1
|
Stringer AM, Fitzgerald DM, Wade JT. Mapping the Escherichia coli DnaA-binding landscape reveals a preference for binding pairs of closely spaced DNA sites. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001474. [PMID: 39012340 PMCID: PMC11317965 DOI: 10.1099/mic.0.001474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
DnaA is a widely conserved DNA-binding protein that is essential for the initiation of DNA replication in many bacterial species, including Escherichia coli. Cooperative binding of ATP-bound DnaA to multiple 9mer sites ('DnaA boxes') at the origin of replication results in local unwinding of the DNA and recruitment of the replication machinery. DnaA also functions as a transcription regulator by binding to DNA sites upstream of target genes. Previous studies have identified many sites of direct positive and negative regulation by E. coli DnaA. Here, we use a ChIP-seq to map the E. coli DnaA-binding landscape. Our data reveal a compact regulon for DnaA that coordinates the initiation of DNA replication with expression of genes associated with nucleotide synthesis, replication, DNA repair and RNA metabolism. We also show that DnaA binds preferentially to pairs of DnaA boxes spaced 2 or 3 bp apart. Mutation of either the upstream or downstream site in a pair disrupts DnaA binding, as does altering the spacing between sites. We conclude that binding of DnaA at almost all target sites requires a dimer of DnaA, with each subunit making critical contacts with a DnaA box.
Collapse
Affiliation(s)
- Anne M. Stringer
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Devon M. Fitzgerald
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, New York, USA
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, New York, USA
- RNA Institute, University at Albany, SUNY, Albany, New York, USA
| |
Collapse
|
2
|
Sass TH, Ferrazzoli AE, Lovett ST. DnaA and SspA regulation of the iraD gene of Escherichia coli: an alternative DNA damage response independent of LexA/RecA. Genetics 2022; 221:6571813. [PMID: 35445706 PMCID: PMC9157160 DOI: 10.1093/genetics/iyac062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
The transcription factor RpoS of Escherichia coli controls many genes important for tolerance of a variety of stress conditions. IraD promotes the post-translation stability of RpoS by inhibition of RssB, an adaptor protein for ClpXP degradation. We have previously documented DNA damage induction of iraD expression, independent of the SOS response. Both iraD and rpoS are required for tolerance to DNA damaging treatments such as H2O2 and the replication inhibitor azidothymidine in the log phase of growth. Using luciferase gene fusions to the 672 bp iraD upstream region, we show here that both promoters of iraD are induced by azidothymidine. Genetic analysis suggests that both promoters are repressed by DnaA-ATP, partially dependent on a putative DnaA box at -81 bp and are regulated by regulatory inactivation of DnaA, dependent on the DnaN processivity clamp. By electrophoretic mobility shift assays, we show that purified DnaA protein binds to the iraD upstream region, so DnaA regulation of IraD is likely to be direct. DNA damage induction of iraD during log phase growth is abolished in the dnaA-T174P mutant, suggesting that DNA damage, in some way, relieves DnaA repression, possibly through the accumulation of replication clamps and enhanced regulatory inactivation of DnaA. We also demonstrate that the RNA-polymerase associated factor, stringent starvation protein A, induced by the accumulation of ppGpp, also affects iraD expression, with a positive effect on constitutive expression and a negative effect on azidothymidine-induced expression.
Collapse
Affiliation(s)
- Thalia H Sass
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | - Alexander E Ferrazzoli
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | - Susan T Lovett
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
3
|
Sozhamannan S, Waldminghaus T. Exception to the exception rule: synthetic and naturally occurring single chromosome Vibrio cholerae. Environ Microbiol 2020; 22:4123-4132. [PMID: 32237026 DOI: 10.1111/1462-2920.15002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 12/26/2022]
Abstract
The genome of Vibrio cholerae, the etiological agent of cholera, is an exception to the single chromosome rule found in the vast majority of bacteria and has its genome partitioned between two unequally sized chromosomes. This unusual two-chromosome arrangement in V. cholerae has sparked considerable research interest since its discovery. It was demonstrated that the two chromosomes could be fused by deliberate genome engineering or forced to fuse spontaneously by blocking the replication of Chr2, the secondary chromosome. Recently, natural isolates of V. cholerae with chromosomal fusion have been found. Here, we summarize the pertinent findings on this exception to the exception rule and discuss the potential utility of single-chromosome V. cholerae to address fundamental questions on chromosome biology in general and DNA replication in particular.
Collapse
Affiliation(s)
- Shanmuga Sozhamannan
- Defense Biological Product Assurance Office, CBRND-Enabling Biotechnologies, 110 Thomas Johnson Drive, Frederick, MD, 21702, USA.,Logistics Management Institute, Tysons, VA, 22102, USA
| | - Torsten Waldminghaus
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.,Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
4
|
The Stringent Response Inhibits DNA Replication Initiation in E. coli by Modulating Supercoiling of oriC. mBio 2019; 10:mBio.01330-19. [PMID: 31266875 PMCID: PMC6606810 DOI: 10.1128/mbio.01330-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To survive bouts of starvation, cells must inhibit DNA replication. In bacteria, starvation triggers production of a signaling molecule called ppGpp (guanosine tetraphosphate) that helps reprogram cellular physiology, including inhibiting new rounds of DNA replication. While ppGpp has been known to block replication initiation in Escherichia coli for decades, the mechanism responsible was unknown. Early work suggested that ppGpp drives a decrease in levels of the replication initiator protein DnaA. However, we found that this decrease is not necessary to block replication initiation. Instead, we demonstrate that ppGpp leads to a change in DNA topology that prevents initiation. ppGpp is known to inhibit bulk transcription, which normally introduces negative supercoils into the chromosome, and negative supercoils near the origin of replication help drive its unwinding, leading to replication initiation. Thus, the accumulation of ppGpp prevents replication initiation by blocking the introduction of initiation-promoting negative supercoils. This mechanism is likely conserved throughout proteobacteria. The stringent response enables bacteria to respond to a variety of environmental stresses, especially various forms of nutrient limitation. During the stringent response, the cell produces large quantities of the nucleotide alarmone ppGpp, which modulates many aspects of cell physiology, including reprogramming transcription, blocking protein translation, and inhibiting new rounds of DNA replication. The mechanism by which ppGpp inhibits DNA replication initiation in Escherichia coli remains unclear. Prior work suggested that ppGpp blocks new rounds of replication by inhibiting transcription of the essential initiation factor dnaA, but we found that replication is still inhibited by ppGpp in cells ectopically producing DnaA. Instead, we provide evidence that a global reduction of transcription by ppGpp prevents replication initiation by modulating the supercoiling state of the origin of replication, oriC. Active transcription normally introduces negative supercoils into oriC to help promote replication initiation, so the accumulation of ppGpp reduces initiation potential at oriC by reducing transcription. We find that maintaining transcription near oriC, either by expressing a ppGpp-blind RNA polymerase mutant or by inducing transcription from a ppGpp-insensitive promoter, can strongly bypass the inhibition of replication by ppGpp. Additionally, we show that increasing global negative supercoiling by inhibiting topoisomerase I or by deleting the nucleoid-associated protein gene seqA also relieves inhibition. We propose a model, potentially conserved across proteobacteria, in which ppGpp indirectly creates an unfavorable energy landscape for initiation by limiting the introduction of negative supercoils into oriC.
Collapse
|
5
|
Klitgaard RN, Løbner-Olesen A. A Novel Fluorescence-Based Screen for Inhibitors of the Initiation of DNA Replication in Bacteria. Curr Drug Discov Technol 2019; 16:272-277. [PMID: 29683093 DOI: 10.2174/1570163815666180423115514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND One of many strategies to overcome antibiotic resistance is the discovery of compounds targeting cellular processes, which have not yet been exploited. MATERIALS AND METHODS Using various genetic tools, we constructed a novel high throughput, cellbased, fluorescence screen for inhibitors of chromosome replication initiation in bacteria. RESULTS The screen was validated by expression of an intra-cellular cyclic peptide interfering with the initiator protein DnaA and by over-expression of the negative initiation regulator SeqA. We also demonstrated that neither tetracycline nor ciprofloxacin triggers a false positive result. Finally, 400 extracts isolated mainly from filamentous actinomycetes were subjected to the screen. CONCLUSION We concluded that the presented screen is applicable for identifying putative inhibitors of DNA replication initiation in a high throughput setup.
