ferrooxidans when cultivated in S(0)-medium. All the results might suggest that SDO is involved in sulfide detoxification rather than bioenergetic S(0) oxidation in chemolithotrophic bacteria.
Collapse
Affiliation(s)
- Huiyan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | | | | | | | | | | |
Collapse
|
14
|
Wakai S, Kikumoto M, Kanao T, Kamimura K. Involvement of Sulfide:Quinone Oxidoreductase in Sulfur Oxidation of an Acidophilic Iron-Oxidizing Bacterium,Acidithiobacillus ferrooxidansNASF-1. Biosci Biotechnol Biochem 2014; 68:2519-28. [PMID: 15618623 DOI: 10.1271/bbb.68.2519] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of cyanide, azide, and 2-n-Heptyl-4-hydroxy-quinoline-N-oxide (HQNO) on the oxidation of ferrous ion or elemental sulfur with Acidithiobacillus ferrooxidans NASF-1 cells grown in iron- or sulfur-medium were examined. The iron oxidation of both iron- and sulfur-grown cells was strongly inhibited by cyanide and azide, but not by HQNO. Sulfur oxidation was relatively resistant to cyanide and azide, and inhibited by HQNO. Higher sulfide oxidation, ubiquinol dehydrogenase activity, and sulfide:quinone oxidoreductase (SQR) activity were observed in sulfur-grown cells more than in iron-grown cells. Sulfide oxidation in the presence of ubiquinone with the membrane fraction was inhibited by HQNO, but not by cyanide, azide, antimycin A, and myxothiazol. The transcription of three genes, encoding an aa(3)-type cytochrome c oxidase (coxB), a bd-type ubiquinol oxidase (cydA), and an sqr, were measured by real-time reverse transcription polymerase chain reaction. The transcriptional levels of coxB and cydA genes were similar in sulfur- and iron-grown cells, but that of sqr was 3-fold higher in sulfur-grown cells than in iron-grown cells. A model is proposed for the oxidation of reduced inorganic sulfur compounds in A. ferrooxidans NASF-1 cells.
Collapse
Affiliation(s)
- Satoshi Wakai
- Division of Science and Technology for Energy Conversion, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
15
|
Purification and Characterization of Sulfide:Quinone Oxidoreductase from an Acidophilic Iron-Oxidizing Bacterium,Acidithiobacillus ferrooxidans. Biosci Biotechnol Biochem 2014; 71:2735-42. [DOI: 10.1271/bbb.70332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans. Appl Environ Microbiol 2013; 79:2172-81. [PMID: 23354702 DOI: 10.1128/aem.03057-12] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gene transcription (microarrays) and protein levels (proteomics) were compared in cultures of the acidophilic chemolithotroph Acidithiobacillus ferrooxidans grown on elemental sulfur as the electron donor under aerobic and anaerobic conditions, using either molecular oxygen or ferric iron as the electron acceptor, respectively. No evidence supporting the role of either tetrathionate hydrolase or arsenic reductase in mediating the transfer of electrons to ferric iron (as suggested by previous studies) was obtained. In addition, no novel ferric iron reductase was identified. However, data suggested that sulfur was disproportionated under anaerobic conditions, forming hydrogen sulfide via sulfur reductase and sulfate via heterodisulfide reductase and ATP sulfurylase. Supporting physiological evidence for H2S production came from the observation that soluble Cu(2+) included in anaerobically incubated cultures was precipitated (seemingly as CuS). Since H(2)S reduces ferric iron to ferrous in acidic medium, its production under anaerobic conditions indicates that anaerobic iron reduction is mediated, at least in part, by an indirect mechanism. Evidence was obtained for an alternative model implicating the transfer of electrons from S(0) to Fe(3+) via a respiratory chain that includes a bc(1) complex and a cytochrome c. Central carbon pathways were upregulated under aerobic conditions, correlating with higher growth rates, while many Calvin-Benson-Bassham cycle components were upregulated during anaerobic growth, probably as a result of more limited access to carbon dioxide. These results are important for understanding the role of A. ferrooxidans in environmental biogeochemical metal cycling and in industrial bioleaching operations.
Collapse
|
17
|
Tetrathionate-forming thiosulfate dehydrogenase from the acidophilic, chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. Appl Environ Microbiol 2012; 79:113-20. [PMID: 23064330 DOI: 10.1128/aem.02251-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thiosulfate dehydrogenase is known to play a significant role in thiosulfate oxidation in the acidophilic, obligately chemolithoautotroph, Acidithiobacillus ferrooxidans. Enzyme activity measured using ferricyanide as the electron acceptor was detected in cell extracts of A. ferrooxidans ATCC 23270 grown on tetrathionate or sulfur, but no activity was detected in ferrous iron-grown cells. The enzyme was enriched 63-fold from cell extracts of tetrathionate-grown cells. Maximum enzyme activity (13.8 U mg(-1)) was observed at pH 2.5 and 70°C. The end product of the enzyme reaction was tetrathionate. The enzyme reduced neither ubiquinone nor horse heart cytochrome c, which serves as an electron acceptor. A major protein with a molecular mass of ∼25 kDa was detected in the partially purified preparation. Heme was not detected in the preparation, according to the results of spectroscopic analysis and heme staining. The open reading frame of AFE_0042 was identified by BLAST by using the N-terminal amino acid sequence of the protein. The gene was found within a region that was previously noted for sulfur metabolism-related gene clustering. The recombinant protein produced in Escherichia coli had a molecular mass of ∼25 kDa and showed thiosulfate dehydrogenase activity, with maximum enzyme activity (6.5 U mg(-1)) observed at pH 2.5 and 50°C.
