1
|
Barceló IM, Escobar-Salom M, Jordana-Lluch E, Torrens G, Oliver A, Juan C. Filling knowledge gaps related to AmpC-dependent β-lactam resistance in Enterobacter cloacae. Sci Rep 2024; 14:189. [PMID: 38167986 PMCID: PMC10762043 DOI: 10.1038/s41598-023-50685-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Enterobacter cloacae starred different pioneer studies that enabled the development of a widely accepted model for the peptidoglycan metabolism-linked regulation of intrinsic class C cephalosporinases, highly conserved in different Gram-negatives. However, some mechanistic and fitness/virulence-related aspects of E. cloacae choromosomal AmpC-dependent resistance are not completely understood. The present study including knockout mutants, β-lactamase cloning, gene expression analysis, characterization of resistance phenotypes, and the Galleria mellonella infection model fills these gaps demonstrating that: (i) AmpC enzyme does not show any collateral activity impacting fitness/virulence; (ii) AmpC hyperproduction mediated by ampD inactivation does not entail any biological cost; (iii) alteration of peptidoglycan recycling alone or combined with AmpC hyperproduction causes no attenuation of E. cloacae virulence in contrast to other species; (iv) derepression of E. cloacae AmpC does not follow a stepwise dynamics linked to the sequential inactivation of AmpD amidase homologues as happens in Pseudomonas aeruginosa; (v) the enigmatic additional putative AmpC-type β-lactamase generally present in E. cloacae does not contribute to the classical cephalosporinase hyperproduction-based resistance, having a negligible impact on phenotypes even when hyperproduced from multicopy vector. This study reveals interesting particularities in the chromosomal AmpC-related behavior of E. cloacae that complete the knowledge on this top resistance mechanism.
Collapse
Affiliation(s)
- Isabel M Barceló
- Health Research Institute of the Balearic Islands (IdISBa), 07010, Palma, Spain
- Microbiology Department, University Hospital Son Espases (HUSE), 07010, Palma, Spain
- Centro de Investigación Biomédica en Red, Área Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Escobar-Salom
- Health Research Institute of the Balearic Islands (IdISBa), 07010, Palma, Spain
- Microbiology Department, University Hospital Son Espases (HUSE), 07010, Palma, Spain
- Centro de Investigación Biomédica en Red, Área Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elena Jordana-Lluch
- Health Research Institute of the Balearic Islands (IdISBa), 07010, Palma, Spain
- Microbiology Department, University Hospital Son Espases (HUSE), 07010, Palma, Spain
- Centro de Investigación Biomédica en Red, Área Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Gabriel Torrens
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
| | - Antonio Oliver
- Health Research Institute of the Balearic Islands (IdISBa), 07010, Palma, Spain
- Microbiology Department, University Hospital Son Espases (HUSE), 07010, Palma, Spain
- Centro de Investigación Biomédica en Red, Área Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Carlos Juan
- Health Research Institute of the Balearic Islands (IdISBa), 07010, Palma, Spain.
- Microbiology Department, University Hospital Son Espases (HUSE), 07010, Palma, Spain.
- Centro de Investigación Biomédica en Red, Área Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Tariq FN, Shafiq M, Khawar N, Habib G, Gul H, Hayat A, Rehman MU, Moussa IM, Mahmoud EA, Elansary HO. The functional repertoire of AmpR in the AmpC β-lactamase high expression and decreasing β-lactam and aminoglycosides resistance in ESBL Citrobacter freundii. Heliyon 2023; 9:e19486. [PMID: 37662790 PMCID: PMC10472055 DOI: 10.1016/j.heliyon.2023.e19486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
Citrobacter freundii is characterized by AmpC β-lactamases that develop resistance to β-lactam antibiotics. The production of extended-spectrum β-lactamase (ESBL) is substantially high in Escherichia coli, C. freundii, Enterobacter cloacae, and Serratia marcescens, but infrequently explored in C. freundii. The present investigation characterized the ESBL C. freundii and delineated the genes involved in decrease in antibiotics resistance. We used the VITEK-2 system and Analytical Profile Index (API) kit to characterize and identify the Citrobacter isolates. The mRNA level of AmpC and AmpR was determined by RT-qPCR, and gel-shift assay was performed to evaluate protein-DNA binding. Here, a total of 26 Citrobacter strains were isolated from COVID-19 patients that showed varying degrees of antibiotic resistance. We examined and characterized the multidrug resistant C. freundii that showed ESBL production. The RT-qPCR analysis revealed that the AmpC mRNA expression is significantly high followed by a high level of AmpR. We sequenced the AmpC and AmpR genes that revealed the AmpR has four novel mutations in comparison to the reference genome namely; Thr64Ile, Arg86Ser, Asp135Val, and Ile183Leu while AmpC remained intact. The ΔAmpR mutant analysis revealed that the AmpR positively regulates oxidative stress response and decreases β-lactam and aminoglycosides resistance. The AmpC and AmpR high expression was associated with resistance to tazobactam, ampicillin, gentamicin, nitrofurantoin, and cephalosporins whereas AmpR deletion reduced β-lactam and aminoglycosides resistance. We conclude that AmpR is a positive regulator of AmpC that stimulates β-lactamases which inactivate multiple antibiotics.
Collapse
Affiliation(s)
- Falak Naz Tariq
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Mehreen Shafiq
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Nadeem Khawar
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, 25000, Pakistan
| | - Gul Habib
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Haji Gul
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Azam Hayat
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Mujaddad Ur Rehman
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Ihab Mohamed Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Hosam O. Elansary
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Induction of AmpC-Mediated β-Lactam Resistance Requires a Single Lytic Transglycosylase in Agrobacterium tumefaciens. Appl Environ Microbiol 2022; 88:e0033322. [PMID: 35638841 PMCID: PMC9238390 DOI: 10.1128/aem.00333-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The remarkable ability of Agrobacterium tumefaciens to transfer DNA to plant cells has allowed the generation of important transgenic crops. One challenge of A. tumefaciens-mediated transformation is eliminating the bacteria after plant transformation to prevent detrimental effects to plants and the release of engineered bacteria to the environment. Here, we use a reverse-genetics approach to identify genes involved in ampicillin resistance, with the goal of utilizing these antibiotic-sensitive strains for plant transformations. We show that treating A. tumefaciens C58 with ampicillin led to increased β-lactamase production, a response dependent on the broad-spectrum β-lactamase AmpC and its transcription factor, AmpR. Loss of the putative ampD orthologue atu2113 led to constitutive production of AmpC-dependent β-lactamase activity and ampicillin resistance. Finally, one cell wall remodeling enzyme, MltB3, was necessary for the AmpC-dependent β-lactamase activity, and its loss elicited ampicillin and carbenicillin sensitivity in the A. tumefaciens C58 and GV3101 strains. Furthermore, GV3101 ΔmltB3 transforms plants with efficiency comparable to that of the wild type but can be cleared with sublethal concentrations of ampicillin. The functional characterization of the genes involved in the inducible ampicillin resistance pathway of A. tumefaciens constitutes a major step forward in efforts to reduce the intrinsic antibiotic resistance of this bacterium. IMPORTANCE Agrobacterium tumefaciens, a significant biotechnological tool for production of transgenic plant lines, is highly resistant to a wide variety of antibiotics, posing challenges for various applications. One challenge is the efficient elimination of A. tumefaciens from transformed plant tissue without using levels of antibiotics that are toxic to the plants. Here, we present the functional characterization of genes involved in β-lactam resistance in A. tumefaciens. Knowledge about proteins that promote or inhibit β-lactam resistance will enable the development of strains to improve the efficiency of Agrobacterium-mediated plant genetic transformations. Effective removal of Agrobacterium from transformed plant tissue has the potential to maximize crop yield and food production, improving the outlook for global food security.
Collapse
|
4
|
Tolentino FM, De Almeida IAZC, Dos Santos CCM, Teixeira ISDC, Silva SIDLE, Nogueira MCL, Arroyo MG, Faim WR, De Almeida MTG, Peresi JTM. Phenotypic and genotypic profile of the antimicrobial resistance of bacterial isolates and evaluation of physical and chemical potability indicators in groundwater in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:186-201. [PMID: 31293171 DOI: 10.1080/09603123.2019.1640354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
The aquatic environment has received increasing attention regarding the evolution of bacterial resistance, either as a source of resistance genes or as a matrix for the dissemination of these genes. We evaluated the physicochemical, microbiological and antimicrobial resistance characteristics of 160 samples from alternative water well solutions. According to Ordinance 2914/2011 - MS, 44 (27.5%) samples were considered unsafe if at least one physicochemical parameter exceeded permissible limits. Escherichia coli were found in 30.6% of the unregistered housing estates (UHE) and 1.9% of the local sanitary surveillance system (RW). The total of 158 bacterial strains were isolated from 13 (25%) RW and 68 (63%) UHE, 132 of which (83.5%) were obtained from UHE samples. In the investigation of resistance genes, tetA, qnrS and qnrB genes were detected in three, one and eight isolates, respectively. Our results emphasize the importance of constant surveillance and control of the quality of water supplies.