Collapse
Affiliation(s)
- Rasmus N Klitgaard
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anders Løbner-Olesen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Dewachter L, Verstraeten N, Fauvart M, Michiels J. An integrative view of cell cycle control in Escherichia coli. FEMS Microbiol Rev 2018; 42:116-136. [PMID: 29365084 DOI: 10.1093/femsre/fuy005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/19/2018] [Indexed: 11/14/2022] Open
Abstract
Bacterial proliferation depends on the cells' capability to proceed through consecutive rounds of the cell cycle. The cell cycle consists of a series of events during which cells grow, copy their genome, partition the duplicated DNA into different cell halves and, ultimately, divide to produce two newly formed daughter cells. Cell cycle control is of the utmost importance to maintain the correct order of events and safeguard the integrity of the cell and its genomic information. This review covers insights into the regulation of individual key cell cycle events in Escherichia coli. The control of initiation of DNA replication, chromosome segregation and cell division is discussed. Furthermore, we highlight connections between these processes. Although detailed mechanistic insight into these connections is largely still emerging, it is clear that the different processes of the bacterial cell cycle are coordinated to one another. This careful coordination of events ensures that every daughter cell ends up with one complete and intact copy of the genome, which is vital for bacterial survival.
Collapse
Affiliation(s)
- Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium.,Department of Life Sciences and Imaging, Smart Electronics Unit, imec, B-3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| |
Collapse
|
7
|
Jaworski P, Donczew R, Mielke T, Weigel C, Stingl K, Zawilak-Pawlik A. Structure and Function of the Campylobacter jejuni Chromosome Replication Origin. Front Microbiol 2018; 9:1533. [PMID: 30050516 PMCID: PMC6052347 DOI: 10.3389/fmicb.2018.01533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/20/2018] [Indexed: 01/23/2023] Open
Abstract
Campylobacter jejuni is the leading bacterial cause of foodborne infections worldwide. However, our understanding of its cell cycle is poor. We identified the probable C. jejuni origin of replication (oriC) - a key element for initiation of chromosome replication, which is also important for chromosome structure, maintenance and dynamics. The herein characterized C. jejuni oriC is monopartite and contains (i) the DnaA box cluster, (ii) the DnaA-dependent DNA unwinding element (DUE) and (iii) binding sites for regulatory proteins. The cluster of five DnaA boxes and the DUE were found in the dnaA-dnaN intergenic region. Binding of DnaA to this cluster of DnaA-boxes enabled unwinding of the DUE in vitro. However, it was not sufficient to sustain replication of minichromosomes, unless the cluster was extended by additional DnaA boxes located in the 3' end of dnaA. This suggests, that C. jejuni oriC requires these boxes to initiate or to regulate replication of its chromosome. However, further detailed mutagenesis is required to confirm the role of these two boxes in initiation of C. jejuni chromosome replication and thus to confirm partial localization of C. jejuni oriC within a coding region, which has not been reported thus far for any bacterial oriC. In vitro DUE unwinding by DnaA was inhibited by Cj1509, an orphan response regulator and a homolog of HP1021, that has been previously shown to inhibit replication in Helicobacter pylori. Thus, Cj1509 might play a similar role as a regulator of C. jejuni chromosome replication. This is the first systematic analysis of chromosome replication initiation in C. jejuni, and we expect that these studies will provide a basis for future research examining the structure and dynamics of the C. jejuni chromosome, which will be crucial for understanding the pathogens' life cycle and virulence.
Collapse
Affiliation(s)
- Pawel Jaworski
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Rafal Donczew
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Christoph Weigel
- Department of Life Science Engineering, Fachbereich 2, HTW Berlin, Berlin, Germany
| | - Kerstin Stingl
- National Reference Laboratory for Campylobacter, Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
8
|
Abstract
More than 50 years have passed since the presentation of the Replicon Model which states that a positively acting initiator interacts with a specific site on a circular chromosome molecule to initiate DNA replication. Since then, the origin of chromosome replication, oriC, has been determined as a specific region that carries sequences required for binding of positively acting initiator proteins, DnaA-boxes and DnaA proteins, respectively. In this review we will give a historical overview of significant findings which have led to the very detailed knowledge we now possess about the initiation process in bacteria using Escherichia coli as the model organism, but emphasizing that virtually all bacteria have DnaA proteins that interacts with DnaA boxes to initiate chromosome replication. We will discuss the dnaA gene regulation, the special features of the dnaA gene expression, promoter strength, and translation efficiency, as well as, the DnaA protein, its concentration, its binding to DnaA-boxes, and its binding of ATP or ADP. Furthermore, we will discuss the different models for regulation of initiation which have been proposed over the years, with particular emphasis on the Initiator Titration Model.
Collapse
Affiliation(s)
- Flemming G. Hansen
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Tove Atlung
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
9
|
Establishing a System for Testing Replication Inhibition of the Vibrio cholerae Secondary Chromosome in Escherichia coli. Antibiotics (Basel) 2017; 7:antibiotics7010003. [PMID: 29295515 PMCID: PMC5872114 DOI: 10.3390/antibiotics7010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/05/2017] [Accepted: 12/20/2017] [Indexed: 12/29/2022] Open
Abstract
Regulators of DNA replication in bacteria are an attractive target for new antibiotics, as not only is replication essential for cell viability, but its underlying mechanisms also differ from those operating in eukaryotes. The genetic information of most bacteria is encoded on a single chromosome, but about 10% of species carry a split genome spanning multiple chromosomes. The best studied bacterium in this context is the human pathogen Vibrio cholerae, with a primary chromosome (Chr1) of 3 M bps, and a secondary one (Chr2) of about 1 M bps. Replication of Chr2 is under control of a unique mechanism, presenting a potential target in the development of V. cholerae-specific antibiotics. A common challenge in such endeavors is whether the effects of candidate chemicals can be focused on specific mechanisms, such as DNA replication. To test the specificity of antimicrobial substances independent of other features of the V. cholerae cell for the replication mechanism of the V. cholerae secondary chromosome, we establish the replication machinery in the heterologous E. coli system. We characterize an E. coli strain in which chromosomal replication is driven by the replication origin of V. cholerae Chr2. Surprisingly, the E. coli ori2 strain was not inhibited by vibrepin, previously found to inhibit ori2-based replication.
Collapse
|
10
|
Use of genetically modified bacteria for drug delivery in humans: Revisiting the safety aspect. Sci Rep 2017; 7:2294. [PMID: 28536456 PMCID: PMC5442108 DOI: 10.1038/s41598-017-02591-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/12/2017] [Indexed: 01/05/2023] Open
Abstract
The use of live, genetically modified bacteria as delivery vehicles for biologics is of considerable interest scientifically and has attracted significant commercial investment. We have pioneered the use of the commensal gut bacterium Bacteroides ovatus for the oral delivery of therapeutics to the gastrointestinal tract. Here we report on our investigations of the biological safety of engineered B. ovatus bacteria that includes the use of thymineless death as a containment strategy and the potential for the spread of transgenes in vivo in the mammalian gastrointestinal tract. We demonstrate the ability of GM-strains of Bacteroides to survive thymine starvation and overcome it through the exchange of genetic material. We also provide evidence for horizontal gene transfer in the mammalian gastrointestinal tract resulting in transgene-carrying wild type bacteria. These findings sound a strong note of caution on the employment of live genetically modified bacteria for the delivery of biologics.
Collapse
|
11
|
Milbredt S, Farmani N, Sobetzko P, Waldminghaus T. DNA Replication in Engineered Escherichia coli Genomes with Extra Replication Origins. ACS Synth Biol 2016; 5:1167-1176. [PMID: 27268399 DOI: 10.1021/acssynbio.6b00064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The standard outline of bacterial genomes is a single circular chromosome with a single replication origin. From the bioengineering perspective, it appears attractive to extend this basic setup. Bacteria with split chromosomes or multiple replication origins have been successfully constructed in the last few years. The characteristics of these engineered strains will largely depend on the respective DNA replication patterns. However, the DNA replication has not been investigated systematically in engineered bacteria with multiple origins or split replicons. Here we fill this gap by studying a set of strains consisting of (i) E. coli strains with an extra copy of the native replication origin (oriC), (ii) E. coli strains with an extra copy of the replication origin from the secondary chromosome of Vibrio cholerae (oriII), and (iii) a strain in which the E. coli chromosome is split into two linear replicons. A combination of flow cytometry, microarray-based comparative genomic hybridization (CGH), and modeling revealed silencing of extra oriC copies and differential timing of ectopic oriII copies compared to the native oriC. The results were used to derive construction rules for future multiorigin and multireplicon projects.
