1
|
Nie L, Xiao Y, Zhou T, Feng H, He M, Liang Q, Mu K, Nie H, Huang Q, Chen W. Cyclic di-GMP inhibits nitrate assimilation by impairing the antitermination function of NasT in Pseudomonas putida. Nucleic Acids Res 2024; 52:186-203. [PMID: 38000372 PMCID: PMC10783516 DOI: 10.1093/nar/gkad1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The ubiquitous bacterial second messenger cyclic diguanylate (c-di-GMP) coordinates diverse cellular processes through its downstream receptors. However, whether c-di-GMP participates in regulating nitrate assimilation is unclear. Here, we found that NasT, an antiterminator involved in nitrate assimilation in Pseudomonas putida, specifically bound c-di-GMP. NasT was essential for expressing the nirBD operon encoding nitrite reductase during nitrate assimilation. High-level c-di-GMP inhibited the binding of NasT to the leading RNA of nirBD operon (NalA), thus attenuating the antitermination function of NasT, resulting in decreased nirBD expression and nitrite reductase activity, which in turn led to increased nitrite accumulation in cells and its export. Molecular docking and point mutation assays revealed five residues in NasT (R70, Q72, D123, K127 and R140) involved in c-di-GMP-binding, of which R140 was essential for both c-di-GMP-binding and NalA-binding. Three diguanylate cyclases (c-di-GMP synthetases) were found to interact with NasT and inhibited nirBD expression, including WspR, PP_2557, and PP_4405. Besides, the c-di-GMP-binding ability of NasT was conserved in the other three representative Pseudomonas species, including P. aeruginosa, P. fluorescens and P. syringae. Our findings provide new insights into nitrate assimilation regulation by revealing the mechanism by which c-di-GMP inhibits nitrate assimilation via NasT.
Collapse
Affiliation(s)
- Liang Nie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujie Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiantian Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoqi Feng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meina He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyuan Liang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kexin Mu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hailing Nie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Zhong Q, Kobe B, Kappler U. Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria. Front Microbiol 2020; 11:615860. [PMID: 33362753 PMCID: PMC7759655 DOI: 10.3389/fmicb.2020.615860] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mononuclear molybdoenzymes are highly versatile catalysts that occur in organisms in all domains of life, where they mediate essential cellular functions such as energy generation and detoxification reactions. Molybdoenzymes are particularly abundant in bacteria, where over 50 distinct types of enzymes have been identified to date. In bacterial pathogens, all aspects of molybdoenzyme biology such as molybdate uptake, cofactor biosynthesis, and function of the enzymes themselves, have been shown to affect fitness in the host as well as virulence. Although current studies are mostly focused on a few key pathogens such as Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Mycobacterium tuberculosis, some common themes for the function and adaptation of the molybdoenzymes to pathogen environmental niches are emerging. Firstly, for many of these enzymes, their role is in supporting bacterial energy generation; and the corresponding pathogen fitness and virulence defects appear to arise from a suboptimally poised metabolic network. Secondly, all substrates converted by virulence-relevant bacterial Mo enzymes belong to classes known to be generated in the host either during inflammation or as part of the host signaling network, with some enzyme groups showing adaptation to the increased conversion of such substrates. Lastly, a specific adaptation to bacterial in-host survival is an emerging link between the regulation of molybdoenzyme expression in bacterial pathogens and the presence of immune system-generated reactive oxygen species. The prevalence of molybdoenzymes in key bacterial pathogens including ESKAPE pathogens, paired with the mounting evidence of their central roles in bacterial fitness during infection, suggest that they could be important future drug targets.
Collapse
Affiliation(s)
- Qifeng Zhong
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
3
|
Amberkar U, Khandeparker R, Parab P. Nitrate Reductase Gene Expression in Idiomarina Strain cos21 Obtained from Oxygen Minimum Zone of Arabian Sea. Curr Microbiol 2018; 76:63-69. [DOI: 10.1007/s00284-018-1585-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022]
|
4
|
Lu H, Kalyuzhnaya M, Chandran K. Comparative proteomic analysis reveals insights into anoxic growth ofMethyloversatilis universalis FAM5 on methanol and ethanol. Environ Microbiol 2012; 14:2935-45. [DOI: 10.1111/j.1462-2920.2012.02857.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/23/2012] [Accepted: 07/23/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Huijie Lu
- Department of Earth and Environmental Engineering; Columbia University; New York; NY; 10027; USA
| | - Marina Kalyuzhnaya
- Department of Microbiology; University of Washington; Seattle; WA; 98105; USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering; Columbia University; New York; NY; 10027; USA
| |
Collapse
|
5
|
Romeo A, Sonnleitner E, Sorger-Domenigg T, Nakano M, Eisenhaber B, Bläsi U. Transcriptional regulation of nitrate assimilation in Pseudomonas aeruginosa occurs via transcriptional antitermination within the nirBD–PA1779–cobA operon. Microbiology (Reading) 2012; 158:1543-1552. [DOI: 10.1099/mic.0.053850-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alessandra Romeo
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Elisabeth Sonnleitner
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Theresa Sorger-Domenigg
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Masayuki Nakano
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671 Singapore
| | - Udo Bläsi
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
6
|