Collapse
|
18
|
Kucera J, Bouchal P, Cerna H, Potesil D, Janiczek O, Zdrahal Z, Mandl M. Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS. Antonie van Leeuwenhoek 2011; 101:561-73. [PMID: 22057833 DOI: 10.1007/s10482-011-9670-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/27/2011] [Indexed: 11/25/2022]
Abstract
Elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans was investigated. The apparent Michaelis constant for ferric iron was 18.6 mM. An absence of anaerobic ferric iron reduction ability was observed in bacteria maintained on elemental sulfur for an extended period of time. Upon transition from ferrous iron to elemental sulfur medium, the cells exhibited similar kinetic characteristics of ferric iron reduction under anaerobic conditions to those of cells that were originally maintained on ferrous iron. Nevertheless, a total loss of anaerobic ferric iron reduction ability after the sixth passage in elemental sulfur medium was demonstrated. The first proteomic screening of total cell lysates of anaerobically incubated bacteria resulted in the detection of 1599 protein spots in the master two-dimensional electrophoresis gel. A set of 59 more abundant and 49 less abundant protein spots that changed their protein abundances in an anaerobiosis-dependent manner was identified and compared to iron- and sulfur-grown cells, respectively. Proteomic analysis detected a significant increase in abundance under anoxic conditions of electron transporters, such as rusticyanin and cytochrome c(552), involved in the ferrous iron oxidation pathway. Therefore we suggest the incorporation of rus-operon encoded proteins in the anaerobic respiration pathway. Two sulfur metabolism proteins were identified, pyridine nucleotide-disulfide oxidoreductase and sulfide-quinone reductase. The important transcription regulator, ferric uptake regulation protein, was anaerobically more abundant. The anaerobic expression of several proteins involved in cell envelope formation indicated a gradual adaptation to elemental sulfur oxidation.
Collapse
Affiliation(s)
- Jiri Kucera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
19
|
Sato I, Shimatani K, Fujita K, Abe T, Shimizu M, Fujii T, Hoshino T, Takaya N. Glutathione reductase/glutathione is responsible for cytotoxic elemental sulfur tolerance via polysulfide shuttle in fungi. J Biol Chem 2011; 286:20283-91. [PMID: 21474441 DOI: 10.1074/jbc.m111.225979] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fungi that can reduce elemental sulfur to sulfide are widely distributed, but the mechanism and physiological significance of the reaction have been poorly characterized. Here, we purified elemental sulfur-reductase (SR) and cloned its gene from the elemental sulfur-reducing fungus Fusarium oxysporum. We found that NADPH-glutathione reductase (GR) reduces elemental sulfur via glutathione as an intermediate. A loss-of-function mutant of the SR/GR gene generated less sulfide from elemental sulfur than the wild-type strain. Its growth was hypersensitive to elemental sulfur, and it accumulated higher levels of oxidized glutathione, indicating that the GR/glutathione system confers tolerance to cytotoxic elemental sulfur by reducing it to less harmful sulfide. The SR/GR reduced polysulfide as efficiently as elemental sulfur, which implies that soluble polysulfide shuttles reducing equivalents to exocellular insoluble elemental sulfur and generates sulfide. The ubiquitous distribution of the GR/glutathione system together with our findings that GR-deficient mutants derived from Saccharomyces cerevisiae and Aspergillus nidulans reduced less sulfur and that their growth was hypersensitive to elemental sulfur indicated a wide distribution of the system among fungi. These results indicate a novel biological function of the GR/glutathione system in elemental sulfur reduction, which is distinguishable from bacterial and archaeal mechanisms of glutathione- independent sulfur reduction.
Collapse
Affiliation(s)
- Ikuo Sato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Suzuki I, Takeuchi TL, Yuthasastrakosol TD, Oh JK. Ferrous Iron and Sulfur Oxidation and Ferric Iron Reduction Activities of Thiobacillus ferrooxidans Are Affected by Growth on Ferrous Iron, Sulfur, or a Sulfide Ore. Appl Environ Microbiol 2010; 56:1620-6. [PMID: 16348205 PMCID: PMC184482 DOI: 10.1128/aem.56.6.1620-1626.1990] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eight strains of Thiobacillus ferrooxidans (laboratory strains Tf-1 [= ATCC 13661] and Tf-2 [= ATCC 19859] and mine isolates SM-1, SM-2, SM-3, SM-4, SM-5, and SM-8) and three strains of Thiobacillus thiooxidans (laboratory strain Tt [= ATCC 8085] and mine isolates SM-6 and SM-7) were grown on ferrous iron (Fe), elemental sulfur (S), or sulfide ore (Fe, Cu, and Zn). The cells were studied for their aerobic Fe - and S-oxidizing activities (O(2) consumption) and anaerobic S-oxidizing activity with ferric iron (Fe) (Fe formation). Fe-grown T. ferrooxidans cells oxidized S aerobically at a rate of 2 to 4% of the Fe oxidation rate. The rate of anaerobic S oxidation with Fe was equal to the aerobic oxidation rate in SM-1, SM-3, SM-4, and SM-5, but was only one-half or less that in Tf-1, Tf-2, SM-2, and SM-8. Transition from growth on Fe to that on S produced cells with relatively undiminished Fe oxidation activities and increased S oxidation (both aerobic and anaerobic) activities in Tf-2, SM-4, and SM-5, whereas it produced cells with dramatically reduced Fe oxidation and anaerobic S oxidation activities in Tf-1, SM-1, SM-2, SM-3, and SM-8. Growth on ore 1 of metal-leaching Fe-grown strains and on ore 2 of all Fe-grown strains resulted in very high yields of cells with high Fe and S oxidation (both aerobic and anaerobic) activities with similar ratios of various activities. Sulfur-grown Tf-2, SM-1, SM-4, SM-6, SM-7, and SM-8 cultures leached metals from ore 3, and Tf-2 and SM-4 cells recovered showed activity ratios similar to those of other ore-grown cells. It is concluded that all the T. ferrooxidans strains studied have the ability to produce cells with Fe and S oxidation and Fe reduction activities, but their levels are influenced by growth substrates and strain differences.
Collapse
Affiliation(s)
- I Suzuki
- Department of Microbiology, The University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | | | | | | |
Collapse
|
21
|
Suzuki I, Chan CW, Takeuchi TL. Oxidation of Elemental Sulfur to Sulfite by Thiobacillus thiooxidans Cells. Appl Environ Microbiol 2010; 58:3767-9. [PMID: 16348814 PMCID: PMC183172 DOI: 10.1128/aem.58.11.3767-3769.1992] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thiobacillus thiooxidans cells oxidized elemental sulfur to sulfite, with 1 mol of O(2) consumption per mol of sulfur oxidized to sulfite, when the oxidation of sulfite was inhibited with 2-n-heptyl-4-hydroxyquinoline N-oxide.