Collapse
Affiliation(s)
- Sarah Milbredt
- LOEWE Center for Synthetic
Microbiology, SYNMIKRO, Philipps-University, Marburg, Hans-Meerwein-Strasse 6, D-35043 Marburg, Germany
| | - Neda Farmani
- LOEWE Center for Synthetic
Microbiology, SYNMIKRO, Philipps-University, Marburg, Hans-Meerwein-Strasse 6, D-35043 Marburg, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic
Microbiology, SYNMIKRO, Philipps-University, Marburg, Hans-Meerwein-Strasse 6, D-35043 Marburg, Germany
| | - Torsten Waldminghaus
- LOEWE Center for Synthetic
Microbiology, SYNMIKRO, Philipps-University, Marburg, Hans-Meerwein-Strasse 6, D-35043 Marburg, Germany
| |
Collapse
|
12
|
Frimodt-Møller J, Charbon G, Krogfelt KA, Løbner-Olesen A. Control regions for chromosome replication are conserved with respect to sequence and location among Escherichia coli strains. Front Microbiol 2015; 6:1011. [PMID: 26441936 PMCID: PMC4585315 DOI: 10.3389/fmicb.2015.01011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022] Open
Abstract
In Escherichia coli, chromosome replication is initiated from oriC by the DnaA initiator protein associated with ATP. Three non-coding regions contribute to the activity of DnaA. The datA locus is instrumental in conversion of DnaAATP to DnaAADP (datA dependent DnaAATP hydrolysis) whereas DnaA rejuvenation sequences 1 and 2 (DARS1 and DARS2) reactivate DnaAADP to DnaAATP. The structural organization of oriC, datA, DARS1, and DARS2 were found conserved among 59 fully sequenced E. coli genomes, with differences primarily in the non-functional spacer regions between key protein binding sites. The relative distances from oriC to datA, DARS1, and DARS2, respectively, was also conserved despite of large variations in genome size, suggesting that the gene dosage of either region is important for bacterial growth. Yet all three regions could be deleted alone or in combination without loss of viability. Competition experiments during balanced growth in rich medium and during mouse colonization indicated roles of datA, DARS1, and DARS2 for bacterial fitness although the relative contribution of each region differed between growth conditions. We suggest that this fitness advantage has contributed to conservation of both sequence and chromosomal location for datA, DARS1, and DARS2.
Collapse
Affiliation(s)
- Jakob Frimodt-Møller
- Department of Biology, Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, University of Copenhagen Copenhagen, Denmark ; Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Godefroid Charbon
- Department of Biology, Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, University of Copenhagen Copenhagen, Denmark
| | - Karen A Krogfelt
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Anders Løbner-Olesen
- Department of Biology, Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
13
|
Lies M, Visser BJ, Joshi MC, Magnan D, Bates D. MioC and GidA proteins promote cell division in E. coli. Front Microbiol 2015; 6:516. [PMID: 26074904 PMCID: PMC4446571 DOI: 10.3389/fmicb.2015.00516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/09/2015] [Indexed: 11/24/2022] Open
Abstract
The well-conserved genes surrounding the E. coli replication origin, mioC and gidA, do not normally affect chromosome replication and have little known function. We report that mioC and gidA mutants exhibit a moderate cell division inhibition phenotype. Cell elongation is exacerbated by a fis deletion, likely owing to delayed replication and subsequent cell cycle stress. Measurements of replication initiation frequency and origin segregation indicate that mioC and gidA do not inhibit cell division through any effect on oriC function. Division inhibition is also independent of the two known replication/cell division checkpoints, SOS and nucleoid occlusion. Complementation analysis indicates that mioC and gidA affect cell division in trans, indicating their effect is at the protein level. Transcriptome analysis by RNA sequencing showed that expression of a cell division septum component, YmgF, is significantly altered in mioC and gidA mutants. Our data reveal new roles for the gene products of gidA and mioC in the division apparatus, and we propose that their expression, cyclically regulated by chromatin remodeling at oriC, is part of a cell cycle regulatory program coordinating replication initiation and cell division.
Collapse
Affiliation(s)
- Mark Lies
- Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA
| | - Bryan J Visser
- Integrative Molecular and Biomedical Sciences, Baylor College of Medicine Houston, TX, USA
| | - Mohan C Joshi
- Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA
| | - David Magnan
- Integrative Molecular and Biomedical Sciences, Baylor College of Medicine Houston, TX, USA
| | - David Bates
- Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA ; Integrative Molecular and Biomedical Sciences, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
14
|
Messerschmidt SJ, Kemter FS, Schindler D, Waldminghaus T. Synthetic secondary chromosomes in Escherichia coli based on the replication origin of chromosome II in Vibrio cholerae. Biotechnol J 2014; 10:302-14. [PMID: 25359671 DOI: 10.1002/biot.201400031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/02/2014] [Accepted: 10/30/2014] [Indexed: 01/25/2023]
Abstract
Recent developments in DNA-assembly methods make the synthesis of synthetic chromosomes a reachable goal. However, the redesign of primary chromosomes bears high risks and still requires enormous resources. An alternative approach is the addition of synthetic chromosomes to the cell. The natural secondary chromosome of Vibrio cholerae could potentially serve as template for a synthetic secondary chromosome in Escherichia coli. To test this assumption we constructed a replicon named synVicII based on the replication module of V. cholerae chromosome II (oriII). A new assay for the assessment of replicon stability was developed based on flow-cytometric analysis of unstable GFP variants. Application of this assay to cells carrying synVicII revealed an improved stability compared to a secondary replicon based on E. coli oriC. Cell cycle analysis and determination of cellular copy numbers of synVicII indicate that replication timing of the synthetic replicon in E. coli is comparable to the natural chromosome II (ChrII) in V. cholerae. The presented synthetic biology work provides the basis to use secondary chromosomes in E. coli to answer basic research questions as well as for several biotechnological applications.
Collapse
Affiliation(s)
- Sonja J Messerschmidt
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
15
|
Abstract
The emergence of eukaryotes around two billion years ago provided new challenges for the chromosome segregation machineries: the physical separation of multiple large and linear chromosomes from the microtubule-organizing centres by the nuclear envelope. In this review, we set out the diverse solutions that eukaryotic cells use to solve this problem, and show how stepping away from ‘mainstream’ mitosis can teach us much about the mechanisms and mechanics that can drive chromosome segregation. We discuss the evidence for a close functional and physical relationship between membranes, nuclear pores and kinetochores in generating the forces necessary for chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Hauke Drechsler
- Centre for Mechanochemical Cell Biology, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
16
|
Koch B, Ma X, Løbner-Olesen A. rctB mutations that increase copy number of Vibrio cholerae oriCII in Escherichia coli. Plasmid 2012; 68:159-69. [PMID: 22487081 DOI: 10.1016/j.plasmid.2012.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/21/2012] [Accepted: 03/25/2012] [Indexed: 11/28/2022]
Abstract
RctB serves as the initiator protein for replication from oriCII, the origin of replication of Vibrio cholerae chromosome II. RctB is conserved between members of Vibrionaceae but shows no homology to known replication initiator proteins and has no recognizable sequence motifs. We used an oriCII based minichromosome to isolate copy-up mutants in Escherichia coli. Three point mutations rctB(R269H), rctB(L439H) and rctB(Y381N) and one IS10 insertion in the 3'-end of the rctB gene were obtained. We determined the maximal C-terminal deletion that still gave rise to a functional RctB protein to be 165 amino acids. All rctB mutations led to decreased RctB-RctB interaction indicating that the monomer is the active form of the initiator protein. All mutations also showed various defects in rctB autoregulation. Loss of the C-terminal part of RctB led to overinitiation by reducing binding of RctB to both rctA and inc regions that normally serve to limit initiation from oriCII. Overproduction of RctB(R269H) and RctB(L439H) led to a rapid increase in oriCII copy number. This suggests that the initiator function of the two mutant proteins is increased relative to the wild-type.
Collapse
Affiliation(s)
- Birgit Koch
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | | | | |
Collapse
|
17
|
Johnsen L, Flåtten I, Morigen, Dalhus B, Bjørås M, Waldminghaus T, Skarstad K. The G157C mutation in the Escherichia coli sliding clamp specifically affects initiation of replication. Mol Microbiol 2010; 79:433-46. [PMID: 21219462 DOI: 10.1111/j.1365-2958.2010.07453.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli cells with a point mutation in the dnaN gene causing the amino acid change Gly157 to Cys, were found to underinitiate replication and grow with a reduced origin and DNA concentration. The mutant β clamp also caused excessive conversion of ATP-DnaA to ADP-DnaA. The DnaA protein was, however, not the element limiting initiation of replication. Overproduction of DnaA protein, which in wild-type cells leads to over-replication, had no effect in the dnaN(G157C) mutant. Origins already opened by DnaA seemed to remain open for a prolonged period, with a stage of initiation involving β clamp loading, presumably limiting the initiation process. The existence of opened origins led to a moderate SOS response. Lagging strand synthesis, which also requires loading of the β clamp, was apparently unaffected. The result indicates that some aspects of β clamp activity are specific to the origin. It is possible that the origin specific activities of β contribute to regulation of initiation frequency.