Pope SD, Chen LL, Stewart V. Purine utilization by Klebsiella oxytoca M5al: genes for ring-oxidizing and -opening enzymes. J Bacteriol 2009; 191:1006-17. [PMID: 19060149 PMCID: PMC2632102 DOI: 10.1128/jb.01281-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 11/25/2008] [Indexed: 11/20/2022] Open
Abstract
The enterobacterium Klebsiella oxytoca uses a variety of inorganic and organic nitrogen sources, including purines, nitrogen-rich compounds that are widespread in the biosphere. We have identified a 23-gene cluster that encodes the enzymes for utilizing purines as the sole nitrogen source. Growth and complementation tests with insertion mutants, combined with sequence comparisons, reveal functions for the products of these genes. Here, we report our characterization of 12 genes, one encoding guanine deaminase and the others encoding enzymes for converting (hypo)xanthine to allantoate. Conventionally, xanthine dehydrogenase, a broadly distributed molybdoflavoenzyme, catalyzes sequential hydroxylation reactions to convert hypoxanthine via xanthine to urate. Our results show that these reactions in K. oxytoca are catalyzed by a two-component oxygenase (HpxE-HpxD enzyme) homologous to Rieske nonheme iron aromatic-ring-hydroxylating systems, such as phthalate dioxygenase. Our results also reveal previously undescribed enzymes involved in urate oxidation to allantoin, catalyzed by a flavoprotein monooxygenase (HpxO enzyme), and in allantoin conversion to allantoate, which involves allantoin racemase (HpxA enzyme). The pathway also includes the recently described PuuE allantoinase (HpxB enzyme). The HpxE-HpxD and HpxO enzymes were discovered independently by de la Riva et al. (L. de la Riva, J. Badia, J. Aguilar, R. A. Bender, and L. Baldoma, J. Bacteriol. 190:7892-7903, 2008). Thus, several enzymes in this K. oxytoca purine utilization pathway differ from those in other microorganisms. Isofunctional homologs of these enzymes apparently are encoded by other species, including Acinetobacter, Burkholderia, Pseudomonas, Saccharomyces, and Xanthomonas.
Collapse
Affiliation(s)
- Scott D Pope
- Department of Microbiology, University of California, One Shields Ave., Davis, CA 95616-8665, USA
| | | | | |
Collapse
|
7
|
Thaivanich S, Incharoensakdi A. Purification and Characterization of Nitrate Reductase from the Halotolerant Cyanobacterium Aphanothece halophytica. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9196-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Noriega C, Hassett DJ, Rowe JJ. The mobA gene is required for assimilatory and respiratory nitrate reduction but not xanthine dehydrogenase activity in Pseudomonas aeruginosa. Curr Microbiol 2005; 51:419-24. [PMID: 16235022 DOI: 10.1007/s00284-005-0125-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 06/23/2005] [Indexed: 10/25/2022]
Abstract
The requirement for the mobA gene in key assimilatory and respiratory nitrogen metabolism of Pseudomonas aeruginosa PAO1 was investigated by mutational analysis of PA3030 (mobA; MoCo guanylating enzyme), PA1779 (nasA; assimilatory nitrate reductase), and PA3875 (narG; respiratory nitrate reductase). The mobA mutant was deficient in both assimilatory and respiratory nitrate reductase activities, whereas xanthine dehydrogenase activity remained unaffected. Thus, P. aeruginosa requires both the molybdopterin (MPT) and molybdopterin guanine dinucleotide (MGD) forms of the molybdenum cofactor for a complete spectrum of nitrogen metabolism, and one form cannot substitute for the other. Regulation studies using a Phi(PA3030-lacZGm) reporter strain suggest that expression of mobA is not influenced by the type of nitrogen source or by anaerobiosis, whereas assimilatory nitrate reductase activity was detected only in the presence of nitrate.
Collapse
Affiliation(s)
- Chris Noriega
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | | | | |
Collapse
|
9
|
Ohtomo R, Saito M. A New Selective Medium for Detection of Klebsiella from Dairy Environments. Microbes Environ 2003. [DOI: 10.1264/jsme2.18.138] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ryo Ohtomo
- National Institute of Livestock and Grassland Science
| | - Masanori Saito
- National Institute of Livestock and Grassland Science
- National Institute for Agro-Environmental Sciences
| |
Collapse
|
10
|
Chai W, Stewart V. RNA sequence requirements for NasR-mediated, nitrate-responsive transcription antitermination of the Klebsiella oxytoca M5al nasF operon leader. J Mol Biol 1999; 292:203-16. [PMID: 10493869 DOI: 10.1006/jmbi.1999.3084] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Klebsiella oxytoca, enzymes required for nitrate assimilation are encoded by the nasFEDCBA operon. Nitrate and nitrite induction of nasF operon expression is determined by a transcriptional antitermination mechanism, in which the nasR gene product responds to nitrate or nitrite and overcomes transcription termination at the factor-independent terminator site located in the nasF upstream leader region. Previous studies led to the hypothesis that the NasR protein mediates transcription antitermination through interaction with nasF leader RNA. Here, we report a DNA sequence comparison that reveals conserved 1:2 and 3:4 RNA secondary structures in the nasF leader RNAs from two Klebsiella species. Additionally, we found that specific binding of the NasR protein to nasF leader RNA was stimulated by nitrate and nitrite. We combined mutational analysis, in vivo and in vitro antitermination assays, and an RNA electrophoretic mobility shift assay to define regions in the nasF leader that are essential for antitermination and for NasR-RNA interaction. Formation of the 1:2 stem structure and the specific sequence of the 1:2 hexanucleotide loop were required for both nitrate induction and for NasR-RNA interaction. Mutations in the 1:2 stem-loop region that abolished nitrate induction also interfered with NasR-leader RNA interaction. Finally, nucleotide alterations or additions in the linker region between the 1:2 and 3:4 stem-loops were deleterious to nasF operon induction but not to NasR-leader RNA interaction. We hypothesize that NasR protein recognizes the 1:2 stem-loop structure in the nasF leader RNA to mediate transcription antitermination in response to nitrate or nitrite.
