1
|
Gregorchuk BSJ, Reimer SL, Slipski CJ, Milner KA, Hiebert SL, Beniac DR, Booth TF, Zhanel GG, Bay DC. Applying fluorescent dye assays to discriminate Escherichia coli chlorhexidine resistance phenotypes from porin and mlaA deletions and efflux pumps. Sci Rep 2022; 12:12149. [PMID: 35840757 PMCID: PMC9287405 DOI: 10.1038/s41598-022-15775-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022] Open
Abstract
Bacterial resistance to the antiseptic chlorhexidine (CHX), is a growing problem, recently shown to be caused by deleterious mutations to the phospholipid transport system component (mlaA) as well as efflux pump overexpression. Comparisons of CHX resistance mechanisms, such as porin deletions (ompCF), and over-expressed efflux pumps (acrB, qacE, aceI), are lacking and may be distinguishable using antiseptic rapid fluorescent dye testing assays. Using E. coli K-12 CHX adapted isolates (CHXR1), gene deletion mutants, and over-expressed transformants the phenotypes of these CHX resistance genes were compared using antimicrobial susceptibility tests (AST), rapid fluorescent propidium iodide dye-based membrane integrity assays (RFDMIA), and scanning electron microscopy (SEM). AST findings showed CHXR1, ΔacrB, ΔompCF, and transformants pCA24N-aceI and pCA24N-mlaA conferred greater (two to fourfold) MIC changes when compared to matched controls. Examination of these mutants/transformants using CHX RFDMIA showed that porin dual-deletions (ΔompCF) and mlaA alterations (ΔmlaA; pCA24N-mlaA, CHXR1) were distinguishable from controls. Results for over-expressed (pMS119EH-aceI) and deleted (ΔacrB) efflux pump RFDMIA could not be distinguished with propidium iodide, only with ethidium bromide, suggesting propidium iodide is better suited for detecting porin and mlaA associated CHX resistance mechanisms. SEM of CHXR1 and unadapted E. coli cells exposed to increasing CHX concentrations revealed that CHX does not visibly damage cell envelope integrity at any tested concentration but did identify elongated CHXR1 cells. ΔmlaA confers similar levels of CHX resistance as efflux overexpression and porin deletions, however, only outer membrane-altering porin and mlaA deletions can be reliably distinguished using RFDMIA.
Collapse
Affiliation(s)
- Branden S J Gregorchuk
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shelby L Reimer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Carmine J Slipski
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Kieran A Milner
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shannon L Hiebert
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Daniel R Beniac
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Timothy F Booth
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Denice C Bay
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
2
|
Bacterial chemotaxis to saccharides is governed by a trade-off between sensing and uptake. Biophys J 2022; 121:2046-2059. [PMID: 35526093 DOI: 10.1016/j.bpj.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
To swim up gradients of nutrients, E. coli senses nutrient concentrations within its periplasm. For small nutrient molecules, periplasmic concentrations typically match extracellular concentrations. However, this is not necessarily the case for saccharides, such as maltose, which are transported into the periplasm via a specific porin. Previous observations have shown that, under various conditions, E. coli limits maltoporin abundance so that, for extracellular micromolar concentrations of maltose, there are predicted to be only nanomolar concentrations of free maltose in the periplasm. Thus, in the micromolar regime, the total uptake of maltose from the external environment into the cytoplasm is limited not by the abundance of cytoplasmic transport proteins but by the abundance of maltoporins. Here we present results from experiments and modeling suggesting that this porin-limited transport enables E. coli to sense micromolar gradients of maltose despite having a high-affinity ABC transport system that is saturated at these micromolar levels. We used microfluidic assays to study chemotaxis of E. coli in various gradients of maltose and methyl-aspartate and leveraged our experimental observations to develop a mechanistic transport-and-sensing chemotaxis model. Incorporating this model into agent-based simulations, we discover a trade-off between uptake and sensing: although high-affinity transport enables higher uptake rates at low nutrient concentrations, it severely limits the range of dynamic sensing. We thus propose that E. coli may limit periplasmic uptake to increase its chemotactic sensitivity, enabling it to use maltose as an environmental cue.
Collapse
|
3
|
Yamamoto-Tamura K, Kawagishi I, Ogawa N, Fujii T. A putative porin gene of Burkholderia sp. NK8 involved in chemotaxis toward β-ketoadipate. Biosci Biotechnol Biochem 2015; 79:926-36. [PMID: 25649919 DOI: 10.1080/09168451.2015.1006571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Burkholderia sp. NK8 can utilize 3-chlorobenzoate (3CB) as a sole source of carbon because it has a megaplasmid (pNK8) that carries the gene cluster (tfdT-CDEF) encoding chlorocatechol-degrading enzymes. The expression of tfdT-CDEF is induced by 3CB. In this study, we found that NK8 cells were attracted to 3CB and its degradation products, 3- and 4-chlorocatechol, and β-ketoadipate. Capillary assays revealed that a pNK8-eliminated strain (NK82) was defective in chemotaxis toward β-ketoadipate. The introduction of a plasmid carrying a putative outer membrane porin gene, which we name ompNK8, into strain NK82 restored chemotaxis toward β-ketoadipate. RT-PCR analyses demonstrated that the transcription of the ompNK8 gene was enhanced in the presence of 3CB.
