1
|
Rybchuk J, Xiao W. Dual activities of a silencing information regulator complex in yeast transcriptional regulation and DNA-damage response. MLIFE 2024; 3:207-218. [PMID: 38948145 PMCID: PMC11211678 DOI: 10.1002/mlf2.12108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/28/2024] [Indexed: 07/02/2024]
Abstract
The Saccharomyces cerevisiae silencing information regulator (SIR) complex contains up to four proteins, namely Sir1, Sir2, Sir3, and Sir4. While Sir2 encodes a NAD-dependent histone deacetylase, other SIR proteins mainly function as structural and scaffold components through physical interaction with various proteins. The SIR complex displays different conformation and composition, including Sir2 homotrimer, Sir1-4 heterotetramer, Sir2-4 heterotrimer, and their derivatives, which recycle and relocate to different chromosomal regions. Major activities of the SIR complex are transcriptional silencing through chromosomal remodeling and modulation of DNA double-strand-break repair pathways. These activities allow the SIR complex to be involved in mating-type maintenance and switching, telomere and subtelomere gene silencing, promotion of nonhomologous end joining, and inhibition of homologous recombination, as well as control of cell aging. This review explores the potential link between epigenetic regulation and DNA damage response conferred by the SIR complex under various conditions aiming at understanding its roles in balancing cell survival and genomic stability in response to internal and environmental stresses. As core activities of the SIR complex are highly conserved in eukaryotes from yeast to humans, knowledge obtained in the yeast may apply to mammalian Sirtuin homologs and related diseases.
Collapse
Affiliation(s)
- Josephine Rybchuk
- Department of Biochemistry, Microbiology and ImmunologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
- Toxicology ProgramUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Wei Xiao
- Department of Biochemistry, Microbiology and ImmunologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
2
|
Lenzi C, Piat A, Schlich P, Ducau J, Bregliano JC, Aguilaniu H, Laurençon A. Parental age effect on the longevity and healthspan in Drosophila melanogaster and Caenorhabditis elegans. Aging (Albany NY) 2023; 15:11720-11739. [PMID: 37917003 PMCID: PMC10683632 DOI: 10.18632/aging.205098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 09/18/2023] [Indexed: 11/03/2023]
Abstract
Several studies have investigated the effect of parental age on biological parameters such as reproduction, lifespan, and health; however, the results have been inconclusive, largely due to inter-species variation and/or modest effect sizes. Here, we examined the effect of parental age on the lifespan, reproductive capacity, and locomotor activity of genetic isogenic lines of the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. We found that the progeny of successive generations of old parents had significantly shorter lifespans than the progeny of young parents in both species. Moreover, we investigated the fertility, fecundity, and locomotor activity of C. elegans. Interestingly, both the shorter lifespan and deteriorated healthspan of the progeny were significantly improved by switching to only one generation of younger parents. Collectively, these data demonstrate that the detrimental effect of older parental age on the longevity of the progeny can be reversed, suggesting the existence of a beneficial non-genetic mechanism.
Collapse
Affiliation(s)
| | | | - Pascal Schlich
- INRA, Centre des Sciences du Goût et de l’Alimentation (CSGA), Dijon, France
| | - Judith Ducau
- IBDM, Parc Scientifique de Luminy, Marseille, France
| | | | | | - Anne Laurençon
- Institut de Genomique Fonctionnelle de Lyon, UMR5242, Universite Claude Bernard-Lyon 1, Ecole Normale Superieure de Lyon, Lyon, France
| |
Collapse
|
3
|
Horkai D, Hadj-Moussa H, Whale AJ, Houseley J. Dietary change without caloric restriction maintains a youthful profile in ageing yeast. PLoS Biol 2023; 21:e3002245. [PMID: 37643155 PMCID: PMC10464975 DOI: 10.1371/journal.pbio.3002245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
Caloric restriction increases lifespan and improves ageing health, but it is unknown whether these outcomes can be separated or achieved through less severe interventions. Here, we show that an unrestricted galactose diet in early life minimises change during replicative ageing in budding yeast, irrespective of diet later in life. Average mother cell division rate is comparable between glucose and galactose diets, and lifespan is shorter on galactose, but markers of senescence and the progressive dysregulation of gene expression observed on glucose are minimal on galactose, showing that these are not intrinsic aspects of replicative ageing but rather associated processes. Respiration on galactose is critical for minimising hallmarks of ageing, and forced respiration during ageing on glucose by overexpression of the mitochondrial biogenesis factor Hap4 also has the same effect though only in a fraction of cells. This fraction maintains Hap4 activity to advanced age with low senescence and a youthful gene expression profile, whereas other cells in the same population lose Hap4 activity, undergo dramatic dysregulation of gene expression and accumulate fragments of chromosome XII (ChrXIIr), which are tightly associated with senescence. Our findings support the existence of two separable ageing trajectories in yeast. We propose that a complete shift to the healthy ageing mode can be achieved in wild-type cells through dietary change in early life without caloric restriction.
Collapse
Affiliation(s)
- Dorottya Horkai
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
4
|
Sharmeen N, Law C, Wu C. Polarization and cell-fate decision facilitated by the adaptor Ste50p in Saccharomyces cerevisiae. PLoS One 2022; 17:e0278614. [PMID: 36538537 PMCID: PMC9767377 DOI: 10.1371/journal.pone.0278614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
In response to pheromone, many proteins localize on the plasma membrane of yeast cell to reform it into a polarized shmoo structure. The adaptor protein Ste50p, known as a pheromone signal enhancer critical for shmoo polarization, has never been explored systematically for its localization and function in the polarization process. Time-lapse single-cell imaging and quantitation shown here characterizes Ste50p involvement in the establishment of cell polarity. We found that Ste50p patches on the cell cortex mark the point of shmoo initiation, these patches could move, and remain associated with the growing shmoo tip in a pheromone concentration time-dependent manner until shmoo maturation. A Ste50p mutant impaired in patch localization suffers a delay in polarization. By quantitative analysis we show that polarization correlates with the rising levels of Ste50p, enabling rapid cell responses to pheromone that correspond to a critical level of Ste50p at the initial G1 phase. We exploited the quantitative differences in the pattern of Ste50p expression to correlate with the cell-cell phenotypic heterogeneity, showing Ste50p involvement in the cellular differentiation choice. Taken together, these findings present Ste50p to be part of the early shmoo development phase, suggesting that Ste50p may be involved with the polarisome in the initiation of polarization, and plays a role in regulating the polarized growth of shmoo during pheromone response.
Collapse
Affiliation(s)
- Nusrat Sharmeen
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | - Chris Law
- Centre for Microscopy and Cellular Imaging, Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Cunle Wu
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Kang PJ, Mullner R, Li H, Hansford D, Shen HW, Park HO. Upregulation of the Cdc42 GTPase limits the replicative lifespan of budding yeast. Mol Biol Cell 2022; 33:br5. [PMID: 35044837 PMCID: PMC9250358 DOI: 10.1091/mbc.e21-04-0208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cdc42, a conserved Rho GTPase, plays a central role in polarity establishment in yeast and animals. Cell polarity is critical for asymmetric cell division, and asymmetric cell division underlies replicative aging of budding yeast. Yet how Cdc42 and other polarity factors impact life span is largely unknown. Here we show by live-cell imaging that the active Cdc42 level is sporadically elevated in wild type during repeated cell divisions but rarely in the long-lived bud8 deletion cells. We find a novel Bud8 localization with cytokinesis remnants, which also recruit Rga1, a Cdc42 GTPase activating protein. Genetic analyses and live-cell imaging suggest that Rga1 and Bud8 oppositely impact life span likely by modulating active Cdc42 levels. An rga1 mutant, which has a shorter life span, dies at the unbudded state with a defect in polarity establishment. Remarkably, Cdc42 accumulates in old cells, and its mild overexpression accelerates aging with frequent symmetric cell divisions, despite no harmful effects on young cells. Our findings implicate that the interplay among these positive and negative polarity factors limits the life span of budding yeast.