Collapse
Affiliation(s)
- Line Johnsen
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
18
|
Kim BG, Shuler ML. A structured, segregated model for genetically modified Escherichia coli cells and its use for prediction of plasmid stability. Biotechnol Bioeng 2010; 36:581-92. [PMID: 18595116 DOI: 10.1002/bit.260360605] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A structured, segregated model is presented for an asynchronously growing population of genetically modified Escherichia coli cells. A finite representation method was modified so that 272 cells could be used to represent a microbial population. The concept of a "limbo" compartment was introduced to allow random plasmid distribution to daughter cells upon cell division while restricting the number of computer cells included in the calculation. This scheme enabled us to predict plasmid instability and distribution of plasmid-originated properties in a population without a priori determination of growth rates or probability of forming plasmid-free cells from plasmid-containing cells. Predictions of population behavior using a single-cell model requires no adjustable parameters. The results comparing different induction strategies suggest that in continuous culture, there exists an optimum efficiency of partial induction that maximizes the long-term productivity of the gene product due to plasmid stability. With the optimum efficiency of partial induction, constant induction appears to prove more stable than cycling induction.
Collapse
Affiliation(s)
- B G Kim
- Department of Food Science and Technology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
19
|
Replication of Vibrio cholerae chromosome I in Escherichia coli: dependence on dam methylation. J Bacteriol 2010; 192:3903-14. [PMID: 20511501 DOI: 10.1128/jb.00311-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We successfully substituted Escherichia coli's origin of replication oriC with the origin region of Vibrio cholerae chromosome I (oriCI(Vc)). Replication from oriCI(Vc) initiated at a similar or slightly reduced cell mass compared to that of normal E. coli oriC. With respect to sequestration-dependent synchrony of initiation and stimulation of initiation by the loss of Hda activity, replication initiation from oriC and oriCI(Vc) were similar. Since Hda is involved in the conversion of DnaA(ATP) (DnaA bound to ATP) to DnaA(ADP) (DnaA bound to ADP), this indicates that DnaA associated with ATP is limiting for V. cholerae chromosome I replication, which similar to what is observed for E. coli. No hda homologue has been identified in V. cholerae yet. In V. cholerae, dam is essential for viability, whereas in E. coli, dam mutants are viable. Replacement of E. coli oriC with oriCI(Vc) allowed us to specifically address the role of the Dam methyltransferase and SeqA in replication initiation from oriCI(Vc). We show that when E. coli's origin of replication is substituted by oriCI(Vc), dam, but not seqA, becomes important for growth, arguing that Dam methylation exerts a critical function at the origin of replication itself. We propose that Dam methylation promotes DnaA-assisted successful duplex opening and replisome assembly at oriCI(Vc) in E. coli. In this model, methylation at oriCI(Vc) would ease DNA melting. This is supported by the fact that the requirement for dam can be alleviated by increasing negative supercoiling of the chromosome through oversupply of the DNA gyrase or loss of SeqA activity.
Collapse
|
20
|
Riber L, Fujimitsu K, Katayama T, Løbner-Olesen A. Loss of Hda activity stimulates replication initiation from I-box, but not R4 mutant origins in Escherichia coli. Mol Microbiol 2008; 71:107-22. [PMID: 19007419 DOI: 10.1111/j.1365-2958.2008.06516.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Initiation of chromosome replication in Escherichia coli is limited by the initiator protein DnaA associated with ATP. Within the replication origin, binding sites for DnaA associated with ATP or ADP (R boxes) and the DnaA(ATP) specific sites (I-boxes, tau-boxes and 6-mer sites) are found. We analysed chromosome replication of cells carrying mutations in conserved regions of oriC. Cells carrying mutations in DnaA-boxes I2, I3, R2, R3 and R5 as well as FIS and IHF binding sites resembled wild-type cells with respect to origin concentration. Initiation of replication in these mutants occurred in synchrony or with slight asynchrony only. Furthermore, lack of Hda stimulated initiation in all these mutants. The DnaA(ATP) containing complex that leads to initiation can therefore be formed in the absence of several of the origin DnaA binding sites including both DnaA(ATP) specific I-boxes. However, competition between I-box mutant and wild-type origins, revealed a positive role of I-boxes on initiation. On the other hand, mutations affecting DnaA-box R4 were found to be compromised for initiation and could not be augmented by an increase in cellular DnaA(ATP)/DnaA(ADP) ratio. Compared with the sites tested here, R4 therefore seems to contribute to initiation most critically.
Collapse
Affiliation(s)
- Leise Riber
- Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
21
|
Hu Y, Li Y, Zhang X, Guo X, Xia B, Jin C. Solution structures and backbone dynamics of a flavodoxin MioC from Escherichia coli in both Apo- and Holo-forms: implications for cofactor binding and electron transfer. J Biol Chem 2006; 281:35454-66. [PMID: 16963438 DOI: 10.1074/jbc.m607336200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Flavodoxins play central roles in the electron transfer involving various biological processes in microorganisms. The mioC gene of Escherichia coli encodes a 16-kDa flavodoxin and locates next to the chromosomal replication initiation origin (oriC). Extensive researches have been carried out to investigate the relationship between mioC transcription and replication initiation. Recently, the MioC protein was proposed to be essential for the biotin synthase activity in vitro. Nevertheless, the exact role of MioC in biotin synthesis and its physiological function in vivo remain elusive. In order to understand the molecular basis of the biological functions of MioC and the cofactor-binding mechanisms of flavodoxins, we have determined the solution structures of both the apo- and holo-forms of E. coli MioC protein at high resolution by nuclear magnetic resonance spectroscopy. The overall structures of both forms consist of an alpha/beta sandwich, which highly resembles the classical flavodoxin fold. However, significant diversities are observed between the two forms, especially the stabilization of the FMN-binding loops and the notable extension of secondary structures upon FMN binding. Structural comparison reveals fewer negative charged and aromatic residues near the FMN-binding site of MioC, as compared with that of flavodoxin 1 from E. coli, which may affect both the redox potentials and the redox partner interactions. Furthermore, the backbone dynamics studies reveal the conformational flexibility at different time scales for both apo- and holo-forms of MioC, which may play important roles for cofactor binding and electron transfer.
Collapse
Affiliation(s)
- Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
22
|
Sibley CD, MacLellan SR, Finan T. The Sinorhizobium meliloti chromosomal origin of replication. Microbiology (Reading) 2006; 152:443-455. [PMID: 16436432 DOI: 10.1099/mic.0.28455-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The predicted chromosomal origin of replication (oriC) from the alfalfa symbiontSinorhizobium melilotiis shown to allow autonomous replication of a normally non-replicating plasmid withinS. meliloticells. This is the first chromosomal replication origin to be experimentally localized in theRhizobiaceaeand its location, adjacent tohemE, is the same as fororiCinCaulobacter crescentus, the only experimentally characterized alphaproteobacterialoriC. Using an electrophoretic mobility shift assay and purifiedS. melilotiDnaA replication initiation protein, binding sites for DnaA were mapped in theS. meliloti oriCregion. Mutations in these sites eliminated autonomous replication.S. melilotithat expressed DnaA from a plasmidlacpromoter was observed to form pleomorphic filamentous cells, suggesting that cell division was perturbed. Interestingly, this cell phenotype is reminiscent of differentiated bacteroids found inside plant cells in alfalfa root nodules.