Collapse
Affiliation(s)
- Kimiko Yamamoto-Tamura
- a Environmental Biofunction Division , National Institute for Agro-Environmental Sciences , Tsukuba , Japan
| | | | | | | |
Collapse
|
4
|
Udho E, Jakes KS, Finkelstein A. TonB-dependent transporter FhuA in planar lipid bilayers: partial exit of its plug from the barrel. Biochemistry 2012; 51:6753-9. [PMID: 22846061 DOI: 10.1021/bi300493u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
TonB-dependent transporters (TBDTs), which transport iron-chelating siderophores and vitamin B(12) across the outer membrane of Gram-negative bacteria, share a conserved architecture of a 22-stranded β-barrel with an amino-terminal plug domain occluding the barrel. We previously reported that we could induce TBDTs to reversibly open in planar lipid bilayers via the use of urea and that these channels were responsive to physiological concentrations of ligands. Here we report that in the presence of urea, trypsin can cleave the amino-terminal 67 residues of the plug of the TonB-dependent transporter FhuA, as assessed by gel shift and mass spectrometry assays. On the bilayer, trypsin treatment in the presence of urea resulted in the induced conductance no longer being reversed upon removal of urea, suggesting that urea opens intact FhuA channels by pulling the plug at least partly out of the barrel and that removal of the urea then allows reinsertion of the plug into the barrel. When expressed separately, the FhuA plug domain was found to be a mostly unfolded structure that was able to occlude isolated FhuA β-barrels inserted into the membrane. Thus, although folded in the barrel, the plug need not be folded upon exiting the barrel. The rate of insertion of the β-barrels into the membrane was tremendously increased in the presence of an osmotic gradient provided by either urea or glycerol. Negative staining electron microscopy showed that FhuA in a detergent solution formed vesicles, thus explaining why an osmotic gradient promoted the insertion of FhuA into membranes.
Collapse
Affiliation(s)
- Eshwar Udho
- Deptartment of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
5
|
Abstract
After a childhood in Germany and being a youth in Grand Forks, North Dakota, I went to Harvard University, then to graduate school in biochemistry at the University of Wisconsin. Then to Washington University and Stanford University for postdoctoral training in biochemistry and genetics. Then at the University of Wisconsin, as a professor in the Department of Biochemistry and the Department of Genetics, I initiated research on bacterial chemotaxis. Here, I review this research by me and by many, many others up to the present moment. During the past few years, I have been studying chemotaxis and related behavior in animals, namely in Drosophila fruit flies, and some of these results are presented here. My current thinking is described.
Collapse
Affiliation(s)
- Julius Adler
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA.
| |
Collapse
|
6
|
Hritonenko V, Kostakioti M, Stathopoulos C. Quaternary structure of a SPATE autotransporter protein. Mol Membr Biol 2009; 23:466-74. [PMID: 17127619 DOI: 10.1080/09687860600821316] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The temperature-sensitive hemagglutinin (Tsh) is a representative of the growing subfamily of secreted bacterial virulence factors, known as serine protease autotransporters of the Enterobacteriaceae (SPATEs). Expressed by avian and human pathogenic strains of Escherichia coli Tsh acts as a serine protease and an adhesin to erythrocytes, hemoglobin, and extracellular matrix proteins. Mature Tsh is comprised of a 106-kDa secreted domain (Tshs) and a 33-kDa outer membrane beta-domain (Tshbeta). Based on the size of beta-domains and functional properties of their passenger domains, all SPATEs are considered to be conventional autotransporters. However, it is unsettled if the conventional autotransporters exist as monomers, oligomers, or multimers (e.g., hexamers). To determine the quaternary structure of Tsh in vitro, we purified Tshbeta from the outer membranes and showed that it is natively folded because it is heat modifiable and resistant to protease digestion. Blue-native polyacrylamide gel electrophoresis of Tshbeta indicated that Tshbeta exists as a monomer or a dimer. The cross-linking analysis demonstrated that purified Tshbeta exists as a monomer. The size-exclusion chromatography and cross-linking analyses of purified Tshs also showed that the passenger domain of Tsh is a monomer. Overall, our data indicated that Tsh is a monomeric protein in vitro and support the concept that the SPATE autotransporters exist as monomers rather than as multimers. Implications of our findings on the mechanism of autotransporter secretion across the outer membrane are discussed.
Collapse
Affiliation(s)
- Victoria Hritonenko
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | | | | |
Collapse
|
7
|
Balagué C, Stürtz N, Rey R, De Ruiz CS, Nader-Macías ME, Duffard R, De Duffard AME. Aryloxoalcanoic compounds induce resistance to antibiotic therapy in urinary tract infection caused by Escherichia coli. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2006; 48:337-46. [PMID: 17034416 DOI: 10.1111/j.1574-695x.2006.00153.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Clofibric acid (CL) is a compound used to control hypertriglyceridemia, and ethacrynic acid (ET) is administered to enhance diuresis. These compounds are structurally analogous to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as they have a chlorinated phenoxy moiety. As these agents are mainly excreted by the renal route, they could potentially coexist with Escherichia coli in the urinary tract of infected patients. Induction of the in vitro resistance of E. coli to hydrophilic antibiotics was determined by increasing the values of the minimum inhibitory concentration (2-40-fold). These results correlated with drastically inhibited expression of the hydrophilic bacterial channel OmpF. In vivo assays were performed in ascending urinary tract infection in female BALB/c mice. Treatment with the hydrophilic antibiotic cephalexin 25 mg kg(-1) day(-1) by the oral route diminished renal infection. The CFU mean values in the kidneys were between 75% and 89% lower than those in animals without treatment. Simultaneous exposure to CL (at a therapeutic dose, 28.6 mg kg(-1) day(-1)) did not change the effect of the treatment. In contrast, ET at 2.9 mg kg(-1) day(-1) or 2,4-D at 70 mg kg(-1) day(-1) inhibited the antibiotic therapeutic effect. Moreover, 2,4-D dramatically increased bacterial infection after 9 days of exposure.