Collapse
Affiliation(s)
- Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Rachel Mullner
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Haoyu Li
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Derek Hansford
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Han-Wei Shen
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Eigenfeld M, Kerpes R, Becker T. Recombinant protein linker production as a basis for non-invasive determination of single-cell yeast age in heterogeneous yeast populations. RSC Adv 2021; 11:31923-31932. [PMID: 35495491 PMCID: PMC9041608 DOI: 10.1039/d1ra05276d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
The physiological and metabolic diversity of a yeast culture is the sum of individual cell phenotypes. As well as environmental conditions, genetics, and numbers of cell divisions, a major factor influencing cell characteristics is cell age. A postcytokinesis bud scar on the mother cell, a benchmark in the replicative life span, is a quantifiable indicator of cell age, characterized by significant amounts of chitin. We developed a binding process for visualizing the bud scars of Saccharomyces pastorianus var. carlsbergensis using a protein linker containing a polyhistidine tag, a superfolder green fluorescent protein (sfGFP), and a chitin-binding domain (His6-SUMO-sfGFP-ChBD). The binding did not affect yeast viability; thus, our method provides the basis for non-invasive cell age determination using flow cytometry. The His6-SUMO-sfGFP-ChBD protein was synthesized in Escherichia coli, purified using two-stage chromatography, and checked for monodispersity and purity. Linker-cell binding and the characteristics of the bound complex were determined using flow cytometry and confocal laser scanning microscopy (CLSM). Flow cytometry showed that protein binding increased to 60 455 ± 2706 fluorescence units per cell. The specific coupling of the linker to yeast cells was additionally verified by CLSM and adsorption isotherms using yeast cells, E. coli cells, and chitin resin. We found a relationship between the median bud scar number, the median of the fluorescence units, and the chitin content of yeast cells. A fast measurement of yeast population dynamics by flow cytometry is possible, using this protein binding technique. Rapid qualitative determination of yeast cell age distribution can therefore be performed.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Technical University of Munich, Chair of Brewing and Beverage Technology, Research Group Beverage and Cereal Biotechnology Weihenstephaner Steig 20 85354 Freising Germany
| | - Roland Kerpes
- Technical University of Munich, Chair of Brewing and Beverage Technology, Research Group Beverage and Cereal Biotechnology Weihenstephaner Steig 20 85354 Freising Germany
| | - Thomas Becker
- Technical University of Munich, Chair of Brewing and Beverage Technology, Research Group Beverage and Cereal Biotechnology Weihenstephaner Steig 20 85354 Freising Germany
| |
Collapse
|
7
|
Abstract
The evolutionary theory of aging has set the foundations for a comprehensive understanding of aging. The biology of aging has listed and described the "hallmarks of aging," i.e., cellular and molecular mechanisms involved in human aging. The present paper is the first to infer the order of appearance of the hallmarks of bilaterian and thereby human aging throughout evolution from their presence in progressively narrower clades. Its first result is that all organisms, even non-senescent, have to deal with at least one mechanism of aging - the progressive accumulation of misfolded or unstable proteins. Due to their cumulation, these mechanisms are called "layers of aging." A difference should be made between the first four layers of unicellular aging, present in some unicellular organisms and in all multicellular opisthokonts, that stem and strike "from the inside" of individual cells and span from increasingly abnormal protein folding to deregulated nutrient sensing, and the last four layers of metacellular aging, progressively appearing in metazoans, that strike the cells of a multicellular organism "from the outside," i.e., because of other cells, and span from transcriptional alterations to the disruption of intercellular communication. The evolution of metazoans and eumetazoans probably solved the problem of aging along with the problem of unicellular aging. However, metacellular aging originates in the mechanisms by which the effects of unicellular aging are kept under control - e.g., the exhaustion of stem cells that contribute to replace damaged somatic cells. In bilaterians, additional functions have taken a toll on generally useless potentially limited lifespan to increase the fitness of organisms at the price of a progressively less efficient containment of the damage of unicellular aging. In the end, this picture suggests that geroscience should be more efficient in targeting conditions of metacellular aging rather than unicellular aging itself.
Collapse
Affiliation(s)
- Maël Lemoine
- CNRS, ImmunoConcEpT, UMR 5164, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Koch BA, Staley E, Jin H, Yu HG. The ESCRT-III complex is required for nuclear pore complex sequestration and regulates gamete replicative lifespan in budding yeast meiosis. Nucleus 2021; 11:219-236. [PMID: 32893723 PMCID: PMC7529410 DOI: 10.1080/19491034.2020.1812872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cellular aging occurs as a cell loses its ability to maintain homeostasis. Aging cells eliminate damaged cellular compartments and other senescence factors via self-renewal. The mechanism that regulates cellular rejuvenation remains to be further elucidated. Using budding yeast gametogenesis as a model, we show here that the endosomal sorting complex required for transport (ESCRT) III regulates nuclear envelope organization. During gametogenesis, the nuclear pore complex (NPC) and other senescence factors are sequestered away from the prospore nuclei. We show that the LEM-domain protein Heh1 (Src1) facilitates the nuclear recruitment of ESCRT-III, which is required for meiotic NPC sequestration and nuclear envelope remodeling. Furthermore, ESCRT-III-mediated nuclear reorganization appears to be critical for gamete rejuvenation, as hindering this process curtails either directly or indirectly the replicative lifespan in gametes. Our findings demonstrate the importance of ESCRT-III in nuclear envelope remodeling and its potential role in eliminating senescence factors during gametogenesis.
Collapse
Affiliation(s)
- Bailey A Koch
- Department of Biological Science, The Florida State University , Tallahassee, FL, USA
| | - Elizabeth Staley
- Department of Biological Science, The Florida State University , Tallahassee, FL, USA
| | - Hui Jin
- Department of Biological Science, The Florida State University , Tallahassee, FL, USA
| | - Hong-Guo Yu
- Department of Biological Science, The Florida State University , Tallahassee, FL, USA
| |
Collapse
|
9
|
Schnitzer B, Borgqvist J, Cvijovic M. The synergy of damage repair and retention promotes rejuvenation and prolongs healthy lifespans in cell lineages. PLoS Comput Biol 2020; 16:e1008314. [PMID: 33044956 PMCID: PMC7598927 DOI: 10.1371/journal.pcbi.1008314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/30/2020] [Accepted: 09/04/2020] [Indexed: 01/29/2023] Open
Abstract
Damaged proteins are inherited asymmetrically during cell division in the yeast Saccharomyces cerevisiae, such that most damage is retained within the mother cell. The consequence is an ageing mother and a rejuvenated daughter cell with full replicative potential. Daughters of old and damaged mothers are however born with increasing levels of damage resulting in lowered replicative lifespans. Remarkably, these prematurely old daughters can give rise to rejuvenated cells with low damage levels and recovered lifespans, called second-degree rejuvenation. We aimed to investigate how damage repair and retention together can promote rejuvenation and at the same time ensure low damage levels in mother cells, reflected in longer health spans. We developed a dynamic model for damage accumulation over successive divisions in individual cells as part of a dynamically growing cell lineage. With detailed knowledge about single-cell dynamics and relationships between all cells in the lineage, we can infer how individual damage repair and retention strategies affect the propagation of damage in the population. We show that damage retention lowers damage levels in the population by reducing the variability across the lineage, and results in larger population sizes. Repairing damage efficiently in early life, as opposed to investing in repair when damage has already accumulated, counteracts accelerated ageing caused by damage retention. It prolongs the health span of individual cells which are moreover less prone to stress. In combination, damage retention and early investment in repair are beneficial for healthy ageing in yeast cell populations.
Collapse
Affiliation(s)
- Barbara Schnitzer
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Johannes Borgqvist
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Excessive rDNA Transcription Drives the Disruption in Nuclear Homeostasis during Entry into Senescence in Budding Yeast. Cell Rep 2020; 28:408-422.e4. [PMID: 31291577 DOI: 10.1016/j.celrep.2019.06.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 01/11/2023] Open
Abstract
Budding yeast cells undergo a limited number of divisions before they enter senescence and die. Despite recent mechanistic advances, whether and how molecular events are temporally and causally linked during the transition to senescence remain elusive. Here, using real-time observation of the accumulation of extrachromosomal rDNA circles (ERCs) in single cells, we provide evidence that ERCs build up rapidly with exponential kinetics well before any physiological decline. We then show that ERCs fuel a massive increase in ribosomal RNA (rRNA) levels in the nucleolus, which do not mature into functional ribosomes. This breakdown in nucleolar coordination is followed by a loss of nuclear homeostasis, thus defining a chronology of causally related events leading to cell death. A computational analysis supports a model in which a series of age-independent processes lead to an age-dependent increase in cell mortality, hence explaining the emergence of aging in budding yeast.
Collapse
|
11
|
Ancestral germen/soma distinction in microbes: Expanding the disposable soma theory of aging to all unicellular lineages. Ageing Res Rev 2020; 60:101064. [PMID: 32268207 DOI: 10.1016/j.arr.2020.101064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/12/2020] [Accepted: 03/31/2020] [Indexed: 01/26/2023]
Abstract
Life has persisted for about 3.5 billion years (Gy) despite fluctuating environmental pressures and the aging and mortality of individuals. The disposable soma theory (DST) notoriously contributes to explain this persistence for lineages with a clear soma/germen distinction. Beyond such lineages however, the phylogenetic scope of application of the DST is less obvious. Typically, the DST is not expected to explain the survival of microbial species that comprise single-celled organisms apparently lacking a germen/soma distinction. Here, we present an evolutionary argument that generalizes the explanatory scope of DST to the entire microbial world and provides a novel characterization of the deep molecular and evolutionary roots supporting this expanded disposable soma theory of aging. Specifically, we argue that the germen/soma distinction arose early in evolution and identify DNA semi-conservative replication as a critical process through which two forms of rejuvenation could have evolved in the first microbes. Our hypothesis has fundamental and practical implications. First, whereas unicellular organisms were long thought of as potentially immortal, we suggest instead that all unicellular individuals (prokaryotes or protists alike) are very likely to age, either replicatively or physiologically, or both. Second, our theory introduces a profound reconsideration of microbial individuality, whereby, all microbial individuals, as seen by natural selection, present an obligate transient germen/soma distinction during their life cycles. Third, our work promotes the study of cellular division in prokaryotes and in protist mitosis to illuminate the evolutionary origin of the soma and germen division, traditionally studied in animals. These ideas set the stage for progress in the evolutionary theory of aging from a heretofore overlooked microbial perspective.
Collapse
|
12
|
Synergistic effects of repair, resilience and retention of damage determine the conditions for replicative ageing. Sci Rep 2020; 10:1556. [PMID: 32005954 PMCID: PMC6994596 DOI: 10.1038/s41598-020-58444-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/15/2020] [Indexed: 12/31/2022] Open
Abstract
Accumulation of damaged proteins is a hallmark of ageing, occurring in organisms ranging from bacteria and yeast to mammalian cells. During cell division in Saccharomyces cerevisiae, damaged proteins are retained within the mother cell, resulting in an ageing mother while a new daughter cell exhibits full replicative potential. The cell-specific features determining the ageing remain elusive. It has been suggested that the replicative ageing is dependent on the ability of the cell to repair and retain pre-existing damage. To deepen the understanding of how these factors influence the life of individual cells, we developed and experimentally validated a dynamic model of damage accumulation accounting for replicative ageing on the single cell level. The model includes five essential properties: cell growth, damage formation, damage repair, cell division and cell death, represented in a theoretical framework describing the conditions allowing for replicative ageing, starvation, immortality or clonal senescence. We introduce the resilience to damage, which can be interpreted as the difference in volume between an old and a young cell. We show that the capacity to retain damage deteriorates with high age, that asymmetric division allows for retention of damage, and that there is a trade-off between retention and the resilience property. Finally, we derive the maximal degree of asymmetry as a function of resilience, proposing that asymmetric cell division is beneficial with respect to replicative ageing as it increases the lifespan of a given organism. The proposed model contributes to a deeper understanding of the ageing process in eukaryotic organisms.