Collapse
Affiliation(s)
- Christopher D Sibley
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario, Canada L8S 4K1
| | - Shawn R MacLellan
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario, Canada L8S 4K1
| | - Turlough Finan
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
23
|
Hansen FG, Christensen BB, Nielsen CB, Atlung T. Insights into the quality of DnaA boxes and their cooperativity. J Mol Biol 2005; 355:85-95. [PMID: 16298387 DOI: 10.1016/j.jmb.2005.10.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 10/11/2005] [Accepted: 10/11/2005] [Indexed: 11/21/2022]
Abstract
Plasmids carrying the mioC promoter region with its two DnaA boxes are as efficient in titration of DnaA protein as plasmids carrying a replication-inactivated oriC region with its five DnaA boxes. The two DnaA boxes upstream of the mioC promoter were mutated in various ways to study the cooperativity between the DnaA boxes, and to study in vivo the in vitro-defined 9mer DnaA box consensus sequence (TT(A)/(T)TNCACA). The quality and cooperativity of the DnaA boxes were determined in two complementary ways: as titration of DnaA protein leading to derepression of the dnaA promoter, and as repression of the mioC promoter caused by the DnaA protein binding to the DnaA boxes. Titration of DnaA protein correlated with repression of the mioC promoter. The level of titration and repression with the normal promoter-proximal box (TTTTCCACA) depends strongly on the presence and the quality of a DnaA box in the promoter-distal position, whereas a promoter-proximal DnaA box with the sequence TTATCCACA titrated DnaA protein and caused significant repression of the mioC promoter without a promoter-distal DnaA box. The quality of the eight different consensus DnaA boxes located in the promoter-proximal position was determined: TTATCCACA had the highest affinity for DnaA protein. In the third position, A was better than T, and the four possibilities in the fifth position could be ranked as C >A >or=G >T. Parallel in vitro experiments using a purified DNA-binding domain of DnaA protein gave the same ranking of the binding affinities of the eight DnaA boxes.
Collapse
Affiliation(s)
- Flemming G Hansen
- The Molecular Physiology Group, BioCentrum-DTU, Technical University of Denmark, Building 301 DK-2800 Lyngby, Denmark
| | | | | | | |
Collapse
|
24
|
Molina F, Skarstad K. Deletion of the datA site does not affect once-per-cell-cycle timing but induces rifampin-resistant replication. J Bacteriol 2005; 187:3913-20. [PMID: 15939703 PMCID: PMC1151742 DOI: 10.1128/jb.187.12.3913-3920.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, three mechanisms have been proposed to maintain proper regulation of replication so that initiation occurs once, and only once, per cell cycle. First, newly formed origins are inactivated by sequestration; second, the initiator, DnaA, is inactivated by the Hda protein at active replication forks; and third, the level of free DnaA protein is reduced by replication of the datA site. The datA site titrates unusually large amounts of DnaA and it has been reported that reinitiation, and thus asynchrony of replication, occurs in cells lacking this site. Here, we show that reinitiation in deltadatA cells does not occur during exponential growth and that an apparent asynchrony phenotype results from the occurrence of rifampin-resistant initiations. This shows that the datA site is not required to prevent reinitiation and limit initiation of replication to once per generation. The datA site may, however, play a role in timing of initiation relative to cell growth. Inactivation of active ATP-DnaA by the Hda protein and the sliding clamp of the polymerase was found to be required to prevent reinitiation and asynchrony of replication.
Collapse
|
25
|
Dasgupta S, Løbner-Olesen A. Host controlled plasmid replication: Escherichia coli minichromosomes. Plasmid 2005; 52:151-68. [PMID: 15518873 DOI: 10.1016/j.plasmid.2004.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 08/06/2004] [Indexed: 11/26/2022]
Abstract
Escherichia coli minichromosomes are plasmids replicating exclusively from a cloned copy of oriC, the chromosomal origin of replication. They are therefore subject to the same types of replication control as imposed on the chromosome. Unlike natural plasmid replicons, minichromosomes do not adjust their replication rate to the cellular copy number and they do not contain information for active partitioning at cell division. Analysis of mutant strains where minichromosomes cannot be established suggest that their mere existence is dependent on the factors that ensure timely once per cell cycle initiation of replication. These observations indicate that replication initiation in E. coli is normally controlled in such a way that all copies of oriC contained within the cell, chromosomal and minichromosomal, are initiated within a fairly short time interval of the cell cycle. Furthermore, both replication and segregation of the bacterial chromosome seem to be controlled by sequences outside the origin itself.
Collapse
Affiliation(s)
- Santanu Dasgupta
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24, Sweden
| | | |
Collapse
|
26
|
Asklund M, Atlung T. New non-detrimental DNA-binding mutants of the Escherichia coli initiator protein DnaA. J Mol Biol 2005; 345:717-30. [PMID: 15588821 DOI: 10.1016/j.jmb.2004.10.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 10/19/2004] [Accepted: 10/31/2004] [Indexed: 11/21/2022]
Abstract
The initiator protein DnaA has several unique DNA-binding features. It binds with high affinity as a monomer to the nonamer DnaA box. In the ATP form, DnaA binds cooperatively to the low-affinity ATP-DnaA boxes, and to single-stranded DNA in the 13mer region of the origin. We have carried out an extensive mutational analysis of the DNA-binding domain of the Escherichia coli DnaA protein using mutagenic PCR. We analyzed mutants exhibiting more or less partial activity by selecting for complementation of a dnaA(Ts) mutant strain at different expression levels of the new mutant proteins. The selection gave rise to 30 single amino acid substitutions and, including double substitutions, more than 100 mutants functional in initiation of chromosome replication were characterized. The analysis indicated that all regions of the DNA-binding domain are involved in DNA binding, but the most important amino acid residues are located between positions 30 and 80 of the 94 residue domain. Residues where substitutions with non-closely related amino acids have very little effect on protein function are located primarily on the periphery of the 3D structure. By comparison of the effect of substitutions on the activity for initiation of replication with the activity for repression of the mioC promoter, we identified residues that might be involved specifically in the cooperative interaction with ATP-DnaA boxes.
Collapse
Affiliation(s)
- M Asklund
- Department of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark
| | | |
Collapse
|
27
|
Su'etsugu M, Emoto A, Fujimitsu K, Keyamura K, Katayama T. Transcriptional control for initiation of chromosomal replication in Escherichia coli: fluctuation of the level of origin transcription ensures timely initiation. Genes Cells 2003; 8:731-45. [PMID: 12940821 DOI: 10.1046/j.1365-2443.2003.00671.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND During the cell cycle, the initiation of chromosomal replication is strictly controlled. In Escherichia coli, the initiator DnaA and the replication origin oriC are major targets for this regulation. Here, we assessed the role of transcription of the mioC gene, which reads through the adjacent oriC region. This mioC-oriC transcription is regulated in coordination with the replication cycle so that it is activated after initiation and repressed before initiation. RESULTS We isolated a strain bearing a mioC promoter mutation that causes constitutive mioC-oriC transcription from the chromosome. A quantitative S1 nuclease assay indicated that in this mutant, the level of transcription does not fluctuate. Introduction of this mutation suppressed the growth defect of an overinitiation-type dnaAcos mutant, and severely inhibited the growth of initiation-defective dnaA mutants at semipermissive temperatures in a dnaA allele-specific manner. These results suggest that mioC-oriC transcription inhibits initiation at oriC. Indeed, flow cytometry analysis and quantification of DNA replication in synchronized cultures revealed that the mioC promoter mutation alters the control of the initiation of chromosomal replication, for instance by delaying replication within the cell cycle. CONCLUSIONS These results suggest that the transcriptional regulation of the mioC gene is required for cell cycle-coordinated initiation of chromosomal replication.
Collapse
Affiliation(s)
- Masayuki Su'etsugu
- Department of Molecular Biology, Kyushu University Graduate School of Pharmaceutical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
28
|
Skarstad K, Løbner-Olesen A. Stable co-existence of separate replicons in Escherichia coli is dependent on once-per-cell-cycle initiation. EMBO J 2003; 22:140-50. [PMID: 12505992 PMCID: PMC140042 DOI: 10.1093/emboj/cdg003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Revised: 10/25/2002] [Accepted: 10/31/2002] [Indexed: 11/12/2022] Open
Abstract
DNA replication in most organisms is regulated such that all chromosomes are replicated once, and only once, per cell cycle. In rapidly growing Escherichia coli, replication of eight identical chromosomes is initiated essentially simultanously, each from the same origin, oriC. Plasmid-borne oriC sequences (minichromosomes) are also initiated in synchrony with the eight chromosomal origins. We demonstrate that specific inactivation of newly formed, hemimethylated origins (sequestration) was required for the stable co-existence of oriC-dependent replicons. Cells in which initiations were not confined to a short interval in the cell cycle (carrying mutations in sequestration or initiation genes or expressing excess initiator protein) could not support stable co-existence of several oriC-dependent replicons. The results show that such stable co-existence of oriC-dependent replicons is dependent on both a period of sequestration that is longer than the initiation interval and a reduction of the initiation potential during the sequestration period. These regulatory requirements are the same as those required to confine initiation of each replicon to once, and only once, per cell cycle.