Collapse
Affiliation(s)
- Claudia Balagué
- Laboratorio de Toxicología Experimental, Universidad Nacional de Rosario, Suipacha, Rosario, Argentina.
| | | | | | | | | | | | | |
Collapse
|
8
|
Baslé A, Iyer R, Delcour AH. Subconductance states in OmpF gating. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:100-7. [PMID: 15238263 DOI: 10.1016/j.bbamem.2004.04.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 04/16/2004] [Accepted: 04/30/2004] [Indexed: 11/15/2022]
Abstract
Discrepancies were noted in the published conductance of the Escherichia coli porin OmpF. Results from various papers are hard to compare because of the use of different channel preparations, salt types and concentrations, and electrophysiological techniques (black lipid membrane (BLM) vs. patch clamp). To reconcile these data, we present a side-by-side comparison of OmpF activity studied with the two techniques on the same preparation of pure protein, and in the same low salt concentrations (150 mM KCl). The novel aspect of OmpF porin behavior revealed by this comparison is the ubiquitous existence of states of smaller conductance than the monomeric conductance (subconductance states), regardless of the techniques or experimental conditions used, and the drastic enhancement of subconductance gating by polyamines. Transitions to subconductance states have received little attention in previous publications, in particular when BLM electrophysiology was used. Monomeric closures are rare in recordings at clamped potentials, at least at voltages lower than approximately 100-120 mV. Most closing activity is in the form of subconductance gating, which becomes more dominant in the presence of spermine, with a more frequent and prolonged occupation of these substates. A discussion of the molecular basis for this hallmark behavior of porin is presented.
Collapse
Affiliation(s)
- Arnaud Baslé
- Department of Biology and Biochemistry, University of Houston, 369 Science and Research Building 2, Houston, TX 77204-5001, USA
| | | | | |
Collapse
|
9
|
Koedding J, Howard P, Kaufmann L, Polzer P, Lustig A, Welte W. Dimerization of TonB Is Not Essential for Its Binding to the Outer Membrane Siderophore Receptor FhuA of Escherichia coli. J Biol Chem 2004; 279:9978-86. [PMID: 14665631 DOI: 10.1074/jbc.m311720200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FhuA belongs to a family of specific siderophore transport systems located in the outer membrane of Escherichia coli. The energy required for the transport process is provided by the proton motive force of the cytoplasmic membrane and is transmitted to FhuA by the protein TonB. Although the structure of full-length TonB is not known, the structure of the last 77 residues of a fragment composed of the 86 C-terminal amino acids was recently solved and shows an intertwined dimer (Chang, C., Mooser, A., Pluckthun, A., and Wlodawer, A. (2001) J. Biol. Chem. 276, 27535-27540). We analyzed the ability of truncated C-terminal TonB fragments of different lengths (77, 86, 96, 106, 116, and 126 amino acid residues, respectively) to bind to the receptor FhuA. Only the shortest TonB fragment, TonB-77, could not effectively interact with FhuA. We have also observed that the fragments TonB-77 and TonB-86 form homodimers in solution, whereas the longer fragments remain monomeric. TonB fragments that bind to FhuA in vitro also inhibit ferrichrome uptake via FhuA in vivo and protect cells against attack by bacteriophage Phi80.
Collapse
Affiliation(s)
- Jiri Koedding
- Fakultaet fuer Biologie, Universitaet Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Samartzidou H, Mehrazin M, Xu Z, Benedik MJ, Delcour AH. Cadaverine inhibition of porin plays a role in cell survival at acidic pH. J Bacteriol 2003; 185:13-9. [PMID: 12486035 PMCID: PMC141942 DOI: 10.1128/jb.185.1.13-19.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When grown at acidic pH, Escherichia coli cells secrete cadaverine, a polyamine known to inhibit porin-mediated outer membrane permeability. In order to understand the physiological significance of cadaverine excretion and the inhibition of porins, we isolated an OmpC mutant that showed resistance to spermine during growth and polyamine-resistant porin-mediated fluxes. Here, we show that the addition of exogenous cadaverine allows wild-type cells to survive a 30-min exposure to pH 3.6 better than cells expressing the cadaverine-insensitive OmpC porin. Competition experiments between strains expressing either wild-type or mutant OmpC showed that the lack of sensitivity of the porin to cadaverine confers a survival disadvantage to the mutant cells at reduced pH. On the basis of these results, we propose that the inhibition of porins by excreted cadaverine represents a novel mechanism that provides bacterial cells with the ability to survive acid stress.
Collapse
Affiliation(s)
- Hrissi Samartzidou
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | | | | | | | | |
Collapse
|
11
|
Liu N, Samartzidou H, Lee KW, Briggs JM, Delcour AH. Effects of pore mutations and permeant ion concentration on the spontaneous gating activity of OmpC porin. PROTEIN ENGINEERING 2000; 13:491-500. [PMID: 10906344 DOI: 10.1093/protein/13.7.491] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Porins are trimers of beta-barrels that form channels for ions and other hydrophilic solutes in the outer membrane of Gram-negative bacteria. The X-ray structures of OmpF and PhoE show that each monomeric pore is constricted by an extracellular loop that folds into the channel vestibule, a motif that is highly conserved among bacterial porins. Electrostatic calculations have suggested that the distribution of ionizable groups at the constriction zone (or eyelet) may establish an intrinsic transverse electrostatic field across the pore, that is perpendicular to the pore axis. In order to study the role that electrostatic interactions between pore residues may have in porin function, we used spontaneous mutants and engineered site-directed mutants that have an altered charge distribution at the eyelet and compared their electrophysiological behavior with that of wild-type OmpC. We found that some mutations lead to changes in the spontaneous gating activity of OmpC porin channels. Changes in the concentration of permeant ions also altered this activity. These results suggest that the ionic interactions that exist between charged residues at the constriction zone of porin may play a role in the transitions between the channel's closed and open states.