Collapse
|
13
|
Valiakhmetov AY, Kuchin AV, Suzina NE, Zvonarev AN, Shepelyakovskaya AO. Glucose causes primary necrosis in exponentially grown yeast Saccharomyces cerevisiae. FEMS Yeast Res 2019; 19:5347945. [PMID: 30785621 DOI: 10.1093/femsyr/foz019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
In this paper, we present data on sugar-induced cell death (SICD) in the yeast Saccharomyces cerevisiae in the exponential phase of growth. We suggest that the nature of SICD in exponentially grown yeast is primary necrosis, in contrast to cells in the stationary growth phase, which exhibit apoptotic SICD. The following findings confirm this conclusion: (i) the process rate; (ii) the impairments of plasma membrane integrity; (iii) the drastic morphological changes in the intracellular content; (iv) the absence of chromatin condensation; (v) the absence of externalization of phosphotidylserine (PS) on the outer leaflet of plasma membrane and (vi) the insensitivity of the SICD process to cycloheximide (CHX). Research shows that SICD occurs in a subpopulation of cells in the S-phase.
Collapse
Affiliation(s)
- A Ya Valiakhmetov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PCBR RAS.,Moscow Region State University
| | - A V Kuchin
- Institute of Cell Biophysics, FRC PCBR RAS
| | - N E Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PCBR RAS
| | - A N Zvonarev
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PCBR RAS
| | | |
Collapse
|
14
|
Łapińska U, Glover G, Capilla-Lasheras P, Young AJ, Pagliara S. Bacterial ageing in the absence of external stressors. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180442. [PMID: 31587633 PMCID: PMC6792439 DOI: 10.1098/rstb.2018.0442] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 12/03/2022] Open
Abstract
Evidence of ageing in the bacterium Escherichia coli was a landmark finding in senescence research, as it suggested that even organisms with morphologically symmetrical fission may have evolved strategies to permit damage accumulation. However, recent work has suggested that ageing is only detectable in this organism in the presence of extrinsic stressors, such as the fluorescent proteins and strong light sources typically used to excite them. Here we combine microfluidics with brightfield microscopy to provide evidence of ageing in E. coli in the absence of these stressors. We report (i) that the doubling time of the lineage of cells that consistently inherits the 'maternal old pole' progressively increases with successive rounds of cell division until it reaches an apparent asymptote, and (ii) that the parental cell divides asymmetrically, with the old pole daughter showing a longer doubling time and slower glucose accumulation than the new pole daughter. Notably, these patterns arise without the progressive accumulation or asymmetric partitioning of observable misfolded-protein aggregates, phenomena previously hypothesized to cause the ageing phenotype. Our findings suggest that ageing is part of the naturally occurring ecologically-relevant phenotype of this bacterium and highlight the importance of alternative mechanisms of damage accumulation in this context. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Urszula Łapińska
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Georgina Glover
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Pablo Capilla-Lasheras
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Andrew J. Young
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Stefano Pagliara
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, UK
| |
Collapse
|
15
|
Crane MM, Tsuchiya M, Blue BW, Almazan JD, Chen KL, Duffy SR, Golubeva A, Grimm AM, Guard AM, Hill SA, Huynh E, Kelly RM, Kiflezghi M, Kim HD, Lee M, Lee TI, Li J, Nguyen BM, Whalen RM, Yeh FY, McCormick M, Kennedy BK, Delaney JR, Kaeberlein M. Rb analog Whi5 regulates G1 to S transition and cell size but not replicative lifespan in budding yeast. TRANSLATIONAL MEDICINE OF AGING 2019; 3:104-108. [PMID: 32190787 PMCID: PMC7080187 DOI: 10.1016/j.tma.2019.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An increase in cell size with age is a characteristic feature of replicative aging in budding yeast. Deletion of the gene encoding Whi5 results in shortened duration of G1 and reduced cell size, and has been previously suggested to increase replicative lifespan. Upon careful analysis of multiple independently derived haploid and homozygous diploid whi5Δ mutants, we find no effect on lifespan, but we do confirm the reduction in cell size. We suggest that instead of antagonizing lifespan, the elongated G1 phase of the cell cycle during aging may actually play an important role in allowing aged cells time to repair accumulating DNA damage.
Collapse
Affiliation(s)
- Matthew M. Crane
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Ben W. Blue
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jared D. Almazan
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Kenneth L. Chen
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Medical Scientist Training Program, University of Washington, Seattle, Washington USA
| | - Siobhan R. Duffy
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Annaiz M Grimm
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Alison M Guard
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Shauna A Hill
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Ellen Huynh
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Ryan M Kelly
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Hyunsung D. Kim
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Mitchell Lee
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Ting-I Lee
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jiayi Li
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Bao M.G. Nguyen
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Riley M. Whalen
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Feng Y. Yeh
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Mark McCormick
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM, USA
| | | | - Joe R. Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Ali Q, Dainese R, Cvijovic M. Adaptive damage retention mechanism enables healthier yeast population. J Theor Biol 2019; 473:52-66. [PMID: 30980870 DOI: 10.1016/j.jtbi.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 11/29/2022]
Abstract
During cytokinesis in budding yeast (Saccharomyces cerevisiae) damaged proteins are distributed asymmetrically between the daughter and the mother cell. Retention of damaged proteins is a crucial mechanism ensuring a healthy daughter cell with full replicative potential and an ageing mother cell. However, the protein quality control (PQC) system is tuned for optimal reproduction success which suggests optimal health and size of the population, rather than long-term survival of the mother cell. Modelling retention of damage as an adaptable mechanism, we propose two damage retention strategies to find an optimal way of decreasing damage retention efficiency to maximize population size and minimize the damage in the individual yeast cell. A pedigree model is used to investigate the impact of small variations in the strategies over the whole population. These impacts are based on the altruistic effects of damage retention mechanism and are measured by a cost function whose minimum value provides the optimal health and size of the population. We showed that fluctuations in the cost function allow yeast cell to continuously vary its strategy, suggesting that optimal reproduction success is a local minimum of the cost function. Our results suggest that a rapid decrease in the efficiency of damage retention, at the time when the mother cell is almost exhausted, produces fewer daughters with high levels of damaged proteins. In addition, retaining more damage during the early divisions increases the number of healthy daughters in the population.
Collapse
Affiliation(s)
- Qasim Ali
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Chalmers tvärgata 3, SE-41296 Gothenburg, Sweden; Department of Mathematics, North Carolina State University, NC 27607, USA
| | - Riccardo Dainese
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Chalmers tvärgata 3, SE-41296 Gothenburg, Sweden; Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Chalmers tvärgata 3, SE-41296 Gothenburg, Sweden.
| |
Collapse
|
17
|
Lee MB, Dowsett IT, Carr DT, Wasko BM, Stanton SG, Chung MS, Ghodsian N, Bode A, Kiflezghi MG, Uppal PA, Grayden KA, Elala YC, Tang TT, Tran NHB, Tran THB, Diep AB, Hope M, Promislow DEL, Kennedy SR, Kaeberlein M, Herr AJ. Defining the impact of mutation accumulation on replicative lifespan in yeast using cancer-associated mutator phenotypes. Proc Natl Acad Sci U S A 2019; 116:3062-3071. [PMID: 30718408 PMCID: PMC6386679 DOI: 10.1073/pnas.1815966116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutations accumulate within somatic cells and have been proposed to contribute to aging. It is unclear what level of mutation burden may be required to consistently reduce cellular lifespan. Human cancers driven by a mutator phenotype represent an intriguing model to test this hypothesis, since they carry the highest mutation burdens of any human cell. However, it remains technically challenging to measure the replicative lifespan of individual mammalian cells. Here, we modeled the consequences of cancer-related mutator phenotypes on lifespan using yeast defective for mismatch repair (MMR) and/or leading strand (Polε) or lagging strand (Polδ) DNA polymerase proofreading. Only haploid mutator cells with significant lifetime mutation accumulation (MA) exhibited shorter lifespans. Diploid strains, derived by mating haploids of various genotypes, carried variable numbers of fixed mutations and a range of mutator phenotypes. Some diploid strains with fewer than two mutations per megabase displayed a 25% decrease in lifespan, suggesting that moderate numbers of random heterozygous mutations can increase mortality rate. As mutation rates and burdens climbed, lifespan steadily eroded. Strong diploid mutator phenotypes produced a form of genetic anticipation with regard to aging, where the longer a lineage persisted, the shorter lived cells became. Using MA lines, we established a relationship between mutation burden and lifespan, as well as population doubling time. Our observations define a threshold of random mutation burden that consistently decreases cellular longevity in diploid yeast cells. Many human cancers carry comparable mutation burdens, suggesting that while cancers appear immortal, individual cancer cells may suffer diminished lifespan due to accrued mutation burden.