Collapse
Affiliation(s)
- I Suzuki
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | | | | |
Collapse
|
22
|
Pronk JT, Liem K, Bos P, Kuenen JG. Energy Transduction by Anaerobic Ferric Iron Respiration in Thiobacillus ferrooxidans. Appl Environ Microbiol 2010; 57:2063-8. [PMID: 16348526 PMCID: PMC183522 DOI: 10.1128/aem.57.7.2063-2068.1991] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formate-grown cells of the obligately chemolithoautotrophic acidophile Thiobacillus ferrooxidans were capable of formate- and elemental sulfur-dependent reduction of ferric iron under anaerobic conditions. Under aerobic conditions, both oxygen and ferric iron could be simultaneously used as electron acceptors. To investigate whether anaerobic ferric iron respiration by T. ferrooxidans is an energy-transducing process, uptake of amino acids was studied. Glycine uptake by starved cells did not occur in the absence of an electron donor, neither under aerobic conditions nor under anaerobic conditions. Uptake of glycine could be driven by formate- and ferrous iron-dependent oxygen uptake. Under anaerobic conditions, ferric iron respiration with the electron donors formate and elemental sulfur could energize glycine uptake. Glycine uptake was inhibited by the uncoupler 2,4-dinitrophenol. The results indicate that anaerobic ferric iron respiration can contribute to the energy budget of T. ferrooxidans.
Collapse
Affiliation(s)
- J T Pronk
- Department of Microbiology and Enzymology, Kluyver Laboratory of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | |
Collapse
|
23
|
Tsaplina I, Zhuravlev A, Egorova M, Bogdanov T, Krasil’nikova E, Zakharchuk L, Kondrat’ev T. Response to oxygen limitation in bacteria of the genus sulfobacillus. Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710010029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Kupka D, Liljeqvist M, Nurmi P, Puhakka JA, Tuovinen OH, Dopson M. Oxidation of elemental sulfur, tetrathionate and ferrous iron by the psychrotolerant Acidithiobacillus strain SS3. Res Microbiol 2009; 160:767-74. [PMID: 19782750 DOI: 10.1016/j.resmic.2009.08.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/19/2009] [Accepted: 08/25/2009] [Indexed: 11/17/2022]
Abstract
Mesophilic iron and sulfur-oxidizing acidophiles are readily found in acid mine drainage sites and bioleaching operations, but relatively little is known about their activities at suboptimal temperatures and in cold environments. The purpose of this work was to characterize the oxidation of elemental sulfur (S(0)), tetrathionate (S4O6(2-)) and ferrous iron (Fe2+) by the psychrotolerant Acidithiobacillus strain SS3. The rates of elemental sulfur and tetrathionate oxidation had temperature optima of 20 degrees and 25 degrees C, respectively, determined using a temperature gradient incubator that involved narrow (1.1 degrees C) incremental increases from 5 degrees to 30 degrees C. Activation energies calculated from the Arrhenius plots were 61 and 89 kJ mol(-1) for tetrathionate and 110 kJ mol(-1) for S(0) oxidation. The oxidation of elemental sulfur produced sulfuric acid at 5 degrees C and decreased the pH to approximately 1. The low pH inhibited further oxidation of the substrate. In media with both S(0) and Fe2+, oxidation of elemental sulfur did not commence until all available ferrous iron was oxidized. These data on sequential oxidation of the two substrates are in keeping with upregulation and downregulation of several proteins previously noted in the literature. Ferric iron was reduced to Fe2+ in parallel with elemental sulfur oxidation, indicating the presence of a sulfur:ferric iron reductase system in this bacterium.
Collapse
Affiliation(s)
- Daniel Kupka
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, SK-043 53 Kosice, Slovakia
| | | | | | | | | | | |
Collapse
|
25
|
Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, Eisen JA, Holmes DS. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 2008; 9:597. [PMID: 19077236 PMCID: PMC2621215 DOI: 10.1186/1471-2164-9-597] [Citation(s) in RCA: 336] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 12/11/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms used for the industrial recovery of copper (bioleaching or biomining). It is a chemolithoautrophic, gamma-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for growth. It thrives at extremely low pH (pH 1-2) and fixes both carbon and nitrogen from the atmosphere. It solubilizes copper and other metals from rocks and plays an important role in nutrient and metal biogeochemical cycling in acid environments. The lack of a well-developed system for genetic manipulation has prevented thorough exploration of its physiology. Also, confusion has been caused by prior metabolic models constructed based upon the examination of multiple, and sometimes distantly related, strains of the microorganism. RESULTS The genome of the type strain A. ferrooxidans ATCC 23270 was sequenced and annotated to identify general features and provide a framework for in silico metabolic reconstruction. Earlier models of iron and sulfur oxidation, biofilm formation, quorum sensing, inorganic ion uptake, and amino acid metabolism are confirmed and extended. Initial models are presented for central carbon metabolism, anaerobic metabolism (including sulfur reduction, hydrogen metabolism and nitrogen fixation), stress responses, DNA repair, and metal and toxic compound fluxes. CONCLUSION Bioinformatics analysis provides a valuable platform for gene discovery and functional prediction that helps explain the activity of A. ferrooxidans in industrial bioleaching and its role as a primary producer in acidic environments. An analysis of the genome of the type strain provides a coherent view of its gene content and metabolic potential.
Collapse
Affiliation(s)
- Jorge Valdés
- Center for Bioinformatics and Genome Biology, Fundación Ciencia para la Vida, Facultad de Ciencias de la Salud, Universidad Andres Bello, Santiago, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Shukor Y, Shamsuddin B, Mohamad O, Ithnin K. A method to study the effects of chemical and biological reduction of molybdate to molybdenum blue in bacteria. Pak J Biol Sci 2008; 11:672-5. [PMID: 18817148 DOI: 10.3923/pjbs.2008.672.675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this research, we modify a previously developed assay for the quantification molybdenum blue to determine whether inhibitors to molybdate reduction in bacteria inhibits cellular reduction or inhibit the chemical formation of one of the intermediate of molybdenum blue; phosphomolybdate. We manage to prove that inhibition of molybdate reduction by phosphate and arsenate is at the level of phosphomolybdate and not cellular. We also prove that mercury is a physiological inhibitor to molybdate reduction. We suggest the use of this method to assess the effect of inhibitors and activators to molybdate reduction in bacteria.