Collapse
Affiliation(s)
- N Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA
| | | | | | | | | |
Collapse
|
12
|
Iyer R, Wu Z, Woster PM, Delcour AH. Molecular basis for the polyamine-ompF porin interactions: inhibitor and mutant studies. J Mol Biol 2000; 297:933-45. [PMID: 10736228 DOI: 10.1006/jmbi.2000.3599] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By testing the sensitivity of Escherichia coli OmpF porin to various natural and synthetic polyamines of different lengths, charge and other molecular characteristics, we were able to identify the molecular properties required for compounds to act as inhibitors of OmpF in the nanomolar range. Inhibitors require at least two amine groups to be effective. For diamines, the optimum length of the hydrocarbon spacer was found to be of eight to ten methylene groups. Triamine molecules based on a 12-carbon motif were found to be more effective that spermidine, an eight-carbon trivalent derivative. But differences in inhibition efficiencies were also found for trivalent compounds depending on the relative position of the internal secondary amine group with respect to the terminal groups. Finally, quaternary ammonium derivatives had no effect, suggesting that the nature of the terminal amine is important for the interaction. From these observations, we deduce that inhibition efficiency in the nanomolar range requires a 12-carbon chain triamine with terminal primary amine groups and replacement of the eighth methylene by a secondary amine. The need for this type of molecular architecture suggests that inhibition is governed by interactions between specific amine groups and protein residues, and that this is not simply due to the accumulation of charges into the pore. Together with previous observations from site-directed mutagenesis studies and inspection of the crystal structure of OmpF, these results allowed us to propose three residues (D113, D121 and Y294) as putative sites of interaction between the channel and spermine. Alanine substitution at each of these three residues resulted in a loss of inhibition by spermine, while mutations of only D113 and D121 affected inhibition by spermidine. Based on these observations, we suggest a model for the molecular determinants involved in the porin-polyamine interaction.
Collapse
Affiliation(s)
- R Iyer
- Department of Biology, University of Houston, Houston, TX, 77204-5513, USA
| | | | | | | |
Collapse
|
13
|
|
14
|
Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A, Bertin P. Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 1999; 181:7500-8. [PMID: 10601207 PMCID: PMC94207 DOI: 10.1128/jb.181.24.7500-7508.1999] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/1999] [Accepted: 10/04/1999] [Indexed: 11/20/2022] Open
Abstract
Little is known about the molecular mechanism by which histone-like nucleoid-structuring (H-NS) protein and cyclic AMP-catabolite activator protein (CAP) complex control bacterial motility. In the present paper, we show that crp and hns mutants are nonmotile due to a complete lack of flagellin accumulation. This results from a reduced expression in vivo of fliA and fliC, which encode the specific flagellar sigma factor and flagellin, respectively. Overexpression of the flhDC master operon restored, at least in part, motility in crp and hns mutant strains, suggesting that this operon is the main target for both regulators. Binding of H-NS and CAP to the regulatory region of the master operon was demonstrated by gel retardation experiments, and their DNA binding sites were identified by DNase I footprinting assays. In vitro transcription experiments showed that CAP activates flhDC expression while H-NS represses it. In agreement with this observation, the activity of a transcriptional fusion carrying the flhDC promoter was decreased in the crp strain and increased in the hns mutant. In contrast, the activity of a transcriptional fusion encompassing the entire flhDC regulatory region extending to the ATG translational start codon was strongly reduced in both hns and crp mutants. These results suggest that the region downstream of the +1 transcriptional start site plays a crucial role in the positive control by H-NS of flagellum biosynthesis in vivo. Finally, the lack of complementation of the nonmotile phenotype in a crp mutant by activation-deficient CAP mutated proteins and characterization of cfs, a mutation resulting in a CAP-independent motility behavior, demonstrate that CAP activates flhDC transcription by binding to its promoter and interacting with RNA polymerase.
Collapse
Affiliation(s)
- O Soutourina
- Unité de Régulation de l'Expression Génétique, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The inhibition of the anion-selective PhoE porin by ATP and of the cation-selective OmpF porin by polyamines has been previously documented. In the present study, we have extended the comparison of the inhibitor-porin pairs by investigating the effect of anions (ATP and aspartate) and positively charged polyamines (spermine and cadaverine) on both OmpF and PhoE with the patch-clamp technique, and by comparing directly the gating kinetics of the channels modulated by their respective substrates. The novel findings reported here are (1) that the activity of PhoE is completely unaffected by polyamines, and (2) that the kinetic changes induced by ATP on PhoE or polyamines on OmpF suggest different mechanisms of inhibition. ATP induces a high degree of flickering in the PhoE-mediated current and appears to behave as a blocker of ion flow during its presumed transport through PhoE. Polyamines modulate the kinetics of openings and closings of OmpF, in addition to promoting a blocker-like flickering activity. The strong correlation between sensitivity to inhibitors and ion selectivity suggests that some common molecular determinants are involved in these two properties and is in agreement with the hypothesis that polyamines bind inside the pore of cationic porins.