Collapse
Affiliation(s)
- W Chai
- Section of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | | |
Collapse
|
11
|
Chai W, Stewart V. NasR, a novel RNA-binding protein, mediates nitrate-responsive transcription antitermination of the Klebsiella oxytoca M5al nasF operon leader in vitro. J Mol Biol 1998; 283:339-51. [PMID: 9769209 DOI: 10.1006/jmbi.1998.2105] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Klebsiella oxytoca (pneumoniae), enzymes required for nitrate assimilation are encoded by the nasFEDCBA operon. Previous genetic studies led to the conclusion that nitrate and nitrite induction of nasF operon expression is determined by a transcriptional antitermination mechanism. In the presence of nitrate or nitrite, the nasR gene product is hypothesized to inhibit transcription termination at the factor-independent terminator site located in the nasF operon leader region. To test this model in vitro, we first purified NasR as both a maltose binding protein fusion form (MBP-NasR) and a His6-tagged form (His6-NasR). Templates for in vitro transcription contained the nasF operon leader region, with a substitution of the sigma70-dependent tac promoter for the native sigmaN-dependent promoter. We found that in vitro transcription of the leader template terminated at the terminator site, and that MBP-NasR and His6-NasR proteins both caused transcription readthrough of this site in response to nitrate or nitrite. Half-maximal antitermination required nitrate or nitrite at moderate (1 to 10 microM) concentrations, and several other anions tested, including chlorate, were without effect. Previous in vivo analysis of leader deletions identified regions required for both negative regulation (the terminator) and for positive regulation. Results from in vitro transcription of these deletion templates correlated fully with the in vivo analysis. Finally, electrophoresis mobility shift analysis revealed that His6-NasR bound specifically to nasF leader RNA. This binding was independent of nitrate in vitro. These results strongly support the conclusions drawn from previous in vivo analysis, and establish that NasR mediates ligand-responsive transcription antitermination through interaction with nasF leader RNA.
Collapse
Affiliation(s)
- W Chai
- Section of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | | |
Collapse
|
12
|
Wu Q, Stewart V. NasFED proteins mediate assimilatory nitrate and nitrite transport in Klebsiella oxytoca (pneumoniae) M5al. J Bacteriol 1998; 180:1311-22. [PMID: 9495773 PMCID: PMC107022 DOI: 10.1128/jb.180.5.1311-1322.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Klebsiella oxytoca can use nitrate and nitrite as sole nitrogen sources. The enzymes required for nitrate and nitrite assimilation are encoded by the nasFEDCBA operon. We report here the complete nasFED sequence. Sequence comparisons indicate that the nasFED genes encode components of a conventional periplasmic binding protein-dependent transport system consisting of a periplasmic binding protein (NasF), a homodimeric intrinsic membrane protein (NasE), and a homodimeric ATP-binding cassette (ABC) protein (NasD). The NasF protein and the related NrtA and CmpA proteins of cyanobacteria contain leader (signal) sequences with the double-arginine motif that is hypothesized to direct prefolded proteins to an alternate protein export pathway. The NasE protein and the related NrtB and CmpB proteins of cyanobacteria contain unusual variants of the EAA loop sequence that defines membrane-intrinsic proteins of ABC transporters. To characterize nitrate and nitrite transport, we constructed in-frame nonpolar deletions of the chromosomal nasFED genes. Growth tests coupled with nitrate and nitrite uptake assays revealed that the nasFED genes are essential for nitrate transport and participate in nitrite transport as well. Interestingly, the delta nasF strain exhibited leaky phenotypes, particularly at elevated nitrate concentrations, suggesting that the NasED proteins are not fully dependent on the NasF protein.
