1
|
Church MC, Price A, Li H, Workman JL. The Swi-Snf chromatin remodeling complex mediates gene repression through metabolic control. Nucleic Acids Res 2023; 51:10278-10291. [PMID: 37650639 PMCID: PMC10602859 DOI: 10.1093/nar/gkad711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
In eukaryotes, ATP-dependent chromatin remodelers regulate gene expression in response to nutritional and metabolic stimuli. However, altered transcription of metabolic genes may have significant indirect consequences which are currently poorly understood. In this study, we use genetic and molecular approaches to uncover a role for the remodeler Swi-Snf as a critical regulator of metabolism. We find that snfΔ mutants display a cysteine-deficient phenotype, despite growth in nutrient-rich media. This correlates with widespread perturbations in sulfur metabolic gene transcription, including global redistribution of the sulfur-sensing transcription factor Met4. Our findings show how a chromatin remodeler can have a significant impact on a whole metabolic pathway by directly regulating an important gene subset and demonstrate an emerging role for chromatin remodeling complexes as decisive factors in metabolic control.
Collapse
Affiliation(s)
- Michael C Church
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Andrew Price
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| |
Collapse
|
2
|
Josefson R, Kumar N, Hao X, Liu B, Nyström T. The GET pathway is a major bottleneck for maintaining proteostasis in Saccharomyces cerevisiae. Sci Rep 2023; 13:9285. [PMID: 37286562 DOI: 10.1038/s41598-023-35666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
A hallmark of aging in a variety of organisms is a breakdown of proteostasis and an ensuing accumulation of protein aggregates and inclusions. However, it is not clear if the proteostasis network suffers from a uniform breakdown during aging or if some distinct components act as bottlenecks especially sensitive to functional decline. Here, we report on a genome-wide, unbiased, screen for single genes in young cells of budding yeast required to keep the proteome aggregate-free under non-stress conditions as a means to identify potential proteostasis bottlenecks. We found that the GET pathway, required for the insertion of tail-anchored (TA) membrane proteins in the endoplasmic reticulum, is such a bottleneck as single mutations in either GET3, GET2 or GET1 caused accumulation of cytosolic Hsp104- and mitochondria-associated aggregates in nearly all cells when growing at 30 °C (non-stress condition). Further, results generated by a second screen identifying proteins aggregating in GET mutants and analyzing the behavior of cytosolic reporters of misfolding, suggest that there is a general collapse in proteostasis in GET mutants that affects other proteins than TA proteins.
Collapse
Affiliation(s)
- Rebecca Josefson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Navinder Kumar
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xinxin Hao
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Nyström
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Yeast as a Tool to Understand the Significance of Human Disease-Associated Gene Variants. Genes (Basel) 2021; 12:genes12091303. [PMID: 34573285 PMCID: PMC8465565 DOI: 10.3390/genes12091303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
At present, the great challenge in human genetics is to provide significance to the growing amount of human disease-associated gene variants identified by next generation DNA sequencing technologies. Increasing evidences suggest that model organisms are of pivotal importance to addressing this issue. Due to its genetic tractability, the yeast Saccharomyces cerevisiae represents a valuable model organism for understanding human genetic variability. In the present review, we show how S. cerevisiae has been used to study variants of genes involved in different diseases and in different pathways, highlighting the versatility of this model organism.
Collapse
|
4
|
Homocysteine fibrillar assemblies display cross-talk with Alzheimer's disease β-amyloid polypeptide. Proc Natl Acad Sci U S A 2021; 118:2017575118. [PMID: 34099562 DOI: 10.1073/pnas.2017575118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High levels of homocysteine are reported as a risk factor for Alzheimer's disease (AD). Correspondingly, inborn hyperhomocysteinemia is associated with an increased predisposition to the development of dementia in later stages of life. Yet, the mechanistic link between homocysteine accumulation and the pathological neurodegenerative processes is still elusive. Furthermore, despite the clear association between protein aggregation and AD, attempts to develop therapy that specifically targets this process have not been successful. It is envisioned that the failure in the development of efficacious therapeutic intervention may lie in the metabolomic state of affected individuals. We recently demonstrated the ability of metabolites to self-assemble and cross-seed the aggregation of pathological proteins, suggesting a role for metabolite structures in the initiation of neurodegenerative diseases. Here, we provide a report of homocysteine crystal structure and self-assembly into amyloid-like toxic fibrils, their inhibition by polyphenols, and their ability to seed the aggregation of the AD-associated β-amyloid polypeptide. A yeast model of hyperhomocysteinemia indicates a toxic effect, correlated with increased intracellular amyloid staining that could be rescued by polyphenol treatment. Analysis of AD mouse model brain sections indicates the presence of homocysteine assemblies and the interplay between β-amyloid and homocysteine. This work implies a molecular basis for the association between homocysteine accumulation and AD pathology, potentially leading to a paradigm shift in the understanding of AD initial pathological processes.
Collapse
|
5
|
Sulfate assimilation regulates hydrogen sulfide production independent of lifespan and reactive oxygen species under methionine restriction condition in yeast. Aging (Albany NY) 2020; 11:4254-4273. [PMID: 31254461 PMCID: PMC6628990 DOI: 10.18632/aging.102050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Endogenously produced hydrogen sulfide was proposed to be an underlying mechanism of lifespan extension via methionine restriction. However, hydrogen sulfide regulation and its beneficial effects via methionine restriction remain elusive. Here, we identified the genes required to increase hydrogen sulfide production under methionine restriction condition using genome-wide high-throughput screening in yeast strains with single-gene deletions. Sulfate assimilation-related genes, such as MET1, MET3, MET5, and MET10, were found to be particularly crucial for hydrogen sulfide production. Interestingly, methionine restriction failed to increase hydrogen sulfide production in mutant strains; however, it successfully extended chronological lifespan and reduced reactive oxygen species levels. Altogether, our observations suggested that increased hydrogen sulfide production via methionine restriction is not the mechanism underlying extended yeast lifespan, even though increased hydrogen sulfide production occurred simultaneously with yeast lifespan extension under methionine restriction condition.
Collapse
|
6
|
Leyva-Rojas JA, Coy-Barrera E, Hampp R. Interaction with Soil Bacteria Affects the Growth and Amino Acid Content of Piriformospora indica. Molecules 2020; 25:E572. [PMID: 32012990 PMCID: PMC7038203 DOI: 10.3390/molecules25030572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 11/17/2022] Open
Abstract
Exploration of the effect of soil bacteria on growth and metabolism of beneficial root endophytic fungi is relevant to promote favorable associations between microorganisms of the plant rhizosphere. Hence, the interaction between the plant-growth-promoting fungus Piriformospora indica and different soil bacteria was investigated. The parameters studied were fungal growth and its amino acid composition during the interaction. Fungus and bacteria were confronted in dual cultures in Petri dishes, either through agar or separated by a Perspex wall that only allowed the bacterial volatiles to be effective. Fungal growth was stimulated by Azotobacter chroococcum, whereas Streptomyces anulatus AcH 1003 inhibited it and Streptomyces sp. Nov AcH 505 had no effect. To analyze amino acid concentration data, targeted metabolomics was implemented under supervised analysis according to fungal-bacteria interaction and time. Orthogonal partial least squares-discriminant analysis (OPLS-DA) model clearly discriminated P. indica-A. chroococcum and P. indica-S. anulatus interactions, according to the respective score plot in comparison to the control. The most observable responses were in the glutamine and alanine size groups: While Streptomyces AcH 1003 increased the amount of glutamine, A. chroococcum decreased it. The fungal growth and the increase of alanine content might be associated with the assimilation of nitrogen in the presence of glucose as a carbon source. The N-fixing bacterium A. chroococcum should stimulate fungal amino acid metabolism via glutamine synthetase-glutamate synthase (GS-GOGAT). The data pointed to a stimulated glycolytic activity in the fungus observed by the accumulation of alanine, possibly via alanine aminotransferase. The responses toward the growth-inhibiting Streptomyces AcH 1003 suggest an (oxidative) stress response of the fungus.
