1
|
Rath H, Reder A, Hoffmann T, Hammer E, Seubert A, Bremer E, Völker U, Mäder U. Management of Osmoprotectant Uptake Hierarchy in Bacillus subtilis via a SigB-Dependent Antisense RNA. Front Microbiol 2020; 11:622. [PMID: 32373088 PMCID: PMC7186363 DOI: 10.3389/fmicb.2020.00622] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/19/2020] [Indexed: 01/20/2023] Open
Abstract
Under hyperosmotic conditions, bacteria accumulate compatible solutes through synthesis or import. Bacillus subtilis imports a large set of osmostress protectants via five osmotically controlled transport systems (OpuA to OpuE). Biosynthesis of the particularly effective osmoprotectant glycine betaine requires the exogenous supply of choline. While OpuB is rather specific for choline, OpuC imports a broad spectrum of compatible solutes, including choline and glycine betaine. One previously mapped antisense RNA of B. subtilis, S1290, exhibits strong and transient expression in response to a suddenly imposed salt stress. It covers the coding region of the opuB operon and is expressed from a strictly SigB-dependent promoter. By inactivation of this promoter and analysis of opuB and opuC transcript levels, we discovered a time-delayed osmotic induction of opuB that crucially depends on the S1290 antisense RNA and on the degree of the imposed osmotic stress. Time-delayed osmotic induction of opuB is apparently caused by transcriptional interference of RNA-polymerase complexes driving synthesis of the converging opuB and S1290 mRNAs. When our data are viewed in an ecophysiological framework, it appears that during the early adjustment phase of B. subtilis to acute osmotic stress, the cell prefers to initially rely on the transport activity of the promiscuous OpuC system and only subsequently fully induces opuB. Our data also reveal an integration of osmostress-specific adjustment systems with the SigB-controlled general stress response at a deeper level than previously appreciated.
Collapse
Affiliation(s)
- Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Reder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Seubert
- Faculty of Chemistry, Analytical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Teh AH, Makino M, Hoshino T, Baba S, Shimizu N, Yamamoto M, Kumasaka T. Structure of the RsbX phosphatase involved in the general stress response of Bacillus subtilis. ACTA ACUST UNITED AC 2015; 71:1392-9. [PMID: 26057679 DOI: 10.1107/s1399004715007166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/09/2015] [Indexed: 11/10/2022]
Abstract
In the general stress response of Bacillus subtilis, which is governed by the sigma factor σ(B), stress signalling is relayed by a cascade of Rsb proteins that regulate σ(B) activity. RsbX, a PPM II phosphatase, halts the response by dephosphorylating the stressosome composed of RsbR and RsbS. The crystal structure of RsbX reveals a reorganization of the catalytic centre, with the second Mn(2+) ion uniquely coordinated by Gly47 O from the β4-α1 loop instead of a water molecule as in PPM I phosphatases. An extra helical turn of α1 tilts the loop towards the metal-binding site, and the β2-β3 loop swings outwards to accommodate this tilting. The residues critical for this defining feature of the PPM II phosphatases are highly conserved. Formation of the catalytic centre is metal-specific, as crystallization with Mg(2+) ions resulted in a shift of the β4-α1 loop that led to loss of the second ion. RsbX also lacks the flap subdomain characteristic of PPM I phosphatases. On the basis of a stressosome model, the activity of RsbX towards RsbR-P and RsbS-P may be influenced by the different accessibilities of their phosphorylation sites.
Collapse
Affiliation(s)
- Aik Hong Teh
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Masatomo Makino
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Takeshi Hoshino
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Seiki Baba
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Nobutaka Shimizu
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
3
|
Abstract
My career in science was launched when I was an undergraduate at Princeton University and reinforced by graduate training at the Massachusetts Institute of Technology. However, it was only after I moved to Harvard University as a junior fellow that my affections were captured by a seemingly mundane soil bacterium. What Bacillus subtilis offered was endless fascinating biological problems (alternative sigma factors, sporulation, swarming, biofilm formation, stochastic cell fate switching) embedded in a uniquely powerful genetic system. Along the way, my career in science became inseparably interwoven with teaching and mentoring, which proved to be as rewarding as the thrill of discovery.
Collapse
Affiliation(s)
- Richard Losick
- From the Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 01238
| |
Collapse
|
4
|
|
5
|
Contributions of individual σB-dependent general stress genes to oxidative stress resistance of Bacillus subtilis. J Bacteriol 2012; 194:3601-10. [PMID: 22582280 DOI: 10.1128/jb.00528-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The general stress regulon of Bacillus subtilis comprises approximately 200 genes and is under the control of the alternative sigma factor σ(B). The activation of σ(B) occurs in response to multiple physical stress stimuli as well as energy starvation conditions. The expression of the general stress proteins provides growing and stationary nonsporulating vegetative cells with nonspecific and broad stress resistance. A previous comprehensive phenotype screening analysis of 94 general stress gene mutants in response to severe growth-inhibiting stress stimuli, including ethanol, NaCl, heat, and cold, indicated that secondary oxidative stress may be a common component of severe physical stress. Here we tested the individual contributions of the same set of 94 mutants to the development of resistance against exposure to the superoxide-generating agent paraquat and hydrogen peroxide (H(2)O(2)). In fact, 62 mutants displayed significantly decreased survival rates in response to paraquat and/or H(2)O(2) stress compared to the wild type at a confidence level of an α value of ≤ 0.01. Thus, we were able to assign 47 general stress genes to survival against superoxide, 6 genes to protection from H(2)O(2) stress, and 9 genes to the survival against both. Furthermore, we show that a considerable overlap exists between the phenotype clusters previously assumed to be involved in oxidative stress management and the actual group of oxidative-stress-sensitive mutants. Our data provide information that many general stress proteins with still unknown functions are implicated in oxidative stress resistance and further support the notion that different severe physical stress stimuli elicit a common secondary oxidative stress.
Collapse
|
6
|
Reder A, Höper D, Weinberg C, Gerth U, Fraunholz M, Hecker M. The Spx paralogue MgsR (YqgZ) controls a subregulon within the general stress response ofBacillus subtilis. Mol Microbiol 2008; 69:1104-20. [DOI: 10.1111/j.1365-2958.2008.06332.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Eymann C, Becher D, Bernhardt J, Gronau K, Klutzny A, Hecker M. Dynamics of protein phosphorylation on Ser/Thr/Tyr inBacillus subtilis. Proteomics 2007; 7:3509-26. [PMID: 17726680 DOI: 10.1002/pmic.200700232] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Ser/Thr/Tyr phosphoproteome of Bacillus subtilis was analyzed by a 2-D gel-based approach combining Pro-Q Diamond staining and [(33)P]-labeling. In exponentially growing B. subtilis cells 27 proteins could be identified after staining with Pro-Q Diamond and/or [(33)P]-labeling and one additional protein was labeled solely by [(33)P] resulting in a total of 28 potentially phosphorylated proteins. These proteins are mainly involved in enzymatic reactions of basic carbon metabolism and the regulation of the alternative sigma factor sigma(B). We also found significant changes of the phosphoproteome including increased phosphorylation and dephosphorylation rates of some proteins as well as the detection of four newly phosphorylated proteins in response to stress or starvation. For nine proteins, phosphorylation sites at serine or threonine residues were determined by MS. These include the known phosphorylation sites of Crh, PtsH, and RsbV. Additionally, we were able to identify novel phosphorylation sites of AroA, Pyk, and YbbT. Interestingly, the phosphorylation of RsbRA, B, C, and D, four proteins of a multicomponent protein complex involved in environmental stress signaling, was found during exponential growth. For RsbRA, B, and D, phosphorylation of one of the conserved threonine residues in their C-termini were verified by MS (T171, T186, T181, respectively).
Collapse
Affiliation(s)
- Christine Eymann
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Budde I, Steil L, Scharf C, Völker U, Bremer E. Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiology (Reading) 2006; 152:831-853. [PMID: 16514163 DOI: 10.1099/mic.0.28530-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The soil bacterium Bacillus subtilis frequently encounters a reduction in temperature in its natural habitats. Here, a combined transcriptomic and proteomic approach has been used to analyse the adaptational responses of B. subtilis to low temperature. Propagation of B. subtilis in minimal medium at 15 °C triggered the induction of 279 genes and the repression of 301 genes in comparison to cells grown at 37 °C. The analysis thus revealed profound adjustments in the overall gene expression profile in chill-adapted cells. Important transcriptional changes in low-temperature-grown cells comprise the induction of the SigB-controlled general stress regulon, the induction of parts of the early sporulation regulons (SigF, SigE and SigG) and the induction of a regulatory circuit (RapA/PhrA and Opp) that is involved in the fine-tuning of the phosphorylation status of the Spo0A response regulator. The analysis of chill-stress-repressed genes revealed reductions in major catabolic (glycolysis, oxidative phosphorylation, ATP synthesis) and anabolic routes (biosynthesis of purines, pyrimidines, haem and fatty acids) that likely reflect the slower growth rates at low temperature. Low-temperature repression of part of the SigW regulon and of many genes with predicted functions in chemotaxis and motility was also noted. The proteome analysis of chill-adapted cells indicates a major contribution of post-transcriptional regulation phenomena in adaptation to low temperature. Comparative analysis of the previously reported transcriptional responses of cold-shocked B. subtilis cells with this data revealed that cold shock and growth in the cold constitute physiologically distinct phases of the adaptation of B. subtilis to low temperature.