Collapse
Affiliation(s)
- Q Wu
- Section of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | |
Collapse
|
13
|
Abstract
Nitrate is a significant nitrogen source for plants and microorganisms. Recent molecular genetic analyses of representative bacterial species have revealed structural and regulatory genes responsible for the nitrate-assimilation phenotype. Together with results from physiological and biochemical studies, this information has unveiled fundamental aspects of bacterial nitrate assimilation and provides the foundation for further investigations. Well-studied genera are: the cyanobacteria, including the unicellular Synechococcus and the filamentous Anabaena; the gamma-proteobacteria Klebsiella and Azotobacter; and a Gram-positive bacterium, Bacillus. Nitrate uptake in most of these groups seems to involve a periplasmic binding protein-dependent system that presumably is energized by ATP hydrolysis (ATP-binding cassette transporters). However, Bacillus may, like fungi and plants, utilize electrogenic uptake through a representative of the major facilitator superfamily of transport proteins. Nitrate reductase contains both molybdenum cofactor and an iron-sulfur cluster. Electron donors for the enzymes from cyanobacteria and Azotobacter are ferredoxin and flavodoxin, respectively, whereas the Klebsiella and Bacillus enzymes apparently accept electrons from a specific NAD(P)H-reducing subunit. These subunits share sequence similarity with the reductase components of bacterial aromatic ring-hydroxylating dehydrogenases such as toluene dioxygenase. Nitrite reductase contains sirohaem and an iron-sulfur cluster. The enzymes from cyanobacteria and plants use ferredoxin as the electron donor, whereas the larger enzymes from other bacteria and fungi contain FAD and NAD(P)H binding sites. Nevertheless, the two forms of nitrite reductase share recognizable sequence and structural similarity. Synthesis of nitrate assimilation enzymes and uptake systems is controlled by nitrogen limitation in all bacteria examined, but the relevant regulatory proteins exhibit considerable structural and mechanistic diversity in different bacterial groups. A second level of control, pathway-specific induction by nitrate and nitrite in Klebsiella, involves transcription antitermination. Several issues await further experimentation, including the mechanism and energetics of nitrate uptake, the pathway(s) for nitrite uptake, the nature of electron flow during nitrate reduction, and the action of transcriptional regulatory circuits. Fundamental knowledge of nitrate assimilation physiology should also enhance the study of nitrate metabolism in soil, water and other natural environments, a challenging topic of considerable interest and importance.
Collapse
Affiliation(s)
- J T Lin
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
14
|
Blasco R, Castillo F, Martínez-Luque M. The assimilatory nitrate reductase from the phototrophic bacterium, Rhodobacter capsulatus E1F1, is a flavoprotein. FEBS Lett 1997; 414:45-9. [PMID: 9305729 DOI: 10.1016/s0014-5793(97)00968-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The assimilatory nitrate reductase from the phototrophic bacterium Rhodobacter capsulatus has been purified to electrophoretic homogeneity and its molecular and kinetic parameters determined. The native nitrate reductase is a dimer of 144 kDa composed of two subunits of 46 and 95 kDa. The purified enzyme catalyzes the electron transfer from NADH, reduced bromophenol blue or reduced viologens to nitrate. The nitrate reductase contains 1 mol FAD per mole of enzyme and also reduces cytochrome c or dichlorophenol indophenol with NADH as the electron donor. The diaphorase activity is located in the small subunit.
Collapse
Affiliation(s)
- R Blasco
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Spain
| | | | | |
Collapse
|
15
|
Govantes F, Molina-López JA, Santero E. Mechanism of coordinated synthesis of the antagonistic regulatory proteins NifL and NifA of Klebsiella pneumoniae. J Bacteriol 1996; 178:6817-23. [PMID: 8955302 PMCID: PMC178581 DOI: 10.1128/jb.178.23.6817-6823.1996] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nifLA operon of Klebsiella pneumoniae codes for the two antagonistic regulatory proteins which control expression of all other nitrogen fixation genes. NifA is a transcriptional activator, and NifL inhibits NifA. The importance of a correct NifL-NifA stoichiometry for efficient regulation of nitrogen fixation genes has been investigated by constructing a strain with an altered nifL-nifA gene dosage ratio, resulting from the integration of an extra copy of nifA. Results showed that a balanced synthesis of both gene products is essential for correct regulation. Effects of mutations provoking translation termination of nifL upstream or downstream of its natural stop codon, combined with overproduction of both proteins when the genes are transcribed and translated from signals of the phi10 gene of the phage T7, showed that, in addition to the previously reported transcriptional polarity, there is translational coupling between nifL and nifA. In spite of the apparently efficient ribosome binding site of nifA, its rate of independent translation is very low. This is due to a secondary structure masking the Shine-Dalgarno sequence of nifA, which could be melted by ribosomes translating nifL. Mutational analysis confirmed the functional significance of the secondary structure in preventing independent translation of nifA. Translational coupling between the two cistrons is proposed as an efficient mechanism to prevent production of an excess of NifA, which would affect the normal regulation of nitrogen fixation genes.
Collapse
Affiliation(s)
- F Govantes
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
16
|
Kikuchi H, Aichi M, Suzuki I, Omato T. Positive regulation by nitrite of the nitrate assimilation operon in the cyanobacteria Synechococcus sp. strain PCC 7942 and Plectonema boryanum. J Bacteriol 1996; 178:5822-5. [PMID: 8824636 PMCID: PMC178430 DOI: 10.1128/jb.178.19.5822-5825.1996] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the absence of fixation of ammonium to glutamine, nitrate and nitrite activated transcription of the nitrate assimilation (nirA-nrtABCD-narB) operon of Synechococcus sp. strain PCC 7942. In a nitrate reductase-deficient mutant, only nitrite activated transcription, indicating that nitrite is the actual activator of the operon. Nitrate and nitrite were also found to activate the transcription of a nitrate assimilation operon in the filamentous nonheterocystous nitrogen-fixing cyanobacterium Plectonema boryanum.