Collapse
Affiliation(s)
- Mitchell B Lee
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Ian T Dowsett
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
- Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA 98195-7705
| | - Daniel T Carr
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Brian M Wasko
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
- Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX 77058
| | - Sarah G Stanton
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Michael S Chung
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Niloufar Ghodsian
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Anna Bode
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Michael G Kiflezghi
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
- Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA 98195-7705
| | - Priya A Uppal
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | | | - Yordanos C Elala
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Thao T Tang
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Ngoc H B Tran
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Thu H B Tran
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Anh B Diep
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Michael Hope
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
- Department of Biology, University of Washington, Seattle, WA, 98195-1800
| | - Scott R Kennedy
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Alan J Herr
- Department of Pathology, University of Washington, Seattle, WA 98195-7705;
| |
Collapse
|
18
|
Dual roles of mitochondrial fusion gene FZO1 in yeast age asymmetry and in longevity mediated by a novel ATG32-dependent retrograde response. Biogerontology 2018; 20:93-107. [PMID: 30298458 DOI: 10.1007/s10522-018-9779-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022]
Abstract
The replicative lifespan of the yeast Saccharomyces cerevisiae models the aging of stem cells. Age asymmetry between the mother and daughter cells is established during each cell division, such that the daughter retains the capacity for self-renewal while this ability is diminished in the mother. The segregation of fully-functional mitochondria to daughter cells is one mechanism that underlies this age asymmetry. In this study, we have examined the role of mitochondrial dynamics in this phenomenon. Mitochondrial dynamics involve the processes of fission and fusion. Out of the three fusion and three fission genes tested, we have found that only FZO1 is required for the segregation of fully-functional mitochondria to daughter cells and in the maintenance of age asymmetry as manifested in the potential of daughters for a full replicative lifespan despite its deterioration in their mothers. The quality of mitochondria is determined by their turnover, and we have also discovered that deletion of FZO1 reduces mitophagy. Mitochondrial dysfunction elicits a compensatory retrograde response that extends replicative lifespan. Typically, the dysfunction that triggers this response encompasses energy production. The disruption of mitochondrial dynamics by deletion of FZO1 also activates the retrograde response to extend replicative lifespan. We call this novel pathway the mitochondrial dynamics-associated retrograde response (MDARR) because it is distinct in the signal proximal to the mitochondrion that initiates it. Furthermore, the MDARR engages the mitophagy receptor Atg32 on the mitochondrial surface, and we propose that this is due to the accumulation of Atg32-Atg11-Dnm1 complexes on the mitochondrion in the absence of Fzo1 activity. MDARR can be masked by the operation of the 'classic' retrograde response.
Collapse
|
19
|
High-Reynolds Microfluidic Sorting of Large Yeast Populations. Sci Rep 2018; 8:13739. [PMID: 30214051 PMCID: PMC6137188 DOI: 10.1038/s41598-018-31726-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Microfluidic sorting offers a unique ability to isolate large numbers of cells for bulk proteomic or metabolomics studies but is currently limited by low throughput and persistent clogging at low flow rates. Recently we uncovered the physical principles governing the inertial focusing of particles in high-Reynolds numbers. Here, we superimpose high Reynolds inertial focusing on Dean vortices, to rapidly isolate large quantities of young and adult yeast from mixed populations at a rate of 107 cells/min/channel. Using a new algorithm to rapidly quantify budding scars in isolated yeast populations and system-wide proteomic analysis, we demonstrate that protein quality control and expression of established yeast aging markers such as CalM, RPL5, and SAM1 may change after the very first replication events, rather than later in the aging process as previously thought. Our technique enables the large-scale isolation of microorganisms based on minute differences in size (±1.5 μm), a feat unmatched by other technologies.
Collapse
|
20
|
Deregulation of the G1/S-phase transition is the proximal cause of mortality in old yeast mother cells. Genes Dev 2018; 32:1075-1084. [PMID: 30042134 PMCID: PMC6075151 DOI: 10.1101/gad.312140.118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/14/2018] [Indexed: 01/02/2023]
Abstract
In this study, Neurohr et al. investigated why old yeast cells stop dividing and die. They show that age-induced accumulation of the G1/S-phase inhibitor Whi5 and defects in G1/S cyclin transcription cause cell cycle delays and genomic instability that result in cell death, thus identifying deregulation of the G1/S-phase transition as the proximal cause of age-induced proliferation decline and cell death in budding yeast. Budding yeast cells produce a finite number of daughter cells before they die. Why old yeast cells stop dividing and die is unclear. We found that age-induced accumulation of the G1/S-phase inhibitor Whi5 and defects in G1/S cyclin transcription cause cell cycle delays and genomic instability that result in cell death. We further identified extrachromosomal rDNA (ribosomal DNA) circles (ERCs) to cause the G1/S cyclin expression defect in old cells. Spontaneous segregation of Whi5 and ERCs into daughter cells rejuvenates old mothers, but daughters that inherit these aging factors die rapidly. Our results identify deregulation of the G1/S-phase transition as the proximal cause of age-induced proliferation decline and cell death in budding yeast.
Collapse
|
21
|
Molon M, Panek A, Molestak E, Skoneczny M, Tchorzewski M, Wnuk M. Daughters of the budding yeast from old mothers have shorter replicative lifespans but not total lifespans. Are DNA damage and rDNA instability the factors that determine longevity? Cell Cycle 2018; 17:1173-1187. [PMID: 29895191 DOI: 10.1080/15384101.2018.1464846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although a lot of effort has been put into the search for factors responsible for aging in yeast mother cells, our knowledge of cellular changes in daughter cells originating from old mothers is still very limited. It has been shown that an old mother is not able to compensate for all negative changes within its cell and therefore transfers them to the bud. In this paper, we show for the first time that daughter cells of an old mother have a reset lifespan expressed in units of time despite drastic reduction of their budding lifespan, which suggests that a single yeast cell has a fixed programmed longevity regardless of the time point at which it was originated. Moreover, in our study we found that longevity parameters are not correlated with the rDNA level, DNA damage, chromosome structure or aging parameters (budding lifespan and total lifespan).
Collapse
Affiliation(s)
- Mateusz Molon
- a Department of Biochemistry and Cell Biology , University of Rzeszow , Rzeszow , Poland
| | - Anita Panek
- b Department of Genetics , University of Rzeszow , Rzeszow , Poland
| | - Eliza Molestak
- c Department of Molecular Biology , Maria Curie-Sklodowska University , Lublin , Poland
| | - Marek Skoneczny
- d Department of Genetics , Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Marek Tchorzewski
- c Department of Molecular Biology , Maria Curie-Sklodowska University , Lublin , Poland
| | - Maciej Wnuk
- b Department of Genetics , University of Rzeszow , Rzeszow , Poland
| |
Collapse
|
22
|
Cell Size Influences the Reproductive Potential and Total Lifespan of the Saccharomyces cerevisiae Yeast as Revealed by the Analysis of Polyploid Strains. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1898421. [PMID: 29743970 PMCID: PMC5883977 DOI: 10.1155/2018/1898421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/04/2017] [Accepted: 01/01/2018] [Indexed: 11/17/2022]
Abstract
The total lifespan of the yeast Saccharomyces cerevisiae may be divided into two phases: the reproductive phase, during which the cell undergoes mitosis cycles to produce successive buds, and the postreproductive phase, which extends from the last division to cell death. These phases may be regulated by a common mechanism or by distinct ones. In this paper, we proposed a more comprehensive approach to reveal the mechanisms that regulate both reproductive potential and total lifespan in cell size context. Our study was based on yeast cells, whose size was determined by increased genome copy number, ranging from haploid to tetraploid. Such experiments enabled us to test the hypertrophy hypothesis, which postulates that excessive size achieved by the cell-the hypertrophy state-is the reason preventing the cell from further proliferation. This hypothesis defines the reproductive potential value as the difference between the maximal size that a cell can reach and the threshold value, which allows a cell to undergo its first cell cycle and the rate of the cell size to increase per generation. Here, we showed that cell size has an important impact on not only the reproductive potential but also the total lifespan of this cell. Moreover, the maximal cell size value, which limits its reproduction capacity, can be regulated by different factors and differs depending on the strain ploidy. The achievement of excessive size by the cell (hypertrophic state) may lead to two distinct phenomena: the cessation of reproduction without "mother" cell death and the cessation of reproduction with cell death by bursting, which has not been shown before.
Collapse
|
23
|
Maskell DL, Kennedy AI, Hodgson JA, Smart KA. Impact of Carbohydrate Composition of Media on Lager Yeast Replicative Lifespan. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-59-0111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dawn L. Maskell
- School of Biological and Molecular Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK
| | - Alan I. Kennedy
- Scottish Courage Brewing Limited, Technical Centre, Edinburgh, EH8 8DD, UK
| | - Jeff A. Hodgson
- Scottish Courage Brewing Limited, Technical Centre, Edinburgh, EH8 8DD, UK
| | - Katherine A. Smart
- School of Biological and Molecular Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK
| |
Collapse
|
24
|
Molon M, Woznicka O, Zebrowski J. Cell wall biosynthesis impairment affects the budding lifespan of the Saccharomyces cerevisiae yeast. Biogerontology 2017; 19:67-79. [PMID: 29189912 PMCID: PMC5765204 DOI: 10.1007/s10522-017-9740-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022]
Abstract
The Saccharomyces cerevisiae yeast is one of the most widely used model in studies of cellular and organismal biology, including as aging and proliferation. Although several constraints of aging and budding lifespan have been identified, these processes have not yet been fully understood. Previous studies of aging in yeast have focused mostly on the molecular basics of the underlying mechanisms, while physical aspects, particularly those related to the cell wall, were rather neglected. In this paper, we examine for the first time, to our knowledge, the impact of cell wall biosynthesis disturbances on the lifespan in the budding yeast. We have used a set of cell wall mutants, including knr4Δ, cts1Δ, chs3Δ, fks1Δ and mnn9Δ, which affect biosynthesis of all major cell wall compounds. Our results indicated that impairment of chitin biosynthesis and cell wall protein mannosylation reduced the budding lifespan, while disruption in the 1,3-β-glucan synthase activity had no adverse effect on that parameter. The impact varied in the severity and the most notable effect was observed for the mnn9Δ mutant. What was interesting, in the case of the dysfunction of the Knr4 protein playing the role of the transcriptional regulator of cell wall chitin and glucan synthesis, the lifespan increased significantly. We also report the phenotypic characteristics of cell wall-associated mutants as revealed by imaging of the cell wall using transmission electron microscopy, scanning electron microscopy and atomic force microscopy. In addition, our findings support the conviction that achievement of the state of hypertrophy may not be the only factor that determines the budding lifespan.