Collapse
Affiliation(s)
- Ina Budde
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| | - Leif Steil
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Christian Scharf
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
| | - Uwe Völker
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| | - Erhard Bremer
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| |
Collapse
|
9
|
Allenby NEE, O'Connor N, Prágai Z, Ward AC, Wipat A, Harwood CR. Genome-wide transcriptional analysis of the phosphate starvation stimulon of Bacillus subtilis. J Bacteriol 2005; 187:8063-80. [PMID: 16291680 PMCID: PMC1291260 DOI: 10.1128/jb.187.23.8063-8080.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bacillus subtilis responds to phosphate starvation stress by inducing the PhoP and SigB regulons. While the PhoP regulon provides a specific response to phosphate starvation stress, maximizing the acquisition of phosphate (P(i)) from the environment and reducing the cellular requirement for this essential nutrient, the SigB regulon provides nonspecific resistance to stress by protecting essential cellular components, such as DNA and membranes. We have characterized the phosphate starvation stress response of B. subtilis at a genome-wide level using DNA macroarrays. A combination of outlier and cluster analyses identified putative new members of the PhoP regulon, namely, yfkN (2',3' cyclic nucleotide 2'-phosphodiesterase), yurI (RNase), yjdB (unknown), and vpr (extracellular serine protease). YurI is thought to be responsible for the nonspecific degradation of RNA, while the activity of YfkN on various nucleotide phosphates suggests that it could act on substrates liberated by YurI, which produces 3' or 5' phosphoribonucleotides. The putative new PhoP regulon members are either known or predicted to be secreted and are likely to be important for the recovery of inorganic phosphate from a variety of organic sources of phosphate in the environment.
Collapse
|
10
|
Sue D, Fink D, Wiedmann M, Boor KJ. sigmaB-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. MICROBIOLOGY-SGM 2005; 150:3843-3855. [PMID: 15528669 DOI: 10.1099/mic.0.27257-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Listeria monocytogenes must overcome a variety of stress conditions in the host digestive tract to cause foodborne infections. The alternative sigma factor sigma(B), encoded by sigB, is responsible for regulating transcription of several L. monocytogenes virulence and stress-response genes, including genes that contribute to establishment of gastrointestinal infections. A quantitative RT-PCR assay was used to measure mRNA transcript accumulation for the virulence genes inlA and bsh, the stress-response genes opuCA and lmo0669 (encoding a carnitine transporter and an oxidoreductase, respectively) and the housekeeping gene rpoB. Assays were conducted on mid-exponential phase L. monocytogenes cells exposed to conditions reflecting osmotic (0.3 M NaCl) or acid (pH 4.5) conditions typical for the human intestinal lumen. In exponential-phase cells, as well as under osmotic and acid stress, inlA, opuCA and bsh showed significantly lower absolute expression levels in a L. monocytogenes DeltasigB null mutant compared to wild-type. A statistical model that normalized target gene expression relative to rpoB showed that accumulation of inlA, opuCA and bsh transcripts was significantly increased in the wild-type strain within 5 min of acid and osmotic stress exposure; lmo0669 transcript accumulation increased significantly only after acid exposure. It was concluded that sigma(B) is essential for rapid induction of the tested stress-response and virulence genes under conditions typically encountered during gastrointestinal passage. As inlA, bsh and opuCA are critical for gastrointestinal infections in animal models, the data also suggest that sigma(B) contributes to the ability of L. monocytogenes to cause foodborne infections.
Collapse
Affiliation(s)
- David Sue
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Daniel Fink
- Department of Statistical Science, Cornell University, Ithaca, NY 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Kathryn J Boor
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Höper D, Völker U, Hecker M. Comprehensive characterization of the contribution of individual SigB-dependent general stress genes to stress resistance of Bacillus subtilis. J Bacteriol 2005; 187:2810-26. [PMID: 15805528 PMCID: PMC1070366 DOI: 10.1128/jb.187.8.2810-2826.2005] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 12/30/2004] [Indexed: 11/20/2022] Open
Abstract
The sigma(B)-dependent general stress regulon of Bacillus subtilis comprises more than 150 members. Induction of this regulon by imposition of environmental or metabolic stress confers multiple, nonspecific, and preemptive stress resistance to nongrowing, nonsporulated cells of B. subtilis. In this study we performed a regulon-wide phenotypic screening analysis to determine the stress sensitivity profiles of 94 mutants defective in candidate members of the general stress regulon that were previously identified in our transcriptional profiling study of the general stress response of B. subtilis. The phenotypic screening analysis included analysis of adaptation to a growth-inhibiting concentration of ethanol (10%, vol/vol) or NaCl (10%, wt/vol), severe heat shock (54 degrees C), and low temperature (survival at 4 degrees C and growth at 12.5 degrees C). Surprisingly, 85% of the mutants tested displayed increased sensitivity at an alpha confidence level of < or =0.01 to at least one of the four stresses tested, and 62% still exhibited increased sensitivity at an alpha of < or =0.001. In essence, we were able to assign 63 genes (28 genes with an alpha of < or =0.001) to survival after ethanol shock, 37 genes (28 genes with an alpha of < or =0.001) to protection from NaCl shock, 34 genes (24 genes with an alpha of < or =0.001) to survival at 4 degrees C, and 10 genes (3 genes with an alpha of < or =0.001) to management of severe heat shock. Interestingly, there was a substantial overlap between the genes necessary for survival during ethanol shock and the genes necessary for survival at 4 degrees C, and there was also an overlap between genes required for survival during ethanol shock and genes required for survival during NaCl shock. Our data provide evidence for the importance of the sigma(B) regulon at low temperatures, not only for growth but also for survival. Moreover, the data imply that a secondary oxidative stress seems to be a common component of the severe stresses tested.
Collapse
Affiliation(s)
- Dirk Höper
- Institute for Microbiology, Ernst Moritz Arndt University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17487 Greifswald, Germany
| | | | | |
Collapse
|
12
|
Allenby NEE, O'Connor N, Prágai Z, Carter NM, Miethke M, Engelmann S, Hecker M, Wipat A, Ward AC, Harwood CR. Post-transcriptional regulation of the Bacillus subtilis pst operon encoding a phosphate-specific ABC transporter. MICROBIOLOGY-SGM 2004; 150:2619-2628. [PMID: 15289558 DOI: 10.1099/mic.0.27126-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During phosphate starvation, Bacillus subtilis regulates genes in the PhoP regulon to reduce the cell's requirement for this essential substrate and to facilitate the recovery of inorganic phosphate from organic sources such as teichoic and nucleic acids. Among the proteins that are highly induced under these conditions is PstS, the phosphate-binding lipoprotein component of a high-affinity ABC-type phosphate transporter. PstS is encoded by the first gene in the pst operon, the other four members of which encode the integral membrane and cytoplasmic components of the transporter. The transcription of the pst operon was analysed using a combination of methods, including transcriptional reporter gene technology, Northern blotting and DNA arrays. It is shown that the primary transcript of the pst operon is processed differentially to maintain higher concentrations of PstS relative to other components of the transporter. The comparative studies have revealed limitations in the use of reporter gene technology for analysing the transcription of operons in which the messenger RNA transcript is differentially processed.
Collapse
Affiliation(s)
- Nicholas E E Allenby
- School of Biology, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | - Nicola O'Connor
- School of Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | - Zoltán Prágai
- School of Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | - Noel M Carter
- School of Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | - Marcus Miethke
- Institut für Mikrobiologie und Molekularbiologie, E.-M.-Arndt-Universität, Greifswald, F.-L.-Jahnstraße 15, D-17487 Greifswald, Germany
| | - Susanne Engelmann
- Institut für Mikrobiologie und Molekularbiologie, E.-M.-Arndt-Universität, Greifswald, F.-L.-Jahnstraße 15, D-17487 Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie und Molekularbiologie, E.-M.-Arndt-Universität, Greifswald, F.-L.-Jahnstraße 15, D-17487 Greifswald, Germany
| | - Anil Wipat
- School of Computing Science, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | - Alan C Ward
- School of Biology, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | - Colin R Harwood
- School of Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
13
|
Carniol K, Kim TJ, Price CW, Losick R. Insulation of the sigmaF regulatory system in Bacillus subtilis. J Bacteriol 2004; 186:4390-4. [PMID: 15205443 PMCID: PMC421598 DOI: 10.1128/jb.186.13.4390-4394.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factors sigmaF and sigmaB are related RNA polymerase sigma factors that govern dissimilar networks of adaptation to stress conditions in Bacillus subtilis. The two factors are controlled by closely related regulatory pathways, involving protein kinases and phosphatases. We report that insulation of the sigmaF pathway from the sigmaB pathway involves the integrated action of both the cognate kinase and the cognate phosphatase.