Collapse
Affiliation(s)
- Jorge A. Leyva-Rojas
- Faculty of Basic and Biomedical Science, Universidad Simón Bolivar, Barranquilla 080002, Colombia
- Institute of Microbiology and Infection Biology (IMIT), University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany;
| | - Ericsson Coy-Barrera
- Faculty of Basic and Applied Science, Universidad Militar Nueva Granada, Cajica 250247, Colombia
| | - Rüdiger Hampp
- Institute of Microbiology and Infection Biology (IMIT), University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany;
| |
Collapse
|
7
|
Tezuka H, Mori T, Okumura Y, Kitabatake K, Tsumura Y. Cloning of a Gene Suppressing Hydrogen Sulfide Production by Saccharomyces Cerevisiae and its Expression in a Brewing Yeast. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-50-0130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hidetoshi Tezuka
- Central Research Laboratories, Asahi Breweries, Ltd., 2-13-1 Omori-kita, Ota-ku, Tokyo 143, Japan
| | - Toshio Mori
- Central Research Laboratories, Asahi Breweries, Ltd., 2-13-1 Omori-kita, Ota-ku, Tokyo 143, Japan
| | - Yasushi Okumura
- Central Research Laboratories, Asahi Breweries, Ltd., 2-13-1 Omori-kita, Ota-ku, Tokyo 143, Japan
| | - Katsuaki Kitabatake
- Central Research Laboratories, Asahi Breweries, Ltd., 2-13-1 Omori-kita, Ota-ku, Tokyo 143, Japan
| | - Yoshihiro Tsumura
- Central Research Laboratories, Asahi Breweries, Ltd., 2-13-1 Omori-kita, Ota-ku, Tokyo 143, Japan
| |
Collapse
|
8
|
Barbosa AD, Pereira C, Osório H, Moradas-Ferreira P, Costa V. The ceramide-activated protein phosphatase Sit4p controls lifespan, mitochondrial function and cell cycle progression by regulating hexokinase 2 phosphorylation. Cell Cycle 2016; 15:1620-30. [PMID: 27163342 DOI: 10.1080/15384101.2016.1183846] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sit4p is the catalytic subunit of a ceramide-activated PP2A-like phosphatase that regulates cell cycle, mitochondrial function, oxidative stress resistance and chronological lifespan in yeast. In this study, we show that hexokinase 2 (Hxk2p) is hyperphosphorylated in sit4Δ mutants grown in glucose medium by a Snf1p-independent mechanism and Hxk2p-S15A mutation suppresses phenotypes associated with SIT4 deletion, namely growth arrest at G1 phase, derepression of mitochondrial respiration, H2O2 resistance and lifespan extension. Consistently, the activation of Sit4p in isc1Δ mutants, which has been associated with premature aging, leads to Hxk2p hypophosphorylation, and the expression of Hxk2p-S15E increases the lifespan of isc1Δ cells. The overall results suggest that Hxk2p functions downstream of Sit4p in the control of cell cycle, mitochondrial function, oxidative stress resistance and chronological lifespan.
Collapse
Affiliation(s)
- António Daniel Barbosa
- b IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal.,c ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto , Porto , Portugal
| | - Clara Pereira
- a Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal.,b IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal
| | - Hugo Osório
- a Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal.,d Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP) , Porto , Portugal
| | - Pedro Moradas-Ferreira
- a Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal.,b IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal.,c ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto , Porto , Portugal
| | - Vítor Costa
- a Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal.,b IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal.,c ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto , Porto , Portugal
| |
Collapse
|
9
|
Surrogate genetics and metabolic profiling for characterization of human disease alleles. Genetics 2012; 190:1309-23. [PMID: 22267502 DOI: 10.1534/genetics.111.137471] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cystathionine-β-synthase (CBS) deficiency is a human genetic disease causing homocystinuria, thrombosis, mental retardation, and a suite of other devastating manifestations. Early detection coupled with dietary modification greatly reduces pathology, but the response to treatment differs with the allele of CBS. A better understanding of the relationship between allelic variants and protein function will improve both diagnosis and treatment. To this end, we tested the function of 84 CBS alleles previously sequenced from patients with homocystinuria by ortholog replacement in Saccharomyces cerevisiae. Within this clinically associated set, 15% of variant alleles were indistinguishable from the predominant CBS allele in function, suggesting enzymatic activity was retained. An additional 37% of the alleles were partially functional or could be rescued by cofactor supplementation in the growth medium. This large class included alleles rescued by elevated levels of the cofactor vitamin B6, but also alleles rescued by elevated heme, a second CBS cofactor. Measurement of the metabolite levels in CBS-substituted yeast grown with different B6 levels using LC-MS revealed changes in metabolism that propagated beyond the substrate and product of CBS. Production of the critical antioxidant glutathione through the CBS pathway was greatly decreased when CBS function was restricted through genetic, cofactor, or substrate restriction, a metabolic consequence with implications for treatment.
Collapse
|
10
|
Hiraishi H, Miyake T, Ono BI. Transcriptional regulation of Saccharomyces cerevisiae CYS3 encoding cystathionine gamma-lyase. Curr Genet 2008; 53:225-34. [PMID: 18317767 PMCID: PMC2668581 DOI: 10.1007/s00294-008-0181-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 01/29/2008] [Accepted: 02/09/2008] [Indexed: 11/30/2022]
Abstract
In studying the regulation of GSH11, the structural gene of the high-affinity glutathione transporter (GSH-P1) in Saccharomyces cerevisiae, a cis-acting cysteine responsive element, CCGCCACAC (CCG motif), was detected. Like GSH-P1, the cystathionine gamma-lyase encoded by CYS3 is induced by sulfur starvation and repressed by addition of cysteine to the growth medium. We detected a CCG motif (-311 to -303) and a CGC motif (CGCCACAC; -193 to -186), which is one base shorter than the CCG motif, in the 5'-upstream region of CYS3. One copy of the centromere determining element 1, CDE1 (TCACGTGA; -217 to -210), being responsible for regulation of the sulfate assimilation pathway genes, was also detected. We tested the roles of these three elements in the regulation of CYS3. Using a lacZ-reporter assay system, we found that the CCG/CGC motif is required for activation of CYS3, as well as for its repression by cysteine. In contrast, the CDE1 motif was responsible for only activation of CYS3. We also found that two transcription factors, Met4 and VDE, are responsible for activation of CYS3 through the CCG/CGC and CDE1 motifs. These observations suggest a dual regulation of CYS3 by factors that interact with the CDE1 motif and the CCG/CGC motifs.