Collapse
Affiliation(s)
- H Samartzidou
- Department of Biology and Biochemistry, University of Houston, TX 77204-5513, USA
| | | |
Collapse
|
16
|
Samartzidou H, Delcour AH. Excretion of endogenous cadaverine leads to a decrease in porin-mediated outer membrane permeability. J Bacteriol 1999; 181:791-8. [PMID: 9922241 PMCID: PMC93444 DOI: 10.1128/jb.181.3.791-798.1999] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The permeability of the outer membrane of Escherichia coli to hydrophilic compounds is controlled by porin channels. Electrophysiological experiments showed that polyamines inhibit ionic flux through cationic porins when applied to either side of the membrane. Externally added polyamines, such as cadaverine, decrease porin-mediated fluxes of beta-lactam antibiotics in live cells. Here we tested the effects of endogenously expressed cadaverine on the rate of permeation of cephaloridine through porins, by manipulating in a pH-independent way the expression of the cadBA operon, which encodes proteins involved in the decarboxylation of lysine to cadaverine and in cadaverine excretion. We report that increased levels of excreted cadaverine correlate with a decreased outer membrane permeability to cephaloridine, without any change in porin expression. Cadaverine appears to promote a sustained inhibition of porins, since the effect remains even after removal of the exogenously added or excreted polyamine. The cadaverine-induced inhibition is sufficient to provide cells with some resistance to ampicillin but not to hydrophobic antibiotics. Finally, the mere expression of cadC, in the absence of cadaverine production, leads to a reduction in the amounts of OmpF and OmpC proteins, which suggests a novel mechanism for the environmental control of porin expression. The results presented here support the notion that polyamines can act as endogenous modulators of outer membrane permeability, possibly as part of an adaptive response to acidic conditions.
Collapse
Affiliation(s)
- H Samartzidou
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5513, USA
| | | |
Collapse
|
17
|
Samartzidou H, Delcour AH. E.coli PhoE porin has an opposite voltage-dependence to the homologous OmpF. EMBO J 1998; 17:93-100. [PMID: 9427744 PMCID: PMC1170361 DOI: 10.1093/emboj/17.1.93] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We used patch clamp analysis to compare the electrophysiological behavior of two related porins from Escherichia coli, the anion-specific PhoE and the cation-selective OmpF. Outer membrane fractions were obtained from strains expressing just one of these porin types, and the channels were reconstituted into liposomes without prior purification. We show that the orientation of the reconstituted channels is not random and is the same for both PhoE and OmpF. Like cation-selective porins, PhoE shows fast and slow gating to closed levels of various amplitudes, testifying that the channels visit multiple functional states and behave as cooperative entities. The voltage-dependence of PhoE closure is asymmetric, but strikingly, occurs at voltages of inverse polarity from those promoting closures of OmpC and OmpF. Both slow kinetics and inverse voltage-dependence are removed when 70 amino acids from the N-terminal of OmpF are introduced into the homologous region of PhoE. This novel observation regarding the voltage-dependence of the two channel types, along with published results on PhoE and OmpF mutants, allows us to propose a molecular mechanism for voltage sensing and sensor charge movements in bacterial porins. It also offers new cues on the possible physiological relevance in bacteria of this common form of channel modulation.
Collapse
Affiliation(s)
- H Samartzidou
- Department of Biology, University of Houston, Houston, TX 77204-5513, USA
| | | |
Collapse
|
18
|
Moeck GS, Coulton JW, Postle K. Cell envelope signaling in Escherichia coli. Ligand binding to the ferrichrome-iron receptor fhua promotes interaction with the energy-transducing protein TonB. J Biol Chem 1997; 272:28391-7. [PMID: 9353297 DOI: 10.1074/jbc.272.45.28391] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ferrichrome-iron receptor of Escherichia coli is FhuA, an outer membrane protein that is dependent upon the energy-coupling protein TonB to enable active transport of specific hydroxamate siderophores, infection by certain phages, and cell killing by the protein antibiotics colicin M and microcin 25. In vivo cross-linking studies were performed to establish at the biochemical level the interaction between FhuA and TonB. In an E. coli strain in which both proteins were expressed from the chromosome, a high molecular mass complex was detected when the ferrichrome homologue ferricrocin was added immediately prior to addition of cross-linker. The complex included both proteins; it was absent from strains of E. coli that were devoid of either FhuA or TonB, and it was detected with anti-FhuA and anti-TonB monoclonal antibodies. These results indicate that, in vivo, the binding of ferricrocin to FhuA enhances complex formation between the receptor and TonB. An in vitro system was established with which to examine the FhuA-TonB interaction. Incubation of TonB with histidine-tagged FhuA followed by addition of Ni2+-nitrilotriacetate-agarose led to the specific recovery of both TonB and FhuA. Addition of ferricrocin or colicin M to FhuA in this system greatly increased the coupling between FhuA and TonB. Conversely, a monoclonal antibody that binds near the N terminus of FhuA reduced the retention of TonB by histidine-tagged FhuA. These studies demonstrate the significance of ligand binding at the external surface of the cell to mediate signal transduction across the outer membrane.
Collapse
Affiliation(s)
- G S Moeck
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | |
Collapse
|
19
|
Abstract
The effects of four polyamines (putrescine, cadaverine, spermidine, and spermine) on the activity of bacterial porins OmpC and OmpF were investigated by electrophysiology. Membrane vesicles made from the outer membrane of Escherichia coli strains expressing only OmpC or OmpF were reconstituted into liposomes probed by patch clamp. The channel activity was recorded in control solutions and in the presence of increasing concentrations of a specific polyamine. In all cases, concentration- and voltage-dependent inhibitory effects were observed. They include both the suppression of channel openings and the enhancement of channel closures as well as the promotion of blocked or inactivated states. OmpF and OmpC, although highly homologous, have distinct sensitivities to modulation, especially by spermine. This compound inhibits OmpF in the nanomolar range, which is in agreement with its potency on eukaryotic channels. Putrescine was the least effective (upper millimolar range) and also had inhibitory effects qualitatively distinct from those exerted by the other polyamines. The compounds appear to bind to at least two distinct binding sites, one of which resides within the pore. The potencies to this site are lower when the polyamines are applied from the extracellular side than from the periplasmic side, suggesting an asymmetric binding site.