Collapse
Affiliation(s)
- Fernanda Modesto Tolentino
- Instituto Adolfo Lutz - Centro de Laboratório Regional de São José do Rio Preto - Rua Alberto Sufredine Bertone , São José do Rio Preto-SP, Brasil
| | | | - Cecilia Cristina Marques Dos Santos
- Instituto Adolfo Lutz - Centro de Laboratório Regional de São José do Rio Preto - Rua Alberto Sufredine Bertone , São José do Rio Preto-SP, Brasil
| | - Inara Siqueira De Carvalho Teixeira
- Instituto Adolfo Lutz - Centro de Laboratório Regional de São José do Rio Preto - Rua Alberto Sufredine Bertone , São José do Rio Preto-SP, Brasil
| | - Sonia Izaura De Lima E Silva
- Instituto Adolfo Lutz - Centro de Laboratório Regional de São José do Rio Preto - Rua Alberto Sufredine Bertone , São José do Rio Preto-SP, Brasil
| | - Mara Correa Lelles Nogueira
- Centro de Pesquisas de Micro-organismos da Faculdade de Medicina de São José do Rio Preto , São José do Rio Preto-SP, Brasil
| | - Máira Gazzola Arroyo
- Centro de Pesquisas de Micro-organismos da Faculdade de Medicina de São José do Rio Preto , São José do Rio Preto-SP, Brasil
| | - Wilson Roberto Faim
- Secretaria Municipal de Saúde e Higiene - Vigilância Sanitária de São José do Rio Preto , São José do Rio Preto-SP, Brasil
| | | | - Jacqueline Tanury Macruz Peresi
- Instituto Adolfo Lutz - Centro de Laboratório Regional de São José do Rio Preto - Rua Alberto Sufredine Bertone , São José do Rio Preto-SP, Brasil
| |
Collapse
|
5
|
Ingti B, Upadhyay S, Hazarika M, Khyriem AB, Paul D, Bhattacharya P, Joshi SR, Bora D, Dhar D, Bhattacharjee A. Distribution of carbapenem resistant Acinetobacter baumannii with bla ADC-30 and induction of ADC-30 in response to beta-lactam antibiotics. Res Microbiol 2020; 171:128-133. [PMID: 31988011 DOI: 10.1016/j.resmic.2020.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 11/09/2019] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
Abstract
A wide range of intrinsic Acinetobacter-derived cephalosporinases (ADC) along with other carbapenemases has now been detected in Acinetobacter baumannii leaving clinicians with few treatment options. The present study reports the spread of ADC-30 co-producing KPC-2 along with other β-lactamases among carbapenem resistant A. baumannii strains obtained from ICU patients in two Indian hospitals. Primer extension analysis revealed higher transcript level of the ADC gene when induced with cefoxitin at 8 μg/ml (170 fold), ceftriaxone at 8 μg/ml (136 fold), ceftazidime at 4 μg/ml (65 fold), cefepime at 8 μg/ml (77 fold) and aztreonam at 8 μg/ml (21 fold) when compared with the basal level without antibiotic pressure. Slight increase in expression of blaADC-30 when induced with imipenem and meropenem at 0.25 μg/ml (3 and 6 fold) was observed and may help in conferring resistance to carbapenem. MLST analysis revealed the circulation of A. baumannii sequence types ST188, ST386, ST583 and ST390 in these hospitals.
Collapse
Affiliation(s)
- Birson Ingti
- Department of Microbiology, Assam University, Silchar, 788011, India; Department of Microbiology, Royal Global University, Guwahati, 781035, India
| | - Supriya Upadhyay
- Department of Biotechnology & Bioinformatics, North Eastern Hill University, Shillong, 793022, Meghalaya, India
| | | | - Annie Bakorlin Khyriem
- Department of Microbiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Deepjyoti Paul
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Prithwis Bhattacharya
- Department of Anesthesiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - S R Joshi
- Department of Biotechnology & Bioinformatics, North Eastern Hill University, Shillong, 793022, Meghalaya, India.
| | - Debajyoti Bora
- Department of Statistics, Dibrugarh University, Dibrugarh, India
| | - Debadatta Dhar
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, India
| | | |
Collapse
|
6
|
Torrens G, Hernández SB, Ayala JA, Moya B, Juan C, Cava F, Oliver A. Regulation of AmpC-Driven β-Lactam Resistance in Pseudomonas aeruginosa: Different Pathways, Different Signaling. mSystems 2019; 4:e00524-19. [PMID: 31796566 PMCID: PMC6890930 DOI: 10.1128/msystems.00524-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
The hyperproduction of the chromosomal AmpC β-lactamase is the main mechanism driving β-lactam resistance in Pseudomonas aeruginosa, one of the leading opportunistic pathogens causing nosocomial acute and chronic infections in patients with underlying respiratory diseases. In the current scenario of the shortage of effective antipseudomonal drugs, understanding the molecular mechanisms mediating AmpC hyperproduction in order to develop new therapeutics against this fearsome pathogen is of great importance. It has been accepted for decades that certain cell wall-derived soluble fragments (muropeptides) modulate AmpC production by complexing with the transcriptional regulator AmpR and acquiring different conformations that activate/repress ampC expression. However, these peptidoglycan-derived signals have never been characterized in the highly prevalent P. aeruginosa stable AmpC hyperproducer mutants. Here, we demonstrate that the previously described fragments enabling the transient ampC hyperexpression during cefoxitin induction (1,6-anhydro-N-acetylmuramyl-pentapeptides) also underlie the dacB (penicillin binding protein 4 [PBP4]) mutation-driven stable hyperproduction but differ from the 1,6-anhydro-N-acetylmuramyl-tripeptides notably overaccumulated in the ampD knockout mutant. In addition, a simultaneous greater accumulation of both activators appears linked to higher levels of AmpC hyperproduction, although our results suggest a much stronger AmpC-activating potency for the 1,6-anhydro-N-acetylmuramyl-pentapeptide. Collectively, our results propose a model of AmpC control where the activator fragments, with qualitative and quantitative particularities depending on the pathways and levels of β-lactamase production, dominate over the repressor (UDP-N-acetylmuramyl-pentapeptide). This study represents a major step in understanding the foundations of AmpC-dependent β-lactam resistance in P. aeruginosa, potentially useful to open new therapeutic conceptions intended to interfere with the abovementioned cell wall-derived signaling.IMPORTANCE The extensive use of β-lactam antibiotics and the bacterial adaptive capacity have led to the apparently unstoppable increase of antimicrobial resistance, one of the current major global health challenges. In the leading nosocomial pathogen Pseudomonas aeruginosa, the mutation-driven AmpC β-lactamase hyperproduction stands out as the main resistance mechanism, but the molecular cues enabling this system have remained elusive until now. Here, we provide for the first time direct and quantitative information about the soluble cell wall-derived fragments accounting for the different levels and pathways of AmpC hyperproduction. Based on these results, we propose a hierarchical model of signals which ultimately govern ampC hyperexpression and resistance.
Collapse
Affiliation(s)
- Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Sara Belén Hernández
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Juan Alfonso Ayala
- Departamento de Virología y Microbiología, Centro de Biología Molecular Severo Ochoa, Madrid, Spain
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| |
Collapse
|
7
|
Dhar S, Kumari H, Balasubramanian D, Mathee K. Cell-wall recycling and synthesis in Escherichia coli and Pseudomonas aeruginosa – their role in the development of resistance. J Med Microbiol 2018; 67:1-21. [DOI: 10.1099/jmm.0.000636] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Supurna Dhar
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Hansi Kumari
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | | | - Kalai Mathee
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
8
|
Liu C, Li C, Chen Y, Hao H, Liang J, Duan R, Guo Z, Zhang J, Zhao Z, Jing H, Wang X, Shao S. Role of Low-Molecular-Mass Penicillin-Binding Proteins, NagZ and AmpR in AmpC β-lactamase Regulation of Yersinia enterocolitica. Front Cell Infect Microbiol 2017; 7:425. [PMID: 29021974 PMCID: PMC5623720 DOI: 10.3389/fcimb.2017.00425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/14/2017] [Indexed: 11/23/2022] Open
Abstract
Yersinia enterocolitica encodes a chromosomal AmpC β-lactamase under the regulation of the classical ampR-ampC system. To obtain a further understanding to the role of low-molecular-mass penicillin-binding proteins (LMM PBPs) including PBP4, PBP5, PBP6, and PBP7, as well as NagZ and AmpR in ampC regulation of Y. enterocolitica, series of single/multiple mutant strains were systematically constructed and the ampC expression levels were determined by luxCDABE reporter system, reverse transcription-PCR (RT-PCR) and β-lactamase activity test. Sequential deletion of PBP5 and other LMM PBPs result in a continuously growing of ampC expression level, the β-lactamse activity of quadruple deletion strain YEΔ4Δ5Δ6Δ7 (pbp4, pbp5, pbp6, and pbp7 inactivated) is approached to the YEΔD123 (ampD1, ampD2, and ampD3 inactivated). Deletion of nagZ gene caused two completely different results in YEΔD123 and YEΔ4Δ5Δ6Δ7, NagZ is indispensable for YEΔ4Δ5Δ6Δ7 ampC derepression phenotype but dispensable for YEΔD123. AmpR is essential for ampC hyperproduction in these two types of strains, inactivation of AmpR notable reduced the ampC expression level in both YEΔD123 and YEΔ4Δ5Δ6Δ7.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Zhenjiang, China.,National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Chuchu Li
- Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Zhenjiang, China.,National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Yuhuang Chen
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Huijing Hao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Junrong Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Ran Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Zhaoke Guo
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Jing Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Zhongzhi Zhao
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Shihe Shao
- Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
The Vibrio cholerae var regulon encodes a metallo-β-lactamase and an antibiotic efflux pump, which are regulated by VarR, a LysR-type transcription factor. PLoS One 2017; 12:e0184255. [PMID: 28898293 PMCID: PMC5595328 DOI: 10.1371/journal.pone.0184255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
The genome sequence of V. cholerae O1 Biovar Eltor strain N16961 has revealed a putative antibiotic resistance (var) regulon that is predicted to encode a transcriptional activator (VarR), which is divergently transcribed relative to the putative resistance genes for both a metallo-β-lactamase (VarG) and an antibiotic efflux-pump (VarABCDEF). We sought to test whether these genes could confer antibiotic resistance and are organised as a regulon under the control of VarR. VarG was overexpressed and purified and shown to have β-lactamase activity against penicillins, cephalosporins and carbapenems, having the highest activity against meropenem. The expression of VarABCDEF in the Escherichia coli (ΔacrAB) strain KAM3 conferred resistance to a range of drugs, but most significant resistance was to the macrolide spiramycin. A gel-shift analysis was used to determine if VarR bound to the promoter regions of the resistance genes. Consistent with the regulation of these resistance genes, VarR binds to three distinct intergenic regions, varRG, varGA and varBC located upstream and adjacent to varG, varA and varC, respectively. VarR can act as a repressor at the varRG promoter region; whilst this repression was relieved upon addition of β-lactams, these did not dissociate the VarR/varRG-DNA complex, indicating that the de-repression of varR by β-lactams is indirect. Considering that the genomic arrangement of VarR-VarG is strikingly similar to that of AmpR-AmpC system, it is possible that V. cholerae has evolved a system for resistance to the newer β-lactams that would prove more beneficial to the bacterium in light of current selective pressures.