Collapse
Affiliation(s)
- Mateusz Molon
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | - Olga Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Jacek Zebrowski
- Department of Plant Physiology, Institute of Biotechnology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
25
|
Bilinski T, Bylak A, Zadrag-Tecza R. The budding yeast Saccharomyces cerevisiae as a model organism: possible implications for gerontological studies. Biogerontology 2017; 18:631-640. [PMID: 28573416 PMCID: PMC5514200 DOI: 10.1007/s10522-017-9712-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/19/2017] [Indexed: 12/15/2022]
Abstract
Experimental gerontology is based on the fundamental assumption that the aging process has a universal character and that the mechanisms of aging are well-conserved among living things. The consequence of this assumption is the use of various organisms, including unicellular yeast Saccharomyces cerevisiae, as models in gerontology, and direct extrapolation of the conclusions drawn from the studies carried on these organisms to human beings. However, numerous arguments suggest that aging is not universal and its mechanisms are not conserved in a wide range of species. Instead, senescence can be treated as a side effect of the evolution of specific features for systematic group, unrelated to the passage of time. Hence, depending on the properties of the group, the senescence and proximal causes of death could have a diverse nature. We postulate that the selection of a model organism to explain the mechanism of human aging and human longevity should be preceded by the analysis of its potential to extrapolate the results to a wide group of organisms. Considering that gerontology is a human-oriented discipline and that aging involves complex, systemic changes affecting the entire organism, the object of experimental studies should be animals which are closest relatives of human beings in evolutionary terms, rather than lower organisms, which do not have sufficient complexity in terms of tissues and organ structures.
Collapse
Affiliation(s)
- Tomasz Bilinski
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Aneta Bylak
- Department of Ecology and Environmental Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
26
|
Chen KL, Crane MM, Kaeberlein M. Microfluidic technologies for yeast replicative lifespan studies. Mech Ageing Dev 2017; 161:262-269. [PMID: 27015709 PMCID: PMC5035173 DOI: 10.1016/j.mad.2016.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 01/02/2023]
Abstract
The budding yeast Saccharomyces cerevisiae has been used as a model organism for the study of aging for over 50 years. In this time, the canonical aging experiment-replicative lifespan analysis by manual microdissection-has remained essentially unchanged. Recently, microfluidic technologies have been developed that may be able to substitute for this time- and labor-intensive procedure. These technologies also allow cell physiology to be observed throughout the entire lifetime. Here, we review these devices, novel observations they have made possible, and some of the current system limitations.
Collapse
Affiliation(s)
- Kenneth L Chen
- Department of Pathology, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA; Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Matthew M Crane
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
27
|
Paoletti C, Quintin S, Matifas A, Charvin G. Kinetics of Formation and Asymmetrical Distribution of Hsp104-Bound Protein Aggregates in Yeast. Biophys J 2016; 110:1605-1614. [PMID: 27074685 DOI: 10.1016/j.bpj.2016.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 02/05/2023] Open
Abstract
Budding yeast cells have a finite replicative life span; that is, a mother cell produces only a limited number of daughter cells before it slows division and dies. Despite the gradual aging of the mother cell, all daughters are born rejuvenated and enjoy a full replicative lifespan. It has been proposed that entry of mother cells into senescence is driven by the progressive accumulation and retention of damaged material, including protein aggregates. This additionally allows the daughter cells to be born damage free. However, the mechanism underlying such asymmetrical segregation of protein aggregates by mother and daughter cells remains controversial, in part because of the difficulties inherent in tracking the dynamics and fate of protein aggregates in vivo. To overcome such limitations, we have developed single-cell real-time imaging methodology to track the formation of heat-induced protein aggregates in otherwise unperturbed dividing cells. By combining the imaging data with a simple computational model of protein aggregation, we show that the establishment of asymmetrical partitioning of protein aggregates upon division is driven by the large bud-specific dilution rate associated with polarized growth and the absence of significant mother/bud exchange of protein aggregates during the budded phase of the cell cycle. To our knowledge, this study sheds new light on the mechanism of establishment of a segregation bias, which can be accounted for by simple physical arguments.
Collapse
Affiliation(s)
- Camille Paoletti
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Sophie Quintin
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Audrey Matifas
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Gilles Charvin
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
28
|
Zadrag-Tecza R, Skoneczna A. Reproductive potential and instability of the rDNA region of the Saccharomyces cerevisiae yeast: Common or separate mechanisms of regulation? Exp Gerontol 2016; 84:29-39. [DOI: 10.1016/j.exger.2016.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022]
|
29
|
Mechanism of Regulation of Intrachromatid Recombination and Long-Range Chromosome Interactions in Saccharomyces cerevisiae. Mol Cell Biol 2016; 36:1451-63. [PMID: 26951198 DOI: 10.1128/mcb.01100-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/29/2016] [Indexed: 12/25/2022] Open
Abstract
The NAD-dependent histone deacetylase Sir2 controls ribosomal DNA (rDNA) silencing by inhibiting recombination and RNA polymerase II-catalyzed transcription in the rDNA of Saccharomyces cerevisiae Sir2 is recruited to nontranscribed spacer 1 (NTS1) of the rDNA array by interaction between the RENT ( RE: gulation of N: ucleolar S: ilencing and T: elophase exit) complex and the replication terminator protein Fob1. The latter binds to its cognate sites, called replication termini (Ter) or replication fork barriers (RFB), that are located in each copy of NTS1. This work provides new mechanistic insights into the regulation of rDNA silencing and intrachromatid recombination by showing that Sir2 recruitment is stringently regulated by Fob1 phosphorylation at specific sites in its C-terminal domain (C-Fob1), which also regulates long-range Ter-Ter interactions. We show further that long-range Fob1-mediated Ter-Ter interactions in trans are downregulated by Sir2. These regulatory mechanisms control intrachromatid recombination and the replicative life span (RLS).
Collapse
|
30
|
A role for Mfb1p in region-specific anchorage of high-functioning mitochondria and lifespan in Saccharomyces cerevisiae. Nat Commun 2016; 7:10595. [PMID: 26839174 PMCID: PMC4742906 DOI: 10.1038/ncomms10595] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/04/2016] [Indexed: 01/20/2023] Open
Abstract
Previous studies indicate that replicative lifespan in daughter cells of Sacchraromyces cerevisiae depends on the preferential inheritance of young, high-functioning mitochondria. We report here that mitochondria are functionally segregated even within single mother cells in S. cerevisiae. A high-functioning population of mitochondria accumulates at the tip of the mother cell distal to the bud. We find that the mitochondrial F-box protein (Mfb1p) localizes to mitochondria in the mother tip and is required for mitochondrial anchorage at that site, independent of the previously identified anchorage protein Num1p. Deletion of MFB1 results in loss of the mother-tip-localized mitochondrial population, defects in mitochondrial function and premature replicative ageing. Inhibiting mitochondrial inheritance to buds, by deletion of MMR1, in mfb1Δ cells restores mitochondrial distribution, promotes mitochondrial function and extends replicative lifespan. Our results identify a mechanism that retains a reservoir of high-functioning mitochondria in mother cells and thereby preserves maternal reproductive capacity. Mitochondria are asymmetrically inherited during cell division, a process that can affect cell fate and lifespan. Here the authors describe a mechanism for mitochondrial quality control in yeast that maintains a reservoir of high-functioning mitochondria in mother cells and preserves maternal reproductive capacity.
Collapse
|
31
|
Higuchi-Sanabria R, Charalel JK, Viana MP, Garcia EJ, Sing CN, Koenigsberg A, Swayne TC, Vevea JD, Boldogh IR, Rafelski SM, Pon LA. Mitochondrial anchorage and fusion contribute to mitochondrial inheritance and quality control in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 2016; 27:776-87. [PMID: 26764088 PMCID: PMC4803304 DOI: 10.1091/mbc.e15-07-0455] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/07/2016] [Indexed: 11/30/2022] Open
Abstract
Fzo1p contributes to mitochondrial inheritance by fusion of mitochondria that enter the bud to mitochondria that are anchored in the bud tip. This promotes retention of mitochondria in the bud tip. However, it also promotes anchorage of lower-functioning mitochondria in the bud tip, which inhibits clearance of those organelles from buds. Higher-functioning mitochondria that are more reduced and have less ROS are anchored in the yeast bud tip by the Dsl1-family protein Mmr1p. Here we report a role for mitochondrial fusion in bud-tip anchorage of mitochondria. Fluorescence loss in photobleaching (FLIP) and network analysis experiments revealed that mitochondria in large buds are a continuous reticulum that is physically distinct from mitochondria in mother cells. FLIP studies also showed that mitochondria that enter the bud can fuse with mitochondria that are anchored in the bud tip. In addition, loss of fusion and mitochondrial DNA (mtDNA) by deletion of mitochondrial outer or inner membrane fusion proteins (Fzo1p or Mgm1p) leads to decreased accumulation of mitochondria at the bud tip and inheritance of fitter mitochondria by buds compared with cells with no mtDNA. Conversely, increasing the accumulation and anchorage of mitochondria in the bud tip by overexpression of MMR1 results in inheritance of less-fit mitochondria by buds and decreased replicative lifespan and healthspan. Thus quantity and quality of mitochondrial inheritance are ensured by two opposing processes: bud-tip anchorage by mitochondrial fusion and Mmr1p, which favors bulk inheritance; and quality control mechanisms that promote segregation of fitter mitochondria to the bud.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Joseph K Charalel
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Matheus P Viana
- Department of Developmental and Cell Biology and Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697
| | - Enrique J Garcia
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Cierra N Sing
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Andrea Koenigsberg
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Theresa C Swayne
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032
| | - Jason D Vevea
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Istvan R Boldogh
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Susanne M Rafelski
- Department of Developmental and Cell Biology and Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032 Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032
| |
Collapse
|
32
|
Bitto A, Wang AM, Bennett CF, Kaeberlein M. Biochemical Genetic Pathways that Modulate Aging in Multiple Species. Cold Spring Harb Perspect Med 2015; 5:5/11/a025114. [PMID: 26525455 DOI: 10.1101/cshperspect.a025114] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanisms underlying biological aging have been extensively studied in the past 20 years with the avail of mainly four model organisms: the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, the fruitfly Drosophila melanogaster, and the domestic mouse Mus musculus. Extensive research in these four model organisms has identified a few conserved genetic pathways that affect longevity as well as metabolism and development. Here, we review how the mechanistic target of rapamycin (mTOR), sirtuins, adenosine monophosphate-activated protein kinase (AMPK), growth hormone/insulin-like growth factor 1 (IGF-1), and mitochondrial stress-signaling pathways influence aging and life span in the aforementioned models and their possible implications for delaying aging in humans. We also draw some connections between these biochemical pathways and comment on what new developments aging research will likely bring in the near future.