Collapse
Affiliation(s)
- H Kikuchi
- Department of Applied Biological Sciences, School of Agricultural Sciences, Nagoya University, Japan
| | | | | | | |
Collapse
|
17
|
Fernández-López M, Olivares J, Bedmar EJ. Purification and characterization of the membrane-bound nitrate reductase isoenzymes of Bradyrhizobium japonicum. FEBS Lett 1996; 392:1-5. [PMID: 8769303 DOI: 10.1016/0014-5793(96)00670-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Two respiratory membrane-bound nitrate reductase (NR) isoenzymes, NRI and NRII, have been purified for the first time from one single microorganism. Triton X-100-solubilized NRs were purified by a three-step procedure of differential centrifugation, Q-Sepharose chromatography, and gel filtration on Sephacryl S-300. Both isoenzymes were purified to homogeneity by the criteria of NR activity staining in polyacrylamide gels run under non-denaturating conditions and coincident staining of the protein band by silver nitrate. NRI is composed of three subunits of 116 kDa, 68 kDa, and 56 kDa, whereas NRII is composed of four subunits of 116 kDa, 68 kDa, 59 kDa, and 56 kDa. The 116-kDa subunit of NRI and the 59-kDa subunit of NRII exhibited immunological cross-reactivity with the respiratory NR of Pseudomonas stutzeri strain ZoBell.
Collapse
Affiliation(s)
- M Fernández-López
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | | | | |
Collapse
|
18
|
Govantes F, Santero E. Transcription termination within the regulatory nifLA operon of Klebsiella pneumoniae. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:447-54. [PMID: 8602162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of premature stop codons in the nifL gene on the expression of nifA-lacZ operon and protein fusions in Klebsiella pneumoniae was analysed in detail. Our results revealed transcriptional polarity in this operon. By dissecting the operon, intragenic regions containing Rho-dependent transcription terminators have been identified. As shown for other Rho-dependent terminators, their cytosine content is much higher than the incidence of guanines. However, other regions of the operon that have this feature did not show termination activity, suggesting that, contrary to previous reports, a correlation between these parameters cannot readily be established. Some of our results alos suggested that, in addition to polarity, other mechanisms may prevent expression of nifA when translation of nifL is altered. Their importance for efficient regulation of nitrogen fixation genes is discussed.
Collapse
Affiliation(s)
- F Govantes
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
19
|
Nakano MM, Yang F, Hardin P, Zuber P. Nitrogen regulation of nasA and the nasB operon, which encode genes required for nitrate assimilation in Bacillus subtilis. J Bacteriol 1995; 177:573-9. [PMID: 7836289 PMCID: PMC176630 DOI: 10.1128/jb.177.3.573-579.1995] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The divergently transcribed nasA gene and nasB operon are required for nitrate and nitrite assimilation in Bacillus subtilis. The beta-galactosidase activity of transcriptional lacZ fusions from the nasA and nasB promoters was high when cells were grown in minimal glucose medium containing poor nitrogen sources such as nitrate, proline, or glutamate. The expression was very low when ammonium or glutamine was used as the sole nitrogen source. The repression of the genes during growth on good sources of nitrogen required wild-type glutamine synthetase (GlnA), but not GlnR, the repressor of the glnRA operon. Primer extension analysis showed that the -10 region of each promoter resembles those of sigma A-recognized promoters. Between the divergently oriented nasA and nasB promoters is a region of dyad symmetry. Mutational analysis led to the conclusion that this sequence is required in cis for the activation of both nasA and nasB. The derepression of these genes in a glnA mutant also required this sequence. These results suggest that an unidentified transcriptional activator and glutamine synthetase function in the regulation of nasA and the nasB operon.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932
| | | | | | | |
Collapse
|
20
|
Stull TL, Hyun L, Sharetzsky C, Wooten J, McCauley JP, Smith AB. Production and oxidation of indole by Haemophilus influenzae. J Biol Chem 1995; 270:5-8. [PMID: 7814418 DOI: 10.1074/jbc.270.1.5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
During growth in high concentrations of iron nitrate, H. influenzae produces compounds reactive in biochemical assays for hydroxamates. Mixing experiments established that nitrate was responsible for inducing these compounds. Analysis by 1H and 13C NMR and high resolution mass spectrometry identified the active species as 2,2-bis(3'-indolyl)indoxyl. Bacterial production of the latter compound has been previously observed only in Pseudomonas aureofaciens. A mutant defective in the production of 2,2-bis(3'-indolyl)indoxyl was constructed by marker insertion. The formation of indole and 2,2-bis (3'-indolyl)indoxyl was quantitated by reverse-phase high pressure liquid chromatography during growth in high concentrations of nitrate. The mutant produced high concentrations of indole, but only minimal amounts of 2,2-bis(3'-indolyl)indoxyl, and also proved to be defective in nitrate reduction. These data suggest that indole may function as an electron donor for nitrate reductase in H. influenzae.