Collapse
|
10
|
Antibiotic resistance and virulence genes in coliform water isolates. Int J Hyg Environ Health 2016; 219:823-831. [DOI: 10.1016/j.ijheh.2016.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 11/23/2022]
|
11
|
Characterization of a Carbapenem-Hydrolyzing Enzyme, PoxB, in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 2015; 60:936-45. [PMID: 26621621 DOI: 10.1128/aac.01807-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/18/2015] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen often associated with severe and life-threatening infections that are highly impervious to treatment. This microbe readily exhibits intrinsic and acquired resistance to varied antimicrobial drugs. Resistance to penicillin-like compounds is commonplace and provided by the chromosomal AmpC β-lactamase. A second, chromosomally encoded β-lactamase, PoxB, has previously been reported in P. aeruginosa. In the present work, the contribution of this class D enzyme was investigated using a series of clean in-frame ampC, poxB, and oprD deletions, as well as complementation by expression under the control of an inducible promoter. While poxB deletions failed to alter β-lactam sensitivities, expression of poxB in ampC-deficient backgrounds decreased susceptibility to both meropenem and doripenem but had no effect on imipenem, penicillin, and cephalosporin MICs. However, when expressed in an ampCpoxB-deficient background, that additionally lacked the outer membrane porin-encoding gene oprD, PoxB significantly increased the imipenem as well as the meropenem and doripenem MICs. Like other class D carbapenem-hydrolyzing β-lactamases, PoxB was only poorly inhibited by class A enzyme inhibitors, but a novel non-β-lactam compound, avibactam, was a slightly better inhibitor of PoxB activity. In vitro susceptibility testing with a clinical concentration of avibactam, however, failed to reduce PoxB activity against the carbapenems. In addition, poxB was found to be cotranscribed with an upstream open reading frame, poxA, which itself was shown to encode a 32-kDa protein of yet unknown function.
Collapse
|
12
|
Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex. Antimicrob Agents Chemother 2015; 59:7753-61. [PMID: 26438498 DOI: 10.1128/aac.01729-15] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/30/2015] [Indexed: 01/10/2023] Open
Abstract
Enterobacter cloacae complex (ECC), an opportunistic pathogen causing numerous infections in hospitalized patients worldwide, is able to resist β-lactams mainly by producing the AmpC β-lactamase enzyme. AmpC expression is highly inducible in the presence of some β-lactams, but the underlying genetic regulation, which is intricately linked to peptidoglycan recycling, is still poorly understood. In this study, we constructed different mutant strains that were affected in genes encoding enzymes suspected to be involved in this pathway. As expected, the inactivation of ampC, ampR (which encodes the regulator protein of ampC), and ampG (encoding a permease) abolished β-lactam resistance. Reverse transcription-quantitative PCR (qRT-PCR) experiments combined with phenotypic studies showed that cefotaxime (at high concentrations) and cefoxitin induced the expression of ampC in different ways: one involving NagZ (a N-acetyl-β-D-glucosaminidase) and another independent of NagZ. Unlike the model established for Pseudomonas aeruginosa, inactivation of DacB (also known as PBP4) was not responsible for a constitutive ampC overexpression in ECC, whereas it caused AmpC-mediated high-level β-lactam resistance, suggesting a post-transcriptional regulation mechanism. Global transcriptomic analysis by transcriptome sequencing (RNA-seq) of a dacB deletion mutant confirmed these results. Lastly, analysis of 37 ECC clinical isolates showed that amino acid changes in the AmpD sequence were likely the most crucial event involved in the development of high-level β-lactam resistance in vivo as opposed to P. aeruginosa where dacB mutations have been commonly found. These findings bring new elements for a better understanding of β-lactam resistance in ECC, which is essential for the identification of novel potential drug targets.
Collapse
|
13
|
Balasubramanian D, Kumari H, Mathee K. Pseudomonas aeruginosa AmpR: an acute-chronic switch regulator. Pathog Dis 2015; 73:1-14. [PMID: 25066236 DOI: 10.1111/2049-632x.12208] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most intractable human pathogens that pose serious clinical challenge due to extensive prevalence of multidrug-resistant clinical isolates. Armed with abundant virulence and antibiotic resistance mechanisms, it is a major etiologic agent in a number of acute and chronic infections. A complex and intricate network of regulators dictates the expression of pathogenicity factors in P. aeruginosa. Some proteins within the network play key roles and control multiple pathways. This review discusses the role of one such protein, AmpR, which was initially recognized for its role in antibiotic resistance by regulating AmpC β-lactamase. Recent genomic, proteomic and phenotypic analyses demonstrate that AmpR regulates expression of hundreds of genes that are involved in diverse pathways such as β-lactam and non-β-lactam resistance, quorum sensing and associated virulence phenotypes, protein phosphorylation, and physiological processes. Finally, ampR mutations in clinical isolates are reviewed to shed light on important residues required for its function in antibiotic resistance. The prevalence and evolutionary implications of AmpR in pathogenic and nonpathogenic proteobacteria are also discussed. A comprehensive understanding of proteins at nodal positions in the P. aeruginosa regulatory network is crucial in understanding, and ultimately targeting, the pathogenic stratagems of this organism.
Collapse
Affiliation(s)
| | - Hansi Kumari
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Kalai Mathee
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
14
|
Structural and functional characterization of Pseudomonas aeruginosa global regulator AmpR. J Bacteriol 2014; 196:3890-902. [PMID: 25182487 DOI: 10.1128/jb.01997-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a dreaded pathogen in many clinical settings. Its inherent and acquired antibiotic resistance thwarts therapy. In particular, derepression of the AmpC β-lactamase is a common mechanism of β-lactam resistance among clinical isolates. The inducible expression of ampC is controlled by the global LysR-type transcriptional regulator (LTTR) AmpR. In the present study, we investigated the genetic and structural elements that are important for ampC induction. Specifically, the ampC (PampC) and ampR (PampR) promoters and the AmpR protein were characterized. The transcription start sites (TSSs) of the divergent transcripts were mapped using 5' rapid amplification of cDNA ends-PCR (RACE-PCR), and strong σ(54) and σ(70) consensus sequences were identified at PampR and PampC, respectively. Sigma factor RpoN was found to negatively regulate ampR expression, possibly through promoter blocking. Deletion mapping revealed that the minimal PampC extends 98 bp upstream of the TSS. Gel shifts using membrane fractions showed that AmpR binds to PampC in vitro whereas in vivo binding was demonstrated using chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR). Additionally, site-directed mutagenesis of the AmpR helix-turn-helix (HTH) motif identified residues critical for binding and function (Ser38 and Lys42) and critical for function but not binding (His39). Amino acids Gly102 and Asp135, previously implicated in the repression state of AmpR in the enterobacteria, were also shown to play a structural role in P. aeruginosa AmpR. Alkaline phosphatase fusion and shaving experiments suggest that AmpR is likely to be membrane associated. Lastly, an in vivo cross-linking study shows that AmpR dimerizes. In conclusion, a potential membrane-associated AmpR dimer regulates ampC expression by direct binding.
Collapse
|
15
|
Kumari H, Murugapiran SK, Balasubramanian D, Schneper L, Merighi M, Sarracino D, Lory S, Mathee K. LTQ-XL mass spectrometry proteome analysis expands the Pseudomonas aeruginosa AmpR regulon to include cyclic di-GMP phosphodiesterases and phosphoproteins, and identifies novel open reading frames. J Proteomics 2013; 96:328-342. [PMID: 24291602 DOI: 10.1016/j.jprot.2013.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 12/23/2022]
Abstract
UNLABELLED Pseudomonas aeruginosa is well known for its antibiotic resistance and intricate regulatory network, contributing to its success as an opportunistic pathogen. This study is an extension of our transcriptomic analyses (microarray and RNA-Seq) to understand the global changes in PAO1 upon deleting a gene encoding a transcriptional regulator AmpR, in the presence and absence of β-lactam antibiotic. This study was performed under identical conditions to explore the proteome profile of the ampR deletion mutant (PAOΔampR) using LTQ-XL mass spectrometry. The proteomic data identified ~53% of total PAO1 proteins and expanded the master regulatory role of AmpR in determining antibiotic resistance and multiple virulence phenotypes in P. aeruginosa. AmpR proteome analysis identified 853 AmpR-dependent proteins, which include 102 transcriptional regulators and 21 two-component system proteins. AmpR also regulates cyclic di-GMP phosphodiesterases (PA4367, PA4969, PA4781) possibly affecting major virulence systems. Phosphoproteome analysis also suggests a significant role for AmpR in Ser, Thr and Tyr phosphorylation. These novel mechanisms of gene regulation were previously not associated with AmpR. The proteome analysis also identified many unannotated and misannotated ORFs in the P. aeruginosa genome. Thus, our data sheds light on important virulence regulatory pathways that can potentially be exploited to deal with P. aeruginosa infections. BIOLOGICAL SIGNIFICANCE The AmpR proteome data not only confirmed the role of AmpR in virulence and resistance to multiple antibiotics, but also expanded the perimeter of AmpR regulon. The data presented here points to the role of AmpR in regulating cyclic di-GMP levels and phosphorylation of Ser, Thr and Tyr, adding another dimension to the regulatory functions of AmpR. We also identify some previously unannotated/misannotated ORFs in the P. aeruginosa genome, indicating the limitations of existing ORF analyses software. This study will contribute towards understanding complex genetic organization of P. aeruginosa. Whole genome proteomic picture of regulators at higher nodal positions in the regulatory network will not only help us link various virulence phenotypes but also design novel therapeutic strategies.