Collapse
Affiliation(s)
- Yunus Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
27
|
Barrie Johnson D, Hallberg KB. Carbon, Iron and Sulfur Metabolism in Acidophilic Micro-Organisms. Adv Microb Physiol 2008; 54:201-55. [DOI: 10.1016/s0065-2911(08)00003-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Increase in Fe2+-producing activity during growth of Acidithiobacillus ferrooxidans ATCC23270 on sulfur. Biosci Biotechnol Biochem 2007; 71:2663-9. [PMID: 17986795 DOI: 10.1271/bbb.70253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When Acidithiobacillus ferrooxidans ATCC23270 cells, grown for many generations on sulfur were grown in sulfur medium with and without Fe(3+), the bacterium markedly increased not only in iron oxidase activity but also in Fe(2+)-producing sulfide:ferric ion oxidoreductase (SFORase) activity during the early log phase, and retained part of these activities during the late log phase. The activity of SFORase, which catalyzes the production of Fe(2+) from Fe(3+) and sulfur, of sulfur-grown cells was approximately 10-20 fold higher than that of iron-grown cells. aa(3) type cytochrome c oxidase, an important component of iron oxidase in A. ferrooxidans, was partially purified from sulfur-grown cells. A. ferrooxidans ATCC23270 cells grown for many generations on sulfur had the ability to grow on iron as rapidly as that did iron-grown cells. These results suggest that both iron oxidase and Fe(2+)-producing SFORase have a role in the energy generation of A. ferrooxidans ATCC23270 from sulfur.
Collapse
|
29
|
Shukor Y, . HA, . KI, . IY, . NAS, . MAS. Molybdate Reduction to Molybdenum Blue in Microbe Proceeds via a Phosphomolybdate Intermediate. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/jbs.2007.1448.1452] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Kanao T, Kamimura K, Sugio T. Identification of a gene encoding a tetrathionate hydrolase in Acidithiobacillus ferrooxidans. J Biotechnol 2007; 132:16-22. [PMID: 17904676 DOI: 10.1016/j.jbiotec.2007.08.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 07/26/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
Tetrathionate is one of the most important intermediates in dissimilatory sulfur oxidation and can itself be utilized as a sole energy source by some sulfur-oxidizing microorganisms. Tetrathionate hydrolase (4THase) plays a significant role in tetrathionate oxidation and should catalyze the initial step in the oxidative dissimilation when sulfur-oxidizing bacteria are grown on tetrathionate. 4THase activity was detected in tetrathionate-grown Acidithiobacillus ferrooxidans ATCC 23270 cells but not in iron-grown cells. A 4THase having a dimeric structure of identical 50kDa polypeptides was purified from tetrathionate-grown cells. The 4THase showed the maximum activity at pH 3.0 and high stability under acidic conditions. An open reading frame (ORF) encoding the N-terminal amino acid sequence of the purified 4THase was identified by a BLAST search using the database for the A. ferrooxidans ATCC 23270 genome. Heterologous expression of the gene in Escherichia coli resulted in the formation of inclusion bodies of the protein in an inactive form. Antisera against the recombinant protein clearly recognized the purified native 4THase, indicating that the ORF encoded the 4THase.
Collapse
Affiliation(s)
- Tadayoshi Kanao
- Department of Instrumental Analysis, Advanced Science Research Center, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan.
| | | | | |
Collapse
|
31
|
Chen Y, Suzuki I. Electron transport pathways for the oxidation of endogenous substrate(s) in Acidithiobacillus ferrooxidans. Can J Microbiol 2006; 52:317-27. [PMID: 16699582 DOI: 10.1139/w05-128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidation of endogenous substrate(s) of Acidithiobacillus ferrooxidans with O2 or Fe3+ as electron acceptor was studied in the presence of uncouplers and electron transport inhibitors. Endogenous substrate was oxidized with a respiratory quotient (CO2 produced/O2 consumed) of 1.0, indicating its carbohydrate nature. The oxidation was inhibited by complex I inhibitors (rotenone, amytal, and piericidin A) only partially, but piericidin A inhibited the oxidation with Fe3+ nearly completely. The oxidation was stimulated by uncouplers, and the stimulated activity was more sensitive to inhibition by complex I inhibitors. HQNO (2-heptyl-4-hydroxyquinoline N-oxide) also stimulated the oxidation, and the stimulated respiration was more sensitive to KCN inhibition than uncoupler stimulated respiration. Fructose, among 20 sugars and sugar alcohols including glucose and mannose, was oxidized with a CO2/O2 ratio of 1.0 by the organism. Iron chelators in general stimulated endogenous respiration, but some of them reduced Fe3+ chemically, introducing complications. The results are discussed in view of a branched electron transport system of the organism and its possible control.
Collapse
Affiliation(s)
- Yongqiang Chen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada.
| | | |
Collapse
|
32
|
Mohapatra BR, Gould WD, Dinardo O, Papavinasam S, Revie RW. Optimization of culture conditions and properties of immobilized sulfide oxidase from Arthrobacter species. J Biotechnol 2006; 124:523-31. [PMID: 16530872 DOI: 10.1016/j.jbiotec.2006.01.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 01/11/2006] [Accepted: 01/19/2006] [Indexed: 11/26/2022]
Abstract
Arthrobacter species strain FR-3, isolated from sediments of a swamp, produced a novel serine-type sulfide oxidase. The production of sulfide oxidase was maximal at pH 7.5 and 30 degrees C. Among various carbon and nitrogen sources tested, glucose and yeast extract were found to be the most effective substrates for the secretion of sulfide oxidase. The sulfide oxidase was purified to homogeneity and the molecular weight of the purified enzyme was 43 kDa when estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified sulfide oxidase can be effectively immobilized in DEAE (diethylaminoethyl)-cellulose matrix with a yield of 66%. The purified free and immobilized enzyme had optimum activity at pH 7.5 and 6.0, respectively. Immobilization increases the stability of the enzyme with respect to temperature. The half-life of the immobilized enzyme was 30 min at 45 degrees C, longer than that of the free enzyme (10 min). The purified free sulfide oxidase activity was completely inhibited by 1 mM Co2+ and Zn2+ and sulfhydryl group reagents (para-chloromercuribenzoic acid and iodoacetic acid). Catalytic activity was not affected by 1 mM Ca2+, Mg2+, Na+ and metal-chelating agent (EDTA).
Collapse
Affiliation(s)
- B R Mohapatra
- CANMET Materials Technology Laboratory, Natural Resources Canada, 568 Booth Street, Ottawa, Ont., Canada K1A0G1.
| | | | | | | | | |
Collapse
|
33
|
Valenzuela L, Chi A, Beard S, Orell A, Guiliani N, Shabanowitz J, Hunt DF, Jerez CA. Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol Adv 2005; 24:197-211. [PMID: 16288845 DOI: 10.1016/j.biotechadv.2005.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
The use of acidophilic, chemolithotrophic microorganisms capable of oxidizing iron and sulfur in industrial processes to recover metals from minerals containing copper, gold and uranium is a well established biotechnology with distinctive advantages over traditional mining. A consortium of different microorganisms participates in the oxidative reactions resulting in the extraction of dissolved metal values from ores. Considerable effort has been spent in the last years to understand the biochemistry of iron and sulfur compounds oxidation, bacteria-mineral interactions (chemotaxis, quorum sensing, adhesion, biofilm formation) and several adaptive responses allowing the microorganisms to survive in a bioleaching environment. All of these are considered key phenomena for understanding the process of biomining. The use of genomics, metagenomics and high throughput proteomics to study the global regulatory responses that the biomining community uses to adapt to their changing environment is just beginning to emerge in the last years. These powerful approaches are reviewed here since they offer the possibility of exciting new findings that will allow analyzing the community as a microbial system, determining the extent to which each of the individual participants contributes to the process, how they evolve in time to keep the conglomerate healthy and therefore efficient during the entire process of bioleaching.