Collapse
Affiliation(s)
- T L Stull
- Department of Pediatric, Medical College of Pennsylvania, Philadelphia 19129
| | | | | | | | | | | |
Collapse
|
21
|
Geometry of the process of transcription activation at the sigma 54-dependent nifH promoter of Klebsiella pneumoniae. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47266-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Schurtz TA, Hornick DB, Korhonen TK, Clegg S. The type 3 fimbrial adhesin gene (mrkD) of Klebsiella species is not conserved among all fimbriate strains. Infect Immun 1994; 62:4186-91. [PMID: 7927674 PMCID: PMC303094 DOI: 10.1128/iai.62.10.4186-4191.1994] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The type 3 fimbriae of enteric bacteria mediate agglutination, in vitro, of erythrocytes treated with tannic acid. The gene encoding the polypeptide, MrkD, that mediates this agglutination reaction was placed downstream of an inducible promoter, and the ability of MrkD alone to facilitate hemagglutination was determined. Although Escherichia coli transformants could be shown to produce the MrkD protein, hemagglutination did not occur in the absence of other mrk gene products. In addition, the MrkD polypeptide did not cross the bacterial outer membrane unless a fimbrial chaperone protein was also present. Analysis of the frequency of the mrkD gene within the genus Klebsiella indicated that this gene is conserved in strains of Klebsiella oxytoca but not in other fimbriate Klebsiella species. In the small number of strains of Klebsiella pneumoniae that do possess a related mrkD gene, this determinant could be found on a plasmid in one strain. The ability of type 3 fimbriate bacteria to adhere to type V collagen was found to be a function of a specific MrkD polypeptide. This adhesin is frequently found in strains of K. oxytoca but is rarely associated with the type 3 fimbriae of K. pneumoniae.
Collapse
Affiliation(s)
- T A Schurtz
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | | | |
Collapse
|
23
|
Goldman BS, Lin JT, Stewart V. Identification and structure of the nasR gene encoding a nitrate- and nitrite-responsive positive regulator of nasFEDCBA (nitrate assimilation) operon expression in Klebsiella pneumoniae M5al. J Bacteriol 1994; 176:5077-85. [PMID: 8051020 PMCID: PMC196347 DOI: 10.1128/jb.176.16.5077-5085.1994] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilatory pathway. The structural genes for assimilatory nitrate and nitrite reductases together with genes necessary for nitrate transport form an operon, nasFEDCBA. Expression of the nasF operon is regulated both by general nitrogen control and also by nitrate or nitrite induction. We have identified a gene, nasR, that is necessary for nitrate and nitrite induction. The nasR gene, located immediately upstream of the nasFEDCBA operon, encodes a 44-kDa protein. The NasR protein shares carboxyl-terminal sequence similarity with the AmiR protein of Pseudomonas aeruginosa, the positive regulator of amiE (aliphatic amidase) gene expression. In addition, we present evidence that the nasF operon is not autogenously regulated.
Collapse
Affiliation(s)
- B S Goldman
- Sections of Microbiology, Cornell University, Ithaca, New York 14853-8101
| | | | | |
Collapse
|
24
|
Lin JT, Goldman BS, Stewart V. The nasFEDCBA operon for nitrate and nitrite assimilation in Klebsiella pneumoniae M5al. J Bacteriol 1994; 176:2551-9. [PMID: 8169203 PMCID: PMC205392 DOI: 10.1128/jb.176.9.2551-2559.1994] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilation pathway. We previously identified structural genes for assimilatory nitrate and nitrite reductases, nasA and nasB, respectively. We report here our further identification of four genes, nasFEDC, upstream of the nasBA genes. The nasFEDCBA genes probably form an operon. Mutational and complementation analyses indicated that both the nasC and nasA genes are required for nitrate assimilation. The predicted NASC protein is homologous to a variety of NADH-dependent oxidoreductases. Thus, the NASC protein probably mediates electron transfer from NADH to the NASA protein, which contains the active site for nitrate reduction. The deduced NASF, NASE, and NASD proteins are homologous to the NRTA, NRTB, and NRTD proteins, respectively, that are involved in nitrate uptake in Synechococcus sp. (T. Omata, X. Andriesse, and A. Hirano, Mol. Gen. Genet. 236:193-202, 1993). Mutational and complementation studies indicated that the nasD gene is required for nitrate but not nitrite assimilation. By analogy with the Synechococcus nrt genes, we propose that the nasFED genes are involved in nitrate transport in K. pneumoniae.
Collapse
Affiliation(s)
- J T Lin
- Section of Microbiology, Cornell University, Ithaca, New York 14853-8101
| | | | | |
Collapse
|
25
|
Abstract
Escherichia coli expresses two different membrane-bound respiratory nitrate reductases, nitrate reductase A (NRA) and nitrate reductase Z (NRZ). In this review, we compare the genetic control, biochemical properties and regulation of these two closely related enzyme systems. The two enzymes are encoded by distinct operons located within two different loci on the E. coli chromosome. The narGHJI operon, encoding nitrate reductaseA, is located in the chlC locus at 27 minutes, along with several functionally related genes: narK, encoding a nitrate/nitrite antiporter, and the narXL operon, encoding a nitrate-activated, two component regulatory system. The narZYWV operon, encoding nitrate reductase Z, is located in the chlZ locus located at 32.5 minutes, a region which includes a narK homologue, narU, but no apparent homologue to the narXL operon. The two membrane-bound enzymes have similar structures and biochemical properties and are capable of reducing nitrate using normal physiological substrates. The homology of the amino acid sequences of the peptides encoded by the two operons is extremely high but the intergenic regions share no related sequences. The expression of both the narGHJI operon and the narK gene are positively regulated by two transacting factors Fnr and NarL-Phosphate, activated respectively by anaerobiosis and nitrate, while the narZYWV operon and the narU gene are constitutively expressed. Nitrate reductase A, which accounts for 98% of the nitrate reductase activity when fully induced, is clearly the major respiratory nitrate reductase in E. coli while the physiological role of the constitutively expressed nitrate reductase Z remains to be defined.