Collapse
Affiliation(s)
- Hansi Kumari
- Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Senthil K Murugapiran
- Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Sciences, Florida International University, Miami, FL United States
| | - Lisa Schneper
- Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Massimo Merighi
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA
| | - David Sarracino
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA
| | - Stephen Lory
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA
| | - Kalai Mathee
- Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| |
Collapse
|
16
|
Yang TC, Chen TF, Tsai JJ, Hu RM. AmpG is required for BlaXcbeta-lactamase expression inXanthomonas campestrispv. campestris str. 17. FEMS Microbiol Lett 2013; 340:101-8. [DOI: 10.1111/1574-6968.12071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 11/27/2022] Open
Affiliation(s)
- Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine; National Yang-Ming University; Taipei; Taiwan
| | - Tzu-Fan Chen
- Department of Biotechnology; Asia University; Wufeng; Taichung; Taiwan
| | - Jeffrey J.P. Tsai
- Department of Biomedical Informatics; Asia University; Wufeng; Taichung; Taiwan
| | | |
Collapse
|
17
|
Yang TC, Tsai MJ, Tsai JJ, Hu RM. Induction of a secretable beta-lactamase requires a long lag time in Xanthomonas campestris pv. campestris str. 17. Res Microbiol 2011; 162:999-1005. [DOI: 10.1016/j.resmic.2011.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 08/17/2011] [Indexed: 11/29/2022]
|
18
|
Balasubramanian D, Kong KF, Jayawardena SR, Leal SM, Sautter RT, Mathee K. Co-regulation of {beta}-lactam resistance, alginate production and quorum sensing in Pseudomonas aeruginosa. J Med Microbiol 2010; 60:147-156. [PMID: 20965918 PMCID: PMC3081088 DOI: 10.1099/jmm.0.021600-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Development of β-lactam resistance, production of alginate and modulation of virulence factor expression that alters host immune responses are the hallmarks of chronic Pseudomonas aeruginosa infection in cystic fibrosis patients. In this study, we propose that a co-regulatory network exists between these mechanisms. We compared the promoter activities of ampR, algT/U, lasR, lasI, rhlR, rhlI and lasA genes, representing the β-lactam antibiotic resistance master regulatory gene, the alginate switch operon, the las and rhl quorum-sensing (QS) genes, and the LasA staphylolytic protease, respectively. Four isogenic P. aeruginosa strains, the prototypic Alg− PAO1, Alg− PAOampR, the mucoid Alg+ PAOmucA22 (Alg+ PDO300) and Alg+ PAOmucA22ampR (Alg+ PDOampR) were used. We found that in the presence of AmpR regulator and β-lactam antibiotic, the extracytoplasmic function sigma factor AlgT/U positively regulated PampR, whereas AmpR negatively regulated PalgT/U. On the basis of this finding we suggest the presence of a negative feedback loop to limit algT/U expression. In addition, the functional AlgT/U caused a significant decrease in the expression of QS genes, whereas loss of ampR only resulted in increased PlasI and PlasR transcription. The upregulation of the las QS system is likely to be responsible for the increased lasA promoter and the LasA protease activities in Alg− PAOampR and Alg+ PDOampR. The enhanced expression of virulence factors in the ampR strains correlated with a higher rate of Caenorhabditis elegans paralysis. Hence, this study shows that the loss of ampR results in increased virulence, and is indicative of the existence of a co-regulatory network between β-lactam resistance, alginate production, QS and virulence factor production, with AmpR playing a central role.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA
| | - Kok-Fai Kong
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA
| | - Suriya Ravi Jayawardena
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA
| | - Sixto Manuel Leal
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA
| | - Robert Todd Sautter
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA
| | - Kalai Mathee
- Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
19
|
Genetic and biochemical characterization of TRU-1, the endogenous class C beta-lactamase from Aeromonas enteropelogenes. Antimicrob Agents Chemother 2010; 54:1547-54. [PMID: 20124004 DOI: 10.1128/aac.01252-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aeromonas enteropelogenes (formerly A. tructi) was described to be an ampicillin-susceptible and cephalothin-resistant Aeromonas species, which suggests the production of a cephalosporinase. Strain ATCC 49803 was susceptible to amoxicillin, cefotaxime, and imipenem but resistant to cefazolin (MICs of 2, 0.032, 0.125, and >256 microg/ml, respectively) and produced an inducible beta-lactamase. Cefotaxime-resistant mutants (MIC, 32 microg/ml) that showed constitutive beta-lactamase production could be selected in vitro. The gene coding for the cephalosporinase of A. enteropelogenes ATCC 49803 was cloned, and its biochemical properties were investigated. Escherichia coli transformants showing resistance to various beta-lactams carried a 3.5-kb plasmid insert whose sequence revealed a 1,146-bp open reading frame (ORF) encoding a class C beta-lactamase, named TRU-1, showing the highest identity scores with A. punctata CAV-1 (75%), A. salmonicida AmpC (75%), and A. hydrophila CepH (71%). The bla(TRU-1) locus includes open reading frames (ORFs) showing significant homology with genes found in the genomes of other Aeromonas species, although it exhibits a different organization, as reflected by the presence of additional ORFs located downstream of the beta-lactamase gene in the A. hydrophila and A. salmonicida genomes. Specific PCR assays were negative for cphA-like and bla(OXA-12)-like genes in three A. enteropelogenes ATCC strains. Purified TRU-1 showed a broad substrate profile, efficiently hydrolyzing benzylpenicillin, cephalothin, cefoxitin, and, although with significantly lower turnover rates, oxyiminocephalosporins. Cephaloridine and cefepime were poorly recognized by the enzyme, as reflected by the high K(m) values observed with these substrates. Thus far, A. enteropelogenes represents the only known example of an Aeromonas species that produces only one beta-lactamase belonging to molecular class C.
Collapse
|
20
|
Screening Extended-spectrum β-Lactamase Production in Enterobacter cloacae and Serratia marcescens Using Antibiogram-based Methods. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2010; 43:26-34. [DOI: 10.1016/s1684-1182(10)60004-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/20/2009] [Accepted: 02/17/2009] [Indexed: 11/17/2022]
|
21
|
Abstract
This review focuses on the era of antibiosis that led to a better understanding of bacterial morphology, in particular the cell wall component peptidoglycan. This is an effort to take readers on a tour de force from the concept of antibiosis, to the serendipity of antibiotics, evolution of beta-lactam development, and the molecular biology of antibiotic resistance. These areas of research have culminated in a deeper understanding of microbiology, particularly in the area of bacterial cell wall synthesis and recycling. In spite of this knowledge, which has enabled design of new even more effective therapeutics to combat bacterial infection and has provided new research tools, antibiotic resistance remains a worldwide health care problem.
Collapse
Affiliation(s)
- Kok-Fai Kong
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | | | |
Collapse
|
22
|
Lin CW, Huang YW, Hu RM, Chiang KH, Yang TC. The role of AmpR in regulation of L1 and L2 beta-lactamases in Stenotrophomonas maltophilia. Res Microbiol 2008; 160:152-8. [PMID: 19071216 DOI: 10.1016/j.resmic.2008.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 11/02/2008] [Accepted: 11/07/2008] [Indexed: 11/18/2022]
Abstract
Stenotrophomonas maltophilia is known to produce at least two chromosomal-mediated inducible beta-lactamases, L1 and L2. Gene L2, which encodes a class A beta-lactamase, and the adjacent ampR gene form an ampR-class A beta-lactamase module. L1 belongs to the class B beta-lactamase and has no neighbor ampR-like regulatory gene. In this study, the ampR-L2 module from S. maltophilia KH was compared with ampR-beta-lactamase modules from several microorganisms with respect to the AmpR and beta-lactamase proteins and the intergenic (IG) region. S. maltophilia and Xanthomonas campestris showed the most closely phylogenetic relationship among the microorganisms considered. The regulatory role of AmpR towards L1 and L2 was further analyzed. In the absence of an inducer, AmpR acted as an activator for L1 expression and as a repressor for L2 expression, whereas AmpR was an activator for both genes in an induced state. In addition, inducibility of L1 and L2 genes depended on the presence of AmpR. The ampR transcript was weakly and constitutively expressed, but was not autoregulated.
Collapse
Affiliation(s)
- Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
23
|
Wiedemann B, Pfeifle D, Wiegand I, Janas E. beta-Lactamase induction and cell wall recycling in gram-negative bacteria. Drug Resist Updat 2007; 1:223-6. [PMID: 16904404 DOI: 10.1016/s1368-7646(98)80002-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/1998] [Revised: 05/20/1998] [Accepted: 05/25/1998] [Indexed: 10/25/2022]
Abstract
beta-Lactams with the ability to induce beta-lactamase in gram-negative bacteria bind to essential penicillin-binding proteins (PBPs) after entering the periplasmic space. This leads to inactivation of transpeptidase activities and thereby a decrease in the number of peptide cross-links, allowing further degradation of murein by soluble lytic transglycosylases. If all DD-carboxypeptidases (PBP 4, 5, 6a and 6b) are inhibited as well, the degradation product aD-pentapeptide (N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic-acid-D-alanyl-D- alanine) accumulates, which is the case with inducing beta-lactams such as imipenem. These molecules in addition to tri- and tetrapeptides (N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic-acid-[D-alanine]) which are the usual degradation products of peptidoglycan, are released into the cytoplasm and displace the UDP-pentapeptide (UDP-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic-acid-D-alanyl-D-alanine) from the DNA-binding protein AmpR, converting it into an activator of AmpC beta-lactamase expression.