Collapse
Affiliation(s)
- R Iyer
- Department of Biology, University of Houston, Houston, Texas 77204-5513, USA
| | | |
Collapse
|
20
|
Liu N, Benedik MJ, Delcour AH. Disruption of polyamine modulation by a single amino acid substitution on the L3 loop of the OmpC porin channel. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1326:201-12. [PMID: 9218551 DOI: 10.1016/s0005-2736(97)00024-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Structural studies have demonstrated that the extracellular L3 loop of porin constricts the channel and suggest that this loop might be involved in channel selectivity and gating. We previously showed that positively charged polyamines can induce changes in porin gating kinetics by stabilization of closed states. Here we report the effects of the mutation of two different aspartate residues of Escherichia coli OmpC porin on the polyamine sensitivity of the channel. Aspartate 105 or aspartate 118 on the L3 loop was replaced by glutamine by site-directed mutagenesis. The gating activity of the wild-type and mutant channels were studied by patch-clamp of liposomes containing reconstituted outer membrane fractions, in the absence or the presence of either polyamine spermine or cadaverine. Porin channels with a D118Q mutation, at the root of L3, still showed some, albeit milder, sensitivity to polyamine modulation. On the other hand, the D105Q mutation, at the tip of L3, abolished the increase in closing frequency which is typically observed in the presence of polyamines. We conclude that aspartate 105 primarily, but not aspartate 118, plays an important role in mediating the polyamine-induced changes in gating kinetics that result in the inhibition of the OmpC channel.
Collapse
Affiliation(s)
- N Liu
- Department of Biology, University of Houston, TX 77204-5513, USA
| | | | | |
Collapse
|
21
|
Blount P, Sukharev SI, Schroeder MJ, Nagle SK, Kung C. Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc Natl Acad Sci U S A 1996; 93:11652-7. [PMID: 8876191 PMCID: PMC38113 DOI: 10.1073/pnas.93.21.11652] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
MscL is a channel that opens a large pore in the Escherichia coli cytoplasmic membrane in response to mechanical stress. Previously, we highly enriched the MscL protein by using patch clamp as a functional assay and cloned the corresponding gene. The predicted protein contains a largely hydrophobic core spanning two-thirds of the molecule and a more hydrophilic carboxyl terminal tail. Because MscL had no homology to characterized proteins, it was impossible to predict functional regions of the protein by simple inspection. Here, by mutagenesis, we have searched for functionally important regions of this molecule. We show that a short deletion from the amino terminus (3 amino acids), and a larger deletion of 27 amino acids from the carboxyl terminus of this protein, had little if any effect in channel properties. We have thus narrowed the search of the core mechanosensitive mechanism to 106 residues of this 136-amino acid protein. In contrast, single residue substitutions of a lysine in the putative first transmembrane domain or a glutamine in the periplasmic loop caused pronounced shifts in the mechano-sensitivity curves and/or large changes in the kinetics of channel gating, suggesting that the conformational structure in these regions is critical for normal mechanosensitive channel gating.
Collapse
Affiliation(s)
- P Blount
- Laboratory of Molecular Biology, University of Wisconsin, Madison 53706, USA
| | | | | | | | | |
Collapse
|
22
|
Lee EH, Collatz E, Podglajen I, Gutmann L. A rob-like gene of Enterobacter cloacae affecting porin synthesis and susceptibility to multiple antibiotics. Antimicrob Agents Chemother 1996; 40:2029-33. [PMID: 8878575 PMCID: PMC163467 DOI: 10.1128/aac.40.9.2029] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A chromosomal gene of Enterobacter cloacae affecting the synthesis of major outer membrane proteins in E. cloacae and Escherichia coli was cloned by using selection for resistance to cefoxitin in E. coli. The presence of the gene, when plasmid-borne, led to a decrease in the amount of porin F in E. cloacae and the amount of OmpF in E. coli and caused 2- to 32-fold increases in the MICs of chloramphenicol, tetracycline, quinolones, and beta-lactam antibiotics. The gene encoded a 33-kDa protein, similar (83% identity) to the protein Rob involved in the initiation of DNA replication in E. coli, which was called RobA(EC1) by analogy. RobA from E. cloacae was found to inhibit ompF expression at the posttranscriptional level via activation of micF, a gene also apparently present in E. cloacae, as detected by PCR. As with its homolog from E. coli, RobA(EC1) is related to the XylS-AraC class of positive transcriptional regulators, along with MarA and SoxS, which also cause a micF-mediated decrease in the level of ampF expression.