Collapse
Affiliation(s)
- Lissette Valenzuela
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ng KY, Kamimura K, Sugio T. Production of hydrogen sulfide from tetrathionate by the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1. J Biosci Bioeng 2005; 90:193-8. [PMID: 16232841 DOI: 10.1016/s1389-1723(00)80109-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2000] [Accepted: 05/23/2000] [Indexed: 11/28/2022]
Abstract
When incubated under anaerobic conditions, five strains of Thiobacillus ferrooxidans tested produced hydrogen sulfide (H2S) from elemental sulfur at pH 1.5. However, among the strains, T. ferrooxidans NASF-1 and AP19-3 were able to use both elemental sulfur and tetrathionate as electron acceptors for H2S production at pH 1.5. The mechanism of H2S production from tetrathionate was studied with intact cells of strain NASF-1. Strain NASF-1 was unable to use dithionate, trithionate, or pentathionate as an electron acceptor. After 12 h of incubation under anaerobic conditions at 30 degrees C, 1.3 micromol of tetrathionate in the reaction mixture was decomposed, and 0.78 micromol of H2S and 0.6 micromol of trithionate were produced. Thiosulfate and sulfite were not detected in the reaction mixture. From these results, we propose that H2S is produced at pH 1.5 from tetrathionate by T. ferrooxidans NASF-1, via the following two-step reaction, in which AH2 represents an unknown electron donor in NASF-1 cells. Namely, tetrathionate is decomposed by tetrathionate-decomposing enzyme to give trithionate and elemental sulfur (S4O6(2-)-->S3O6(2-) + S(o), Eq. 1), and the elemental sulfur thus produced is reduced by sulfur reductase using electrons from AH2 to give H2S (S(o) + AH2-->H2S + A, Eq. 2). The optimum pH and temperature for H2S production from tetrathionate under argon gas were 1.5 and 30 degrees C, respectively. Under argon gas, the H2S production from tetrathionate stopped after 1 d of incubation, producing a total of 2.5 micromol of H2S/5 mg protein. In contrast, under H2 conditions, H2S production continued for 6 d, producing a total of 10.0 micromol of H2S/5 mg protein. These results suggest that electrons from H2 were used to reduce elemental sulfur produced as an intermediate to give H2S. Potassium cyanide at 0.5 mM slightly inhibited H2S production from tetrathionate, but increased that from elemental sulfur 3-fold. 2,4-Dinitrophenol at 0.05 mM, carbonylcyanide-m-chlorophenyl- hydrazone at 0.01 mM, mercury chloride at 0.05 mM, and sodium selenate at 1.0 mM almost completely inhibited H2S production from tetrathionate, but not from elemental sulfur.
Collapse
Affiliation(s)
- K Y Ng
- Division of Science and Technology for Energy Conversion, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | | | | |
Collapse
|
35
|
Sugio T, Inoue T, Kitano Y, Takeuchi F, Kamimura K. Noncompetitive inhibition by L-cysteine and activation by L-glutamate of the iron-oxidizing activity of a mixotrophic iron-oxidizing bacterium strain OKM-9. J Biosci Bioeng 2005; 98:85-91. [PMID: 16233671 DOI: 10.1016/s1389-1723(04)70247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 05/10/2004] [Indexed: 11/21/2022]
Abstract
A mesophilic, mixotrophic iron-oxidizing bacterium strain OKM-9 uses ferrous iron as a sole source of energy and L-glutamate as a sole source of cellular carbon. Uptake of L-glutamate into OKM-9 cells is absolutely dependent on ferrous iron oxidation. Thus, the Fe(2+)-dependent L-glutamate uptake system of strain OKM-9 is crucial for the bacterium to grow mixotrophically in iron medium with L-glutamate. The relationship between iron oxidation and L-glutamate transport activities was studied. Iron oxidase containing cytochrome a was purified 9-fold from the plasma membrane of OKM-9. A purified iron oxidase showed one rust-colored band following disc gel electrophoresis after incubation with Fe(2+). The Fe(2+)-dependent L-glutamate transport system was also purified 14.5-fold from the plasma membrane using the same purification steps as for iron oxidase. Fe(2+)-dependent L-glutamate and L-cysteine uptake activities of OKM-9 were 0.36 and 0.24 nmol/mg/min, respectively, when a concentration of 18 mM of these amino acids was used as a substrate. Both uptake activities were completely inhibited by potassium cyanide (KCN), suggesting that cytochrome a in the iron oxidase is involved in the transport process. The iron-oxidizing activity of strain OKM-9 was activated 1.7-fold by 80 mM L-glutamate. In contrast, the activity was noncompetitively inhibited by L-cysteine. The Michaelis constant of iron oxidase for Fe(2+) was 12.6 mM and the inhibition constant for L-cysteine was 41.6 mM. A marked inhibition of iron oxidase by 50 mM L-cysteine was completely reversed by the addition of 60 mM L-glutamate. The results suggest the possibility that iron oxidase has a binding site for L-cysteine and the cysteine first bound to the iron oxidase was replaced by the added L-glutamate.