Collapse
Affiliation(s)
- B Wiedemann
- Pharmazeutische Mikrobiologie, University of Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|
24
|
Tsang MW, Leung YC. Overexpression of the recombinant Enterobacter cloacae P99 AmpC beta-lactamase and its mutants based on a phi105 prophage system in Bacillus subtilis. Protein Expr Purif 2007; 55:75-83. [PMID: 17638579 DOI: 10.1016/j.pep.2007.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 05/31/2007] [Accepted: 06/06/2007] [Indexed: 10/23/2022]
Abstract
AmpC beta-lactamase is a bacterial enzyme with great clinical impact as it mediates beta-lactam antibiotic resistance in many Gram-negative bacteria. To facilitate the structure-function relationship studies on this clinically important enzyme, we developed new strategies for production of recombinant Enterobacter cloacae P99 AmpC beta-lactamase in Bacillus subtilis. With the utilization of a special thermo-inducible phi105 phage system, functionally active AmpC beta-lactamase was expressed in B. subtilis, either in an extracellular native form or an intracellular N-terminal (His)(6)-tagged form. A higher expression level was achieved when expressing the enzyme as the intracellular (His)(6)-tagged protein rather than as the extracellular native protein. In addition, from the approach of producing intracellular tagged protein, highly pure (>95%) (His)(6)-tagged beta-lactamase wild-type and mutants (Y150C and K315C) were obtained after a one-step nickel affinity chromatography with a yield of 28.5, 66, and 0.85 mg/L of culture, respectively. Furthermore, the Y150C and K315C mutants were characterized so as to investigate the roles of the conserved residues, Tyr150 and Lys315, in the AmpC beta-lactamase. Severe impairment in hydrolytic abilities and restored secondary structures of the Y150C and K315C mutants suggested the major contribution of these two residues in the catalytic reaction rather than the structural framework in the AmpC enzyme.
Collapse
Affiliation(s)
- Man-Wah Tsang
- Laboratory of the Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | | |
Collapse
|
25
|
Girlich D, Naas T, Nordmann P. Regulation of class D beta-lactamase gene expression in Ralstonia pickettii. MICROBIOLOGY-SGM 2006; 152:2661-2672. [PMID: 16946261 DOI: 10.1099/mic.0.29027-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ralstonia pickettii, an environmental bacterium that may also be responsible for human infections, produces two unrelated, inducible and chromosomally encoded oxacillinases, OXA-22 and OXA-60. In order to study the molecular basis of the induction process of these oxacillinase genes, the induction kinetics, the promoter/operator regions necessary for expression and induction, and the role of several ORFs located upstream and downstream of the bla(OXA) genes were investigated. The beta-lactamase production reached a maximal level after 1 h induction, returned to its basal level within the following 3 h and was then again inducible. Using 5'RACE experiments, the promoter sequences of both oxacillinases were determined. These sequences showed weak promoter activities, which could, however, be increased approximately 200-fold by mutating the -35 promoter sequence. Deletion of the sequences located upstream of the promoter regions did not modify the basal beta-lactamase expression in R. pickettii, but resulted in the lack of induction. A minimum of 240 and 270 bp upstream of the transcription initiation sites was required for inducible expression of the bla(OXA-22) and bla(OXA-60) genes, respectively. Analysis of the genetic environment of both bla(OXA) genes revealed several ORFs that were inactivated by homologous recombination. Disruption of ORF-RP3, located 190 bp upstream of bla(OXA-60) and divergently transcribed, abolished induction of both beta-lactamases. ORF-RP3, which encoded a polypeptide of 532 aa with an estimated molecular mass of 58.7 kDa, displayed no obvious sequence homology with known regulatory proteins. Trans-complementation of ORF-RP3 restored the basal and inducible expression of both oxacillinase genes, indicating that the induction of both enzymes was related to the presence of ORF-RP3. In addition to the loss of induction, inactivation of the ORF-RP3 in R. pickettii resulted in a complex pleiotropic phenotype, with increased lag phase and reduced survival after heat exposure, suggesting that ORF-RP3 might be a global regulator involved in unrelated regulatory pathways.
Collapse
Affiliation(s)
- Delphine Girlich
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris-Sud, Université Paris XI, 94275 Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris-Sud, Université Paris XI, 94275 Le Kremlin-Bicêtre, France
| | - Patrice Nordmann
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris-Sud, Université Paris XI, 94275 Le Kremlin-Bicêtre, France
| |
Collapse
|
26
|
Folkesson A, Eriksson S, Andersson M, Park JT, Normark S. Components of the peptidoglycan-recycling pathway modulate invasion and intracellular survival of Salmonella enterica serovar Typhimurium. Cell Microbiol 2005; 7:147-55. [PMID: 15617530 DOI: 10.1111/j.1462-5822.2004.00443.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
beta-Lactam resistance in enteric bacteria is frequently caused by mutations in ampD encoding a cytosolic N-acetylmuramyl- l-alanine amidase. Such mutants are blocked in murein (peptidoglycan) recycling and accumulate cytoplasmic muropeptides that interact with the transcriptional activator ampR, which de-represses beta-lactamase expression. Salmonella enterica serovar Typhimurium, an extensively studied enteric pathogen, was used to show that mutations in ampD decreased the ability of S. typhimurium to enter a macrophage derived cell line and made the bacteria more potent as inducers of inducible nitric oxide synthase (iNOS), as compared with the wild-type. ampG mutants, defective in the transport of recycled muropeptides across the cytoplasmic membrane, behaved essentially as the wild-type in invasion assays and in activation of iNOS. As ampD mutants also have reduced in vivo fitness in a murine model, we suggest that the cytoplasmic accumulation of muropeptides affects the virulence of the ampD mutants.
Collapse
Affiliation(s)
- Anders Folkesson
- Mikrobiologiskt och Tumörbiologiskt Centrum, Karolinska Institutet, S-17177 Stockholm, Sverige, Sweden.
| | | | | | | | | |
Collapse
|
27
|
Cortez-Retamozo V, Backmann N, Senter PD, Wernery U, De Baetselier P, Muyldermans S, Revets H. Efficient Cancer Therapy with a Nanobody-Based Conjugate. Cancer Res 2004; 64:2853-7. [PMID: 15087403 DOI: 10.1158/0008-5472.can-03-3935] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanobodies are the smallest fragments of naturally occurring single-domain antibodies that have evolved to be fully functional in the absence of a light chain. Nanobodies are strictly monomeric, very stable, and highly soluble entities. We identified a nanobody with subnanomolar affinity for the human tumor-associated carcinoembryonic antigen. This nanobody was conjugated to Enterobacter cloacae beta-lactamase, and its site-selective anticancer prodrug activation capacity was evaluated. The conjugate was readily purified in high yields without aggregation or loss of functionality of the constituents. In vitro experiments showed that the nanobody-enzyme conjugate effectively activated the release of phenylenediamine mustard from the cephalosporin nitrogen mustard prodrug 7-(4-carboxybutanamido) cephalosporin mustard at the surface of carcinoembryonic antigen-expressing LS174T cancer cells. In vivo studies demonstrated that the conjugate had an excellent biodistribution profile and induced regressions and cures of established tumor xenografts. The easy generation and manufacturing yield of nanobody-based conjugates together with their potent antitumor activity make nanobodies promising vehicles for new generation cancer therapeutics.
Collapse
Affiliation(s)
- Virna Cortez-Retamozo
- Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
28
|
Stone GW, Zhang Q, Castillo R, Doppalapudi VR, Bueno AR, Lee JY, Li Q, Sergeeva M, Khambatta G, Georgopapadakou NH. Mechanism of action of NB2001 and NB2030, novel antibacterial agents activated by beta-lactamases. Antimicrob Agents Chemother 2004; 48:477-83. [PMID: 14742198 PMCID: PMC321519 DOI: 10.1128/aac.48.2.477-483.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two potent antibacterial agents designed to undergo enzyme-catalyzed therapeutic activation were evaluated for their mechanisms of action. The compounds, NB2001 and NB2030, contain a cephalosporin with a thienyl (NB2001) or a tetrazole (NB2030) ring at the C-7 position and are linked to the antibacterial triclosan at the C-3 position. The compounds exploit beta-lactamases to release triclosan through hydrolysis of the beta-lactam ring. Like cephalothin, NB2001 and NB2030 were hydrolyzed by class A beta-lactamases (Escherichia coli TEM-1 and, to a lesser degree, Staphylococcus aureus PC1) and class C beta-lactamases (Enterobacter cloacae P99 and E. coli AmpC) with comparable catalytic efficiencies (k(cat)/K(m)). They also bound to the penicillin-binding proteins of S. aureus and E. coli, but with reduced affinities relative to that of cephalothin. Accordingly, they produced a cell morphology in E. coli consistent with the toxophore rather than the beta-lactam being responsible for antibacterial activity. In biochemical assays, they inhibited the triclosan target enoyl reductase (FabI), with 50% inhibitory concentrations being markedly reduced relative to that of free triclosan. The transport of NB2001, NB2030, and triclosan was rapid, with significant accumulation of triclosan in both S. aureus and E. coli. Taken together, the results suggest that NB2001 and NB2030 act primarily as triclosan prodrugs in S. aureus and E. coli.
Collapse
|
29
|
Abstract
Antibiotic resistance is a clinical and socioeconomical problem that is here to stay. Resistance can be natural or acquired. Some bacterial species, such as Pseudomonas aeruginosa, show a high intrinsic resistance to a number of antibiotics whereas others are normally highly antibiotic susceptible such as group A streptococci. Acquired resistance evolve via genetic alterations in the microbes own genome or by horizontal transfer of resistance genes located on various types of mobile DNA elements. Mutation frequencies to resistance can vary dramatically depending on the mechanism of resistance and whether or not the organism exhibits a mutator phenotype. Resistance usually has a biological cost for the microorganism, but compensatory mutations accumulate rapidly that abolish this fitness cost, explaining why many types of resistances may never disappear in a bacterial population. Resistance frequently occurs stepwise making it important to identify organisms with low level resistance that otherwise may constitute the genetic platform for development of higher resistance levels. Self-replicating plasmids, prophages, transposons, integrons and resistance islands all represent DNA elements that frequently carry resistance genes into sensitive organisms. These elements add DNA to the microbe and utilize site-specific recombinases/integrases for their integration into the genome. However, resistance may also be created by homologous recombination events creating mosaic genes where each piece of the gene may come from a different microbe. The selection with antibiotics have informed us much about the various genetic mechanisms that are responsible for microbial evolution.