Collapse
Affiliation(s)
- E H Lee
- Laboratoire de Recherche Moléculaire sur les Antibiotiques, Université Paris VI, France
| | | | | | | |
Collapse
|
23
|
Abstract
The permeability of the outer membranes of gram-negative bacteria to hydrophilic compounds is mostly due to the presence of porin channels. We tested the effects of four polyamines (putrescine, cadaverine, spermidine, and spermine) on two processes known to depend on intact porin function: fluxes of beta-lactam antibiotics in live cells and chemotaxis. In both cases, inhibition was observed. Measurements of the rate of permeation of cephaloridine and of chemotaxis in swarm plates and capillary assays were used to determine the concentration dependence of this modulation. The effective concentration ranges depended on the nature of the polyamine and varied from submillimolar for spermine to tens of millimolar for cadaverine. Both OmpC and OmpF porins were inhibited, although the effects on OmpC appeared to be milder. These results are in agreement with our observations that polyamines inhibit porin-mediated ion fluxes in electrophysiological experiments, and they suggest that a low-affinity polyamine binding site might exist in these porins. These results reveal the potential use of porins as targets for blocking agents and suggest that polyamines may act as endogenous modulators of outer membrane permeability.
Collapse
Affiliation(s)
- A L Dela Vega
- Department of Biology, University of Houston, Texas 77204, USA
| | | |
Collapse
|
24
|
Moeck GS, Ratcliffe MJ, Coulton JW. Topological analysis of the Escherichia coli ferrichrome-iron receptor by using monoclonal antibodies. J Bacteriol 1995; 177:6118-25. [PMID: 7592376 PMCID: PMC177451 DOI: 10.1128/jb.177.21.6118-6125.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ferrichrome-iron transport in Escherichia coli is initiated by the outer membrane receptor FhuA. Thirty-five anti-FhuA monoclonal antibodies (MAbs) were isolated to examine the surface accessibility of FhuA sequences and their contribution to ligand binding. The determinants of 32 of the MAbs were mapped to eight distinct regions in the primary sequence of FhuA by immunoblotting against (i) five internal deletion FhuA proteins and (ii) four FhuA peptides generated by cyanogen bromide cleavage. Two groups of MAbs bound to FhuA in outer membrane vesicles but not to intact cells, indicating that their determinants, located between residues 1 and 20 and 21 and 59, are exposed to the periplasm. One of the 28 strongly immunoblot-reactive MAbs bound to FhuA on intact cells in flow cytometry, indicating that its determinant, located between amino acids 321 and 381, is cell surface exposed. This MAb and four others which in flow cytometry bound to cells expressing FhuA were tested for the ability to block ligand binding. While no MAb inhibited growth promotion by ferrichrome or cell killing by microcin 25, some prevented killing by colicin M and were partially able to inhibit the inactivation of T5 phage. These data provide evidence for spatially distinct ligand binding sites on FhuA. The lack of surface reactivity of most of the immunoblot-reactive MAbs suggests that the majority of FhuA sequences which lie external to the outer membrane may adopt a tightly ordered organization with little accessible linear sequence.
Collapse
Affiliation(s)
- G S Moeck
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | | | | |
Collapse
|
25
|
Sukharev SI, Martinac B, Arshavsky VY, Kung C. Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys J 1993; 65:177-83. [PMID: 7690260 PMCID: PMC1225713 DOI: 10.1016/s0006-3495(93)81044-0] [Citation(s) in RCA: 238] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mechanosensitive ion channels (MSCs) which could provide for fast osmoregulatory responses in bacteria, remain unidentified as molecular entities. MSCs from Escherichia coli (strain AW740) were examined using the patch-clamp technique, either (a) in giant spheroplasts, (b) after reconstitution by fusing native membrane vesicles with asolectin liposomes, or (c) by reassembly of octylglucoside-solubilized membrane extract into asolectin liposomes. MSC activities were similar in all three preparations, consisting of a large nonselective MSC of 3-nS conductance (in 200 mM KCl) that was activated by high negative pressures, and a small weakly anion-selective MSC of 1 nS activated by lower negative pressures. Both channels appeared more sensitive to suction in liposomes than in spheroplasts. After gel filtration of the solubilized membrane extract and reconstituting the fractions, both large MSC and small MSC activities were retrieved in liposomes. The positions of the peaks of channel activity in the column eluate, assayed by patch sampling of individual fractions reconstituted in liposomes, showed an apparent molecular mass under nondenaturing conditions of about 60-80 kDa for the large and 200-400 kDa for the small MSC. We conclude that (a) the large MSC and the small MSC are distinct molecular entities, (b) the fact that both MSCs were functional in liposomes following chromatography strongly suggests that these channels are gated by tension transduced via lipid bilayer, and (c) chromatographic fractionation of detergent-solubilized membrane proteins with subsequent patch sampling of reconstituted fractions can be used to identify and isolate these MS channel proteins.
Collapse
Affiliation(s)
- S I Sukharev
- Laboratory of Molecular Biology, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
26
|
Death A, Notley L, Ferenci T. Derepression of LamB protein facilitates outer membrane permeation of carbohydrates into Escherichia coli under conditions of nutrient stress. J Bacteriol 1993; 175:1475-83. [PMID: 8444809 PMCID: PMC193235 DOI: 10.1128/jb.175.5.1475-1483.1993] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The level of LamB protein in the outer membrane of Escherichia coli was derepressed in the absence of a known inducer (maltodextrins) under carbohydrate-limiting conditions in chemostats. LamB protein contributed to the ability of the bacteria to remove sugar from glucose-limited chemostats, and well-characterized lamB mutants with reduced stability constants for glucose were less growth competitive under glucose limitation than those with wild-type affinity. In turn, wild-type bacteria were less growth competitive than lamB mutants with enhanced sugar affinity. In contrast to an earlier report, we found that LamB- bacteria were less able to compete in carbohydrate-limited chemostats (with glucose, lactose, arabinose, or glycerol as the carbon and energy sources) when mixed with LamB+ bacteria. The transport Km for [14C]glucose was affected by the presence or affinity of LamB, but only in chemostat-grown bacteria, with their elevated LamB levels. The pattern of expression of LamB and the advantage it confers for growth on low concentrations of carbohydrates are consistent with a wider role in sugar permeation than simply maltosaccharide transport, and hence the well-known maltoporin activity of LamB is but one facet of its role as the general glycoporin of E. coli. A corollary of these findings is that OmpF/OmpC porins, present at high levels in carbon-limited bacteria, do not provide sufficient permeability to sugars or even glycerol to support high growth rates at low concentrations. Hence, the sugar-binding site of LamB protein is an important contributor to the permeability of the outer membrane to carbohydrates in habitats with low extracellular nutrient concentrations.