Collapse
Affiliation(s)
- Hiroyuki Hiraishi
- Department of Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577 Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0101 Japan
| | - Tsuyoshi Miyake
- Industrial Technology Center of Okayama Prefecture, 5301, Haga, Okayama 701-1221 Japan
| | - Bun-ichiro Ono
- Department of Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577 Japan
| |
Collapse
|
11
|
Lu P, Rangan A, Chan SY, Appling DR, Hoffman DW, Marcotte EM. Global metabolic changes following loss of a feedback loop reveal dynamic steady states of the yeast metabolome. Metab Eng 2006; 9:8-20. [PMID: 17049899 DOI: 10.1016/j.ymben.2006.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 05/27/2006] [Accepted: 06/20/2006] [Indexed: 11/16/2022]
Abstract
Metabolic enzymes control cellular metabolite concentrations dynamically in response to changing environmental and intracellular conditions. Such real-time feedback regulation suggests the global metabolome may sample distinct dynamic steady states, forming "basins of stability" in the energy landscape of possible metabolite concentrations and enzymatic activities. Using metabolite, protein and transcriptional profiling, we characterize three dynamic steady states of the yeast metabolome that form by perturbing synthesis of the universal methyl donor S-adenosylmethionine (AdoMet). Conversion between these states is driven by replacement of serine with glycine+formate in the media, loss of feedback inhibition control by the metabolic enzyme Met13, or both. The latter causes hyperaccumulation of methionine and AdoMet, and dramatic global compensatory changes in the metabolome, including differences in amino acid and sugar metabolism, and possibly in the global nitrogen balance, ultimately leading to a G1/S phase cell cycle delay. Global metabolic changes are not necessarily accompanied by global transcriptional changes, and metabolite-controlled post-transcriptional regulation of metabolic enzymes is clearly evident.
Collapse
Affiliation(s)
- Peng Lu
- Center for Systems and Synthetic Biology, University of Texas, 1 University Station, Austin, TX 78712-0159, USA
| | | | | | | | | | | |
Collapse
|
12
|
Higgins VJ, Beckhouse AG, Oliver AD, Rogers PJ, Dawes IW. Yeast genome-wide expression analysis identifies a strong ergosterol and oxidative stress response during the initial stages of an industrial lager fermentation. Appl Environ Microbiol 2003; 69:4777-87. [PMID: 12902271 PMCID: PMC169144 DOI: 10.1128/aem.69.8.4777-4787.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome-wide expression analysis of an industrial strain of Saccharomyces cerevisiae during the initial stages of an industrial lager fermentation identified a strong response from genes involved in the biosynthesis of ergosterol and oxidative stress protection. The induction of the ERG genes was confirmed by Northern analysis and was found to be complemented by a rapid accumulation of ergosterol over the initial 6-h fermentation period. From a test of the metabolic activity of deletion mutants in the ergosterol biosynthesis pathway, it was found that ergosterol is an important factor in restoring the fermentative capacity of the cell after storage. Additionally, similar ERG10 and TRR1 gene expression patterns over the initial 24-h fermentation period highlighted a possible interaction between ergosterol biosynthesis and the oxidative stress response. Further analysis showed that erg mutants producing altered sterols were highly sensitive to oxidative stress-generating compounds. Here we show that genome-wide expression analysis can be used in the commercial environment and was successful in identifying environmental conditions that are important in industrial yeast fermentation.
Collapse
Affiliation(s)
- Vincent J Higgins
- Clive and Vera Ramaciotti Centre for Gene Function Analysis. School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | | | | | | | |
Collapse
|
13
|
Takagi H, Yoshioka K, Awano N, Nakamori S, Ono BI. Role of Saccharomyces cerevisiae serine O-acetyltransferase in cysteine biosynthesis. FEMS Microbiol Lett 2003; 218:291-7. [PMID: 12586406 DOI: 10.1111/j.1574-6968.2003.tb11531.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Some strains of Saccharomyces cerevisiae have detectable activities of L-serine O-acetyltransferase (SATase) and O-acetyl-L-serine/O-acetyl-L-homoserine sulfhydrylase (OAS/OAH-SHLase), but synthesize L-cysteine exclusively via cystathionine by cystathionine beta-synthase and cystathionine gamma-lyase. To untangle this peculiar feature in sulfur metabolism, we introduced Escherichia coli genes encoding SATase and OAS-SHLase into S. cerevisiae L-cysteine auxotrophs. While the cells expressing SATase grew on medium lacking L-cysteine, those expressing OAS-SHLase did not grow at all. The cells expressing both enzymes grew very well without L-cysteine. These results indicate that S. cerevisiae SATase cannot support L-cysteine biosynthesis and that S. cerevisiae OAS/OAH-SHLase produces L-cysteine if enough OAS is provided by E. coli SATase. It appears as if S. cerevisiae SATase does not possess a metabolic role in vivo either because of very low activity or localization. For example, S. cerevisiae SATase may be localized in the nucleus, thus controlling the level of OAS required for regulation of sulfate assimilation, but playing no role in the direct synthesis of L-cysteine.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka-cho, 910-1195, Fukui, Japan.
| | | | | | | | | |
Collapse
|
14
|
Maclean KN, Janosík M, Oliveriusová J, Kery V, Kraus JP. Transsulfuration in Saccharomyces cerevisiae is not dependent on heme: purification and characterization of recombinant yeast cystathionine beta-synthase. J Inorg Biochem 2000; 81:161-71. [PMID: 11051561 DOI: 10.1016/s0162-0134(00)00100-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cystathionine beta-synthase [CBS; L-serine hydro-lyase (adding homocysteine), EC 4.2.1.22] catalyzes the first committed step of transsulfuration in both yeast and humans. It has been established previously that human CBS is a hemeprotein but although the heme group appears to be essential for CBS activity, the exact function of the heme group is unknown. CBS activity is absent in heme deficient strains of Saccharomyces cerevisiae grown without heme supplementation. CBS activity can be restored by supplementing these strains with heme, implying that there is a heme requirement for yeast CBS. We subcloned, overexpressed and purified yeast CBS. The yeast enzyme shows absolute pyridoxal 5'-phosphate (PLP) dependence for activity but we could find no evidence for the presence of a heme group. Given the degree of sequence and mechanistic similarity between yeast and human CBS, this result indicates that heme is unlikely to play a direct catalytic role in the human CBS reaction mechanism. Further characterization revealed that, in contrast to human CBS, S-adenosylmethionine (AdoMet) does not activate yeast CBS. Yeast CBS was found to be coordinately regulated with proliferation in S. cerevisiae. This finding is the most likely explanation of the observed apparent heme dependence of transsulfuration in vivo.