Collapse
Affiliation(s)
- B Henriques Normark
- Swedish Institute of Infectious Disease Control and the Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
30
|
Tans-Kersten J, Gay J, Allen C. Ralstonia solanacearum AmpD is required for wild-type bacterial wilt virulence. MOLECULAR PLANT PATHOLOGY 2000; 1:179-185. [PMID: 20572964 DOI: 10.1046/j.1364-3703.2000.00023.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Abstract A gene resembling enterobacterial ampD was identified in the bacterial wilt pathogen, Ralstonia solanacearum. The gene lies 13 bp 3' of pehSR, a two-component positive regulator of virulence factors such as plant cell wall-degrading polygalacturonases and bacterial motility. AmpD, an N-acetylmuramyl-l-alanine amidase, degrades and recycles bacterial cell wall components and also plays a role in the induction of beta-lactamase, which confers ampicillin resistance. AmpD is probably not involved in beta-lactamase regulation in R. solanacearum, because the species produces no detectable beta-lactamase activity and is not ampicillin resistant. However, the R. solanacearum ampD gene restores inducible beta-lactamase activity to an Escherichia coli ampD mutant, demonstrating that the gene encodes an AmpD protein that can function in a heterologous background. An R. solanacearumampD chromosomal mutant was motile, produced wild-type levels of polygalacturonase activity and had wild-type cell and colony morphology. This mutant also grew normally in minimal medium and in plant tissue. Nonetheless, the ampD mutant was significantly reduced in bacterial wilt virulence on eggplant and tomato, suggesting a previously unsuspected role for N-acetylmuramyl-l-alanine amidase in plant pathogenesis.
Collapse
Affiliation(s)
- J Tans-Kersten
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
31
|
Normark S. beta-Lactamase induction in gram-negative bacteria is intimately linked to peptidoglycan recycling. Microb Drug Resist 2000; 1:111-4. [PMID: 9158742 DOI: 10.1089/mdr.1995.1.111] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A number of Gram-negative organisms normally express a chromosomally mediated class C beta-lactamase that is inducible by beta-lactam antibiotics. Data have recently emerged suggesting a close link between beta-lactamase induction and the recycling of released muramyl peptides from the bacterial peptidoglycan. Thus the AmpG transporter is responsible for the uptake into the cell of GlcNAc-anhMurNAc-tripeptide. A mutant unable to express AmpG is therefore unable to recycle the cell wall and is at the same time not possible to induce by a beta-lactam. Once inside the cytosol the above muramyl peptide and its derivative anhMurNAc-tripeptide is degraded by the cytosolic AmpD amidase that specifically releases the tripeptide from cytosolic muramyl peptides brought into the cell via AmpG. Mutants unable to produce AmpD are blocked in a cytosolic step for cell wall recycling and accumulate large amounts of cytosolic anhMurNAc-tripeptide. It is believed that cytosolic muramyl peptides can act as ligands for the beta-lactamase regulator AmpR to activate expression of beta-lactamase. AmpD mutants, therefore, constitutively overproduce the chromosomal beta-lactamase and are beta-lactam resistant. In wild-type strains beta-lactams that result in an increased cell wall breakdown will cause an increase in the cytosol of muramyl peptides leading to beta-lactamase induction. Mutants affected in the ampD gene arise readily during treatment with third-generation cephalosporins. Since these mutants lack a functional cell wall recycling system they may be at a disadvantage in the absence of selection. However, since muramyl peptides may act as cytotoxins, especially for respiratory epithelial cells, ampD mutants due to their large accumulation of anhMurNAc-tripeptide may be altered in their pathogenic properties as compared to wild-type cells possessing a normal cell wall recycling system.
Collapse
Affiliation(s)
- S Normark
- Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
32
|
Jones ME, Bennett PM. Inducible expression of the chromosomal cdiA from Citrobacter diversus NF85, encoding an ambler class A beta-lactamase, is under similar genetic control to the chromosomal ampC, encoding an ambler class C enzyme, from Citrobacter freundii OS60. Microb Drug Resist 2000; 1:285-91. [PMID: 9158798 DOI: 10.1089/mdr.1995.1.285] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study aimed to characterize the molecular basis of beta-lactamase induction in Citrobacter diversus. The chromosomal beta-lactamase encoding region from C. diversus, strain NF85, was cloned and expressed in Escherichia coli. The cloned region was sequenced and open-reading frames encoding a class A beta-lactamase, designated cdiA, and a putative LysR-type transcriptional regulator protein, divergently transcribed from the beta-lactamase gene and designated cdiR, were identified. The nucleotide sequence of the NF85 cdiA was identical to that of the published C. diversus ULA27 ampC sequence. A putative helix-turn-helix DNA-binding motif was located at the N-terminus of CdiR, and homology with enterobacterial AmpR proteins was noted. CdiR was demonstrated to bind to the C. diversus cdiAR intergenic region but not to the C. freundii ampCR intergenic region. A putative CdiR binding motif was identified in the cdiAR intergenic region. The cloned cdiAR region was inducible in E. coli strains SNO3 and HfrH. The inducible phenotype was dependent on the E. coli ampD and ampG gene products. We conclude that the molecular basis of inducible cdiA expression in C. diversus is similar to that of C. freundii ampC.
Collapse
Affiliation(s)
- M E Jones
- Department of Microbiology and Pathology, University of Bristol, UK
| | | |
Collapse
|
33
|
Kuga A, Okamoto R, Inoue M. ampR gene mutations that greatly increase class C beta-lactamase activity in Enterobacter cloacae. Antimicrob Agents Chemother 2000; 44:561-7. [PMID: 10681318 PMCID: PMC89726 DOI: 10.1128/aac.44.3.561-567.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ampC and ampR genes of Enterobacter cloacae GN7471 were cloned into pMW218 to yield pKU403. Four mutant plasmids derived from pKU403 (pKU404, pKU405, pKU406, and pKU407) were isolated in an AmpD mutant of Escherichia coli ML4953 by selection with ceftazidime or aztreonam. The beta-lactamase activities expressed by pKU404, pKU405, pKU406, and pKU407 were about 450, 75, 160, and 160 times higher, respectively, than that expressed by the original plasmid, pKU403. These mutant plasmids all carried point mutations in the ampR gene. In pKU404 and pKU405, Asp-135 was changed to Asn and Val, respectively. In both pKU406 and pKU407, Arg-86 was changed to Cys. The ease of selection of AmpR mutations at a frequency of about 10(-6) in this study strongly suggests that derepressed strains, such as AmpD or AmpR mutants, could frequently emerge in the clinical setting.
Collapse
Affiliation(s)
- A Kuga
- Department of Microbiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | | | | |
Collapse
|
34
|
Pfeifle D, Janas E, Wiedemann B. Role of penicillin-binding proteins in the initiation of the AmpC beta-lactamase expression in Enterobacter cloacae. Antimicrob Agents Chemother 2000; 44:169-72. [PMID: 10602741 PMCID: PMC89646 DOI: 10.1128/aac.44.1.169-172.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillin-binding proteins (PBPs) are involved in the regulation of beta-lactamase expression by determining the level of anhydromuramylpeptides in the periplasmatic space. It was hypothesized that one or more PBPs act as a sensor in the beta-lactamase induction pathway. We have performed induction studies with Escherichia coli mutants lacking one to four PBPs with DD-carboxypeptidase activity. Therefore, we conclude that a strong beta-lactamase inducer must inhibit all DD-carboxypeptidases as well as the essential PBPs 1a, 1b, and/or 2.
Collapse
Affiliation(s)
- D Pfeifle
- Pharmazeutische Mikrobiologie, University of Bonn, 53115 Bonn, Germany
| | | | | |
Collapse
|
35
|
Dietz H, Pfeifle D, Wiedemann B. The signal molecule for beta-lactamase induction in Enterobacter cloacae is the anhydromuramyl-pentapeptide. Antimicrob Agents Chemother 1997; 41:2113-20. [PMID: 9333034 PMCID: PMC164079 DOI: 10.1128/aac.41.10.2113] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Beta-lactamase induction in Enterobacter cloacae, which is linked to peptidoglycan recycling, was investigated by high-performance liquid chromatographic analysis of cell wall fragments in genetically defined cells of Escherichia coli. After treatment of cells with beta-lactams, we detected an increase in a D-tripeptide (disaccharide-tripeptide, N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-mes o-diaminopimelic acid), aD-tetrapeptide (disaccharide-tetrapeptide, N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-mes o-diaminopimelic acid-D-alanine), and aD-pentapeptide (disaccharide-pentapeptide, N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-mes o-diaminopimelic acid-D-alanyl-D-alanine)levels in the periplasms of bacterial cells. Furthermore, only the accumulation of aD-pentapeptide correlates with the beta-lactamase-inducing capacity of the beta-lactam antibiotic. The transmembrane protein AmpG transports all three aD-peptides into the cytoplasm, where they are degraded into the corresponding monosaccharide peptides. In the absence of AmpD the constitutive overproduction of beta-lactamase is accompanied by an accumulation of aM-tripeptide (monosaccharide-tripeptide, anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid) and aM-pentapeptide (L1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanyl-D-alanine), but not aM-tetrapeptide (anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanine), in the cytoplasm. Only the amount of aM-pentapeptide is increased upon treatment with imipenem. These findings indicate that aD-pentapeptide is the main periplasmic muropeptide, which is converted into the cytoplasmic signal molecule for beta-lactamase induction, the aM-pentapeptide.
Collapse
Affiliation(s)
- H Dietz
- Institut für Medizinische Mikrobiologie und Immunologie, University of Bonn, Germany
| | | | | |
Collapse
|
36
|
Sanders CC, Bradford PA, Ehrhardt AF, Bush K, Young KD, Henderson TA, Sanders WE. Penicillin-binding proteins and induction of AmpC beta-lactamase. Antimicrob Agents Chemother 1997; 41:2013-5. [PMID: 9303404 PMCID: PMC164055 DOI: 10.1128/aac.41.9.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In competition assays for radiolabeled penicillin, penicillin-binding proteins (PBPs) 4, 7a, and 7b showed very high affinities for strong inducers of AmpC beta-lactamase. Loss of PBP 4 resulted in diminished inducibility. This suggests that if PBPs are involved in induction of AmpC beta-lactamase, there is probably a redundancy in function among the different PBPs.