Collapse
Affiliation(s)
- Karen Carniol
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 01238, USA
| | | | | | | |
Collapse
|
14
|
Prágai Z, Allenby NEE, O'Connor N, Dubrac S, Rapoport G, Msadek T, Harwood CR. Transcriptional regulation of the phoPR operon in Bacillus subtilis. J Bacteriol 2004; 186:1182-90. [PMID: 14762014 PMCID: PMC344217 DOI: 10.1128/jb.186.4.1182-1190.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When Bacillus subtilis is subjected to phosphate starvation, the Pho regulon is activated by the PhoP-PhoR two-component signal transduction system to elicit specific responses to this nutrient limitation. The response regulator, PhoP, and its cognate histidine sensor kinase, PhoR, are encoded by the phoPR operon that is transcribed as a 2.7-kb bicistronic mRNA. The phoPR operon is transcribed from two sigma(A)-dependent promoters, P(1) and P(2). Under conditions where the Pho regulon was not induced (i.e., phosphate-replete conditions or phoR-null mutant), a low level of phoPR transcription was detected only from promoter P(1). During phosphate starvation-induced transition from exponential to stationary phase, the expression of the phoPR operon was up-regulated in a phosphorylated PhoP (PhoP approximately P)-dependent manner; in addition to P(1), the P(2) promoter becomes active. In vitro gel shift assays and DNase I footprinting experiments showed that both PhoP and PhoP approximately P could bind to the control region of the phoPR operon. The data indicate that while low-level constitutive expression of phoPR is required under phosphate-replete conditions for signal perception and transduction, autoinduction is required to provide sufficient PhoP approximately P to induce other members of the Pho regulon. The extent to which promoters P(1) and P(2) are activated appears to be influenced by the presence of other sigma factors, possibly the result of sigma factor competition. For example, phoPR is hyperinduced in a sigB mutant and, later in stationary phase, in sigH, sigF, and sigE mutants. The data point to a complex regulatory network in which other stress responses and post-exponential-phase processes influence the expression of phoPR and, thereby, the magnitude of the Pho regulon response.
Collapse
Affiliation(s)
- Zoltán Prágai
- School of Cell and Molecular Biosciences, The Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
15
|
Guedon E, Moore CM, Que Q, Wang T, Ye RW, Helmann JD. The global transcriptional response of Bacillus subtilis to manganese involves the MntR, Fur, TnrA and sigmaB regulons. Mol Microbiol 2003; 49:1477-91. [PMID: 12950915 DOI: 10.1046/j.1365-2958.2003.03648.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have used DNA microarrays to monitor the global transcriptional response of Bacillus subtilis to changes in manganese availability. Mn(II) leads to the MntR-dependent repression of both the mntH and mntABCD operons encoding Mn(II) uptake systems. Mn(II) also represses the Fur regulon. This repression is unlikely to be a direct effect of Mn(II) on Fur as repression is sensitive to 2,2'-dipyridyl, an iron-selective chelator. We suggest that elevated Mn(II) displaces iron from cellular-binding sites and the resulting rise in free iron levels leads to repression of the Fur regulon. Many of the genes induced by Mn(II) are activated by sigmaB or TnrA. Both of these regulators are controlled by Mn(II)-dependent enzymes. Induction of the sigmaB-dependent general stress response by Mn(II) is largely dependent on RsbU, a Mn(II)-dependent phosphatase that dephosphorylates RsbV, ultimately leading to release of active sigmaB from its antisigma, RsbW. The activity of TnrA is inhibited when it forms an inactive complex with feedback-inhibited glutamine synthetase. Elevated Mn(II) reduces the sensitivity of glutamine synthetase to feedback inhibitors, and we suggest that this leads to the observed increase in TnrA activity. In sum, three distinct mechanisms can account for most of the transcriptional effects elicited by manganese: (i) direct binding of Mn(II) to metalloregulators such as MntR, (ii) perturbation of cellular iron pools leading to increased Fur activity and (iii) altered activity of Mn(II)-dependent enzymes that regulate the activity of sigmaB and TnrA.
Collapse
Affiliation(s)
- Emmanuel Guedon
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | | | | | | | |
Collapse
|
16
|
Mostertz J, Hecker M. Patterns of protein carbonylation following oxidative stress in wild-type and sigB Bacillus subtilis cells. Mol Genet Genomics 2003; 269:640-8. [PMID: 12845527 DOI: 10.1007/s00438-003-0877-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Accepted: 06/01/2003] [Indexed: 10/26/2022]
Abstract
Oxidative stress causes damage to nucleic acids, membrane lipids and proteins. One striking effect is the metal-catalyzed, site-specific carbonylation of proteins. In the gram-positive soil bacterium Bacillus subtilis, the PerR-dependent specific stress response and the sigmaB-dependent general stress response act together to make cells more resistant to oxidative stress. In this study, we analyzed the carbonylation of cytoplasmic proteins in response to hydrogen peroxide stress in B. subtilis. Furthermore, we asked whether the sigmaB-dependent response to oxidative stress also confers protection against protein carbonylation. To monitor the amount and specificity of protein damage, carbonyls were derivatized with 2,4-dinitrophenylhydrazine, and the resulting stable hydrazones were detected by immunoanalysis of proteins separated by one- or two-dimensional gel electrophoresis. The overall level of protein carbonylation increased strongly in cells treated with hydrogen peroxide. Several proteins, including the elongation factors EF-G, TufA and EF-Ts, were found to be highly carbonylated. Induction of the peroxide specific stress response by treatment with sub-lethal peroxide concentrations, prior to exposure to otherwise lethal levels of peroxide, markedly reduced the degree of protein carbonylation. Cells starved for glucose also showed only minor amounts of peroxide-mediated protein carbonylation compared to exponentially growing cells. We could not detect any differences between wild-type and deltasigB cells starved for glucose or preadapted by heat treatment with respect to the amount or specificity of protein damage incurred upon subsequent exposure to peroxide stress. However, artificial preloading with proteins that are normally induced by sigmaB-dependent mechanisms resulted in a lower level of protein carbonylation when cells were later subjected to oxidative stress.
Collapse
Affiliation(s)
- J Mostertz
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, F.-L.-Jahnstr. 15, 17489 Greifswald, Germany
| | | |
Collapse
|
17
|
Bernhardt J, Weibezahn J, Scharf C, Hecker M. Bacillus subtilis during feast and famine: visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. Genome Res 2003; 13:224-37. [PMID: 12566400 PMCID: PMC420377 DOI: 10.1101/gr.905003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dual channel imaging and warping of two-dimensional (2D) protein gels were used to visualize global changes of the gene expression patterns in growing Bacillus subtilis cells during entry into the stationary phase as triggered by glucose exhaustion. The 2D gels only depict single moments during the cells' growth cycle, but a sequential series of overlays obtained at specific points of the growth curve facilitates visualization of the developmental processes at the proteomics scale. During glucose starvation a substantial reprogramming of the protein synthesis pattern was found, with 150 proteins synthesized de novo and cessation of the synthesis of almost 400 proteins. Proteins induced following glucose starvation belong to two main regulation groups: general stress/starvation responses induced by different stresses or starvation stimuli (sigma(B)-dependent general stress regulon, stringent response, sporulation), and glucose-starvation-specific responses (drop in glycolysis, utilization of alternative carbon sources, gluconeogenesis). Using the dual channel approach, it was not only possible to identify those regulons or stimulons, but also to follow the fate of each single protein by the three-color code: red, newly induced but not yet accumulated; yellow, synthesized and accumulated; and green, still present, but no longer being synthesized. These green proteins, which represent a substantial part of the protein pool in the nongrowing cell, are not accessible by using DNA arrays. The combination of 2D gel electrophoresis and MALDI TOF mass spectrometry with the dual channel imaging technique provides a new and comprehensive view of the physiology of growing or starving bacterial cell populations, here for the case of the glucose-starvation response.
Collapse
Affiliation(s)
- Jörg Bernhardt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, 17487 Greifswald, Germany
| | | | | | | |
Collapse
|
18
|
Rollenhagen C, Antelmann H, Kirstein J, Delumeau O, Hecker M, Yudkin MD. Binding of sigma(A) and sigma(B) to core RNA polymerase after environmental stress in Bacillus subtilis. J Bacteriol 2003; 185:35-40. [PMID: 12486038 PMCID: PMC141833 DOI: 10.1128/jb.185.1.35-40.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, the alternative sigma factor sigma(B) is activated in response to environmental stress or energy depletion. The general stress regulon under the control of sigma(B) provides the cell with multiple stress resistance. Experiments were designed to determine how activated sigma(B) replaces sigma(A) as a constituent of the RNA polymerase holoenzyme. Studies of the transcription of the sigma(A)-dependent stress gene clpE under sigma(B)-inducing conditions showed that expression was higher in a sigB mutant background than in the wild type. The relative affinities of sigma(A) and sigma(B) for binding to the core RNA polymerase (E) were determined by means of indirect surface plasmon resonance. The results showed that the affinity of sigma(B) for E was 60-fold lower than that of sigma(A). Western blot analyses with antibodies against sigma(A), sigma(B), and E showed that, after exposure to ethanol stress, the concentration of sigma(B) was only twofold higher than those of sigma(A) and E. Thus, the concentration of sigma(B) after stress is not high enough to compensate for its relatively low affinity for E, and it seems that additional mechanisms must be invoked to account for the binding of sigma(B) to E after stress.