Collapse
Affiliation(s)
- V Bonnefoy
- Laboratoire de Chimie Bactérienne, CNRS, Marseille, France
| | | |
Collapse
|
26
|
Stewart V. Regulation of nitrate and nitrite reductase synthesis in enterobacteria. Antonie Van Leeuwenhoek 1994; 66:37-45. [PMID: 7747939 DOI: 10.1007/bf00871631] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Enterobacteria use nitrate and nitrite both as electron acceptors and as sources of nitrogen for biosynthesis. Nitrate is reduced through nitrite to ammonium in both cases. The enzymes and structural genes for nitrate/nitrite respiration and assimilation are distinct, and are subject to different patterns of regulation. Respiratory enzyme synthesis is indifferent to the availability of ammonium, and is induced by anaerobiosis via the FNR protein. Respiratory enzyme synthesis is further induced by nitrate or nitrite via the NARL and NARP proteins, which are response regulators of two-component regulatory systems. The cognate sensor proteins NARX and NARQ monitor the availability of nitrate and nitrite, and control the activity of the NARL and NARP DNA-binding proteins accordingly. Additionally, nitrate represses the synthesis of respiratory nitrite reductase, and this control is mediated by the NARL protein. Assimilatory enzyme synthesis is indifferent to the availability of oxygen, and is induced by ammonium limitation via the NTRC protein. Assimilatory enzyme synthesis is further induced by nitrate or nitrite via the NASR protein, which may act as a transcription antiterminator. Even though the respiratory and assimilatory enzyme systems are genetically distinct and subject to different forms of regulation, the structural and regulatory genes are closely linked on the Klebsiella pneumoniae chromosome.
Collapse
Affiliation(s)
- V Stewart
- Section of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| |
Collapse
|
27
|
Ramos F, Blanco G, Gutiérrez JC, Luque F, Tortolero M. Identification of an operon involved in the assimilatory nitrate-reducing system of Azotobacter vinelandii. Mol Microbiol 1993; 8:1145-53. [PMID: 8361359 DOI: 10.1111/j.1365-2958.1993.tb01659.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A number of mutants lacking nitrate reductase (Nas-) or nitrite reductase (Nis-) activities have been isolated and characterized. An operon including two new genes (nasA and nasB) has been defined and cloned from an Azotobacter vinelandii gene bank. nasA encodes for nitrite reductase apoenzyme, whereas nasB is specific for nitrate reductase activity. Nitrate reductase exerts a regulatory effect on nasAB.
Collapse
Affiliation(s)
- F Ramos
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | | | | | |
Collapse
|
28
|
Lin JT, Goldman BS, Stewart V. Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al. J Bacteriol 1993; 175:2370-8. [PMID: 8468296 PMCID: PMC204526 DOI: 10.1128/jb.175.8.2370-2378.1993] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources during aerobic growth. Assimilatory nitrate and nitrite reductases convert nitrate through nitrite to ammonium. We report here the molecular cloning of the nasA and nasB genes, which encode assimilatory nitrate and nitrite reductase, respectively. These genes are tightly linked and probably form a nasBA operon. In vivo protein expression and DNA sequence analysis revealed that the nasA and nasB genes encode 92- and 104-kDa proteins, respectively. The NASA polypeptide is homologous to other prokaryotic molybdoenzymes, and the NASB polypeptide is homologous to eukaryotic and prokaryotic NADH-nitrite reductases. The narL gene product positively regulates expression of the structural genes for respiratory nitrate reductase, narGHJI. Surprisingly, we found that the nasBA operon is tightly linked to the narL-narGHJI region in K. pneumoniae, even though the nitrate assimilatory and respiratory enzymes serve different physiological functions.
Collapse
Affiliation(s)
- J T Lin
- Sections of Microbiology, Cornell University, Ithaca, New York 14853-8101
| | | | | |
Collapse
|
29
|
Affiliation(s)
- S Maloy
- Department of Microbiology, University of Illinois, Urbana 61801
| | | |
Collapse
|
30
|
Garzón A, Li J, Flores A, Casadesus J, Stewart V. Molybdenum cofactor (chlorate-resistant) mutants of Klebsiella pneumoniae M5al can use hypoxanthine as the sole nitrogen source. J Bacteriol 1992; 174:6298-302. [PMID: 1400180 PMCID: PMC207701 DOI: 10.1128/jb.174.19.6298-6302.1992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Selection for chlorate resistance yields mol (formerly chl) mutants with defects in molybdenum cofactor synthesis. Complementation and genetic mapping analyses indicated that the Klebsiella pneumoniae mol genes are functionally homologous to those of Escherichia coli and occupy analogous genetic map positions. Hypoxanthine utilization in other organisms requires molybdenum cofactor as a component of xanthine dehydrogenase, and thus most chlorate-resistant mutants cannot use hypoxanthine as a sole source of nitrogen. Surprisingly, the K. pneumoniae mol mutants and the mol+ parent grew equally well with hypoxanthine as the sole nitrogen source, suggesting that K. pneumoniae has a molybdenum cofactor-independent pathway for hypoxanthine utilization.