Collapse
Affiliation(s)
- C C Sanders
- Center for Research in Anti-Infectives and Biotechnology, Department of Medical Microbiology, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Hackbarth CJ, Unsal I, Chambers HF. Cloning and sequence analysis of a class A beta-lactamase from Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother 1997; 41:1182-5. [PMID: 9145897 PMCID: PMC163878 DOI: 10.1128/aac.41.5.1182] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A cosmid library from Mycobacterium tuberculosis H37Ra was introduced into Mycobacterium smegmatis, and eight recombinant clones with increased resistance to cefoxitin were identified. Isoelectric focusing detected an M. tuberculosis-derived beta-lactamase in one of these recombinant clones. A sequence analysis identified it as a class A beta-lactamase whose expression correlated with the increased resistance phenotype.
Collapse
Affiliation(s)
- C J Hackbarth
- Department of Medicine, University of California, San Francisco 94143, USA.
| | | | | |
Collapse
|
38
|
Barnaud G, Arlet G, Danglot C, Philippon A. Cloning and sequencing of the gene encoding the AmpC beta-lactamase of Morganella morganii. FEMS Microbiol Lett 1997; 148:15-20. [PMID: 9066104 DOI: 10.1111/j.1574-6968.1997.tb10260.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The chromosomal beta-lactamase gene of a clinical isolate of Morganella morganii was cloned in Escherichia coli and sequenced. The beta-lactamase had a pI of 7.4 and conferred a typical AmpC susceptibility pattern. The insert obtained was found to encode a protein of 379 amino acids. Its deduced amino acid sequence revealed it to be a class C beta-lactamase: 39-56% identity with chromosomal AmpC beta-lactamases of Serratia marcescens, Yersinia enterocolitica, Citrobacter freundii, Enterobacter cloacae and Escherichia coli; and 37-56% identity with plasmid-mediated beta-lactamases (MOX-1, CMY-1, FOX-1, ACT-1, LAT-1, BIL-1 and CMY-2). The ampC gene was linked to a gene only part of which (450 bp) was cloned homologous to the regulatory ampR genes of chromosomal class C beta-lactamases.
Collapse
Affiliation(s)
- G Barnaud
- Service de Microbiologie, Université Paris VII Denis Diderot, Hôpital Saint-Louis, France
| | | | | | | |
Collapse
|
39
|
Alksne LE, Rasmussen BA. Expression of the AsbA1, OXA-12, and AsbM1 beta-lactamases in Aeromonas jandaei AER 14 is coordinated by a two-component regulon. J Bacteriol 1997; 179:2006-13. [PMID: 9068648 PMCID: PMC178926 DOI: 10.1128/jb.179.6.2006-2013.1997] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aeromonas jandaei AER 14 (formerly Aeromonas sobria AER 14) expresses three inducible beta-lactamases, AsbA1, OXA-12 (AsbB1), and AsbM1. Mutant strains that constitutively overexpress all three enzyme simultaneously, suggesting that they share a common regulatory pathway, have been isolated. Detectable expression of the cloned genes of AsbA1 and OXA-12 in some Escherichia coli K-12 laboratory strains is achieved only in the presence of a blp mutation. These mutations map to the cre operon at 0 min, which encodes a classical two-component regulatory system of unknown function. Two regulatory elements from A. jandaei which permit high-level constitutive expression of OXA-12 in E. coli were cloned. Both loci encode proteins with characteristics of response regulator proteins of two-component regulatory systems. One of these loci, designated blrA, bestowed constitutive expression of all three beta-lactamases in A. jandaei AER 14 when present on a multicopy plasmid, confirming its role in the regulatory pathway of beta-lactamase production in this organism.
Collapse
Affiliation(s)
- L E Alksne
- Infectious Disease Section, Wyeth-Ayerst Research, Pearl River, New York 10965, USA
| | | |
Collapse
|
40
|
Dietz H, Pfeifle D, Wiedemann B. Location of N-acetylmuramyl-L-alanyl-D-glutamylmesodiaminopimelic acid, presumed signal molecule for beta-lactamase induction, in the bacterial cell. Antimicrob Agents Chemother 1996; 40:2173-7. [PMID: 8878601 PMCID: PMC163493 DOI: 10.1128/aac.40.9.2173] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using a chromatographic method for the isolation and detection of periplasmic and cytoplasmic muropeptides avoiding radioactive labeling, we found that in the ampD-negative strain JRG582 the anhydromuropeptide N-acetylmuramyl-L-alanyl-D-glutamylmesodiaminopimelic acid (anhMurNAc tripeptide) accumulates not only in the cytoplasm but also in the periplasm. Simultaneously JRG582 carrying the Enterobacter cloacae genes ampC and ampR, which are necessary for the induction of beta-lactamase expression, overproduces beta-lactamase. We confirmed that the transmembrane protein AmpG transports a precursor muropeptide into the cytoplasm and that the formation of the anhMurNAc tripeptide takes place in the cytoplasm. anhMurNAc tripeptide can then be secreted into the periplasm. Therefore, the amount of anhMurNAc tripeptide in the cytoplasm is reduced not only by AmpD but also by transport out of the cell.
Collapse
Affiliation(s)
- H Dietz
- Institut für Medizinische Mikrobiologie und Immunologie, University of Bonn, Germany
| | | | | |
Collapse
|
41
|
Dietz H, Wiedemann B. The role of N-actylglucosaminyl-1,6 anhydro N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanine for the induction of beta-lactamase in Enterobacter cloacae. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1996; 284:207-17. [PMID: 8837381 DOI: 10.1016/s0934-8840(96)80096-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanism of beta-lactamase induction in Enterobacter cloacae which is linked to the peptidoglycan recycling, was investigated by HPLC analysis of cell wall fragments in genetically defined cells. It is demonstrated here that the transmembrane protein AmpG transports not only the precursor muropeptide of M-tripeptide (N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid), the D-tripeptide (N-actylglucosaminyl-1,6 anhydro N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid), but also that of M-tetra-peptide (N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanine), the D-tetrapeptide (N-actylglucosaminyl-1,6 anhydro N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanine), into the cytoplasm. These findings indicate that probably also M-tetrapeptide and D-tetrapeptide are signal muropeptides for beta-lactamase induction. In fact, D-tetrapeptide, not D-tripeptide, increases upon imipenem treatment.
Collapse
|
42
|
Schmidt H, Korfmann G, Barth H, Martin HH. The signal transducer encoded by ampG is essential for induction of chromosomal AmpC beta-lactamase in Escherichia coli by beta-lactam antibiotics and 'unspecific' inducers. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 5):1085-1092. [PMID: 7773404 DOI: 10.1099/13500872-141-5-1085] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chemical mutagenesis of the AmpC beta-lactamase-hyperinducible Escherichia coli strain SN0301/pNu305 carrying the cloned ampC and ampR genes from Citrobacter freundii OS60 gave four independent mutants in which beta-lactamase was no longer inducible, or was inducible only to a low level, by beta-lactam antibiotics. The genes ampC, ampR, ampD and ampE, which were essential for beta-lactamase induction, were functional in these mutants. In all four mutants, the sites of mutation were mapped to 9.9 min on the E. coli chromosome. Complementation with wild-type ampG restored inducibility of beta-lactamase to wild-type levels. The nucleotide sequence of all four mutant ampG alleles (ampG1, ampG3, ampG4 and ampG5) was determined. In three of the mutants, a single base exchange led to an amino acid change from glycine to aspartate at different sites in the deduced amino acid sequence. In the fourth mutant (ampG4), with low-level inducibility, the nucleotide sequence was identical to wild-type ampG. Spontaneous back-mutation of the chromosomal ampG1 mutant resulted in restoration of wild-type inducibility and a return to the wild-type ampG sequence. Unspecific induction by components of the growth medium was also dependent on intact ampG function.
Collapse
Affiliation(s)
- Herbert Schmidt
- Institut fr Mikrobiologie, Technische Hochschule, 64287 Darmstadt, Germany
| | | | - Holger Barth
- Institut fr Mikrobiologie, Technische Hochschule, 64287 Darmstadt, Germany
| | - Hans H Martin
- Institut fr Mikrobiologie, Technische Hochschule, 64287 Darmstadt, Germany
| |
Collapse
|
43
|
Rasmussen BA, Keeney D, Yang Y, Bush K. Cloning and expression of a cloxacillin-hydrolyzing enzyme and a cephalosporinase from Aeromonas sobria AER 14M in Escherichia coli: requirement for an E. coli chromosomal mutation for efficient expression of the class D enzyme. Antimicrob Agents Chemother 1994; 38:2078-85. [PMID: 7811022 PMCID: PMC284687 DOI: 10.1128/aac.38.9.2078] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two beta-lactamase genes, asbA1 and asbB1, encoding AsbA1 and AsbB1, respectively, have been cloned from Aeromonas sobria AER 14M into Escherichia coli. AsbA1 was expressed at low but detectable levels in all E. coli laboratory cloning strains tested. AsbB1 was expressed well in the E. coli cloning strain DH5 alpha. However, no enzyme activity could be detected from the same clone when placed in E. coli MC1061. Ampicillin-resistant mutants of E. coli MC1061 were obtained that expressed high levels of enzymatically active AsbB1. Four independent mutants were examined. All four mutations mapped to one locus, designated blpA (beta-lactamase permissive). The blpA locus was distinct from other known loci that play a role in beta-lactamase expression, i.e., the two loci that affect expression of the Bacteroides fragilis metallo-beta-lactamase and the ampC regulatory genes, ampD, ampE, and ampG. Sequence analysis of asbA1 and asbB1 revealed that AsbA1 was a class C beta-lactamase most closely related to the Pseudomonas aeruginosa chromosomal cephalosporinase and probably represents the common A. sobria cephalosporinase. AsbB1 was a class D enzyme most closely related to the oxacillin-hydrolyzing enzyme OXA-1, with 34% amino acid sequence identity. Purified AsbA1 was a typical cephalosporinase with a substrate profile that reflected high rates of hydrolysis of cephaloridine compared with benzylpenicillin. Purified AsbB1 showed strong penicillinase activity, with hydrolysis rates for carbenicillin and cloxacillin 2 to 2.5 times that for benzylpenicillin. Hydrolysis of imipenem was < or = 1% of that for benzylpenicillin. Both clavulanic acid and tazobactam strongly inhibited AsbB1, while sulbactam inhibited the AsbB1 enzyme less effectively. None of the inhibitors worked well against the AsbA1 enzyme. The chelators EDTA and 1,10-o-phenanthroline did not affect the activity of either enzyme. A. sobria AER 14M was found to produce both a group 1 cephalosporinase and a novel group 2d cloxacillin-hydrolyzing beta-lactamase that has been designated here OXA-12.