Collapse
Affiliation(s)
- A Death
- Department of Microbiology G08, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
27
|
Chakraborty R, Roy P. Chemotaxis of chemolithotrophicThiobacillus ferrooxidanstoward thiosulfate. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05482.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
28
|
Delcour AH, Adler J, Kung C, Martinac B. Membrane-derived oligosaccharides (MDO's) promote closing of an E. coli porin channel. FEBS Lett 1992; 304:216-20. [PMID: 1377642 DOI: 10.1016/0014-5793(92)80622-n] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The outer membrane of Escherichia coli is a diffusion barrier for macromolecules, but allows the passage of small hydrophilic solutes through non-specific channels, the porins. Some electrophysiological studies find reconstituted porins in a mostly open state, while those done with the patch-clamp technique performed on live cells suggest that the vast majority of the native channels are closed. We present here current measurements through porins from reconstituted outer membrane, which demonstrate that bacterial metabolites, the MDO's, which bathe the periplasmic side of the outer membrane, induce the channels to close. These findings illustrate that the degree of openness of porins can be regulated by compounds naturally found in bacteria.
Collapse
Affiliation(s)
- A H Delcour
- Department of Biochemistry and Genetics, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
29
|
Parker CT, Kloser AW, Schnaitman CA, Stein MA, Gottesman S, Gibson BW. Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12. J Bacteriol 1992; 174:2525-38. [PMID: 1348243 PMCID: PMC205891 DOI: 10.1128/jb.174.8.2525-2538.1992] [Citation(s) in RCA: 184] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletions which removed rfa genes involved in lipopolysaccharide (LPS) core synthesis were constructed in vitro and inserted into the chromosome by linear transformation. The deletion delta rfa1, which removed rfaGPBI, resulted in a truncated LPS core containing two heptose residues but no hexose and a deep rought phenotype including decreased expression of major outer membrane proteins, hypersensitivity to novobiocin, and resistance to phage U3. In addition, delta rfa1 resulted in the loss of flagella and pili and a mucoid colony morphology. Measurement of the synthesis of beta-galactosidase from a cps-lacZ fusion showed that the mucoid phenotype was due to rcsC-dependent induction of colanic acid capsular polysaccharide synthesis. Complementation of delta rfa1 with rfaG+ DNA fragments resulted in a larger core and restored the synthesis of flagella and pili but did not reverse the deep rough phenotype or the induction of cps-lacZ, while complementation with a fragment carrying only rfaP+ reversed the deep rough phenotype but not the loss of flagella and pili. A longer deletion which removed rfaQGPBIJ was also constructed, and complementation studies with this deletion showed that the product of rfaQ was not required for the functions of rfaG and rfaP. Thus, the function of rfaQ remains unknown. Tandem mass spectrometric analysis of LPS core oligosaccharides from complemented delta rfa1 strains indicated that rfaP+ was necessary for the addition of either phosphoryl (P) or pyrophosphorylethanolamine (PPEA) substituents to the heptose I residue, as well as for the partial branch substitution of heptose II by heptose III. The substitution of heptose II is independent of the type of P substituent present on heptose I, and this results in four different core structures. A model is presented which relates the deep rough phenotype to the loss of heptose-linked P and PPEA.
Collapse
Affiliation(s)
- C T Parker
- Department of Microbiology, Arizona State University, Tempe 85287
| | | | | | | | | | | |
Collapse
|
30
|
Huang L, Tsui P, Freundlich M. Positive and negative control of ompB transcription in Escherichia coli by cyclic AMP and the cyclic AMP receptor protein. J Bacteriol 1992; 174:664-70. [PMID: 1310090 PMCID: PMC206141 DOI: 10.1128/jb.174.3.664-670.1992] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ompB operon encodes OmpR and EnvZ, two proteins that are necessary for the expression and osmoregulation of the OmpF and OmpC porins in Escherichia coli. We have used in vitro and in vivo experiments to show that cyclic AMP and the cyclic AMP receptor protein (CRP) directly regulate ompB. ompB expression in an ompB-lacZ chromosomal fusion strain was increased two- to fivefold when cells were grown in medium containing poor carbon sources or with added cyclic AMP. In vivo primer extension analysis indicated that this control is complex and involves both positive and negative effects by cyclic AMP-CRP on multiple ompB promoters. In vitro footprinting showed that cyclic AMP-CRP binds to a 34-bp site centered at -53 and at -75 in relation to the start sites of the major transcripts that are inhibited and activated, respectively, by this complex. Site-directed mutagenesis of the crp binding site provided evidence that this site is necessary for the in vivo regulation of ompB expression by cyclic AMP. Control of the ompB operon by cyclic AMP-CRP may account for the observed regulation of the formation of OmpF and OmpC by this complex (N. W. Scott and C. R. Harwood, FEMS Microbiol. Lett. 9:95-98, 1980).
Collapse
Affiliation(s)
- L Huang
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794-5215
| | | | | |
Collapse
|