Collapse
Affiliation(s)
- Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, 0310 Oslo, Norway.
| | | |
Collapse
|
29
|
Abstract
The idea that plasmids replicate within hosts at the expense of cell metabolic energy and preformed cellular blocks depicts plasmids as a kind of molecular parasites that, even when they may eventually provide plasmid-carrying strains with growth advantages over plasmid-free strains, doom hosts to bear an unavoidable metabolic burden. Due to the consistency with experimental data, this idea was rapidly adopted and used as a basis of different hypotheses to explain plasmid-host interactions. In this article we critically discuss current ideas about plasmid effects on host metabolism, and present evidence suggesting that the complex interaction between plasmids and hosts is related to the alteration of the cellular regulatory status.
Collapse
Affiliation(s)
- J C Diaz Ricci
- Instituto Superior de Investigaciones Biológicas (UNT-CONICET), Facultad de Bioquímica, Química y Farmacia, Tucuman, Argentina.
| | | |
Collapse
|
30
|
von Freiesleben U, Krekling MA, Hansen FG, Løbner-Olesen A. The eclipse period of Escherichia coli. EMBO J 2000; 19:6240-8. [PMID: 11080169 PMCID: PMC305828 DOI: 10.1093/emboj/19.22.6240] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2000] [Revised: 09/26/2000] [Accepted: 09/26/2000] [Indexed: 11/14/2022] Open
Abstract
The minimal time between successive initiations on the same origin (the eclipse) in Escherichia coli was determined to be approximately 25-30 min. An inverse relationship was found between the length of the eclipse and the amount of Dam methyltransferase in the cell, indicating that the eclipse corresponds to the period of origin hemimethylation. The SeqA protein was absolutely required for the eclipse, and DnaA titration studies suggested that the SeqA protein prevented the binding of multiple DnaA molecules on oriC (initial complex formation). No correlation between the amount of SeqA and eclipse length was revealed, but increased SeqA levels affected chromosome partitioning and/or cell division. This was corroborated further by an aberrant nucleoid distribution in SeqA-deficient cells. We suggest that the SeqA protein's role in maintaining the eclipse is tied to a function in chromosome organization.
Collapse
Affiliation(s)
- U von Freiesleben
- Department of Microbiology, The Technical University of Denmark, Building 301, DK-2800 Lyngby, Denmark
| | | | | | | |
Collapse
|
31
|
Birch OM, Hewitson KS, Fuhrmann M, Burgdorf K, Baldwin JE, Roach PL, Shaw NM. MioC is an FMN-binding protein that is essential for Escherichia coli biotin synthase activity in vitro. J Biol Chem 2000; 275:32277-80. [PMID: 10913144 DOI: 10.1074/jbc.m004497200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biotin synthase is required for the conversion of dethiobiotin to biotin and requires a number of accessory proteins and small molecule cofactors for activity in vitro. We have previously identified two of these proteins as flavodoxin and ferredoxin (flavodoxin) NADP(+) reductase. We now report the identification of MioC as a third essential protein, together with its cloning, purification, and characterization. Purified MioC has a UV-visible spectrum characteristic of a flavoprotein and contains flavin mononucleotide. The presence of flavin mononucleotide and the primary sequence similarity to flavodoxin suggest that MioC may function as an electron transport protein. The role of MioC in the biotin synthase reaction is discussed, and the structure and function of MioC is compared with that of flavodoxin.
Collapse
Affiliation(s)
- O M Birch
- Biotechnology Research, Lonza A.G., CH-3930 Visp, Switzerland, Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
32
|
Blaesing F, Weigel C, Welzeck M, Messer W. Analysis of the DNA-binding domain of Escherichia coli DnaA protein. Mol Microbiol 2000; 36:557-69. [PMID: 10844646 DOI: 10.1046/j.1365-2958.2000.01881.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The DNA-binding domain of the Escherichia coli DnaA protein is represented by the 94 C-terminal amino acids (domain 4, aa 374-467). The isolated DNA-binding domain acts as a functional repressor in vivo, as monitored with a mioC:lacZ translational fusion integrated into the chromosome of the indicator strain. In order to identify residues required for specific DNA binding, site-directed and random PCR mutagenesis were performed, using the mioC:lacZ construct for selection. Mutations defective in DNA binding were found all over the DNA-binding domain with some clustering in the basic loop region, within presumptive helix B and in a highly conserved region at the N-terminus of presumptive helix C. Surface plasmon resonance (SPR) analysis revealed different binding classes of mutant proteins. No or severely reduced binding activity was demonstrated for amino acid substitutions at positions R399, R407, Q408, H434, T435, T436 and A440. Altered binding specificity was found for mutations in a 12 residue region close to the N-terminus of helix C. The defects of the classical temperature sensitive mutants dnaA204, dnaA205 and dnaA211 result from instability of the proteins at higher temperatures. dnaX suppressors dnaA71 and dnaA721 map to the region close to helix C and bind DNA non-specifically.
Collapse
Affiliation(s)
- F Blaesing
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin-Dahlem, Germany
| | | | | | | |
Collapse
|
33
|
Løbner-Olesen A. Distribution of minichromosomes in individual Escherichia coli cells: implications for replication control. EMBO J 1999; 18:1712-21. [PMID: 10075940 PMCID: PMC1171257 DOI: 10.1093/emboj/18.6.1712] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel method was devised to measure the number of plasmids in individual Escherichia coli cells. With this method, involving measurement of plasmid-driven expression of the green fluorescent protein gene by flow cytometry, the copy number distribution of a number of different plasmids was measured. Whereas natural plasmids had fairly narrow distributions, minichromosomes, which are plasmids replicating only from a cloned oriC copy, have a wide distribution, suggesting that there is no copy number control for minichromosomes. When the selection pressure (kanamycin concentration) for minichromosomes was increased, the copy number of minichromosomes was also increased. At up to 30 minichromosomes per host chromosome, replication and growth of the host cell was unaffected. This is evidence that there is no negative element for initiation control in oriC and that there is no incompatibility between oriC located on the chromosome and minichromosome. However, higher copy numbers led to integration of the minichromosomes at the chromosomal oriC and to initiation asynchrony of the host chromosome. At a minichromosome copy number of approximately 30, the cell's capacity for synchronous initiation is exceeded and free minichromosomes will compete out the chromosome to yield inviable cells, unless the minichromosomes are incorporated into the chromosome.
Collapse
Affiliation(s)
- A Løbner-Olesen
- Department of Cell Biology, Institute for Cancer Research, Montebello, 0310 Oslo, Norway.
| |
Collapse
|
34
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
35
|
Krause M, Rückert B, Lurz R, Messer W. Complexes at the replication origin of Bacillus subtilis with homologous and heterologous DnaA protein. J Mol Biol 1997; 274:365-80. [PMID: 9405146 DOI: 10.1006/jmbi.1997.1404] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The initial steps in the formation of the initiation complex at oriC of Bacillus subtilis were analyzed with special emphasis on the exchangeability of B. subtilis DnaA protein by DnaA of Escherichia coli. The DNA binding domain of B. subtilis DnaA protein was localized in the 93 C-terminal amino acids. Formation of the "initial complex", as analyzed by electron microscopy, was indistinguishable with B. subtilis DnaA protein or with E. coli DnaA. Similarly, both proteins were able to form loops by interaction of DnaA proteins bound to the DnaA box regions upstream and downstream of the dnaA gene in B. subtilis oriC. The region of local unwinding in the "open complex" was precisely defined. It is located at one side of a region of helical instability, a DNA unwinding element (DUE). Unwinding in oriC could only be catalyzed by the homologous DnaA protein.
Collapse
Affiliation(s)
- M Krause
- Max-Planck-Institut für molekulare Genetik, Berlin-Dahlem, Germany
| | | | | | | |
Collapse
|
36
|
Bates DB, Boye E, Asai T, Kogoma T. The absence of effect of gid or mioC transcription on the initiation of chromosomal replication in Escherichia coli. Proc Natl Acad Sci U S A 1997; 94:12497-502. [PMID: 9356478 PMCID: PMC25015 DOI: 10.1073/pnas.94.23.12497] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Despite the widely accepted view that transcription of gid and mioC is required for efficient initiation of cloned oriC, we show that these transcriptions have very little effect on initiation of chromosome replication at wild-type chromosomal oriC. Furthermore, neither gid nor mioC transcription is required in cells deficient in the histone-like proteins Fis or IHF. However, oriC that is sufficiently impaired for initiation by deletion of DnaA box R4 requires transcription of at least one of these genes. We conclude that transcription of mioC and especially gid is needed to activate oriC only under suboptimal conditions. We suggest that either the rifampicin-sensitive step of initiation is some other transcription occurring from promoter(s) within oriC, or the original inference of transcriptional activation derived from the rifampicin experiments is incorrect.