Collapse
Affiliation(s)
- B A Rasmussen
- Medical Research Division, American Cyanamid Company, Pearl River, New York 10965
| | | | | | | |
Collapse
|
44
|
Dubus A, Wilkin JM, Raquet X, Normark S, Frère JM. Catalytic mechanism of active-site serine beta-lactamases: role of the conserved hydroxy group of the Lys-Thr(Ser)-Gly triad. Biochem J 1994; 301 ( Pt 2):485-94. [PMID: 8042993 PMCID: PMC1137107 DOI: 10.1042/bj3010485] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The role of the conserved hydroxy group of the Lys-Thr(Ser)-Gly [KT(S)G] triad has been studied for a class A and a class C beta-lactamase by site-directed mutagenesis. Surprisingly, the disappearance of this functional group had little impact on the penicillinase activity of both enzymes. The cephalosporinase activity was much more affected for the class A S235A (Ser235-->Ala) and the class C T316V (Thr315-->Val) mutants, but the class C T316A mutant was less impaired. Studies were extended to beta-lactams, where the carboxy group on C-3 of penicillins or C-4 of cephalosporins had been modified. The effects of the mutations were the same on these compounds as on the unmodified regular penicillins and cephalosporins. The results are compared with those obtained with a similar mutant (T299V) of the Streptomyces R61 DD-peptidase. With this enzyme the mutation also affected the interactions with penicillins and severely decreased the peptidase activity. The strict conservation of the hydroxy group on the second residue of the KT(S)G triad is thus much more easy to understand for the DD-peptidase and the penicillin-binding proteins than for beta-lactamases, especially those of class C.
Collapse
Affiliation(s)
- A Dubus
- Centre d'Ingénierie des Protéines, Université de Liège, Belgium
| | | | | | | | | |
Collapse
|
45
|
Chapter 23 Mechanisms of chromosomal β-lactamase induction in Gram-negative bacteria. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0167-7306(08)60426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
Bartowsky E, Normark S. Interactions of wild-type and mutant AmpR of Citrobacter freundii with target DNA. Mol Microbiol 1993; 10:555-65. [PMID: 7968533 DOI: 10.1111/j.1365-2958.1993.tb00927.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The AmpR transcriptional activator for the chromosomal ampC beta-lactamase gene of Citrobacter freundii was found to interact with an operator sequence located in the 5' half of the 38 bp region protected by AmpR in DNase I footprinting experiments. AmpR binding was associated with significant DNA bending of target DNA. A glycine to glutamic acid alteration at position 102 in AmpR converts AmpR into a transcriptional activator even in the absence of beta-lactam inducer. AmpRG102E interacted with the operator binding sequence and induced DNA bending. A glycine to lysine alteration at residue 102 completely abolished the ability of AmpR to transcriptionally affect the ampC promoter, i.e. to repress in the absence of beta-lactam inducer and induce in the presence of beta-lactam. Nevertheless, AmpRG102K could repress the oppositely orientated ampR promoter. AmpRG102K could also specifically interact with the operator but the resulting complex migrated faster in gel retardation experiments and no significant DNA bending was observed.
Collapse
Affiliation(s)
- E Bartowsky
- Department of Molecular Microbiology, Washington University, Medical School, St. Louis, Missouri 63110
| | | |
Collapse
|
47
|
Lindquist S, Weston-Hafer K, Schmidt H, Pul C, Korfmann G, Erickson J, Sanders C, Martin HH, Normark S. AmpG, a signal transducer in chromosomal beta-lactamase induction. Mol Microbiol 1993; 9:703-15. [PMID: 8231804 DOI: 10.1111/j.1365-2958.1993.tb01731.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The chromosomal ampC beta-lactamase in Citrobacter freundii and Enterobacter cloacae is inducible by beta-lactam antibiotics. When an inducible ampC gene is introduced on a plasmid into Escherichia coli together with its transcriptional regulator ampR, the plasmid-borne beta-lactamase is still inducible. We have isolated mutants, containing alterations in a novel E. coli gene, ampG, in which a cloned C. freundii ampC gene is unable to respond to beta-lactam inducers. The ampG gene was cloned, sequenced and mapped to minute 9.6 on the E. coli chromosome. The deduced amino acid sequence predicted AmpG to be a 53 kDa, transmembrane protein, which we propose acts as a signal transducer or permease in the beta-lactamase induction system. Immediately upstream of ampG there is another 579-base-pair-long open reading frame (ORF) encoding a putative lipoprotein shown to be non-essential for beta-lactamase induction. We have found that ampG and this ORF form an operon, whose promoter is located in front of the ORF. Located closely upstream of the putative promoter is the morphogene bolA, which is transcribed in the opposite orientation. However, using transcription fusions, we have found that the ampG transcription is not regulated by bolA. In addition, we show that transcription is probably not regulated by either the starvation specific sigma factor RpoS, which controls bolA, or by AmpD the negative regulator for ampC transcription.
Collapse
Affiliation(s)
- S Lindquist
- Department of Microbiology, University of Umeå, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dubus A, Monnaie D, Jacobs C, Normark S, Frère JM. A dramatic change in the rate-limiting step of beta-lactam hydrolysis results from the substitution of the active-site serine residue by a cysteine in the class-C beta-lactamase of Enterobacter cloacae 908R. Biochem J 1993; 292 ( Pt 2):537-43. [PMID: 8503887 PMCID: PMC1134243 DOI: 10.1042/bj2920537] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A cysteine residue has been substituted for the active-site serine of the class-C beta-lactamase produced by Enterobacter cloacae 908R by site-directed mutagenesis. The modified protein exhibited drastically reduced kcat./Km values on all tested substrates. However, this decrease was due to increased Km values with some substrates and to decreased kcat. values with others. These apparently contradictory results could be explained by a selective influence of the mutation on the first-order rate constant characteristic of the acylation step, a hypothesis which was confirmed by the absence of detectable acylenzyme accumulation with all the tested substrates, with the sole exception of cefoxitin.
Collapse
Affiliation(s)
- A Dubus
- Centre d'Ingénierie des Protéines, Université de Liège, Belgium
| | | | | | | | | |
Collapse
|
49
|
Proenca R, Niu WW, Cacalano G, Prince A. The Pseudomonas cepacia 249 chromosomal penicillinase is a member of the AmpC family of chromosomal beta-lactamases. Antimicrob Agents Chemother 1993; 37:667-74. [PMID: 8494361 PMCID: PMC187732 DOI: 10.1128/aac.37.4.667] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pseudomonas cepacia 249 produces an inducible beta-lactamase with penicillinase activity. The nucleotide sequence of the penA gene, which encodes this beta-lactamase, was determined and found to include regions with a significant homology to the ampC-encoded beta-lactamases of members of the family Enterobacteriaceae and Pseudomonas aeruginosa. The predicted amino acid sequence of the PenA beta-lactamase contained 17 amino acids immediately preceding the putative active-site serine which were highly conserved among the enzymes of the AmpC family. Although the penA-coding sequence had a total GC content of 60%, the predicted codon usage was more characteristic of Escherichia coli ampC-encoded beta-lactamase, with 53% of the codons having G or C in the third position, in contrast to the values for the P. aeruginosa ampC (88.5%) or Pseudomonas cepacia (88 to 92%) metabolic genes. The inducible expression of penA can be regulated by the E. coli gene product AmpD. A putative P. cepacia AmpR homolog was associated with the positive regulation of both Enterobacter cloacae ampC and P. cepacia penA expression, as confirmed by gel retardation studies. The E. cloacae AmpR did not regulate penA expression. Thus, by homology studies, codon usage, and genetic analysis, the P. cepacia penA beta-lactamase appears to have been acquired from members of the family Enterobacteriaceae and belongs to the class C group of beta-lactamases.
Collapse
Affiliation(s)
- R Proenca
- College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | | | |
Collapse
|
50
|
Kopp U, Wiedemann B, Lindquist S, Normark S. Sequences of wild-type and mutant ampD genes of Citrobacter freundii and Enterobacter cloacae. Antimicrob Agents Chemother 1993; 37:224-8. [PMID: 8383940 PMCID: PMC187643 DOI: 10.1128/aac.37.2.224] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The ampD gene product regulates the expression of AmpC beta-lactamase in gram-negative bacteria and is proposed to be involved in peptidoglycan metabolism. In this study, we sequenced the ampD wild type and three mutant genes of Enterobacter cloacae and Citrobacter freundii. They exhibited a high degree of homology with the corresponding gene of Escherichia coli except in the carboxy termini, where, in the wild-type genes of E. cloacae and C. freundii, four additional amino acids yielding the Ser-X-X-Lys motif were found. Evidence that this C-terminal region of the ampD gene product is necessary for activity was shown by constructing a deletion of the last 16 amino acids. The spontaneous mutation of ampD02 is an out-of-frame insertion and yields an inactive AmpD protein. The single-base-pair substitution of Gly for Asp-121 in ampD05 is responsible for a hyperinducible phenotype. These results demonstrate regions of the ampD gene and the corresponding protein which have functional importance for the induction of AmpC beta-lactamase in E. cloacae.
Collapse
Affiliation(s)
- U Kopp
- Institut für Medizinische Mikrobiologie und Immunologie, University of Bonn, Germany
| | | | | | | |
Collapse
|