Collapse
Affiliation(s)
- Claudia Rollenhagen
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, 17487 Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Szarka K, Temesvári P, Kerekes A, Tege A, Repkény A. Neonatal pneumonia caused by Trichomonas vaginalis. Acta Microbiol Immunol Hung 2002; 49:15-9. [PMID: 12073821 DOI: 10.1556/amicr.49.2002.1.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The authors present two cases of newborn babies infected by Trichomonas vaginalis (hereafter referred to as T. vaginalis) and suffering from severe congenital breathing difficulties and needing artificial respiration. Microscopic examination of the tracheal discharge revealed characteristically moving, flagellated, pear-shaped unicellular organisms. Cultures on CPLM medium proved the presence of T. vaginalis. During pregnancy the mothers' clinical status was negative and both of them mentioned leukorrhoea of changing intensity. They were regularly involved in antenatal care. The infection caused by T. vaginalis could be detected in the two mothers later by culture procedures.
Collapse
Affiliation(s)
- K Szarka
- Laboratory of Microbiology, National Institute of Health, Bács-Kiskun County, Kecskemét (NPHMOS), PO Box 119, H-6001 Kecskemét, Hungary
| | | | | | | | | |
Collapse
|
20
|
Iwanicki A, Herman-Antosiewicz A, Pierechod M, Séror SJ, Obuchowski M. PrpE, a PPP protein phosphatase from Bacillus subtilis with unusual substrate specificity. Biochem J 2002; 366:929-36. [PMID: 12059787 PMCID: PMC1222824 DOI: 10.1042/bj20011591] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Revised: 05/21/2002] [Accepted: 06/11/2002] [Indexed: 11/17/2022]
Abstract
Bacillus subtilis is a Gram-positive bacterium with a relatively large number of protein phosphatases. Previous studies have shown that some Ser/Thr phosphatases play an important role in the life cycle of this bacterium [Losick and Stragier (1992) Nature (London) 355, 601-604; Yang, Kang, Brody and Price (1996) Genes Dev. 10, 2265-2275]. In this paper, we report the biochemical properties of a putative, previously uncharacterized phosphatase, PrpE, belonging to the PPP family. This enzyme shares homology with other PPP phosphatases as well as with symmetrical diadenosine tetraphosphatases related to ApaH (symmetrical Ap(4)A hydrolase) from Escherichia coli. A His-tagged recombinant PrpE was purified from E. coli and shown to have Ni(2+)-dependent and okadaic acid-resistant phosphatase activity against a synthetic phosphorylated peptide and hydrolase activity against diadenosine 5',5"'-tetraphosphate. Unexpectedly, PrpE was able to remove phosphate from phosphotyrosine, but not from phosphothreonine or phosphoserine.
Collapse
Affiliation(s)
- Adam Iwanicki
- Department of Molecular Biology, University of Gdańsk, ul. Kładki 24, Poland
| | | | | | | | | |
Collapse
|
21
|
Prágai Z, Harwood CR. Regulatory interactions between the Pho and sigma(B)-dependent general stress regulons of Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1593-1602. [PMID: 11988534 DOI: 10.1099/00221287-148-5-1593] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When Bacillus subtilis is subjected to phosphate starvation, the Pho and sigma(B)-dependent general stress regulons are activated to elicit, respectively, specific and non-specific responses to this nutrient-limitation stress. A set of isogenic mutants, with a beta-galactosidase reporter gene transcriptionally fused to the inactivated target gene, was used to identify genes of unknown function that are induced or repressed under phosphate limitation. Nine phosphate-starvation-induced (psi) genes were identified: yhaX, yhbH, ykoL and yttP were regulated by the PhoP-PhoR two-component system responsible for controlling the expression of genes in the Pho regulon, while ywmG (renamed csbD), yheK, ykzA, ysnF and yvgO were dependent on the alternative sigma factor sigma(B), which controls the expression of the general stress genes. Genes yhaX and yhbH are unique members of the Pho regulon, since they are phosphate-starvation induced via PhoP-PhoR from a sporulation-specific sigma(E) promoter or a promoter that requires the product of a sigma(E)-dependent gene. Null mutations in key regulatory genes phoR and sigB showed that the Pho and sigma(B)-dependent general stress regulons of Bacillus subtilis interact to modulate the levels at which each are activated.
Collapse
Affiliation(s)
- Zoltán Prágai
- Department of Microbiology and Immunology, The Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK1
| | - Colin R Harwood
- Department of Microbiology and Immunology, The Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK1
| |
Collapse
|
22
|
Bandow JE, Brötz H, Hecker M. Bacillus subtilis tolerance of moderate concentrations of rifampin involves the sigma(B)-dependent general and multiple stress response. J Bacteriol 2002; 184:459-67. [PMID: 11751823 PMCID: PMC139561 DOI: 10.1128/jb.184.2.459-467.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low concentrations of the RNA polymerase inhibitor rifampin added to an exponentially growing culture of Bacillus subtilis led to an instant inhibition of growth. Survival experiments revealed that during the growth arrest the cells became tolerant to the antibiotic and the culture was able to resume growth some time after rifampin treatment. L-[(35)S]methionine pulse-labeled protein extracts were separated by two-dimensional polyacrylamide gel electrophoresis to investigate the change in the protein synthesis pattern in response to rifampin. The sigma(B)-dependent general stress proteins were found to be induced after treatment with the antibiotic. Part of the oxidative stress signature was induced as indicated by the catalase KatA and MrgA. The target protein of rifampin, the beta subunit (RpoB) of the DNA-dependent RNA polymerase, and the flagellin protein Hag belonging to the sigma(D) regulon were also induced. The rifampin-triggered growth arrest was extended in a sigB mutant in comparison to the wild-type strain, and the higher the concentration, the more pronounced this effect was. Activity of the RsbP energy-signaling phosphatase in the sigma(B) signal transduction network was also important for this protection against rifampin, but the RsbU environmental signaling phosphatase was not required. The sigB mutant strain was less capable of growing on rifampin-containing agar plates. When plated from a culture that had already reached stationary phase without previous exposure to the antibiotic during growth, the survival rate of the wild type exceeded that of the sigB mutant by a factor of 100. We conclude that the general stress response of B. subtilis is induced by rifampin depending on RsbP activity and that loss of SigB function causes increased sensitivity to the antibiotic.
Collapse
|
23
|
Abstract
One of the strongest and most noticeable responses of a Bacillus subtilis cell to a range of stress and starvation conditions is the dramatic induction of a large number of general stress proteins. The alternative sigma factor sigma B is responsible for the induction of the genes encoding these general stress proteins that occurs following heat, ethanol, salt or acid stress, or during energy depletion. sigma B was detected more than 20 years ago by Richard Losick and William Haldenwang as the first alternative sigma factor of bacteria, but interest in sigma B declined after it was realized that sigma B is not involved in sporulation. It later turned out that sigma B, whose activity itself is tightly controlled, is absolutely required for the induction of this regulon, not only in B. subtilis, but also in other Gram-positive bacteria. These findings may have been responsible for the recent revival of interest in sigma B. This chapter summarizes the current information on this sigma B response including the latest results on the signal transduction pathways, the structure of the regulon and its physiological role. More than 150 general stress proteins/genes belong to this sigma B regulon, which is believed to provide the non-growing cell with a non-specific, multiple and preventive stress resistance. sigma B-dependent stress proteins are involved in non-specific protection against oxidative stress and also protect cells against heat, acid, alkaline or osmotic stress. A cell in the transition from a growing to a non-growing state induced by energy depletion will be equipped with a comprehensive stress resistance machine to protect it against future stress. The protection against oxidative stress may be an essential part of this response. In addition, preloading of cells with sigma B-dependent stress proteins, induced by mild heat or salt stress, will protect cells against a severe, potentially lethal, future stress. Both the specific protection against an acute emerging stress, as well as the non-specific, prospective protection against future stress, are adaptive functions crucial for surviving stress and starvation in nature. We suggest that the sigma B response is one essential component of a survival strategy that ensures survival in a quiescent, vegetative state as an alternative to sporulation. The role of sigma B in related Gram-positive bacteria (including cyanobacteria) with special emphasis on pathogenic bacteria is discussed.
Collapse
Affiliation(s)
- M Hecker
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie, Friedrich-Ludwig-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | | |
Collapse
|
24
|
Cho YH, Lee EJ, Ahn BE, Roe JH. SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor. Mol Microbiol 2001; 42:205-14. [PMID: 11679079 DOI: 10.1046/j.1365-2958.2001.02622.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A gene (sigB) encoding an alternative sigma factor sigmaB in Streptomyces coelicolor A3(2) was isolated and characterized. It encodes a polypeptide of 281 amino acids (31 546 Da) and is highly homologous to Bacillus subtilis sigmaB. The sigB coding region is preceded by four open reading frames (ORFs): dpsA, orfA, rsbB and rsbA in sequential order. RNA analyses revealed that rsbB, rsbA and sigB constitute an operon (sigB operon). Transcripts were produced constitutively from a promoter (sigBp2) upstream of the rsbB coding region, contributing to the basal level expression of sigmaB protein. An inducible promoter (sigBp1) resembling the catB promoter (catBp) was located between the rsbA and sigB coding regions. Transcripts from sigBp1 dramatically increased as cells differentiated on solid media, at the stationary phase in liquid media or by osmotic stresses similar to the behaviour of catBp transcripts. Both catBp and sigBp1 promoters were recognized specifically by sigmaB-containing RNA polymerase in vitro. Disruption of the sigB gene abolished not only the differentiation-associated expression but also the osmotic induction of the catB gene, indicating that catBp is under the control of sigmaB. The sigB mutant exhibited a similar phenotype to the catB mutant, being sensitive to hyperosmolarity, blocked in forming aerial mycelium and with skewed antibiotic production. Therefore, we conclude that sigmaB ensures the proper differentiation and osmoprotection of S. coelicolor cells, primarily via regulation of the expression of catalase B.