Collapse
Affiliation(s)
- Tsuyoshi Sugio
- Division of Science and Technology for Energy Conversion, Graduate School of Natural Science and Technology, Okayama University 3-1-1, Tsushima-naka, Okayama, 700-8530, Japan.
| | | | | | | | | |
Collapse
|
36
|
Takeuchi F, Negishi A, Nakamura S, Kanao T, Kamimura K, Sugio T. Existence of an iron-oxidizing bacterium Acidithiobacillus ferrooxidans resistant to organomercurial compounds. J Biosci Bioeng 2005; 99:586-91. [PMID: 16233835 DOI: 10.1263/jbb.99.586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 03/13/2005] [Indexed: 11/17/2022]
Abstract
Acidithiobacillus ferrooxidans MON-1 which is highly resistant to Hg2+ could grow in a ferrous sulfate medium (pH 2.5) with 0.1 microM p-chloromercuribenzoic acid (PCMB) with a lag time of 2 d. In contrast, A. ferrooxidans AP19-3 which is sensitive to Hg2+ did not grow in the medium. Nine strains of A. ferrooxidans, including seven strains of the American Type Culture Collection grew in the medium with a lag time ranging from 5 to 12 d. The resting cells of MON-1, which has NADPH-dependent mercuric reductase activity, could volatilize Hg0 when incubated in acidic water (pH 3.0) containing 0.1 microM PCMB. However, the resting cells of AP19-3, which has a similar level of NADPH-dependent mercuric reductase activity compared with MON-1, did not volatilize Hg0 from the reaction mixture with 0.1 microM PCMB. The activity level of the 11 strains of A. ferrooxidans to volatilize Hg0 from PCMB corresponded well with the level of growth inhibition by PCMB observed in the growth experiments. The resting cells of MON-1 volatilized Hg0 from phenylmercury acetate (PMA) and methylmercury chloride (MMC) as well as PCMB. The cytosol prepared from MON-1 could volatilize Hg0 from PCMB (0.015 nmol mg(-1) h(-1)), PMA (0.33 nmol mg(-1) h(-1)) and MMC (0.005 nmol mg(-1) h(-1)) in the presence of NADPH and beta-mercaptoethanol.
Collapse
Affiliation(s)
- Fumiaki Takeuchi
- Environmental Management and Safety Section, Health and Environment Center, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Ramírez P, Guiliani N, Valenzuela L, Beard S, Jerez CA. Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 2004; 70:4491-8. [PMID: 15294777 PMCID: PMC492426 DOI: 10.1128/aem.70.8.4491-4498.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 04/14/2004] [Indexed: 11/20/2022] Open
Abstract
A set of proteins that changed their levels of synthesis during growth of Acidithiobacillus ferrooxidans ATCC 19859 on metal sulfides, thiosulfate, elemental sulfur, and ferrous iron was characterized by using two-dimensional polyacrylamide gel electrophoresis. N-terminal amino acid sequencing and mass spectrometry analysis of these proteins allowed their identification and the localization of the corresponding genes in the available genomic sequence of A. ferrooxidans ATCC 23270. The genomic context around several of these genes suggests their involvement in the energetic metabolism of A. ferrooxidans. Two groups of proteins could be distinguished. The first consisted of proteins highly upregulated by growth on sulfur compounds (and downregulated by growth on ferrous iron): a 44-kDa outer membrane protein, an exported 21-kDa putative thiosulfate sulfur transferase protein, a 33-kDa putative thiosulfate/sulfate binding protein, a 45-kDa putative capsule polysaccharide export protein, and a putative 16-kDa protein of unknown function. The second group of proteins comprised those downregulated by growth on sulfur (and upregulated by growth on ferrous iron): rusticyanin, a cytochrome c(552), a putative phosphate binding protein (PstS), the small and large subunits of ribulose biphosphate carboxylase, and a 30-kDa putative CbbQ protein, among others. The results suggest in general a separation of the iron and sulfur utilization pathways. Rusticyanin, in addition to being highly expressed on ferrous iron, was also newly synthesized, as determined by metabolic labeling, although at lower levels, during growth on sulfur compounds and iron-free metal sulfides. During growth on metal sulfides containing iron, such as pyrite and chalcopyrite, both proteins upregulated on ferrous iron and those upregulated on sulfur compounds were synthesized, indicating that the two energy-generating pathways are induced simultaneously depending on the kind and concentration of oxidizable substrates available.
Collapse
Affiliation(s)
- Pablo Ramírez
- Laboratorio de Microbiología Molecular y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
38
|
Rohwerder T, Sand W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1699-1710. [PMID: 12855721 DOI: 10.1099/mic.0.26212-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To identify the actual substrate of the glutathione-dependent sulfur dioxygenase (EC 1.13.11.18) elemental sulfur oxidation of the meso-acidophilic Acidithiobacillus thiooxidans strains DSM 504 and K6, Acidithiobacillus ferrooxidans strain R1 and Acidiphilium acidophilum DSM 700 was analysed. Extraordinarily high specific sulfur dioxygenase activities up to 460 nmol x min(-1) (mg protein)(-1) were found in crude extracts. All cell-free systems oxidized elemental sulfur only via glutathione persulfide (GSSH), a non-enzymic reaction product from glutathione (GSH) and elemental sulfur. Thus, GSH plays a catalytic role in elemental sulfur activation, but is not consumed during enzymic sulfane sulfur oxidation. Sulfite is the first product of sulfur dioxygenase activity; it further reacted non-enzymically to sulfate, thiosulfate or glutathione S-sulfonate (GSSO(-3)). Free sulfide was not oxidized by the sulfur dioxygenase. Persulfide as sulfur donor could not be replaced by other sulfane-sulfur-containing compounds (thiosulfate, polythionates, bisorganyl-polysulfanes or monoarylthiosulfonates). The oxidation of H(2)S by the dioxygenase required GSSG, i.e. the disulfide of GSH, which reacted non-enzymically with sulfide to give GSSH prior to enzymic oxidation. On the basis of these results and previous findings a biochemical model for elemental sulfur and sulfide oxidation in Acidithiobacillus and Acidiphilium spp. is proposed.
Collapse
Affiliation(s)
- Thore Rohwerder
- Department of Microbiology, Institute for General Botany, University of Hamburg, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | - Wolfgang Sand
- Department of Microbiology, Institute for General Botany, University of Hamburg, Ohnhorststr. 18, D-22609 Hamburg, Germany
| |
Collapse
|
39
|
Ohmura N, Sasaki K, Matsumoto N, Saiki H. Anaerobic respiration using Fe(3+), S(0), and H(2) in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J Bacteriol 2002. [PMID: 11914338 DOI: 10.1128/jb.184.8.2081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans has been known as an aerobe that respires on iron and sulfur. Here we show that the bacterium could chemolithoautotrophically grow not only on H(2)/O(2) under aerobic conditions but also on H(2)/Fe(3+), H(2)/S(0), or S(0)/Fe(3+) under anaerobic conditions. Anaerobic respiration using Fe(3+) or S(0) as an electron acceptor and H(2) or S(0) as an electron donor serves as a primary energy source of the bacterium. Anaerobic respiration based on reduction of Fe(3+) induced the bacterium to synthesize significant amounts of a c-type cytochrome that was purified as an acid-stable and soluble 28-kDa monomer. The purified cytochrome in the oxidized form was reduced in the presence of the crude extract, and the reduced cytochrome was reoxidized by Fe(3+). Respiration based on reduction of Fe(3+) coupled to oxidation of a c-type cytochrome may be involved in the primary mechanism of energy production in the bacterium on anaerobic iron respiration.