Collapse
Affiliation(s)
- Alessandro Bitto
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Adrienne M Wang
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | | | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
33
|
Molon M, Zadrag-Tecza R. Effect of temperature on replicative aging of the budding yeast Saccharomyces cerevisiae. Biogerontology 2015; 17:347-57. [PMID: 26481919 DOI: 10.1007/s10522-015-9619-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/09/2015] [Indexed: 11/28/2022]
Abstract
The use of the budding yeast Saccharomyces cerevisiae in gerontological studies was based on the assumption that the reproduction limit of a single cell (replicative aging) is a consequence of accumulation of a hypothetical universal "senescence factor" within the mother cell. However, some evidence suggests that molecules or structures proposed as the "aging factor", such as rDNA circles, oxidatively damaged proteins (with carbonyl groups) or mitochondria, have little effect on replicative lifespan of yeast cells. Our results also suggest that protein aggregates associated with Hsp104, treated as a marker of yeast aging, do not seem to affect the numeric value of replicative lifespan of yeast. What these results indicate, however, is the need for finding a different way of expressing age and longevity of yeast cells instead of the commonly used number of daughters produced over units of time, as in the case of other organisms. In this paper, we show that the temperature has a stronger influence on the time of life (the total lifespan) than on the reproductive potential of yeast cells.
Collapse
Affiliation(s)
- Mateusz Molon
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | - Renata Zadrag-Tecza
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| |
Collapse
|
34
|
Jazwinski S. Mitochondria to nucleus signaling and the role of ceramide in its integration into the suite of cell quality control processes during aging. Ageing Res Rev 2015; 23:67-74. [PMID: 25555678 DOI: 10.1016/j.arr.2014.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022]
Abstract
Mitochondria to nucleus signaling has been the most extensively studied mode of inter-organelle communication. The first signaling pathway in this category of information transfer to be discovered was the retrograde response, with its own set of signal transduction proteins. The finding that this pathway compensates for mitochondrial dysfunction to extend the replicative lifespan of yeast cells has generated additional impetus for its study. This research has demonstrated crosstalk between the retrograde response and the target of rapamycin (TOR), small GTPase RAS, and high-osmolarity glycerol (HOG) pathways in yeast, all of which are key players in replicative lifespan. More recently, the retrograde response has been implicated in the diauxic shift and survival in stationary phase, extending its operation to the yeast chronological lifespan as well. In this capacity, the retrograde response may cooperate with other, related mitochondria to nucleus signaling pathways. Counterparts of the retrograde response are found in the roundworm, the fruit fly, the mouse, and even in human cells in tissue culture. The exciting realization that the retrograde response is embedded in the network of cellular quality control processes has emerged over the past few years. Most strikingly, it is closely integrated with autophagy and the selective brand of this quality control process, mitophagy. This coordination depends on TOR, and it engages ceramide/sphingolipid signaling. The yeast LAG1 ceramide synthase gene was the first longevity gene cloned as such, and its orthologs hyl-1 and hyl-2 determine worm lifespan. Thus, the involvement of ceramide signaling in quality control gives these findings cellular context. The retrograde response and ceramide are essential components of a lifespan maintenance process that likely evolved as a cytoprotective mechanism to defend the organism from diverse stressors.
Collapse
|
35
|
Tower J. Programmed cell death in aging. Ageing Res Rev 2015; 23:90-100. [PMID: 25862945 DOI: 10.1016/j.arr.2015.04.002] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/15/2015] [Accepted: 04/01/2015] [Indexed: 02/08/2023]
Abstract
Programmed cell death (PCD) pathways, including apoptosis and regulated necrosis, are required for normal cell turnover and tissue homeostasis. Mis-regulation of PCD is increasingly implicated in aging and aging-related disease. During aging the cell turnover rate declines for several highly-mitotic tissues. Aging-associated disruptions in systemic and inter-cell signaling combined with cell-autonomous damage and mitochondrial malfunction result in increased PCD in some cell types, and decreased PCD in other cell types. Increased PCD during aging is implicated in immune system decline, skeletal muscle wasting (sarcopenia), loss of cells in the heart, and neurodegenerative disease. In contrast, cancer cells and senescent cells are resistant to PCD, enabling them to increase in abundance during aging. PCD pathways limit life span in fungi, but whether PCD pathways normally limit adult metazoan life span is not yet clear. PCD is regulated by a balance of negative and positive factors, including the mitochondria, which are particularly subject to aging-associated malfunction.
Collapse
|
36
|
Choudhury M, Zaman S, Jiang JC, Jazwinski SM, Bastia D. Mechanism of regulation of 'chromosome kissing' induced by Fob1 and its physiological significance. Genes Dev 2015; 29:1188-201. [PMID: 26063576 PMCID: PMC4470286 DOI: 10.1101/gad.260844.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein-mediated "chromosome kissing" between two DNA sites in trans (or in cis) is known to facilitate three-dimensional control of gene expression and DNA replication. However, the mechanisms of regulation of the long-range interactions are unknown. Here, we show that the replication terminator protein Fob1 of Saccharomyces cerevisiae promoted chromosome kissing that initiated rDNA recombination and controlled the replicative life span (RLS). Oligomerization of Fob1 caused synaptic (kissing) interactions between pairs of terminator (Ter) sites that initiated recombination in rDNA. Fob1 oligomerization and Ter-Ter kissing were regulated by intramolecular inhibitory interactions between the C-terminal domain (C-Fob1) and the N-terminal domain (N-Fob1). Phosphomimetic substitutions of specific residues of C-Fob1 counteracted the inhibitory interaction. A mutation in either N-Fob1 that blocked Fob1 oligomerization or C-Fob1 that blocked its phosphorylation antagonized chromosome kissing and recombination and enhanced the RLS. The results provide novel insights into a mechanism of regulation of Fob1-mediated chromosome kissing.
Collapse
Affiliation(s)
- Malay Choudhury
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Shamsu Zaman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - James C Jiang
- Tulane Center for Aging, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - S Michal Jazwinski
- Tulane Center for Aging, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Deepak Bastia
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
| |
Collapse
|
37
|
Arlia-Ciommo A, Piano A, Leonov A, Svistkova V, Titorenko VI. Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan. Cell Cycle 2015; 13:3336-49. [PMID: 25485579 PMCID: PMC4614525 DOI: 10.4161/15384101.2014.965063] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent findings suggest that evolutionarily distant organisms share the key features of the aging process and exhibit similar mechanisms of its modulation by certain genetic, dietary and pharmacological interventions. The scope of this review is to analyze mechanisms that in the yeast Saccharomyces cerevisiae underlie: (1) the replicative and chronological modes of aging; (2) the convergence of these 2 modes of aging into a single aging process; (3) a programmed differentiation of aging cell communities in liquid media and on solid surfaces; and (4) longevity-defining responses of cells to some chemical compounds released to an ecosystem by other organisms populating it. Based on such analysis, we conclude that all these mechanisms are programs for upholding the long-term survival of the entire yeast population inhabiting an ecological niche; however, none of these mechanisms is a ʺprogram of agingʺ - i.e., a program for progressing through consecutive steps of the aging process.
Collapse
Key Words
- D, diauxic growth phase
- ERCs, extrachromosomal rDNA circles
- IPOD, insoluble protein deposit
- JUNQ, juxtanuclear quality control compartment
- L, logarithmic growth phase
- MBS, the mitochondrial back-signaling pathway
- MTC, the mitochondrial translation control signaling pathway
- NPCs, nuclear pore complexes
- NQ, non-quiescent cells
- PD, post-diauxic growth phase
- Q, quiescent cells
- ROS, reactive oxygen species
- RTG, the mitochondrial retrograde signaling pathway
- Ras/cAMP/PKA, the Ras family GTPase/cAMP/protein kinase A signaling pathway
- ST, stationary growth phase
- TOR/Sch9, the target of rapamycin/serine-threonine protein kinase Sch9 signaling pathway
- UPRER, the unfolded protein response pathway in the endoplasmic reticulum
- UPRmt, the unfolded protein response pathway in mitochondria
- cell growth and proliferation
- cell survival
- cellular aging
- ecosystems
- evolution
- longevity
- programmed cell death
- yeast
- yeast colony
- yeast replicative and chronological aging
Collapse
|
38
|
Smith J, Wright J, Schneider BL. A budding yeast's perspective on aging: the shape I'm in. Exp Biol Med (Maywood) 2015; 240:701-10. [PMID: 25819684 DOI: 10.1177/1535370215577584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aging is exemplified by progressive, deleterious changes that increase the probability of death. However, while the effects of age are easy to recognize, identification of the processes involved has proved to be much more difficult. Somewhat surprisingly, research using the budding yeast has had a profound impact on our current understanding of the mechanisms involved in aging. Herein, we examine the biological significance and implications surrounding the observation that genetic pathways involved in the modulation of aging and the determination of lifespan in yeast are highly complicated and conserved.