Collapse
Affiliation(s)
- Y H Cho
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
25
|
Akbar S, Gaidenko TA, Kang CM, O'Reilly M, Devine KM, Price CW. New family of regulators in the environmental signaling pathway which activates the general stress transcription factor sigma(B) of Bacillus subtilis. J Bacteriol 2001; 183:1329-38. [PMID: 11157946 PMCID: PMC95007 DOI: 10.1128/jb.183.4.1329-1338.2001] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the general stress regulon of Bacillus subtilis is controlled by the alternative transcription factor sigma(B), which is activated when cells encounter growth-limiting energy or environmental stresses. The RsbT serine-threonine kinase is required to convey environmental stress signals to sigma(B), and this kinase activity is magnified in vitro by the RsbR protein, a positive regulator important for full in vivo response to salt or heat stress. Previous genetic analysis suggested that RsbR function is redundant with other unidentified regulators. A search of the translated B. subtilis genome found six paralogous proteins with significant similarity to RsbR: YetI, YezB, YkoB, YojH, YqhA, and YtvA. Their possible regulatory roles were investigated using three different approaches. First, genetic analysis found that null mutations in four of the six paralogous genes have marked effects on the sigma(B) environmental signaling pathway, either singly or in combination. The two exceptions were yetI and yezB, adjacent genes which appear to encode a split paralog. Second, biochemical analysis found that YkoB, YojH, and YqhA are specifically phosphorylated in vitro by the RsbT environmental signaling kinase, as had been previously shown for RsbR, which is phosphorylated on two threonine residues in its C-terminal region. Both residues are conserved in the three phosphorylated paralogs but are absent in the ones that were not substrates of RsbT: YetI and YezB, each of which bears only one of the conserved residues; and YtvA, which lacks both residues and instead possesses an N-terminal PAS domain. Third, analysis in the yeast two-hybrid system suggested that all six paralogs interact with each other and with the RsbR and RsbS environmental regulators. Our data indicate that (i) RsbR, YkoB, YojH, YqhA, and YtvA function in the environmental stress signaling pathway; (ii) YtvA acts as a positive regulator; and (iii) RsbR, YkoB, YojH, and YqhA collectively act as potent negative regulators whose loss increases sigma(B) activity more than 400-fold in unstressed cells.
Collapse
Affiliation(s)
- S Akbar
- Department of Food Science and Technology, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
26
|
Melly E, Setlow P. Heat shock proteins do not influence wet heat resistance of Bacillus subtilis spores. J Bacteriol 2001; 183:779-84. [PMID: 11133976 PMCID: PMC94938 DOI: 10.1128/jb.183.2.779-784.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spores of Bacillus subtilis are significantly more resistant to wet heat than are their vegetative cell counterparts. Analysis of the effects of mutations in and the expression of fusions of a coding gene for a thermostable beta-galactosidase to a number of heat shock genes has shown that heat shock proteins play no significant role in the wet heat resistance of B. subtilis spores.
Collapse
Affiliation(s)
- E Melly
- University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | |
Collapse
|
27
|
Ohlmeier S, Scharf C, Hecker M. Alkaline proteins of Bacillus subtilis: first steps towards a two-dimensional alkaline master gel. Electrophoresis 2000; 21:3701-9. [PMID: 11271489 DOI: 10.1002/1522-2683(200011)21:17<3701::aid-elps3701>3.0.co;2-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The genomic sequence of Bacillus subtilis, which is the best studied Gram-positive bacterium, enabled us to obtain a theoretical two-dimensional (2-D) map, demonstrating that about one-third of this proteome has a theoretical alkaline isoelectric point (pI). This represents an important part of the entire proteome, which is not detectable in conventional 2-D gels (pH range 4-7). Sequence analysis revealed that 91% of the ribosomal proteins and a high amount of theoretical membrane proteins should be localized in the alkaline pH range requiring different protein extraction procedures. In order to find the pH range which gives the best resolution results for the alkaline proteins of B. subtilis, immobilized pH gradients (IPGs) with different pH ranges (pH 6-10, 6-11, 4-12, 9-12, and 3-10) were tested and optimized for IPG 4-12. Here we present a version of a first alkaline master 2-D gel for B. subtilis, which is a further complement of the already existing master gel (pH 4-7) in the Sub2D database. Almost 150 spots could be detected and 41 proteins have already been identified.
Collapse
Affiliation(s)
- S Ohlmeier
- Institute of Microbiology and Molecular Biology, Ernst Moritz Arndt University of Greifswald, Germany
| | | | | |
Collapse
|
28
|
Movahedi S, Waites W. A two-dimensional protein gel electrophoresis study of the heat stress response of Bacillus subtilis cells during sporulation. J Bacteriol 2000; 182:4758-63. [PMID: 10940015 PMCID: PMC111351 DOI: 10.1128/jb.182.17.4758-4763.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heat resistance of spores of Bacillus subtilis formed at 30 degrees C was enhanced by pretreatment at 48 degrees C for 30 min, 60 min into sporulation, for all four strains examined. High-resolution two-dimensional gel electrophoresis showed the generation and/or overexpression of 60 proteins, 11 of which were specific to heat shock, concurrent to this acquired thermotolerance. The greatest number of new proteins was observed between 30 and 60 min after heat shock, and the longer the time between exponential growth and heat treatment, the fewer differences were observed on corresponding protein profiles. The time at which heating produced the maximum increase in spore resistance and the most new proteins on two-dimensional gels occurred before alkaline phosphatase and dipicolinic acid production and corresponded to stage I or II of sporulation. The stress proteins formed disappeared later in sporulation, suggesting that heat shock proteins increase spore heat resistance by altering spore structure rather than by repairing heat damage during germination and outgrowth.
Collapse
Affiliation(s)
- S Movahedi
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough LE12 5RD, United Kingdom
| | | |
Collapse
|
29
|
Antelmann H, Scharf C, Hecker M. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J Bacteriol 2000; 182:4478-90. [PMID: 10913081 PMCID: PMC94619 DOI: 10.1128/jb.182.16.4478-4490.2000] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphate starvation response in Bacillus subtilis was analyzed using two-dimensional (2D) polyacrylamide gel electrophoresis of cell extracts and supernatants from phosphate-starved cells. Most of the phosphate starvation-induced proteins are under the control of sigma(B), the activity of which is increased by energy depletion. In order to define the proteins belonging to the Pho regulon, which is regulated by the two-component regulatory proteins PhoP and PhoR, the 2D protein pattern of the wild type was compared with those of a sigB mutant and a phoR mutant. By matrix-assisted laser desorption ionization-time of flight mass spectrometry, two alkaline phosphatases (APases) (PhoA and PhoB), an APase-alkaline phosphodiesterase (PhoD), a glycerophosphoryl diester phosphodiesterase (GlpQ), and the lipoprotein YdhF were identified as very strongly induced PhoPR-dependent proteins secreted into the extracellular medium. In the cytoplasmic fraction, PstB1, PstB2, and TuaD were identified as already known PhoPR-dependent proteins, in addition to PhoB, PhoD, and the previously described PstS. Transcriptional studies of glpQ and ydhF confirmed the strong PhoPR dependence. Northern hybridization and primer extension experiments showed that glpQ is transcribed monocistronically from a sigma(A) promoter which is overlapped by four putative TT(A/T)ACA-like PhoP binding sites. Furthermore, ydhF might be cotranscribed with phoB initiating from the phoB promoter. Only a small group of proteins remained phosphate starvation inducible in both phoR and sigB mutant and did not form a unique regulation group. Among these, YfhM and YjbC were controlled by sigma(B)-dependent and unknown PhoPR-independent mechanisms. Furthermore, YtxH and YvyD seemed to be induced after phosphate starvation in the wild type in a sigma(B)-dependent manner and in the sigB mutant probably via sigma(H). YxiE was induced by phosphate starvation independently of sigma(B) and PhoPR.