Collapse
Affiliation(s)
- K N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Denver 80262, USA
| | | | | | | | | |
Collapse
|
15
|
Borup B, Ferry JG. Cysteine biosynthesis in the Archaea: Methanosarcina thermophila utilizes O-acetylserine sulfhydrylase. FEMS Microbiol Lett 2000; 189:205-10. [PMID: 10930739 DOI: 10.1111/j.1574-6968.2000.tb09231.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Two pathways for cysteine biosynthesis are known in nature; however, it is not known which, if either, the Archaea utilize. Enzyme activities in extracts of Methanosarcina thermophila grown with combinations of cysteine and sulfide as sulfur sources indicated that this archaeon utilizes the pathway found in the Bacteria domain. The genes encoding serine transacetylase and O-acetylserine sulfhydrylase (cysE and cysK) are adjacent on the chromosome of M. thermophila and possibly form an operon. When M. thermophila is grown with cysteine as the sole sulfur source, O-acetylserine sulfhydrylase activity is maximally expressed suggesting alternative roles for this enzyme apart from cysteine biosynthesis.
Collapse
Affiliation(s)
- B Borup
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
16
|
Ohmori S, Nawata Y, Kiyono K, Murata H, Tsuboi S, Ikeda M, Akagi R, Morohashi KI, Ono B. Saccharomyces cerevisiae cultured under aerobic and anaerobic conditions: air-level oxygen stress and protection against stress. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1472:587-94. [PMID: 10564773 DOI: 10.1016/s0304-4165(99)00184-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cells of Saccharomyces cerevisiae were grown aerobically and anaerobically, and levels of the protective compounds, cysteine and glutathione, and activities of defensive enzymes, catalase and superoxide dismutase, against an oxygen stress were determined and compared in both cells. Aerobiosis increased both the compounds and enzyme activities. The elevated synthesis of glutathione could be associated with the increased levels of cysteine which in its turn was found to be controlled by the oxygen-dependent activation of cystathionine beta-synthase.
Collapse
Affiliation(s)
- S Ohmori
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-Naka-1, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Miyake T, Sammoto H, Kanayama M, Tomochika KI, Shinoda S, Ono BI. Role of the sulphate assimilation pathway in utilization of glutathione as a sulphur source by Saccharomyces cerevisiae. Yeast 1999; 15:1449-57. [PMID: 10514563 DOI: 10.1002/(sici)1097-0061(199910)15:14<1449::aid-yea469>3.0.co;2-s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutants unable to grow on medium containing glutathione as a sole source of sulphur (GSH medium) were isolated from Saccharomyces cerevisiae strains carrying met17(deficiency of O-acetylserine and O-acetylhomoserine sulphydrylase). They were defective in the high-affinity glutathione transport system, GSH-P1. Newly acquired mutations belonged to the same complementation group, gsh11. However, it became apparent that gsh11 conferred the mutant phenotype not by itself but in collaboration with met17. Moreover, mutations conferring the defect in sulphate assimilation made the cell unable to grow on GSH medium in collaboration with gsh11. From this finding, we propose that the sulphate assimilation pathway acts as a sulphur-recycling system and that this function is especially vital to the cell when the supply of glutathione is limited.
Collapse
Affiliation(s)
- T Miyake
- Industrial Technology Center of Okayama Prefecture, Okayama 701-1296, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The Kluyveromyces lactis homocysteine synthase gene was cloned by complementation of the Saccharomyces cerevisiae met25 mutation. The coding sequence of the K. lactis gene shows a high similarity to the S. cerevisiae gene. Very little similarity is found in the 5' and 3' untranslated regions. However, one finds short DNA stretches in the promoter of the K. lactis gene which are identical to the nucleotide sequences implicated in the regulation of the S. cerevisiae homologue. This could explain strong transcriptional inhibition of the K. lactis gene by exogenous methionine in the S. cerevisiae host, and indicates a substantial conservation of the sulphur regulatory system between both yeast species.
Collapse
Affiliation(s)
- J Brzywczy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warszawa, Poland
| | | |
Collapse
|
19
|
Ono BI, Hazu T, Yoshida S, Kawato T, Shinoda S, Brzvwczy J, Paszewski A. Cysteine biosynthesis in Saccharomyces cerevisiae: a new outlook on pathway and regulation. Yeast 1999; 15:1365-75. [PMID: 10509018 DOI: 10.1002/(sici)1097-0061(19990930)15:13<1365::aid-yea468>3.0.co;2-u] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Using a Saccharomyces cerevisiae strain having the activities of serine O-acetyl-transferase (SATase), O-acetylserine/O-acetylhomoserine sulphydrylase (OAS/OAH SHLase), cystathionine beta-synthase (beta-CTSase) and cystathionine gamma-lyase (gamma-CTLase), we individually disrupted CYS3(coding for gamma-CTLase) and CYS4 (coding for beta-CTSase). The obtained gene disruptants were cysteine-dependent and incorporated the radioactivity of (35)S-sulphate into homocysteine but not into cysteine or glutathione. We concluded, therefore, that SATase and OAS/OAH SHLase do not constitute a cysteine biosynthetic pathway and that cysteine is synthesized exclusively through the pathway constituted with beta-CTSase and gamma-CTLase; note that OAS/OAH SHLase supplies homocysteine to this pathway by acting as OAH SHLase. From further investigation upon the cys3-disruptant, we obtained results consistent with our earlier suggestion that cysteine and OAS play central roles in the regulation of sulphate assimilation. In addition, we found that sulphate transport activity was not induced at all in the cys4-disruptant, suggesting that CYS4 plays a role in the regulation of sulphate assimilation.
Collapse
Affiliation(s)
- B I Ono
- Department of Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Cuozzo JW, Kaiser CA. Competition between glutathione and protein thiols for disulphide-bond formation. Nat Cell Biol 1999; 1:130-5. [PMID: 10559898 DOI: 10.1038/11047] [Citation(s) in RCA: 250] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has long been assumed that the oxidized form of glutathione, the tripeptide glutamate-cysteine-glycine, is a source of oxidizing equivalents needed for the formation of disulphide bonds in proteins within the endoplasmic reticulum (ER), although the in vivo function of glutathione in the ER has never been studied directly. Here we show that the major pathway for oxidation in the yeast ER, defined by the protein Ero1, is responsible for the oxidation of both glutathione and protein thiols. However, mutation and overexpression studies show that glutathione competes with protein thiols for the oxidizing machinery. Thus, contrary to expectation, cellular glutathione contributes net reducing equivalents to the ER; these reducing equivalents can buffer the ER against transient hyperoxidizing conditions.