Collapse
Affiliation(s)
- Jessica Smith
- Department of Medical Education and Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jill Wright
- Department of Medical Education and Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Brandt L Schneider
- Department of Medical Education and Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
39
|
Molon M, Zadrag-Tecza R, Bilinski T. The longevity in the yeast Saccharomyces cerevisiae: A comparison of two approaches for assessment the lifespan. Biochem Biophys Res Commun 2015; 460:651-6. [PMID: 25817783 DOI: 10.1016/j.bbrc.2015.03.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/16/2015] [Indexed: 11/25/2022]
Abstract
Longevity of the selected "longevity mutants" of yeast was studied using two methods. The standard method was based on counting the number of daughter cells produced. Modification of that method allowed for establishing the length of life expressed in units of time. It appeared that all the studied "deletion longevity mutants" showed a statistically meaningful increase in the number of daughters produced (replicative lifespan), whereas only one of the mutants, previously regarded as "short lived", showed a meaningful increase in the time of life. The analysis of the available data shows that the time of life of most yeast strains is similar irrespective of their genetic background and mutations, which suggests a quasi-programmed nature of yeast death.
Collapse
Affiliation(s)
- Mateusz Molon
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland.
| | - Renata Zadrag-Tecza
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Tomasz Bilinski
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| |
Collapse
|
40
|
Stressed mycobacteria use the chaperone ClpB to sequester irreversibly oxidized proteins asymmetrically within and between cells. Cell Host Microbe 2015; 17:178-90. [PMID: 25620549 DOI: 10.1016/j.chom.2014.12.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/10/2014] [Accepted: 12/04/2014] [Indexed: 11/23/2022]
Abstract
Mycobacterium tuberculosis (Mtb) defends itself against host immunity and chemotherapy at several levels, including the repair or degradation of irreversibly oxidized proteins (IOPs). To investigate how Mtb deals with IOPs that can neither be repaired nor degraded, we used new chemical and biochemical probes and improved image analysis algorithms for time-lapse microscopy to reveal a defense against stationary phase stress, oxidants, and antibiotics--the sequestration of IOPs into aggregates in association with the chaperone ClpB, followed by the asymmetric distribution of aggregates within bacteria and between their progeny. Progeny born with minimal IOPs grew faster and better survived a subsequent antibiotic stress than their IOP-burdened sibs. ClpB-deficient Mtb had a marked recovery defect from stationary phase or antibiotic exposure and survived poorly in mice. Treatment of tuberculosis might be assisted by drugs that cripple the pathway by which Mtb buffers, sequesters, and asymmetrically distributes IOPs.
Collapse
|
41
|
Henderson KA, Hughes AL, Gottschling DE. Mother-daughter asymmetry of pH underlies aging and rejuvenation in yeast. eLife 2014; 3:e03504. [PMID: 25190112 PMCID: PMC4175738 DOI: 10.7554/elife.03504] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/03/2014] [Indexed: 12/20/2022] Open
Abstract
Replicative aging in yeast is asymmetric–mother cells age but their daughter cells are rejuvenated. Here we identify an asymmetry in pH between mother and daughter cells that underlies aging and rejuvenation. Cytosolic pH increases in aging mother cells, but is more acidic in daughter cells. This is due to the asymmetric distribution of the major regulator of cytosolic pH, the plasma membrane proton ATPase (Pma1). Pma1 accumulates in aging mother cells, but is largely absent from nascent daughter cells. We previously found that acidity of the vacuole declines in aging mother cells and limits lifespan, but that daughter cell vacuoles re-acidify. We find that Pma1 activity antagonizes mother cell vacuole acidity by reducing cytosolic protons. However, the inherent asymmetry of Pma1 increases cytosolic proton availability in daughter cells and facilitates vacuole re-acidification and rejuvenation. DOI:http://dx.doi.org/10.7554/eLife.03504.001 Aging is a part of life—but its biological basis and, in particular, how aged cells give rise to young offspring (or progeny) has not been clearly established for any organism. Budding yeast is a microorganism that is a valuable model to understand aging in more complex organisms like humans. Budding yeast cells undergo a process called ‘replicative aging’, meaning that each yeast mother cell produces a set number of daughter cells in her lifetime. However, when daughter cells arise from an aging mother cell, the daughter's age is ‘reset to zero’. How mother cells age, and how their daughters are rejuvenated, are questions that have been studied for decades. Previously, researchers discovered that a mother cell's vacuole (an acidic compartment that stores important molecules that can become toxic) becomes less acidic as the mother cell ages. Daughter cells, on the other hand, have very acidic vacuoles, which was linked to their renewed lifespans. However, the mechanism behind this difference in the acidity of the vacuole between mother and daughter cells was unknown. Now, Henderson et al. have found that a protein (called Pma1), which is found at the cell surface and pumps protons out of the cell, is present in mother cells but not in their newly-formed daughter cells. Furthermore, the Pma1 protein also accumulates as mother cells age. By pumping protons out of the cell, Pma1 effectively reduces the number of protons available to acidify the vacuole in the mother cell. However, because at first the daughter does not have Pma1, there are still plenty of protons inside the cell to acidify the vacuole. When Henderson et al. reduced the activity of Pma1 in mother cells, the entire cell became more acidic, and so did their vacuoles. Conversely daughter cells engineered to have more Pma1 were less acidic and had less acidic vacuoles than normal. Henderson et al. next asked whether reducing Pma1 activity to create a more acidic cell, could extend the lifespan of cells, and found that indeed cells with less Pma1 activity lived longer. As such, these findings indicate that an asymmetry in the acidity of the cell—caused by unequal levels of the Pma1 protein—contributes to reducing the lifespan of the mother cell and to rejuvenating the daughter cell. Thus Henderson et al. have identified one of the earliest events in the cellular aging process in budding yeast. Their findings suggest that an imbalance in an activity that is normally essential for cell survival (in this case, the activity of Pma1) can have long-term consequences for the cell that lead to aging. DOI:http://dx.doi.org/10.7554/eLife.03504.002
Collapse
Affiliation(s)
- Kiersten A Henderson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Adam L Hughes
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Daniel E Gottschling
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
42
|
Abstract
During yeast cytokinesis an aged mother cell gives rise to an immaculate daughter cell. A new study now demonstrates that this rejuvenation encompasses a novel Sir2- and actin-cable-dependent filtering process that prevents feeble mitochondria from entering the daughter cell.
Collapse
Affiliation(s)
- Thomas Nyström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, S-413 90 Göteborg, Sweden.
| |
Collapse
|
43
|
Clegg RJ, Dyson RJ, Kreft JU. Repair rather than segregation of damage is the optimal unicellular aging strategy. BMC Biol 2014; 12:52. [PMID: 25184818 PMCID: PMC4243282 DOI: 10.1186/s12915-014-0052-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/24/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND How aging, being unfavourable for the individual, can evolve is one of the fundamental problems of biology. Evidence for aging in unicellular organisms is far from conclusive. Some studies found aging even in symmetrically dividing unicellular species; others did not find aging in the same, or in different, unicellular species, or only under stress. Mathematical models suggested that segregation of non-genetic damage, as an aging strategy, would increase fitness. However, these models failed to consider repair as an alternative strategy or did not properly account for the benefits of repair. We used a new and improved individual-based model to examine rigorously the effect of a range of aging strategies on fitness in various environments. RESULTS Repair of damage emerges as the best strategy despite its fitness costs, since it immediately increases growth rate. There is an optimal investment in repair that outperforms damage segregation in well-mixed, lasting and benign environments over a wide range of parameter values. Damage segregation becomes beneficial, and only in combination with repair, when three factors are combined: (i) the rate of damage accumulation is high, (ii) damage is toxic and (iii) efficiency of repair is low. In contrast to previous models, our model predicts that unicellular organisms should have active mechanisms to repair damage rather than age by segregating damage. Indeed, as predicted, all organisms have evolved active mechanisms of repair whilst aging in unicellular organisms is absent or minimal under benign conditions, apart from microorganisms with a different ecology, inhabiting short-lived environments strongly favouring early reproduction rather than longevity. CONCLUSIONS Aging confers no fitness advantage for unicellular organisms in lasting environments under benign conditions, since repair of non-genetic damage is better than damage segregation.