Collapse
Affiliation(s)
- H Antelmann
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, 17487 Greifswald, Germany
| | | | | |
Collapse
|
30
|
Hecker M, Engelmann S. Proteomics, DNA arrays and the analysis of still unknown regulons and unknown proteins of Bacillus subtilis and pathogenic gram-positive bacteria. Int J Med Microbiol 2000; 290:123-34. [PMID: 11045917 DOI: 10.1016/s1438-4221(00)80080-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The complete sequence of the bacterial genomes provides new perspectives for the study of gene expression and gene function. By the combination of the highly sensitive 2-dimensional (2D) protein gel electrophoresis with the identification of the protein spots by microsequencing or mass spectrometry we established a 2D protein index of Bacillus subtilis that currently comprises almost 400 protein entries. A computer-aided evaluation of the 2D gels loaded with radioactively-labelled proteins from growing or stressed/starved cells proved to be a powerful tool in the analysis of global regulation of the expression of the entire genome. For the general stress regulon it is demonstrated how the proteomics approach can be used to analyse the regulation, structure and function of still unknown regulons. The application of this approach is illustrated for the sigmaB dependent general stress regulon. For the comprehensive description of proteins/genes belonging to stimulons or regulons it is generally recommended to complement the proteome approach with DNA array techniques in order to identify and allocate still undiscovered members of individual regulons. This approach is also very attractive to uncover the function of still unknown global regulators and regulons and to dissect the entire genome into its basic modules of global regulation. The same strategy can be used to analyse the regulation, structure and function of regulons encoding virulence factors of pathogenic bacteria for a comprehensive understanding of the pathogenicity and for the identification of new antibacterial targets.
Collapse
Affiliation(s)
- M Hecker
- Ernst-Moritz-Arndt Universität, Institut für Mikrobiologie, Greifswald, Germany.
| | | |
Collapse
|
31
|
Petersohn A, Bernhardt J, Gerth U, Höper D, Koburger T, Völker U, Hecker M. Identification of sigma(B)-dependent genes in Bacillus subtilis using a promoter consensus-directed search and oligonucleotide hybridization. J Bacteriol 1999; 181:5718-24. [PMID: 10482513 PMCID: PMC94092 DOI: 10.1128/jb.181.18.5718-5724.1999] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A consensus-directed search for sigma(B) promoters was used to locate potential candidates for new sigma(B)-dependent genes in Bacillus subtilis. Screening of those candidates by oligonucleotide hybridizations with total RNA from exponentially growing or ethanol-stressed cells of the wild type as well as a sigB mutant revealed 22 genes that required sigma(B) for induction by ethanol. Although almost 50% of the proteins encoded by the newly discovered sigma(B)-dependent stress genes seem to be membrane localized, biochemical functions have so far not been defined for any of the gene products. Allocation of the genes to the sigma(B)-dependent stress regulon may indicate a potential function in the establishment of a multiple stress resistance. AldY and YhdF show similarities to NAD(P)-dependent dehydrogenases and YdbP to thioredoxins, supporting our suggestion that sigma(B)-dependent proteins may be involved in the maintenance of the intracellular redox balance after stress.
Collapse
Affiliation(s)
- A Petersohn
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, 17487 Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Scott JM, Haldenwang WG. Obg, an essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of transcription factor sigma(B). J Bacteriol 1999; 181:4653-60. [PMID: 10419966 PMCID: PMC103599 DOI: 10.1128/jb.181.15.4653-4660.1999] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
sigma(B), the general stress response sigma factor of Bacillus subtilis, is activated when intracellular ATP levels fall or the bacterium experiences environmental stress. Stress activates sigma(B) by means of a collection of regulatory kinases and phosphatases (the Rsb proteins), which catalyze the release of sigma(B) from an anti-sigma factor inhibitor. By using the yeast dihybrid selection system to identify B. subtilis proteins that could interact with Rsb proteins and act as mediators of stress signaling, we isolated the GTP binding protein, Obg, as an interactor with several of these regulators (RsbT, RsbW, and RsbX). B. subtilis depleted of Obg no longer activated sigma(B) in response to environmental stress, but it retained the ability to activate sigma(B) by the ATP responsive pathway. Stress pathway components activated sigma(B) in the absence of Obg if the pathway's most upstream effector (RsbT) was synthesized in excess to the inhibitor (RsbS) from which it is normally released after stress. Thus, the Rsb proteins can function in the absence of Obg but fail to be triggered by stress. The data demonstrate that Obg, or a process under its control, is necessary to induce the stress-dependent activation of sigma(B) and suggest that Obg may directly communicate with one or more sigma(B) regulators.
Collapse
Affiliation(s)
- J M Scott
- Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284-7758, USA
| | | |
Collapse
|
33
|
Nicholas RO, Li T, McDevitt D, Marra A, Sucoloski S, Demarsh PL, Gentry DR. Isolation and characterization of a sigB deletion mutant of Staphylococcus aureus. Infect Immun 1999; 67:3667-9. [PMID: 10377157 PMCID: PMC116562 DOI: 10.1128/iai.67.7.3667-3669.1999] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigB gene of Staphylococcus aureus, coding for the alternate sigma factor B, has been deleted by allelic replacement mutagenesis. The mutant grew as well as the parent in vitro, although it was deficient in clumping factor, coagulase, and pigment. In two murine and one rat infection model the mutant showed no reduction in virulence.
Collapse
Affiliation(s)
- R O Nicholas
- SmithKline Beecham Pharmaceuticals, Collegeville, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Völker U, Maul B, Hecker M. Expression of the sigmaB-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis. J Bacteriol 1999; 181:3942-8. [PMID: 10383961 PMCID: PMC93883 DOI: 10.1128/jb.181.13.3942-3948.1999] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alternative sigma factor sigmaB of Bacillus subtilis is required for the induction of approximately 100 genes after the imposition of a whole range of stresses and energy limitation. In this study, we investigated the impact of a null mutation in sigB on the stress and starvation survival of B. subtilis. sigB mutants which failed to induce the regulon following stress displayed an at least 50- to 100-fold decrease in survival of severe heat (54 degrees C) or ethanol (9%) shock, salt (10%) stress, and acid (pH 4.3) stress, as well as freezing and desiccation, compared to the wild type. Preloading cells with sigmaB-dependent general stress proteins prior to growth-inhibiting stress conferred considerable protection against heat and salt. Exhaustion of glucose or phosphate induced the sigmaB response, but surprisingly, sigmaB did not seem to be required for starvation survival. Starved wild-type cells exhibited about 10-fold greater resistance to salt stress than exponentially growing cells. The data argue that the expression of sigmaB-dependent genes provides nonsporulated B. subtilis cells with a nonspecific multiple stress resistance that may be relevant for stress survival in the natural ecosystem.
Collapse
Affiliation(s)
- U Völker
- Laboratorium für Mikrobiologie und MPI für terrestrische Mikrobiologie, Philipps-Universität, 35043 Marburg, Germany
| | | | | |
Collapse
|
35
|
Scott JM, Smirnova N, Haldenwang WG. A Bacillus-specific factor is needed to trigger the stress-activated phosphatase/kinase cascade of sigmaB induction. Biochem Biophys Res Commun 1999; 257:106-10. [PMID: 10092518 DOI: 10.1006/bbrc.1999.0418] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The general stress regulon of Bacillus subtilis is controlled by the transcription factor sigmaB. Environmental stress activates sigmaB via a phosphatase/kinase cascade that triggers sigmaB's release from an anti sigma factor complex. To determine if the members of the phosphatase/kinase cascade are sufficient to detect environmental stress and activate sigmaB, we expressed sigmaB and its regulators in E. coli. In E. coli, as in B. subtilis, the intact collection of regulators silenced sigmaB, while allowing sigmaB to be active if the cascade's most upstream negative regulator was deleted. The regulators could not, however, activate sigmaB in response to ethanol treatment or heat shock. In other experiments, the GroEL and DnaK chaperones, known to be important in controlling stress sigma factors in E. coli, were found to be unimportant for sigmaB activity in B. subtilis. The findings argue that stress induction of sigmaB requires novel factors that are B. subtilis specific.
Collapse
Affiliation(s)
- J M Scott
- Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284-7758, USA
| | | | | |
Collapse
|
36
|
Wang LF, Park SS, Doi RH. A novel Bacillus subtilis gene, antE, temporally regulated and convergent to and overlapping dnaE. J Bacteriol 1999; 181:353-6. [PMID: 9864351 PMCID: PMC103570 DOI: 10.1128/jb.181.1.353-356.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Bacillus subtilis promoter, Px, that functions in a convergent manner with the sigA operon promoter P3 has been found in the sigA operon. Promoter Px is turned on at the same time as promoter P3 during early sporulation. The transcript from promoter Px codes for a small protein with partial homology to the OmpR protein from Escherichia coli and also carries an untranslated sequence at its 3' end that is complementary to the 5' end of the P3 transcript, which codes for the ribosome binding site of dnaE. The gene controlled by Px has been called antE. The expression of antE does not require sigmaB, sigmaE, or sigmaH. Px was transcribed in vitro by the sigmaA holoenzyme and is the seventh promoter to be recognized in the sigmaA operon. A possible role for the antE gene during early sporulation is proposed.
Collapse
Affiliation(s)
- L F Wang
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
37
|
Kang CM, Vijay K, Price CW. Serine kinase activity of a Bacillus subtilis switch protein is required to transduce environmental stress signals but not to activate its target PP2C phosphatase. Mol Microbiol 1998; 30:189-96. [PMID: 9786195 DOI: 10.1046/j.1365-2958.1998.01052.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RsbT serine kinase has two known functions in the signal transduction pathway that activates the general stress factor sigmaB of Bacillus subtilis. First, RsbT can phosphorylate and inactivate its specific antagonist protein, RsbS. Second, upon phosphorylation of RsbS, RsbT is released to stimulate RsbU, a PP2C phosphatase, thereby initiating a signalling cascade that ultimately activates sigmaB. Here we describe a mutation that separates these two functions of RsbT. Although the mutant RsbT protein had essentially no kinase activity, it still retained the capacity to stimulate the RsbU phosphatase in vitro and to activate sigmaB when overexpressed in vivo. These results support the hypothesis that phosphatase activation is accomplished via a long-lived interaction between RsbT and RsbU. In contrast, RsbT kinase activity was found to be integral for the transmission of external stimuli to sigmaB. Thus, one route by which environmental stress signals could enter the sigmaB network is by modulation of the RsbT kinase activity, thereby controlling the magnitude of the partner switch between the RsbS-RsbT complex and the RsbT-RsbU complex.