Collapse
Affiliation(s)
- Naoya Ohmura
- Department of Bio-Science, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-City Chiba 270-1194, Japan.
| | | | | | | |
Collapse
|
40
|
Ohmura N, Sasaki K, Matsumoto N, Saiki H. Anaerobic respiration using Fe(3+), S(0), and H(2) in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J Bacteriol 2002; 184:2081-7. [PMID: 11914338 PMCID: PMC134942 DOI: 10.1128/jb.184.8.2081-2087.2002] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans has been known as an aerobe that respires on iron and sulfur. Here we show that the bacterium could chemolithoautotrophically grow not only on H(2)/O(2) under aerobic conditions but also on H(2)/Fe(3+), H(2)/S(0), or S(0)/Fe(3+) under anaerobic conditions. Anaerobic respiration using Fe(3+) or S(0) as an electron acceptor and H(2) or S(0) as an electron donor serves as a primary energy source of the bacterium. Anaerobic respiration based on reduction of Fe(3+) induced the bacterium to synthesize significant amounts of a c-type cytochrome that was purified as an acid-stable and soluble 28-kDa monomer. The purified cytochrome in the oxidized form was reduced in the presence of the crude extract, and the reduced cytochrome was reoxidized by Fe(3+). Respiration based on reduction of Fe(3+) coupled to oxidation of a c-type cytochrome may be involved in the primary mechanism of energy production in the bacterium on anaerobic iron respiration.
Collapse
Affiliation(s)
- Naoya Ohmura
- Department of Bio-Science, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-City Chiba 270-1194, Japan.
| | | | | | | |
Collapse
|
41
|
Harahuc L, Suzuki I. Sulfite oxidation by iron-grown cells ofThiobacillus ferrooxidansat pH 3 possibly involves free radicals, iron, and cytochrome oxidase. Can J Microbiol 2001. [DOI: 10.1139/w01-024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thiobacillus ferrooxidans cells grown on ferrous iron oxidized sulfite to sulfate at pH 3, possibly by a free radical mechanism involving iron and cytochrome oxidase. A purely chemical system with low concentrations of Fe3+simulated the T. ferrooxidans system. Metal chelators, ethylenediamine tetraacetic acid (EDTA), 4,5-dihydroxy-1-3-benzene disulfonic acid (Tiron), o-phenanthroline, and 2,2'-dipyridyl, inhibited both sulfite oxidation systems, but the T. ferrooxidans system was inhibited only after the initial brief oxygen consumption. EDTA and Tiron, strong chelators of Fe3+, inhibited the oxidation at lower concentrations than o-phenanthroline and 2,2'-dipyridyl, strong chelators of Fe2+. Inhibition of Fe3+-catalyzed sulfite oxidation by EDTA and Tiron was instant, but the inhibition by o-phenanthroline and dipyridyl was briefly delayed, presumably for the reduction of Fe3+to Fe2+. Mannitol, a free radical scavenger, inhibited both systems to the same extent. Cyanide and azide inhibited only the T. ferrooxidans system, suggesting a role of cytochrome oxidase. It is proposed that sulfite is oxidized by a free radical mechanism initiated by Fe3+on the cell surface of T. ferrooxidans. Cytochrome oxidase is possibly involved in the regeneration of Fe3+from Fe2+by the normal Fe2+-oxidizing system of T. ferrooxidans.Key words: Thiobacillus ferrooxidans, sulfite oxidation, iron, free radical, cytochrome oxidase.
Collapse
|
42
|
Abstract
Microorganisms are important in metal recovery from ores, particularly sulfide ores. Copper, zinc, gold, etc. can be recovered from sulfide ores by microbial leaching. Mineral solubilization is achieved both by 'direct (contact) leaching' by bacteria and by 'indirect leaching' by ferric iron (Fe(3+)) that is regenerated from ferrous iron (Fe(2+)) by bacterial oxidation. Thiobacillus ferrooxidans is the most studied organism in microbial leaching, but other iron- or sulfide/sulfur-oxidizing bacteria as well as archaea are potential microbial agents for metal leaching at high temperature or low pH environment. Oxidation of iron or sulfur can be selectively controlled leading to solubilization of desired metals leaving undesired metals (e.g., Fe) behind. Microbial contribution is obvious even in electrochemistry of galvanic interactions between minerals.
Collapse
Affiliation(s)
- I Suzuki
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
43
|
Hua GX, McManus D, Woollins JD. The Evolution, Chemistry and Applications of Homogeneous Liquid Redox Sulfur Recovery Techniques. COMMENT INORG CHEM 2001. [DOI: 10.1080/02603590108050874] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Ng KY, Sawada R, Inoue S, Kamimura K, Sugio T. Purification and some properties of sulfur reductase from the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1. J Biosci Bioeng 2000; 90:199-203. [PMID: 16232842 DOI: 10.1016/s1389-1723(00)80110-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2000] [Accepted: 05/23/2000] [Indexed: 11/26/2022]
Abstract
Thiobacillus ferrooxidans strain NASF-1 grown aerobically in an Fe2+ (3%)-medium produces hydrogen sulfide (H2S) from elemental sulfur under anaerobic conditions with argon gas at pH 7.5. Sulfur reductase, which catalyzes the reduction of elemental sulfur (S0) with NAD(P)H as an electron donor to produce hydrogen sulfide (H2S) under anaerobic conditions, was purified 69-fold after 35-65% ammonium sulfate precipitation and Q-Sepharose FF, Phenyl-Toyopearl 650 ML, and Blue Sepharose FF column chromatography, with a specific activity of 57.6 U (mg protein)(-1). The purified enzyme was quite labile under aerobic conditions, but comparatively stable in the presence of sodium hydrosulfite and under anaerobic conditions, especially under hydrogen gas conditions. The purified enzyme showed both sulfur reductase and hydrogenase activities. Both activities had an optimum pH of 9.0. Sulfur reductase has an apparent molecular weight of 120,000 Da, and is composed of three different subunits (M(r) 54,000 Da (alpha), 36,000 Da (beta), and 35,000 Da (gamma)), as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This is the first report on the purification of sulfur reductase from a mesophilic and obligate chemolithotrophic iron-oxidizing bacterium.