Collapse
Affiliation(s)
- Robert J Clegg
- />Centre for Systems Biology, University of Birmingham, Birmingham, UK
- />Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- />School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rosemary J Dyson
- />Centre for Systems Biology, University of Birmingham, Birmingham, UK
- />School of Mathematics, University of Birmingham, Birmingham, UK
| | - Jan-Ulrich Kreft
- />Centre for Systems Biology, University of Birmingham, Birmingham, UK
- />Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- />School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
44
|
Jiang N, Du G, Tobias E, Wood JG, Whitaker R, Neretti N, Helfand SL. Dietary and genetic effects on age-related loss of gene silencing reveal epigenetic plasticity of chromatin repression during aging. Aging (Albany NY) 2014; 5:813-24. [PMID: 24243774 PMCID: PMC3868724 DOI: 10.18632/aging.100614] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During aging, changes in chromatin state that alter gene transcription have been postulated to result in expression of genes that are normally silenced, leading to deleterious age-related effects on cellular physiology. Despite the prevalence of this hypothesis, it is primarily in yeast that loss of gene silencing with age has been well documented. We use a novel position effect variegation (PEV) reporter in Drosophila melanogaster to show that age-related loss of repressive heterochromatin is associated with loss of gene silencing in metazoans and is affected by Sir2, as it is in yeast. The life span-extending intervention, calorie restriction (CR), delays the age-related loss of gene silencing, indicating that loss of gene silencing is a component of normal aging. Diet switch experiments show that such flies undergo a rapid change in their level of gene silencing, demonstrating the epigenetic plasticity of chromatin during aging and highlighting the potential role of diet and metabolism in chromatin maintenance, Thus, diet and related interventions may be of therapeutic importance for age-related diseases, such as cancer.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Molecular Biology, Cell Biology and Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Clay L, Caudron F, Denoth-Lippuner A, Boettcher B, Buvelot Frei S, Snapp EL, Barral Y. A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. eLife 2014; 3:e01883. [PMID: 24843009 PMCID: PMC4009826 DOI: 10.7554/elife.01883] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In many cell types, lateral diffusion barriers compartmentalize the plasma membrane and, at least in budding yeast, the endoplasmic reticulum (ER). However, the molecular nature of these barriers, their mode of action and their cellular functions are unclear. Here, we show that misfolded proteins of the ER remain confined into the mother compartment of budding yeast cells. Confinement required the formation of a lateral diffusion barrier in the form of a distinct domain of the ER-membrane at the bud neck, in a septin-, Bud1 GTPase- and sphingolipid-dependent manner. The sphingolipids, but not Bud1, also contributed to barrier formation in the outer membrane of the dividing nucleus. Barrier-dependent confinement of ER stress into the mother cell promoted aging. Together, our data clarify the physical nature of lateral diffusion barriers in the ER and establish the role of such barriers in the asymmetric segregation of proteotoxic misfolded proteins during cell division and aging. DOI:http://dx.doi.org/10.7554/eLife.01883.001 Cell division isn't always about splitting a cell into two identical parts. The diversity of many of our own cells relies on asymmetric cell divisions. The yeast used to make bread rely on a process called ‘budding’ that involves a small daughter cell emerging from the surface of the mother cell. Mother cells can only produce around 20–50 daughter cells before dying from old age. However, their daughters are always born rejuvenated, and not aged like their mothers. Budding involves part of the plasma membrane that surrounds the mother cell being pinched off to produce the daughter cell. This part of the membrane contains diffusion barriers that prevent various factors—including factors that cause aging—from entering the daughter cell. The barriers are known to contain several layers, but the details of how they work were not understood. Inside the budding cell, the membrane of the endoplasmic reticulum (ER) also contains lateral diffusion barriers. The ER is the structure in the cell responsible for folding newly made proteins correctly. Any misfolded, toxic proteins are kept in the ER to be refolded or destroyed. However, if there are too many misfolded proteins, the ER gets stressed and triggers a mechanism that in extreme cases causes the cell to self-destruct. Clay, Caudron et al. have now shown that ER stress causes yeast cells to age. Moreover, when the ER is stressed, the ER diffusion barrier prevents the stress that causes aging entering the daughter cells. Clay, Caudron et al. also established that the diffusion barrier in the ER is made up of three layers. A layer of fatty molecules called sphingolipids is found at the bottom of the barrier, and such a layer is also present in other diffusion barriers. This could therefore act as the skeleton on which diffusion barriers form. Further investigation of this layer should provide a better understanding of how diffusion barriers work. DOI:http://dx.doi.org/10.7554/eLife.01883.002
Collapse
Affiliation(s)
- Lori Clay
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Fabrice Caudron
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | - Barbara Boettcher
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | - Erik Lee Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, New York, United States
| | - Yves Barral
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
46
|
Denoth Lippuner A, Julou T, Barral Y. Budding yeast as a model organism to study the effects of age. FEMS Microbiol Rev 2014; 38:300-25. [PMID: 24484434 DOI: 10.1111/1574-6976.12060] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/13/2013] [Accepted: 01/06/2014] [Indexed: 12/20/2022] Open
Abstract
Although a budding yeast culture can be propagated eternally, individual yeast cells age and eventually die. The detailed knowledge of this unicellular eukaryotic species as well as the powerful tools developed to study its physiology makes budding yeast an ideal model organism to study the mechanisms involved in aging. Considering both detrimental and positive aspects of age, we review changes occurring during aging both at the whole-cell level and at the intracellular level. The possible mechanisms allowing old cells to produce rejuvenated progeny are described in terms of accumulation and inheritance of aging factors. Based on the dynamic changes associated with age, we distinguish different stages of age: early age, during which changes do not impair cell growth; intermediate age, during which aging factors start to accumulate; and late age, which corresponds to the last divisions before death. For each aging factor, we examine its asymmetric segregation and whether it plays a causal role in aging. Using the example of caloric restriction, we describe how the aging process can be modulated at different levels and how changes in different organelles might interplay with each other. Finally, we discuss the beneficial aspects that might be associated with age.
Collapse
|
47
|
Ganley ARD, Kobayashi T. Ribosomal DNA and cellular senescence: new evidence supporting the connection between rDNA and aging. FEMS Yeast Res 2014; 14:49-59. [DOI: 10.1111/1567-1364.12133] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 12/10/2013] [Accepted: 12/19/2013] [Indexed: 12/19/2022] Open
Affiliation(s)
- Austen R. D. Ganley
- Institute of Natural and Mathematical Sciences; Massey University; Auckland New Zealand
| | - Takehiko Kobayashi
- Division of Cytogenetics; National Institute of Genetics; Mishima Shizuoka Japan
- Department of Genetics; The Graduate University for Advanced Studies; SOKENDAI; Mishima Shizuoka Japan
| |
Collapse
|
48
|
Fehrmann S, Paoletti C, Goulev Y, Ungureanu A, Aguilaniu H, Charvin G. Aging yeast cells undergo a sharp entry into senescence unrelated to the loss of mitochondrial membrane potential. Cell Rep 2013; 5:1589-99. [PMID: 24332850 DOI: 10.1016/j.celrep.2013.11.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/23/2013] [Accepted: 11/07/2013] [Indexed: 11/26/2022] Open
Abstract
In budding yeast, a mother cell can produce a finite number of daughter cells before it stops dividing and dies. Such entry into senescence is thought to result from a progressive decline in physiological function, including a loss of mitochondrial membrane potential (ΔΨ). Here, we developed a microfluidic device to monitor the dynamics of cell division and ΔΨ in real time at single-cell resolution. We show that cells do not enter senescence gradually but rather undergo an abrupt transition to a slowly dividing state. Moreover, we demonstrate that the decline in ΔΨ, which is observed only in a fraction of cells, is not responsible for entry into senescence. Rather, the loss of ΔΨ is an age-independent and heritable process that leads to clonal senescence and is therefore incompatible with daughter cell rejuvenation. These results emphasize the importance of quantitative single-cell measurements to decipher the causes of cellular aging.
Collapse
Affiliation(s)
- Steffen Fehrmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67400 Illkirch Cedex, France
| | - Camille Paoletti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67400 Illkirch Cedex, France
| | - Youlian Goulev
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67400 Illkirch Cedex, France
| | | | - Hugo Aguilaniu
- LBMC, ENS Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Gilles Charvin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67400 Illkirch Cedex, France.
| |
Collapse
|
49
|
Wasko BM, Kaeberlein M. Yeast replicative aging: a paradigm for defining conserved longevity interventions. FEMS Yeast Res 2013; 14:148-59. [PMID: 24119093 DOI: 10.1111/1567-1364.12104] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/22/2013] [Accepted: 09/26/2013] [Indexed: 12/15/2022] Open
Abstract
The finite replicative life span of budding yeast mother cells was demonstrated as early as 1959, but the idea that budding yeast could be used to model aging of multicellular eukaryotes did not enter the scientific mainstream until relatively recently. Despite continued skepticism by some, there are now abundant data that several interventions capable of extending yeast replicative life span have a similar effect in multicellular eukaryotes including nematode worms, fruit flies, and rodents. In particular, dietary restriction, mTOR signaling, and sirtuins are among the most studied longevity interventions in the field. Here, we describe key conserved longevity pathways in yeast and discuss relationships that may help explain how such broad conservation of aging processes could have evolved.
Collapse
Affiliation(s)
- Brian M Wasko
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
50
|
Coelho M, Dereli A, Haese A, Kühn S, Malinovska L, DeSantis ME, Shorter J, Alberti S, Gross T, Tolić-Nørrelykke IM. Fission yeast does not age under favorable conditions, but does so after stress. Curr Biol 2013; 23:1844-52. [PMID: 24035542 DOI: 10.1016/j.cub.2013.07.084] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/14/2013] [Accepted: 07/29/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Many unicellular organisms age: as time passes, they divide more slowly and ultimately die. In budding yeast, asymmetric segregation of cellular damage results in aging mother cells and rejuvenated daughters. We hypothesize that the organisms in which this asymmetry is lacking, or can be modulated, may not undergo aging. RESULTS We performed a complete pedigree analysis of microcolonies of the fission yeast Schizosaccharomyces pombe growing from a single cell. When cells were grown under favorable conditions, none of the lineages exhibited aging, which is defined as a consecutive increase in division time and increased death probability. Under favorable conditions, few cells died, and their death was random and sudden rather than following a gradual increase in division time. Cell death correlated with the inheritance of Hsp104-associated protein aggregates. After stress, the cells that inherited large aggregates aged, showing a consecutive increase in division time and an increased death probability. Their sisters, who inherited little or no aggregates, did not age. CONCLUSIONS We conclude that S. pombe does not age under favorable growth conditions, but does so under stress. This transition appears to be passive rather than active and results from the formation of a single large aggregate, which segregates asymmetrically at the subsequent cell division. We argue that this damage-induced asymmetric segregation has evolved to sacrifice some cells so that others may survive unscathed after severe environmental stresses.
Collapse
Affiliation(s)
- Miguel Coelho
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|