Collapse
Affiliation(s)
- D B Bates
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
37
|
Løbner-Olesen A, von Freiesleben U. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells. EMBO J 1996; 15:5999-6008. [PMID: 8918477 PMCID: PMC452401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome. The absence of the initiation cascade in Dam- cells is proposed to account for this observation of apparent incompatibility between plasmid and chromosomal copies of oriC. Studies using oriC-pBR322 chimeric plasmids and their deletion derivatives indicated that the incompatibility determinant is an intact and functional oriC sequence. The seqA2 mutation was found to overcome the incompatability phenotype by increasing the cellular oriC copy number 3-fold thereby allowing minichromosomes to coexist with the chromosome. The replication pattern of a wild-type strain with multiple integrated minichromosomes in the oriC region of the chromosome, led to the conclusion that initiation of DNA replication commences at a fixed cell mass, irrespective of the number of origins contained on the chromosome.
Collapse
Affiliation(s)
- A Løbner-Olesen
- University of Colorado at Boulder, Dept of Molecular Cellular and Developmental Biology 80309, USA
| | | |
Collapse
|
38
|
Tesfa-Selase F, Drabble WT. Specific binding of DnaA protein to a DnaA box in the guaB gene of Escherichia coli K12. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:411-6. [PMID: 8917437 DOI: 10.1111/j.1432-1033.1996.00411.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Expression of the guaBA operon of Escherichia coli is regulated by the DNA replication-initiating protein, DnaA. Two DnaA boxes, which are potential binding sites for DnaA, are present in the gua operon. One box (with 8/9 match to the DnaA box consensus sequence) is at the gua promoter; the other box, which has a consensus sequence, is on the non-transcribed strand within the guaB coding region approximately 200 bp downstream of the initiation codon. The binding in vitro of purified DnaA protein to these boxes was investigated by filter retention and gel retardation analysis, and by deoxyribonuclease I footprinting, using restriction fragments of gua operon DNA. DnaA protein was shown to bind specifically only to the fragment carrying the consensus sequence DnaA box, and to protect this box from deoxyribonuclease I. Transcription termination resulting from the binding of DnaA to this box within the guaB gene explains repression by DnaA of the gua operon in vivo.
Collapse
Affiliation(s)
- F Tesfa-Selase
- Department of Biochemistry, University of Southampton, England
| | | |
Collapse
|
39
|
Bogan JA, Helmstetter CE. mioC transcription, initiation of replication, and the eclipse in Escherichia coli. J Bacteriol 1996; 178:3201-6. [PMID: 8655499 PMCID: PMC178071 DOI: 10.1128/jb.178.11.3201-3206.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The potential role of mioC transcription as a negative regulator of initiation of chromosome replication in Escherichia coli was evaluated. When initiation was aligned by a shift of dnaC2(Ts) mutants to nonpermissive temperature (40 degrees C), mioC transcript levels measured at the 5' end or reading through oriC disappeared within one mass doubling. Upon return to permissive temperature (30 degrees C), the transcripts reappeared coordinately about 15 min after the first synchronized initiation and then declined sharply again 10 min later, just before the second initiation. Although these observations were consistent with the idea that mioC transcription might have to be terminated prior to initiation, it was found that the interval between initiations at permissive temperature, i.e., the eclipse period, was not influenced by the time required to shut down mioC transcription, since the eclipse was the same for chromosomes and minichromosomes which lacked mioC transcription. This finding did not, in itself, rule out the possibility that mioC transcription must be terminated prior to initiation of replication, since it might normally be shut off before initiation, and never be limiting, even during the eclipse. Therefore, experiments were performed to determine whether the continued presence of mioC transcription during the process of initiation altered the timing of initiation. It was found that minichromosomes possessing a deletion in the DnaA box upstream of the promoter transcribed mioC continuously and replicated with the same timing as those that either shut down expression prior to initiation or lacked expression entirely. It was further shown that mioC transcription was present throughout the induction of initiation by addition of chloramphenicol to a dnaA5(Ts) mutant growing at a semipermissive temperature. Thus, transcription through oriC emanating from the mioC gene promoter is normally inhibited prior to initiation of replication by the binding of DnaA protein, but replication can initiate with the proper timing even when transcription is not shut down; i.e., mioC does not serve as a negative regulator of initiation. It is proposed, however, that the reappearance and subsequent disappearance of mioC transcription during a 10-min interval at the end of the eclipse serves as an index of the minimum time required for the establishment of active protein-DNA complexes at the DnaA boxes in the fully methylated origin region of the chromosome. On this basis, the eclipse constitutes the time for methylation of the newly formed DNA strands (15 to 20 min at 30 degrees C) followed by the time for DnaA protein to bind and activate oriC for replication (10 min).
Collapse
Affiliation(s)
- J A Bogan
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, 32901, USA
| | | |
Collapse
|
40
|
Salazar L, Fsihi H, de Rossi E, Riccardi G, Rios C, Cole ST, Takiff HE. Organization of the origins of replication of the chromosomes of Mycobacterium smegmatis, Mycobacterium leprae and Mycobacterium tuberculosis and isolation of a functional origin from M. smegmatis. Mol Microbiol 1996; 20:283-93. [PMID: 8733228 DOI: 10.1111/j.1365-2958.1996.tb02617.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The genus Mycobacterium is composed of species with widely differing growth rates ranging from approximately three hours in Mycobacterium smegmatis to two weeks in Mycobacterium leprae. As DNA replication is coupled to cell duplication, it may be regulated by common mechanisms. The chromosomal regions surrounding the origins of DNA replication from M. smegmatis, M. tuberculosis, and M. leprae have been sequenced, and show very few differences. The gene order, rnpA-rpmH-dnaA-dnaN-recF-orf-gyrB-gyrA, is the same as in other Gram-positive organisms. Although the general organization in M. smegmatis is very similar to that of Streptomyces spp., a closely related genus, M. tuberculosis and M. leprae differ as they lack an open reading frame, between dnaN and recF, which is similar to the gnd gene of Escherichia coli. Within the three mycobacterial species, there is extensive sequence conservation in the intergenic regions flanking dnaA, but more variation from the consensus DnaA box sequence was seen than in other bacteria. By means of subcloning experiments, the putative chromosomal origin of replication of M. smegmatis, containing the dnaA-dnaN region, was shown to promote autonomous replication in M. smegmatis, unlike the corresponding regions from M. tuberculosis or M. leprae.
Collapse
Affiliation(s)
- L Salazar
- Laboratorio de Genética Molecular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | | | | | | | | | | | | |
Collapse
|
41
|
Sakakibara Y. Rifampin-induced initiation of chromosome replication in dnaR-deficient Escherichia coli cells. J Bacteriol 1996; 178:1242-7. [PMID: 8631698 PMCID: PMC177795 DOI: 10.1128/jb.178.5.1242-1247.1996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The dnaR130 mutant of Escherichia coli, which was thermosensitive in initiation of chromosome replication, was capable of thermoresistant DNA synthesis in the presence of rifampin at a low concentration that allowed almost normal RNA synthesis. The DNA synthesis in the presence of the drug depended on protein synthesis at the high temperature. The protein synthesis in the dnaR-deficient cells provided a potential for thermoresistant DNA synthesis to be induced at a high dose of the drug that almost completely prevented RNA synthesis. The induced synthesis was synchronously initiated from oriC and proceeded semiconservatively toward terC. The replication depended on the dnaA function, which was essential for normal initiation of replication from oriC. The capability for drug-induced replication was abolished by certain rifampin resistance mutations in the beta subunit of RNA polymerase. Thus, the drug can induce the dnaA-dependent initiation of replication in the dnaR-deficient cells through its effect on RNA polymerase. This result implies that the dnaR product is involved in the transcription obligatory for the initiation of replication of the bacterial chromosome.