Collapse
Affiliation(s)
- K Y Ng
- Division of Science and Technology for Energy Conversion, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
45
|
YONG KIMNG, SAWADA RYOKO, INOUE SAYURI, KAMIMURA KAZUO, SUGIO TSUYOSHI. Purification and Some Properties of Sulfur Reductase from the Iron-Oxidizing Bacterium Thiobacillus ferrooxidans NASF-1. J Biosci Bioeng 2000. [DOI: 10.1263/jbb.90.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Suzuki I. Oxidation of inorganic sulfur compounds: Chemical and enzymatic reactions. Can J Microbiol 1999. [DOI: 10.1139/w98-223] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microbial oxidation of inorganic sulfur compounds is governed by both chemical and enzymatic reactions. It is therefore essential to understand reactions possible in chemistry when we consider enzymatic reactions. Various oxidation states of sulfur atoms in inorganic sulfur compounds and chemical oxidation reactions as well as nucleophilic cleavage of sulfur-sulfur bonds are discussed. The scheme of enzymatic oxidation of sulfur compounds with S2-→> S0→> SO32-→> SO42-as the main oxidation pathway is discussed with thiosulfate and polythionates leading into the main pathway for complete oxidation to sulfate. Enzymatic reactions are related to chemical reactions and the use of inhibitors for S0→> SO32-and SO32-→> SO42-is discussed for analyzing and establishing reaction stoichiometries. The proposed pathway is supported by a variety of evidence in many different microorganisms including some genetic evidence if the oxidation steps include all the systems irrespective of oxidizing agents (O2, Fe3+, cytochromes etc.).Key words: sulfur, oxidation, chemical, enzymatic, reactions.
Collapse
|
47
|
Maeda T, Negishi A, Komoto H, Oshima Y, Kamimura K, Sugio T. Isolation of iron-oxidizing bacteria from corroded concretes of sewage treatment plants. J Biosci Bioeng 1999; 88:300-5. [PMID: 16232615 DOI: 10.1016/s1389-1723(00)80013-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/1999] [Accepted: 06/10/1999] [Indexed: 11/25/2022]
Abstract
Thirty-six strains of iron-oxidizing bacteria were isolated from corroded concrete samples obtained at eight sewage treatment plants in Japan. All of the strains isolated grew autotrophically in ferrous sulfate (3.0%), elemental sulfur (1.0%) and FeS (1.0%) media (pH 1.5). Washed intact cells of the 36 isolates had activities to oxidize both ferrous iron and elemental sulfur. Strain SNA-5, a representative of the isolated strains, was a gram-negative, rod-shaped bacterium (0.5-0.6x0.9-1.5 microm). The mean G+C content of its DNA was 55.9 mol%. The pH and temperature optima for growth were 1.5 and 30 degrees C, and the bacterium had activity to assimilate 14CO2 into the cells when ferrous iron or elemental sulfur was used as a sole source of energy. These results suggest that SNA-5 is Thiobacillus ferrooxidans strain. The pHs and numbers of iron-oxidizing bacteria in corroded concrete samples obtained by boring to depths of 0-1, 1-3, and 3-5 cm below the concrete surface were respectively 1.4, 1.7, and 2.0, and 1.2 x 10(8), 5 x 10(7), and 5 x 10(6) cells/g concrete. The degree of corrosion in the sample obtained nearest to the surface was more severe than in the deeper samples. The findings indicated that the levels of acidification and corrosion of the concrete structure corresponded with the number of iron-oxidizing bacteria in a concrete sample. Sulfuric acid produced by the chemolithoautotrophic sulfur-oxidizing bacterium Thiobacillus thiooxidansis known to induce concrete corrosion. Since not only T. thiooxidans but also T. ferrooxidans can oxidize reduced sulfur compounds and produce sulfuric acid, the results strongly suggest that T. ferrooxidans as well as T. thiooxidans is involved in concrete corrosion.
Collapse
Affiliation(s)
- T Maeda
- Technical Research Institute, Hazama Corporation, 515-1 Nishimukai, Karima, Tsukuba 305-0822, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Nakada Y, Ohta Y. Purification and properties of hydrogen sulfide oxidase from Bacillus sp. BN53-1. J Biosci Bioeng 1999; 87:452-5. [PMID: 16232498 DOI: 10.1016/s1389-1723(99)80093-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/1998] [Accepted: 01/18/1999] [Indexed: 10/17/2022]
Abstract
A hydrogen sulfide oxidase was purified to homogeneity from the heterotroph Bacillus sp. BN53-1 isolated from pig feces compost. The enzyme was found to be a monomer with a M(r) value of approximately 37 kDa. It required FAD for its activity, which was not replaced by FMN. The optimum reaction pH and temperature were 7.5 and 40 degrees C, respectively. The enzyme was stable between pH 6.0 and 7.0 and up to 30 degrees C. Its activity was stimulated by Ca2+ and Mn2+ and inhibited by Al3+, dithiothreitol, and 2-mercaptoethanol. The main product was elemental sulfur, and H2O2 was not detected. The N-terminal sequence of the enzyme showed similarity to other FAD-requiring enzymes.
Collapse
Affiliation(s)
- Y Nakada
- Faculty of Applied Biological Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | | |
Collapse
|
49
|
Sugio T, Fujioka A, Tsuchiya M, Shibusawa N, Iwahori K, Kamimura K. Isolation and some properties of a strain of the iron-oxidizing bacterium Thiobacillus ferrooxidans resistant to 2,4-dinitrophenol. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(98)80047-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Ohta Y, Sumida K, Nakada Y. Purification and properties of a sulfide-oxidizing enzyme from Streptomyces sp. strain SH91. Can J Microbiol 1997. [DOI: 10.1139/m97-157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A heterotrophic Streptomyces sp. strain SH91 isolated from pig feces compost had the ability to oxidize hydrogen sulfide to odorless substances. With several purification steps including ion-exchange and hydrophobic chromatographies, the hydrogen sulfide oxidizing enzyme was purified to a homogeneous form. The molecular mass was estimated to be 37 kDa by SDS–PAGE. The optimum reaction pH and temperature were 6.5 and 30 °C, respectively. The enzyme was stable between pH 6.0 and 8.0 and up to 40 °C. The enzyme was activated by Ba2+, Mg2+, and Ca2+ and inhibited by Mn2+, and Al3+. The main product was thiosulfate.Key words: hydrogen sulfide, heterotroph, Streptomyces, oxidizing enzyme, malodorous pollution.
Collapse
|