Collapse
Affiliation(s)
- C M Kang
- Department of Food Science and Technology, University of California, Davis 95616, USA
| | | | | |
Collapse
|
38
|
Kovács T, Hargitai A, Kovács KL, Mécs I. pH-dependent activation of the alternative transcriptional factor sigmaB in Bacillus subtilis. FEMS Microbiol Lett 1998; 165:323-8. [PMID: 9841221 DOI: 10.1111/j.1574-6968.1998.tb13164.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The expression of the sigB gene of Bacillus subtilis was analysed in response to a mild acid shock. This gene is subject to sigmaB-dependent regulation. It has been found that the expression of sigB is induced as part of the acid-tolerant response. In that respect sigB is similar to the previously described gene gsiB which is also a member of the sigmaB regulon. Through this induction, the sigmaB regulon provides protection against acid shock. Besides its protective role against acid shock, no other general function could be directly associated with the sigmaB regulon. An acidification of the cytoplasmic environment induces synthesis of general stress proteins in B. subtilis.
Collapse
Affiliation(s)
- T Kovács
- Department of Biotechnology, A. József University of Szeged, Hungary.
| | | | | | | |
Collapse
|
39
|
Völker U, Andersen KK, Antelmann H, Devine KM, Hecker M. One of two osmC homologs in Bacillus subtilis is part of the sigmaB-dependent general stress regulon. J Bacteriol 1998; 180:4212-8. [PMID: 9696771 PMCID: PMC107419 DOI: 10.1128/jb.180.16.4212-4218.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report we present the identification and analysis of two Bacillus subtilis genes, yklA and ykzA, which are homologous to the partially RpoS-controlled osmC gene from Escherichia coli. The yklA gene is expressed at higher levels in minimal medium than in rich medium and is driven by a putative vegetative promoter. Expression of ykzA is not medium dependent but increases dramatically when cells are exposed to stress and starvation. This stress-induced increase in ykzA expression is absolutely dependent on the alternative sigma factor sigmaB, which controls a large stationary-phase and stress regulon. ykzA is therefore another example of a gene common to the RpoS and sigmaB stress regulons of E. coli and B. subtilis, respectively. The composite complex expression pattern of the two B. subtilis genes is very similar to the expression profile of osmC in E. coli.
Collapse
Affiliation(s)
- U Völker
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, 17487 Greifswald, Germany.
| | | | | | | | | |
Collapse
|
40
|
Gaidenko TA, Price CW. General stress transcription factor sigmaB and sporulation transcription factor sigmaH each contribute to survival of Bacillus subtilis under extreme growth conditions. J Bacteriol 1998; 180:3730-3. [PMID: 9658024 PMCID: PMC107349 DOI: 10.1128/jb.180.14.3730-3733.1998] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The general stress response of the bacterium Bacillus subtilis is controlled by the sigmaB transcription factor. Here we show that loss of sigmaB reduces stationary-phase viability 10-fold in either alkaline or acidic media and reduces cell yield in media containing ethanol. We further show that loss of the developmental transcription factor sigmaH also has a marked effect on stationary-phase viability under these conditions and that this effect is independent from the simple loss of sporulation ability.
Collapse
Affiliation(s)
- T A Gaidenko
- Department of Food Science and Technology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
41
|
Smirnova N, Scott J, Voelker U, Haldenwang WG. Isolation and characterization of Bacillus subtilis sigB operon mutations that suppress the loss of the negative regulator RsbX. J Bacteriol 1998; 180:3671-80. [PMID: 9658013 PMCID: PMC107338 DOI: 10.1128/jb.180.14.3671-3680.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/1998] [Accepted: 05/11/1998] [Indexed: 02/08/2023] Open
Abstract
sigmaB, a transcription factor that controls the Bacillus subtilis general stress response regulon, is activated by either a drop in intracellular ATP or exposure to environmental stress. RsbX, one of seven sigmaB regulators (Rsb proteins) whose genes are cotranscribed with sigmaB, is a negative regulator in the stress-dependent activation pathway. To better define the interactions that take place among the Rsb proteins, we analyzed sigB operon mutations which suppress the high-level sigmaB activity that normally accompanies the loss of RsbX. Each of these mutations was in one of three genes (rsbT, -U, and -V) which encode positive regulators of sigmaB, and they all defined amino acid changes which either compromised the activities of the mutant Rsbs or affected their ability to accumulate. sigmaB activity remained inducible by ethanol in several of the RsbX- suppressor strains. This finding supports the notion that RsbX is not needed as the target for sigmaB activation by at least some stresses. sigmaB activity in several RsbX- strains with suppressor mutations in rsbT or -U was high during growth and underwent a continued, rather than a transient, increase following stress. Thus, RsbX is likely responsible for maintaining low sigmaB activity during balanced growth and for reestablishing sigmaB activity at prestress levels following induction. Although RsbX likely participates in limiting the sigmaB induction response, a second mechanism for curtailing unrestricted sigmaB activation was suggested by the sigmaB induction profile in two suppressor strains with mutations in rsbV. sigmaB activity in these mutants was stress inducible but transient, even in the absence of RsbX.
Collapse
Affiliation(s)
- N Smirnova
- Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284-7758, USA
| | | | | | | |
Collapse
|
42
|
Wiedmann M, Arvik TJ, Hurley RJ, Boor KJ. General stress transcription factor sigmaB and its role in acid tolerance and virulence of Listeria monocytogenes. J Bacteriol 1998; 180:3650-6. [PMID: 9658010 PMCID: PMC107335 DOI: 10.1128/jb.180.14.3650-3656.1998] [Citation(s) in RCA: 241] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The gene encoding the general stress transcription factor sigmaB in the gram-positive bacterium Listeria monocytogenes was isolated with degenerate PCR primers followed by inverse PCR amplification. Evidence for gene identification includes the following: (i) phylogenetic analyses of reported amino acid sequences for sigmaB and the closely related sigmaF proteins grouped L. monocytogenes sigmaB in the same cluster with the sigmaB proteins from Bacillus subtilis and Staphylococcus aureus, (ii) the gene order in the 2, 668-bp portion of the L. monocytogenes sigB operon is rsbU-rsbV-rsbW-sigB-rsbX and is therefore identical to the order of the last five genes of the B. subtilis sigB operon, and (iii) an L. monocytogenes sigmaB mutant had reduced resistance to acid stress in comparison with its isogenic parent strain. The sigB mutant was further characterized in mouse models of listeriosis by determining recovery rates of the wild-type and mutant strains from livers and spleens following intragastric or intraperitoneal infection. Our results suggest that sigmaB-directed genes do not appear to be essential for the spread of L. monocytogenes to mouse liver or spleen at 2 and 4 days following intragastric or intraperitoneal infection.
Collapse
Affiliation(s)
- M Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
43
|
Antelmann H, Engelmann S, Schmid R, Sorokin A, Lapidus A, Hecker M. Expression of a stress- and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor sigmaB in Bacillus subtilis. J Bacteriol 1997; 179:7251-6. [PMID: 9393687 PMCID: PMC179673 DOI: 10.1128/jb.179.23.7251-7256.1997] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
SigmaB-dependent general stress proteins (Gsps) of Bacillus subtilis are essential for the development of glucose-starvation-induced cross-resistance to oxidative challenge. However, the proteins directly involved in this nonspecific resistance to oxidative stress have to be identified. We found that one prominent Gsp displayed strong sequence similarity to the previously characterized oxidative-stress-inducible MrgA protein of B. subtilis and to the starvation-induced Dps/PexB protein of Escherichia coli. We therefore designated this prominent Gsp Dps. While MrgA belongs to the peroxide-stress-inducible proteins needed for the H2O2-inducible adaptive response to oxidative stress, Dps belongs to the proteins induced by heat, salt, or ethanol stress and after starvation for glucose but not by a sublethal oxidative challenge. Primer extension experiments identified two overlapping promoters upstream of the coding region of dps, one being sigmaB dependent (PB) and the other being sigmaB independent (P1). Both promoters contribute to the basal level of dps during growth. After stress or during entry into the stationary phase, transcription from PB strongly increased whereas transcription from P1 decreased. Mutant strains lacking Dps completely failed to develop glucose-starvation-induced resistance to oxidative stress. These results confirm our suggestion that sigmaB-dependent general stress proteins of B. subtilis are absolutely required for the development of nonspecific resistance to oxidative stress.