Collapse
Affiliation(s)
- J W Cuozzo
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
21
|
Abstract
Sulfur amino acid biosynthesis in Saccharomyces cerevisiae involves a large number of enzymes required for the de novo biosynthesis of methionine and cysteine and the recycling of organic sulfur metabolites. This review summarizes the details of these processes and analyzes the molecular data which have been acquired in this metabolic area. Sulfur biochemistry appears not to be unique through terrestrial life, and S. cerevisiae is one of the species of sulfate-assimilatory organisms possessing a larger set of enzymes for sulfur metabolism. The review also deals with several enzyme deficiencies that lead to a nutritional requirement for organic sulfur, although they do not correspond to defects within the biosynthetic pathway. In S. cerevisiae, the sulfur amino acid biosynthetic pathway is tightly controlled: in response to an increase in the amount of intracellular S-adenosylmethionine (AdoMet), transcription of the coregulated genes is turned off. The second part of the review is devoted to the molecular mechanisms underlying this regulation. The coordinated response to AdoMet requires two cis-acting promoter elements. One centers on the sequence TCACGTG, which also constitutes a component of all S. cerevisiae centromeres. Situated upstream of the sulfur genes, this element is the binding site of a transcription activation complex consisting of a basic helix-loop-helix factor, Cbf1p, and two basic leucine zipper factors, Met4p and Met28p. Molecular studies have unraveled the specific functions for each subunit of the Cbf1p-Met4p-Met28p complex as well as the modalities of its assembly on the DNA. The Cbf1p-Met4p-Met28p complex contains only one transcription activation module, the Met4p subunit. Detailed mutational analysis of Met4p has elucidated its functional organization. In addition to its activation and bZIP domains, Met4p contains two regulatory domains, called the inhibitory region and the auxiliary domain. When the level of intracellular AdoMet increases, the transcription activation function of Met4 is prevented by Met30p, which binds to the Met4 inhibitory region. In addition to the Cbf1p-Met4p-Met28p complex, transcriptional regulation involves two zinc finger-containing proteins, Met31p and Met32p. The AdoMet-mediated control of the sulfur amino acid pathway illustrates the molecular strategies used by eucaryotic cells to couple gene expression to metabolic changes.
Collapse
Affiliation(s)
- D Thomas
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | | |
Collapse
|
22
|
Oluwatosin YE, Kane PM. Mutations in the CYS4 gene provide evidence for regulation of the yeast vacuolar H+-ATPase by oxidation and reduction in vivo. J Biol Chem 1997; 272:28149-57. [PMID: 9346971 DOI: 10.1074/jbc.272.44.28149] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The vma41-1 mutant was identified in a genetic screen designed to identify novel genes required for vacuolar H+-ATPase activity in Saccharomyces cerevisiae. The VMA41 gene was cloned and shown to be allelic to the CYS4 gene. The CYS4 gene encodes the first enzyme in cysteine biosynthesis, and in addition to cysteine auxotrophy, cys4 mutants have much lower levels of intracellular glutathione than wild-type cells. cys4 mutants display the pH-dependent growth phenotypes characteristic of vma mutants and are unable to accumulate quinacrine in the vacuole, indicating loss of vacuolar acidification in vivo. The vacuolar proton-translocating ATPases (V-ATPase) is synthesized at normal levels and assembled at the vacuolar membrane in cys4 mutants, but its specific activity is reduced (47% of wild type) and the activity is unstable. Addition of reduced glutathione to the growth medium complements the pH-dependent growth phenotype, partially restores vacuolar acidification, and restores wild type levels of ATPase activity. The CYS4 gene was deleted in a strain in which the catalytic site cysteine residue implicated in oxidative inhibition of the yeast V-ATPase has been mutagenized (Liu, Q., Leng, X.-H., Newman, P., Vasilyeva, E., Kane, P. M., and Forgac, M. (1997) J. Biol. Chem. 272, 11750-11756). This catalytic site point mutation suppresses the effects of the cys4 mutation. The data indicate that the acidification defect of cys4 mutants arises from inactivation of the vacuolar ATPase in the less reducing cytosol resulting from loss of Cys4p activity and provide the first evidence for the modulation of V-ATPase activity by the redox state of the environment in vivo.
Collapse
Affiliation(s)
- Y E Oluwatosin
- Department of Biochemistry and Molecular Biology, State University of New York Health Science Center at Syracuse, Syracuse, New York 13210, USA
| | | |
Collapse
|
23
|
Abstract
We examined how the activity of O-acetylserine and O-acetylhomoserine sulphydrylase (OAS/OAH) SHLase of Saccharomyces cerevisiae is affected by sulphur source added to the growth medium and genetic background of the strain. In a wild-type strain, the activity was repressed if methionine, cysteine or glutathione was added to the growth medium. However, in a strain deficient of cystathionine gamma-lyase, cysteine and glutathione were repressive, but methionine was not. In strains deficient of serine O-acetyltransferase (SATase), OAS/OAH SHLase activity was low regardless of sulphur source and was further lowered by cysteine and glutathione, but not by methionine. From these observations, we concluded that S-adenosylmethionine should be excluded from being the effector for regulation of OAS/OAH SHLase. Instead, we suspected that S. cerevisiae would have the same regulatory system as Escherichia coli for sulphate assimilation; i.e. cysteine inhibits SATase to lower the cellular concentration of OAS which is required for induction of the sulphate assimilation enzymes including OAS/OAH SHLase. Subsequently, we obtained data supporting this speculation.
Collapse
Affiliation(s)
- B Ono
- Laboratory of Environmental Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Ono BI, Kijima K, Ishii N, Kawato T, Matsuda A, Paszewski A, Shinoda S. Regulation of sulphate assimilation inSaccharomyces cerevisiae. Yeast 1996. [DOI: 10.1002/(sici)1097-0061(19960915)12:11<1153::aid-yea16>3.0.co;2-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Yamagata S, Isaji M, Nakamura K, Fujisaki S, Doi K, Bawden S, D'Andrea R. Overexpression of the Saccharomyces cerevisiae MET17/MET25 gene in Escherichia coli and comparative characterization of the product with O-acetylserine.O-acetylhomoserine sulfhydrylase of the yeast. Appl Microbiol Biotechnol 1994; 42:92-9. [PMID: 7765825 DOI: 10.1007/bf00170230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Saccharomyces cerevisiae MET17/MET25 gene encoding O-acetyl-L-serine (OAS).O-acetyl-L-homoserine (OAH) sulfhydrylase (EC 4.2.99.10) was overexpressed in Escherichia coli and the gene product was purified to homogeneity, using three steps, with a recovery of 28% from the total cell extract. The gene product has been compared with OAS.OAH sulfhydrylase purified from the yeast cells. These two protein preparations were indistinguishable with respect to their behavior in polyacrylamide gel electrophoresis, both with and without sodium dodecyl sulfate, their specificity for substrate amino acids, Michaelis constant (Km) value for OAH, sensitivity to carbonyl reagents, absorption spectrum, isoelectric point, behavior in HPLC (both ion-exchange chromatography and gel filtration), sensitivity to heat treatment, susceptibility to trypsin digestion, and their N-terminal amino acid sequence. The results obtained imply that the gene product is properly processed in E. coli, and the technique developed in this study to overexpress the gene in bacterial cells provides us with a large amount of the purified preparation of the enzyme. In contrast to a previous report we found that cystathionine gamma-lyase of S.
Collapse
Affiliation(s)
- S Yamagata
- Department of Biology, Faculty of General Education, Gifu University, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Kruger WD, Cox DR. A yeast system for expression of human cystathionine beta-synthase: structural and functional conservation of the human and yeast genes. Proc Natl Acad Sci U S A 1994; 91:6614-8. [PMID: 8022826 PMCID: PMC44253 DOI: 10.1073/pnas.91.14.6614] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human cystathionine beta-synthase (CBS; EC 4.2.1.22) deficiency results in a recessive genetic disorder whose clinical and biochemical manifestations vary greatly among affected individuals. In an effort to identify and analyze mutations in the human CBS gene, we have developed a yeast expression system for human CBS. We have cloned and sequenced a human cDNA that codes for CBS and have expressed the human CBS protein in yeast cells lacking endogenous CBS. The human enzyme produced in yeast is functional both in vitro and in vivo. We have also cloned and sequenced the yeast gene, CYS4, that codes for CBS. The predicted human and yeast CBS proteins are 38% identical and 72% similar to each other, as well as sharing significant similarity with bacterial cysteine synthase. These results demonstrate the evolutionary conservation of CBS and establish the utility of a yeast expression system for studying human CBS.