Collapse
Affiliation(s)
- Y Sakakibara
- Department of Biochemistry and Cellular Biology, National Institute of Health, Tokyo, Japan
| |
Collapse
|
42
|
Sakakibara Y. Suppression of thermosensitive initiation of DNA replication in a dnaR mutant of Escherichia coli by a rifampin resistance mutation in the rpoB gene. J Bacteriol 1995; 177:733-7. [PMID: 7836308 PMCID: PMC176650 DOI: 10.1128/jb.177.3.733-737.1995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The thermosensitivity of the Escherichia coli dnaR130 mutant in initiation of DNA replication was suppressed by a spontaneous rifampin resistance mutation in rpoB, the gene for the beta subunit of RNA polymerase. Among the dnaR-suppressing rpoB alleles obtained was rpoB22, which was able to suppress the thermosensitivity of the dnaA46 or dnaA167 mutant, but not that of the dnaA5 mutant, in initiation of replication. Some dnaA-suppressing rpoB alleles obtained from rifampin-resistant derivatives of the dnaA mutants were able to suppress the dnaR defect. The dnaR mutant with the rpoB22 allele was deprived of thermoresistance by the dnaA5 mutation and of viability at low and high temperatures by the dnaA46 but not the dnaA167 mutation. The results show that the rpoB-mediated suppression of the dnaA or dnaR defect depends on the functions of both dnaA and dnaR products. I propose that the dnaR product has a key role in transcriptional activation of the replication origin for the dnaA-dependent initiation of DNA replication.
Collapse
Affiliation(s)
- Y Sakakibara
- Department of Biochemistry and Cellular Biology, National Institute of Health, Tokyo, Japan
| |
Collapse
|
43
|
Xia W, Dowhan W. In vivo evidence for the involvement of anionic phospholipids in initiation of DNA replication in Escherichia coli. Proc Natl Acad Sci U S A 1995; 92:783-7. [PMID: 7846051 PMCID: PMC42704 DOI: 10.1073/pnas.92.3.783] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In vitro, anionic phospholipids can reactivate inactivated DnaA protein, which is essential for initiation of DNA replication at the oriC site of Escherichia coli [Sekimizu, K. & Kornberg, A. (1988) J. Biol. Chem. 263, 7131-7135]. Mutations in the pgsA gene (encoding phosphatidylglycerophosphate synthase) limit the synthesis of the major anionic phospholipids and lead to arrest of cell growth. We report herein that a mutation in the rnhA gene (encoding RNase H) that bypasses the need for the DnaA protein through induction of constitutive stable DNA replication [Kogoma, T. & von Meyenburg, K. (1983) EMBO J. 2, 463-468] also suppressed the growth arrest phenotype of a pgsA mutant. The maintenance of plasmids dependent on an oriC site for replication, and therefore DnaA protein, was also compromised under conditions of limiting anionic phospholipid synthesis. These results provide support for the involvement of anionic phospholipids in normal initiation of DNA replication at oriC in vivo by the DnaA protein.
Collapse
Affiliation(s)
- W Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77225
| | | |
Collapse
|
44
|
von Freiesleben U, Rasmussen KV, Schaechter M. SeqA limits DnaA activity in replication from oriC in Escherichia coli. Mol Microbiol 1994; 14:763-72. [PMID: 7891562 DOI: 10.1111/j.1365-2958.1994.tb01313.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A mutant Escherichia coli that transforms minichromosomes with high efficiency in the absence of Dam methylation has been isolated and the mutation mapped to 16.25 min on the E. coli map. The mutant strain containing seqA2 is defective for growth in rich medium but not in minimal medium. A similar mutation in this gene, named seqA1, has also been isolated. Here we show that the product of the seqA gene, SeqA, normally acts as an inhibitor of chromosomal initiation. In the seqA2-containing mutant, the frequency of initiation increases by a factor of three. Introduction of the wild-type seqA gene on a low-copy plasmid suppresses the cold sensitivity of a dnaAcos mutant known to overinitiate at temperatures below 39 degrees C. In addition, the seqA2 mutation is a suppressor of several dnaA (Ts) alleles. The seqA2 mutant overinitiates replication from oriC and displays the asynchronous initiation phenotype. Also the seqA2 mutant has an elevated level of DnaA protein (twofold). The introduction of minichromosomes or a low-copy-number plasmid carrying five DnaA-boxes from the oriC region increases the growth rate of the seqA2 mutant in rich medium to the wild-type level, reduces overinitiation but does not restore synchrony. We propose that the role of SeqA is to limit the activity level of the E. coli regulator of chromosome initiation, DnaA.
Collapse
Affiliation(s)
- U von Freiesleben
- Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, Massachusetts 02111
| | | | | |
Collapse
|
45
|
|
46
|
Ogawa T, Okazaki T. Cell cycle-dependent transcription from the gid and mioC promoters of Escherichia coli. J Bacteriol 1994; 176:1609-15. [PMID: 8132454 PMCID: PMC205245 DOI: 10.1128/jb.176.6.1609-1615.1994] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transcription from the gid and mioC promoters, which neighbor the origin of replication of the Escherichia coli chromosome (oriC), has been implicated in the control of initiation of replication of minichromosomes. The amounts of transcripts from these two promoters on the chromosome were quantified at various times in a synchronized culture of a temperature-sensitive dnaC mutant strain. Transcription from the gid promoter was most active before the initiation of replication and was inhibited after initiation, during the time corresponding to the period of sequestration of the oriC region from the dam methyltransferase. On the other hand, transcription from the mioC promoter was inhibited before initiation and the inhibition was relieved after initiation prior to the recovery of gid transcription. The strict regulation of transcription from the gid and mioC promoters may be involved in positive and negative control of chromosomal replication, respectively, as has been suggested for minichromosome replication. The DnaA protein was involved in repression of mioC transcription, indicating that the activity of the DnaA protein changes during the cell cycle.
Collapse
Affiliation(s)
- T Ogawa
- Department of Molecular Biology, School of Science, Nagoya University, Japan
| | | |
Collapse
|
47
|
Skarstad K, Boye E. The initiator protein DnaA: evolution, properties and function. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1217:111-30. [PMID: 8110826 DOI: 10.1016/0167-4781(94)90025-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K Skarstad
- Department of Biophysics, Institute for Cancer Research, Montebello, Oslo, Norway
| | | |
Collapse
|
48
|
Zakrzewska-Czerwińska J, Nardmann J, Schrempf H. Inducible transcription of the dnaA gene from Streptomyces lividans 66. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:440-7. [PMID: 8121399 DOI: 10.1007/bf00281794] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The dnaA gene of Streptomyces lividans was cloned using the Escherichia coli medium-copy-number vector pSU18 and E. coli strain TC1963, which can by-pass the requirement for the DnaA protein. Its regulatory region was subcloned in the Streptomyces probe vector pIJ4083. Primer extension and S1 mapping studies allowed the identification of a class I Streptomyces promotor (P2). An additional, previously unknown promoter type (P1) was found by S1 mapping. The presence of two DnaA box motifs between P1 and P2 suggests that the transcriptions of the S. lividans dnaA gene is autoregulated by its gene product. It was shown that the transcription of the dnaA gene is significantly induced by mitomycin C, an agent known to inhibit DNA replication. The data suggest that, as in E. coli, one of the regulatory mechanisms governing the transcription of the dnaA gene in S. lividans is probably related to the SOS response network.
Collapse
Affiliation(s)
- J Zakrzewska-Czerwińska
- Department of Microbiology, Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | | | | |
Collapse
|
49
|
Theisen PW, Grimwade JE, Leonard AC, Bogan JA, Helmstetter CE. Correlation of gene transcription with the time of initiation of chromosome replication in Escherichia coli. Mol Microbiol 1993; 10:575-84. [PMID: 7968535 DOI: 10.1111/j.1365-2958.1993.tb00929.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transcriptional levels of the Escherichia coli mioC and gidA genes, which flank the chromosomal origin of replication (oriC) and the dnaA gene, were correlated with the time of initiation of chromosome replication. The transcripts were measured either in dnaC2(ts) mutants that had been aligned for initiation of chromosome replication by a temperature shift or in synchronous cultures of cells obtained using the baby machine technique. In both types of experiments, mioC transcription was inhibited prior to initiation of chromosome replication and resumed several minutes after initiation. Conversely, gidA and dnaA transcription were both inhibited after initiation of replication, coincident with the period of hemimethylation of oriC DNA. It is proposed that mioC transcription prevents initiation of chromosome replication, and must terminate before replication can begin. It is further proposed that the eclipse period between rounds of replication, i.e. the minimum interval between successive initiations, encompasses the time required to methylate GATC sequences in newly replicated oriC plus the time required to terminate mioC transcription. Conversely, the active transcription of gidA and dnaA prior to initiation is consistent with their positive effects on initiation, and their shutdown after initiation could serve to limit premature reinitiation.
Collapse
Affiliation(s)
- P W Theisen
- Department of Biological Sciences, Florida Institute of Technology, Melbourne 32901
| | | | | | | | | |
Collapse
|
50
|
Hupp T, Kaguni J. Activation of DnaA5 protein by GrpE and DnaK heat shock proteins in initiation of DNA replication in Escherichia coli. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38629-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|