Collapse
Affiliation(s)
- H Antelmann
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Cosby WM, Zuber P. Regulation of Bacillus subtilis sigmaH (spo0H) and AbrB in response to changes in external pH. J Bacteriol 1997; 179:6778-87. [PMID: 9352930 PMCID: PMC179609 DOI: 10.1128/jb.179.21.6778-6787.1997] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The RNA polymerase sigma subunit, sigmaH, of Bacillus subtilis is required for the transcription of genes that are induced in late-growth cultures at high cell density, including genes that function in sporulation. The expression of sigmaH-controlled genes is repressed when nutrient broth sporulation medium (Difco sporulation medium [DSM]) is supplemented with high concentrations of glucose and glutamine (DSM-GG), preferred carbon and nitrogen sources of B. subtilis. Under these conditions, the pH of the DSM-GG medium decreases to approximately 5. Raising the pH by the addition of morpholinepropanesulfonic acid (MOPS) or Tris-HCl (pH 7.5) results in a dramatic increase in the expression of lacZ fusions to sigmaH-dependent promoters. Correspondingly, the level of sigmaH protein was higher in cells of late-growth DSM-GG cultures treated with a pH stabilizer. When sigmaH-dependent gene expression was examined in cells bearing a mutation in abrB, encoding the transition state regulator that negatively controls genes transcribed by the sigmaH form of RNA polymerase, derepression was observed as well as an increase in medium pH. Reducing the pH with acetic acid resulted in repression, suggesting that AbrB was not functioning directly in pH-dependent repression but was required to maintain the low medium pH in DSM-GG. AbrB protein levels were high in late-growth, DSM-GG cultures but significantly lower when the pH was raised by Tris-HCl addition. An active tricarboxylic acid (TCA) cycle was required to obtain maximum derepression of sigmaH-dependent transcription, and transcription of the TCA cycle enzyme gene citB was repressed in DSM-GG but derepressed when the pH was artificially raised. The negative effect of low pH on sigmaH-dependent lacZ expression was also observed in unbuffered minimal medium and appeared to be exerted posttranslationally with respect to spo0H expression. However, the addition of amino acids to the medium caused pH-independent repression of both sigmaH-dependent transcription and spo0H-lacZ expression. These results suggest that spo0H transcription or translation is repressed by a mechanism responding to the availability of amino acids whereas spo0H is posttranslationally regulated in response to external pH.
Collapse
Affiliation(s)
- W M Cosby
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | |
Collapse
|
45
|
Antelmann H, Schmid R, Hecker M. The NAD synthetase NadE (OutB) of Bacillus subtilis is a sigma B-dependent general stress protein. FEMS Microbiol Lett 1997; 153:405-9. [PMID: 9271869 DOI: 10.1111/j.1574-6968.1997.tb12603.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The identification of sigma B-dependent general stress proteins is a useful strategy to understand the physiological role of the unspecific stress response in Bacillus subtilis. By N-terminal sequencing of B. subtilis stress proteins Gsp38 was identified as the NAD-synthetase (NadE). NadE was previously characterized as spore outgrowth factor B (OutB) conferring a temperature-sensitive spore outgrowth defective phenotype. Transcriptional studies showed that nadE is strongly induced in response to heat, ethanol and salt stress or after starvation for glucose in a sigma B-dependent manner. Two promoters are involved in transcriptional initiation, the sigma A-dependent upstream promoter contributes to the basal level during growth, whereas the sigma B-dependent downstream promoter is induced after different stress conditions.
Collapse
Affiliation(s)
- H Antelmann
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | |
Collapse
|
46
|
Antelmann H, Bernhardt J, Schmid R, Mach H, Völker U, Hecker M. First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Electrophoresis 1997; 18:1451-63. [PMID: 9298659 DOI: 10.1002/elps.1150180820] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Data on the identification of proteins of Bacillus subtilis on two-dimensional (2-D) gels as well as their regulation are summarized and the identification of 56 protein spots is included. The pattern of proteins synthesized in Bacillus subtilis during exponential growth, during starvation for glucose or phosphate, or after the imposition of stresses like heat shock, salt- and ethanol stress as well as oxidative stress was analyzed. N-terminal sequencing of protein spots allowed the identification of 93 proteins on 2-D gels, which are required for the synthesis of amino acids and nucleotides, the generation of ATP, for glycolyses, the pentose phosphate cycle, the citric acid cycle as well as for adaptation to a variety of stress conditions. A computer-aided analysis of the 2-D gels was used to monitor the synthesis profile of more than 130 protein spots. Proteins performing housekeeping functions during exponential growth displayed a reduced synthesis rate during stress and starvation, whereas spots induced during stress and starvation were classified as specific stress proteins induced by a single stimulus or a group of related stimuli, or as general stress proteins induced by a variety of entirely different stimuli. The analysis of mutants in global regulators was initiated in order to establish a response regulation map for B. subtilis. These investigations demonstrated that the alternative sigma factor sigma B is involved in the regulation of almost all of the general stress proteins and that the phoPR two-component system is required for the induction of a large part but not all of the proteins induced by phosphate starvation.
Collapse
Affiliation(s)
- H Antelmann
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie und Molekularbiologie, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
We have identified a new member, csbX, of the general stress regulon controlled by sigmaB in Bacillus subtilis. As with other members of the sigmaB regulon csbX is expressed during the stationary phase of cell growth and inactivation of this gene produces no obvious phenotype during cell growth or early development. csbX lies uspstream from the sporulation gene bofC which is co-transcribed during stationary phase.
Collapse
Affiliation(s)
- M Gomez
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6076, USA
| | | |
Collapse
|
48
|
Voelker U, Luo T, Smirnova N, Haldenwang W. Stress activation of Bacillus subtilis sigma B can occur in the absence of the sigma B negative regulator RsbX. J Bacteriol 1997; 179:1980-4. [PMID: 9068644 PMCID: PMC178922 DOI: 10.1128/jb.179.6.1980-1984.1997] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Environmental stress activates sigma B, the general stress response sigma factor of Bacillus subtilis, by a pathway that is negatively controlled by the RsbX protein. To determine whether stress activation of sigma B occurs by a direct effect of stress on RsbX, we constructed B. subtilis strains which synthesized various amounts of RsbX or lacked RsbX entirely and subjected these strains to ethanol stress. Based on the induction of a sigma B-dependent promoter, stress activation of sigma B can occur in the absence of RsbX. Higher levels of RsbX failed to detectably influence stress induction, but reduced levels of RsbX resulted in greater and longer-lived sigma B activation. The data suggest that RsbX is not a direct participant in the sigma B stress induction process but rather serves as a device to limit the magnitude of the stress response.
Collapse
Affiliation(s)
- U Voelker
- Deparment of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758, USA
| | | | | | | |
Collapse
|
49
|
Bernhardt JR, V Lker U, V Lker A, Antelmann H, Schmid R, Mach H, Hecker M. Specific and general stress proteins in Bacillus subtilis--a two-deimensional protein electrophoresis study. MICROBIOLOGY (READING, ENGLAND) 1997; 143:999-1017. [PMID: 9296790 DOI: 10.1099/00221287-143-3-999] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A computer-aided analysis of high resolution two-dimensional polyacrylamide gels was used to investigate the changes in the protein synthesis profile in B. subtilis wild-type strains and sigB mutants in response to heat shock, salt and ethanol stress, and glucose of phosphate starvation. The data provided evidence that the induction of a least 42 general stress proteins absolutely required the alternative sigma factor sigmaB. However, at least seven stress proteins, among them ClpC, ClpP, Sod, AhpC and AhpF, remained stress-inducible in a sigB mutant. Such a detailed analysis also premitted the description of subgroups of general stress proteins which are subject to additional regulatory circuits, indicating a very thorough fine-tuning of this complex response. The relative synthesis rate of the general stress proteins constituted up to 40% of the total protein synthesis of stressed cells and thereby emphasizes the importance of the stress regulon. Besides the induction of these general or rather unspecific stress proteins, the induction of stress-specific proteins is shown and discussed.
Collapse
Affiliation(s)
- J Rg Bernhardt
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Uwe V Lker
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Andrea V Lker
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Haike Antelmann
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Roland Schmid
- Universit�t Osnabr�ck, Abteilung f�r Mikrobiologie, 49076 Osnabr�ck, Germany
| | - Hiltraut Mach
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Michael Hecker
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| |
Collapse
|
50
|
Voelker U, Voelker A, Haldenwang WG. The yeast two-hybrid system detects interactions between Bacillus subtilis sigmaB regulators. J Bacteriol 1996; 178:7020-3. [PMID: 8955331 PMCID: PMC178610 DOI: 10.1128/jb.178.23.7020-7023.1996] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SigmaB, the general stress response sigma factor of Bacillus subtilis, is regulated by the products of seven genes (rsbR, S, T, U, V, W, and X) with which it is cotranscribed. Biochemical techniques previously revealed physical associations among RsbW, RsbV, and sigmaB but failed to detect interactions of RsbR, S, T, U, or X with each other or RsbV, RsbW, or sigmaB. Using the yeast two-hybrid system, we have now obtained evidence for such interactions. The yeast reporter system was activated when RsbS was paired with either RsbR or RsbT, RsbR was paired with RsbT, and RsbV was paired with either RsbU or RsbW. In addition, RsbW2 and RsbR2 dimer formation was detected. RsbX failed to show interactions with itself or any of the other sigB operon products.
Collapse
Affiliation(s)
- U Voelker
- Institute für Mikrobiologie und Molecularbiologié, Einst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | |
Collapse
|