Collapse
Affiliation(s)
- W D Kruger
- Department of Psychiatry, University of California at San Francisco 94143
| | | |
Collapse
|
27
|
Ono B, Kijima K, Inoue T, Miyoshi S, Matsuda A, Shinoda S. Purification and properties of Saccharomyces cerevisiae cystathionine beta-synthase. Yeast 1994; 10:333-9. [PMID: 8017103 DOI: 10.1002/yea.320100306] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cystathionine beta-synthase (beta-CTSase), which catalyses cystathionine synthesis from serine and homocysteine, was purified to homogeneity from Saccharomyces cerevisiae. The molecular mass of the enzyme was estimated to be 235 kDa by gel filtration and 55 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, indicating that it is a homotetramer. The N-terminal amino acid sequence of the enzyme perfectly coincided with that deduced from the nucleotide sequence of CYS4, except for the absence of initiation The purified beta-CTSase catalysed cysteine synthesis from serine (or O-acetylserine) and H2S. From this finding, we discuss the multifunctional nature and evolutionary divergence of S-metabolizing enzymes.
Collapse
Affiliation(s)
- B Ono
- Laboratory of Environmental Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Brzywczy J, Paszewski A. Role of O-acetylhomoserine sulfhydrylase in sulfur amino acid synthesis in various yeasts. Yeast 1993; 9:1335-42. [PMID: 8154184 DOI: 10.1002/yea.320091207] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutants defective in O-acetylhomoserine sulfhydrylase (OAH-SHLase) were obtained in five yeast strains representative of different yeast genera: Saccharomyces cerevisiae, Kluyveromyces lactis, Yarrowia lipolytica, Schizosaccharomyces pombe and Trichosporon cutaneum. In vitro, in all five strains, the enzyme also had O-acetylserine (OAS) sulfhydrylase activity so it is a 'bifunctional' OAH/OAS-SHLase (Yamagata, 1989). The enzyme was only found to be essential in S. cerevisiae (OAH SHLase-negative mutants are auxotrophs). Its impairment in K. lactis caused a slower growth rate and a decrease of the sulfur amino acid pool. In T. cutaneum only the pool was affected whereas in Y. lipolytica and S. pombe the lesion caused no change in the growth rate nor in the pool. In all strains where OAH SHLase-negative mutants were prototrophs, a monofunctional OAS sulhydrylase was detected. The results indicate that OAH SHLase may play different physiological roles in various yeasts.
Collapse
Affiliation(s)
- J Brzywczy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa
| | | |
Collapse
|
29
|
Yamagata S, D'Andrea RJ, Fujisaki S, Isaji M, Nakamura K. Cloning and bacterial expression of the CYS3 gene encoding cystathionine gamma-lyase of Saccharomyces cerevisiae and the physicochemical and enzymatic properties of the protein. J Bacteriol 1993; 175:4800-8. [PMID: 8335636 PMCID: PMC204932 DOI: 10.1128/jb.175.15.4800-4808.1993] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
By screening a yeast genomic library, we isolated and characterized a gene rescuing the cysteine requirement in a "cys1" strain of Saccharomyces cerevisiae. Except for four residues in the open reading frame composed of 1,182 nucleotides, the DNA sequence was the same as that for the CYS3 (CYI1) gene, encoding cystathionine gamma-lyase (EC 4.4.1.1), and isolated previously as a cycloheximide-induced gene (B. Ono, K. Tanaka, K. Naito, C. Heike, S. Shinoda, S. Yamamoto, S. Ohmori, T. Oshima, and A. Toh-e, J. Bacteriol. 174:pp.3339-3347, 1992). S. cerevisiae "cys1" strains carry two closely linked mutations; one (cys1) causes a defect in serine O-acetyltransferase (EC 2.3.1.30), and another, designated cys3, impairs cystathionine gamma-lyase activity. Rescue of the cysteine requirement by the gene encoding cystathionine gamma-lyase is consistent with both defects being responsible for the cysteine auxotrophy. In an effort to further determine the physicochemical and enzymatic properties of this enzyme, a coding fragment was cloned into an Escherichia coli expression plasmid, and the protein was produced in the bacteria. The induced protein was extracted by sonication and purified to homogeneity through one course of DEAE-cellulose column chromatography. The yield of the protein was approximately 150 mg from cells cultured in 1 liter of L broth. The protein showed molecular weights of approximately 194,000 and 48,000 (for the subunit), suggesting a tetrameric structure. An s20,w value of 8.8 was estimated by centrifugation in a sucrose concentration gradient. No sulfhydryl groups were detected, which is consistent with the absence of cysteine residues in the coding sequence. The isoelectric point was at pH 5.2. The protein showed a number of cystathionine-related activities, i.e., cystathionine beta-lyase (EC 4.4.1.8), cystathionine gamma-lyase, and cystathionine gamma-synthase (EC 4.2.99.9) with L-homoserine as substrate. In addition, we demonstrated L-homoserine sulfhydrylase (adding H2S) activity but could find no detectable serine O-acteyltransferease activity. In this paper, we compare the enzymatic properties of the protein with those of homologous enzymes previously reported and discuss the possibility that this enzyme has a physiological role as cystathionine Beta-lyase and cystathionine gamma-synthase in addition to its previously described role as cystathionine gamma-lyase.
Collapse
Affiliation(s)
- S Yamagata
- Department of Biology, Faculty of General Education, Gifu University, Japan
| | | | | | | | | |
Collapse
|
30
|
Barton AB, Kaback DB, Clark MW, Keng T, Ouellette BF, Storms RK, Zeng B, Zhong W, Fortin N, Delaney S. Physical localization of yeast CYS3, a gene whose product resembles the rat gamma-cystathionase and Escherichia coli cystathionine gamma-synthase enzymes. Yeast 1993; 9:363-9. [PMID: 8511966 DOI: 10.1002/yea.320090406] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have cloned, sequenced and physically mapped the CYS3 gene of Saccharomyces cerevisiae. This gene can complement the cys3-1 allele, and disruptions at this locus lead to cysteine auxotrophy. The predicted CYS3 product is closely related (46% identical) to the rat cystathionine gamma-lyase (Erickson et al., 1990), but differs in lacking cysteine residues. These results provide further evidence that the S288C strain of yeast resembles mammals in synthesizing cysteine solely via a trans-sulfuration pathway. The CYS3 product was found to have strong homology to three other enzymes involved in cysteine metabolism: the Escherichia coli metB and metC products and the S. cerevisiae MET25 gene product. The trans-sulfuration enzymes appear to form a diverged family and carry out related functions from bacteria to mammals.