Collapse
Affiliation(s)
- A Garzón
- Departamento de Genética, Universidad de Sevilla, Spain
| | | | | | | | | |
Collapse
|
31
|
Bender RA, Friedrich B. Regulation of assimilatory nitrate reductase formation in Klebsiella aerogenes W70. J Bacteriol 1990; 172:7256-9. [PMID: 2254283 PMCID: PMC210850 DOI: 10.1128/jb.172.12.7256-7259.1990] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Klebsiella aerogenes W70 could grow aerobically with nitrate or nitrite as the sole nitrogen source. The assimilatory nitrate reductase and nitrite reductase responsible for this ability required the presence of either nitrate or nitrite as an inducer, and both enzymes were repressed by ammonia. The repression by ammonia, which required the NTR (nitrogen regulatory) system (A. Macaluso, E. A. Best, and R. A. Bender, J. Bacteriol. 172:7249-7255, 1990), did not act solely at the level of inducer exclusion, since strains in which the expression of assimilatory nitrate reductase and nitrite reductase was was independent of the inducer were also susceptible to repression by ammonia. Insertion mutations in two distinct genes, neither of which affected the NTR system, resulted in the loss of both assimilatory nitrate reductase and nitrite reductase. One of these mutants reverted to the wild type, but the other yielded pseudorevertants at high frequency that were independent of inducer but still responded to ammonia repression.
Collapse
Affiliation(s)
- R A Bender
- Institut für Pflanzenphysiologie, Zellbiologie und Mikrobiologie, Freien Universität Berlin, Berlin, Federal Republic of Germany
| | | |
Collapse
|
32
|
van Slooten JC, Cervantes E, Broughton WJ, Wong CH, Stanley J. Sequence and analysis of the rpoN sigma factor gene of rhizobium sp. strain NGR234, a primary coregulator of symbiosis. J Bacteriol 1990; 172:5563-74. [PMID: 2211497 PMCID: PMC526867 DOI: 10.1128/jb.172.10.5563-5574.1990] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We report the nucleotide sequence of the rpoN gene from broad-host-range Rhizobium sp. strain NGR234 and analyze the encoded RPON protein, a sigma factor. Comparative analysis of the deduced amino acid sequence of RPON from NGR234 with sequences from other gram-negative bacteria identified a perfectly conserved RPON box unique to RPON sigma factors. Symbiotic regulatory phenotypes were defined for a site-directed internal deletion within the coding sequence of the rpoN gene of Rhizobium strain NGR234: they included quantitative nodulation kinetics on Vigna unguiculata and microscopic analysis of the Fix- determinate nodules of V. unguiculata and Macroptilium atropurpureum. RPON was a primary coregulator of nodulation and was implicated in establishment or maintenance of the plant-synthesized peribacteroid membrane. Phenotypes of rpoN in Rhizobium strain NGR234 could be grouped as symbiosis related, rather than simply pleiotropically physiological as in free-living bacteria such as Klebsiella pneumoniae and Pseudomonas putida.
Collapse
Affiliation(s)
- J C van Slooten
- Laboratoire de Biologie Moleculaire des Plantes Superieures, University of Geneva, Chambésy, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Stewart V, Cali BM. Genetic evidence that NarL function is not required for nitrate regulation of nitrate assimilation in Klebsiella pneumoniae M5al. J Bacteriol 1990; 172:4482-8. [PMID: 2198261 PMCID: PMC213278 DOI: 10.1128/jb.172.8.4482-4488.1990] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We cloned the narL gene, required for nitrate induction of respiratory nitrate reductase synthesis, from Klebsiella pneumoniae. The E. coli narL gene product shares sequence similarity with the response regulator proteins of two-component regulatory systems. We found that narL(+)-containing plasmids restored nitrate regulation of anaerobic respiratory gene expression in appropriate Escherichia coli hosts. The K. pneumoniae narL region encoded a protein whose migration in Laemmli gels was indistinguishable from that of the narL product of E. coli. We constructed a narL::Km mutant of K. pneumoniae. This mutation abolished nitrate induction of respiratory nitrate reductase synthesis but had no effect on nitrate induction of assimilatory nitrate and nitrite reductase synthesis. We conclude that K. pneumoniae has distinct nitrate-responsive regulators for controlling respiratory and assimilatory gene expression.
Collapse
Affiliation(s)
- V Stewart
- Section of Microbiology, Cornell University, Ithaca, New York 14853-8101
| | | |
Collapse
|
34
|
Kustu S, Santero E, Keener J, Popham D, Weiss D. Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Rev 1989; 53:367-76. [PMID: 2677638 PMCID: PMC372741 DOI: 10.1128/mr.53.3.367-376.1989] [Citation(s) in RCA: 321] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|