Collapse
Affiliation(s)
- A B Barton
- Biology Department, McGill University, Montreal, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ono B, Ishii N, Naito K, Miyoshi S, Shinoda S, Yamamoto S, Ohmori S. Cystathionine gamma-lyase of Saccharomyces cerevisiae: structural gene and cystathionine gamma-synthase activity. Yeast 1993; 9:389-97. [PMID: 8511969 DOI: 10.1002/yea.320090409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Purification of Saccharomyces cerevisiae cystathionine gamma-lyase (gamma-CTLase) was hampered by the presence of a protein migrating very close to it in various types of column chromatography. The enzyme and the contaminant were nevertheless separated by polyacrylamide gel electrophoresis. N-terminal amino acid sequence analysis indicated that they are coded for by CYS3 (CYI1) and MET17 (MET25), respectively, leading to the conclusion that CYS3 is the structural gene for gamma-CTLase and that the contaminant is O-acetylserine/O-acetylhomoserine sulfhydrylase (OAS/OAH SHLase). Based on these findings, we purified gamma-CTLase by the following strategy: (1) extraction of OAS/OAH SHLase from a CYS3-disrupted strain; (2) preparation of antiserum against it; (3) identification of a strain devoid of the OAS/OAH SHLase protein using this antiserum; and (4) extraction of gamma-CTLase from this strain. Purified gamma-CTLase had cystathionine gamma-synthase (gamma-CTSase) activity if O-succinylhomoserine, but not O-acetylhomoserine, was used as substrate. From this notion we discuss the evolutional relationship between S. cerevisiae gamma-CTLase and Escherichia coli gamma-CTSase.
Collapse
Affiliation(s)
- B Ono
- Laboratory of Environmental Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- M J Penninckx
- Unité de Physiologie et Ecologie Microbiennes, Faculté des Sciences, Université libre de Bruxelles, Instut Pasteur Brabant, Belgium
| | | |
Collapse
|
33
|
Paszewski A, Ono BI. Biosynthesis of sulphur amino acids in Saccharomyces cerevisiae: regulatory roles of methionine and S-adenosylmethionine reassessed. Curr Genet 1992; 22:273-5. [PMID: 1394507 DOI: 10.1007/bf00317920] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
cys4-1, a mutation in the reverse trans-sulphuration pathway, relieves the sulphate assimilation pathway and homocysteine synthase from methionine-mediated repression. Since the mutation blocks the synthesis of cysteine from methionine downstream from homocysteine, this indicates that neither methionine nor S-adenosylmethionine serve as low-molecular-mass effectors in this regulatory system, contradicting earlier hypotheses.
Collapse
Affiliation(s)
- A Paszewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa
| | | |
Collapse
|
34
|
Ono B, Tanaka K, Naito K, Heike C, Shinoda S, Yamamoto S, Ohmori S, Oshima T, Toh-e A. Cloning and characterization of the CYS3 (CYI1) gene of Saccharomyces cerevisiae. J Bacteriol 1992; 174:3339-47. [PMID: 1577698 PMCID: PMC206003 DOI: 10.1128/jb.174.10.3339-3347.1992] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A DNA fragment containing the Saccharomyces cerevisiae CYS3 (CYI1) gene was cloned. The clone had a single open reading frame of 1,182 bp (394 amino acid residues). By comparison of the deduced amino acid sequence with the N-terminal amino acid sequence of cystathionine gamma-lyase, CYS3 (CYI1) was concluded to be the structural gene for this enzyme. In addition, the deduced sequence showed homology with the following enzymes: rat cystathionine gamma-lyase (41%), Escherichia coli cystathionine gamma-synthase (36%), and cystathionine beta-lyase (25%). The N-terminal half of it was homologous (39%) with the N-terminal half of S. cerevisiae O-acetylserine and O-acetylhomoserine sulfhydrylase. The cloned CYS3 (CYI1) gene marginally complemented the E. coli metB mutation (cystathionine gamma-synthase deficiency) and conferred cystathionine gamma-synthase activity as well as cystathionine gamma-lyase activity to E. coli; cystathionine gamma-synthase activity was detected when O-succinylhomoserine but not O-acetylhomoserine was used as substrate. We therefore conclude that S. cerevisiae cystathionine gamma-lyase and E. coli cystathionine gamma-synthase are homologous in both structure and in vitro function and propose that their different in vivo functions are due to the unavailability of O-succinylhomoserine in S. cerevisiae and the scarceness of cystathionine in E. coli.
Collapse
Affiliation(s)
- B Ono
- Laboratory of Environmental Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ono B, Heike C, Yano Y, Inoue T, Naito K, Nakagami S, Yamane A. Cloning and mapping of the CYS4 gene of Saccharomyces cerevisiae. Curr Genet 1992; 21:285-9. [PMID: 1525856 DOI: 10.1007/bf00351684] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A DNA fragment containing the CYS4 gene of Saccharomyces cerevisiae was isolated from a genomic library. The cloned fragment hybridized to the transverse-alternating-field-electrophoresis band corresponding to chromosomes VII and XV. According to the 2 microns DNA chromosome-loss procedure, the cys2 and cys4 mutations, which are linked together and co-operatively confer cysteine dependence, were assigned to chromosome VII. By further mapping involving tetrad analysis, the cys2-cys4 pair was localized between SUP77 (SUP166) and ade3 on the right arm of chromosome VII.
Collapse
Affiliation(s)
- B Ono
- Laboratory of Environmental Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Cherest H, Surdin-Kerjan Y. Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway. Genetics 1992; 130:51-8. [PMID: 1732168 PMCID: PMC1204804 DOI: 10.1093/genetics/130.1.51] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have identified a mutation in a gene of Saccharomyces cerevisiae, STR1, that leads to a strict nutritional requirement for cysteine. The str1-1 mutation decreases to an undetectable level the cystathionine gamma-lyase activity. This enzyme catalyzes one of the two reactions involved in the transsulfuration pathway that yields cysteine from homocysteine with the intermediary formation of cystathionine. The phenotype induced by this mutation implies that, in S. cerevisiae, the sulfur atom of sulfide resulting from the reductive assimilation of sulfate is incorporated into a four carbon backbone yielding homocysteine, which, in turn, is the precursor of the biosynthesis of both cysteine and methionine. This also reveals that the direct synthesis of cysteine by incorporation of the sulfur atom into a three carbon backbone as found in Escherichia coli does not occur in S. cerevisiae. The study of the meiotic progeny of diploid strains heterozygous at the STR1 locus has shown that the str1-1 mutation undergoes a particularly high frequency of meiotic gene conversion.
Collapse
Affiliation(s)
- H Cherest
- Laboratoire d'Enzymologie du C.N.R.S., Gif-sur-Yvette, France
| | | |
Collapse
|
37
|
Ono B, Naito K, Shirahige Y, Yamamoto M. Regulation of cystathionine gamma-lyase in Saccharomyces cerevisiae. Yeast 1991; 7:843-8. [PMID: 1789005 DOI: 10.1002/yea.320070809] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Regulation of the two enzymes in reverse trans-sulfuration was investigated in Saccharomyces cerevisiae. In wild-type strains, cystathionine gamma-lyase, but not cystathionine beta-synthase, was depressed nearly 15-fold if cells were starved for both inorganic and organic sulfur compounds. In a met17 strain which is defective of O-acetylserine and O-acetylhomoserine sulfhydrylase, the same enzyme was derepressed if organic sulfur compounds were limited; the repressive effect was in the order of glutathione greater than methionine greater than cysteine. The repressive effect of methionine was not observed, however, in a cys2 cys4 strain which is deficient of serine O-acetyltransferase and cystathionine beta-synthase, indicating that methionine itself is not the effector. The weak repressive effect of cysteine was attributed to inefficient uptake of this amino acid. Our observations indicate that cystathionine gamma-lyase is the target of regulation in reverse trans-sulfuration and that cysteine is very likely to be the effector of this regulation.
Collapse
Affiliation(s)
- B Ono
- Laboratory of Environmental Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | |
Collapse
|
38
|
Ono B, Ishii N, Fujino S, Aoyama I. Role of hydrosulfide ions (HS-) in methylmercury resistance in Saccharomyces cerevisiae. Appl Environ Microbiol 1991; 57:3183-6. [PMID: 1781681 PMCID: PMC183945 DOI: 10.1128/aem.57.11.3183-3186.1991] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Methylmercury-resistant mutants were obtained from Saccharomyces cerevisiae. They were divided into two complementation groups, met2 (homoserine O-acetyltransferase deficiency) and met15 (enzyme deficiency unknown), as reported previously. It was found that met15 was allelic to met17 (O-acetylserine and O-acetylhomoserine sulfhydrylase deficiency). Methylmercury toxicity was counteracted by exogenously added HS-, and both met2 and met17 (met15) mutants overproduced H2S. On the basis of these results, we conclude that met2 and met17 (met15) cause accumulation of hydrosulfide ions in the cell and that the increased level of hydrosulfide is responsible for detoxification of methylmercury.
Collapse
Affiliation(s)
- B Ono
- Laboratory of Environmental Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | |
Collapse
|
39
|
Abstract
Although Saccharomyces cerevisiae strains had different cysteine uptake activities, they revealed monophasic uptake kinetics and had the same KT (83.3 microM). The optimal pH of cysteine uptake was between 4.5 and 5.0, but the activity was quickly lost if cells were kept in buffer. When the activity was measured in the growth medium, it increased in the presence of EDTA and greatly decreased in the presence of mercuric chloride. Thioglycol as well as metabolic inhibitors such as dinitrophenol and azide were inhibitory. Homocysteine and methionine were competitive and non-competitive inhibitors, respectively. Cysteamine and cysteic acid were not inhibitory. From these observations, we conclude that the system mediating uptake of cysteine is specific (we thus name it the cysteine transport system) and that the cysteine transport system recognizes not only the SH-group but also amino- and carboxyl-groups. In wild-type strains the cysteine transport system was derepressed only when the cells were incubated without any sulfur source. On the other hand, in cysteine-dependent mutants, cysteine uptake activity increased with increase of exogenous supply of cysteine, glutathione or methionine. From this result, we suspect that the cellular cysteine level is the limiting factor for biosynthesis of the cysteine transport system in cysteine-dependent strains.
Collapse
Affiliation(s)
- B Ono
- Laboratory of Environmental Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | |
Collapse
|
40
|
Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in the yeast Saccharomyces cerevisiae. EMBO J 1991. [PMID: 2001674 PMCID: PMC452689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Homocysteine thiolactone is a product of an error-editing reaction, catalyzed by Escherichia coli methionyl-tRNA synthetase, which prevents incorporation of homocysteine into tRNA and protein, both in vitro and in vivo. Here, the thiolactone is also shown to occur in cultures of the yeast Saccharomyces cerevisiae. In yeast, the thiolactone is made from homocysteine in a reaction catalyzed by methionyl-tRNA synthetase. One molecule of homocysteine is edited as thiolactone per 500 molecules of methionine incorporated into protein. Homocysteine, added exogenously to the medium or overproduced by some yeast mutants, is detrimental to cell growth. The cost of homocysteine editing in yeast is minimized by the presence of a pathway leading from homocysteine to cysteine, which keeps intracellular homocysteine at low levels. These results not only directly demonstrate that editing of errors in amino acid selection by methionyl-tRNA synthetase operates in vivo in yeast but also establish the importance of proofreading mechanisms in a eukaryotic organism.
Collapse
|
41
|
Gene-enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. Study of the 3'-phosphoadenylylsulfate reductase structural gene. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)55427-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Ono B, Ishino-Arao Y, Takasugi K, Taniguchi M, Fukuda M, Fukui M, Miyakawa I, Sando N. "Alternative self-diploidization" or "ASD" homothallism in Saccharomyces cerevisiae: isolation of a mutant, nuclear-cytoplasmic interaction and endomitotic diploidization. Genetics 1990; 125:729-38. [PMID: 2204579 PMCID: PMC1204099 DOI: 10.1093/genetics/125.4.729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A mutant of Saccharomyces cerevisiae representing a novel life cycle, named "alternative self-diploidization" or "ASD" homothallism, was obtained fortuitously. In this life cycle, MAT alpha (or MATa) haplophase and MAT alpha/MAT alpha (or MATa/MATa) diplophase alternate. Germinated cells are haploid and mating. They soon become nonmating and sporogenous as they vegetatively grow. They sooner or later diploidize presumably via endomitosis. The diploid cells haploidize via normal meiosis. A single recessive nuclear mutation, named asd 1-1, is responsible for "ASD" homothallism. In the rho 0 cytoplasm, asd 1-1 cells mate even if at a low efficiency and fail to diploidize. Since pet mutations do not have such effects, we conclude that a certain mitochondrial function other than respiration is required for manifestation of "ASD" homothallism. That is, "ASD" homothallism is the result of some sort of nuclear-cytoplasmic interaction.
Collapse
Affiliation(s)
- B Ono
- Laboratory of Environmental Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wakem LP, Sherman F. Chromosomal assignment of mutations by specific chromosome loss in the yeast Saccharomyces cerevisiae. Genetics 1990; 125:333-40. [PMID: 2199315 PMCID: PMC1204023 DOI: 10.1093/genetics/125.2.333] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Yeast 2-microns plasmids were integrated near the centromere of a different chromosome in each of 16 cir0 mapping strains of Saccharomyces cerevisiae. The specific chromosomes containing the integrated 2-microns plasmid DNA were lost at a high frequency after crossing the cir0 strains to cir+ strains. A recessive mutation in a cir+ strain can then be easily assigned to its chromosome using this set of mapping strains, since the phenotype of the recessive mutation will be manifested only in diploids having the integrated 2-microns plasmid and the unmapped mutation on homologous chromosomes.
Collapse
Affiliation(s)
- L P Wakem
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, New York 14642
| | | |
Collapse
|
44
|
Abstract
O-Acetyl-L-homoserine sulfhydrylase (EC 4.2.99.10) is essential for certain micro-organisms, functioning as a homocysteine synthase in the pathway of methionine synthesis. It participates in an alternative pathway of L-homocysteine synthesis for those microbes in which homocysteine is synthesized mainly via cystathionine. The protein can also catalyze the de novo synthesis of L-cysteine and O-alkyl-L-homoserine in some microorganisms. The enzyme possibly recycles the methylthio group of methionine.
Collapse
Affiliation(s)
- S Yamagata
- Department of Biology, Faculty of General Education, Gifu University, Japan
| |
Collapse
|