1
|
Sawers RG. How FocA facilitates fermentation and respiration of formate by Escherichia coli. J Bacteriol 2025; 207:e0050224. [PMID: 39868885 PMCID: PMC11841067 DOI: 10.1128/jb.00502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Formic acid is an important source of reductant and energy for many microorganisms. Formate is also produced as a fermentation product, e.g., by enterobacteria like Escherichia coli. As such, formic acid shares many features in common with dihydrogen, explaining perhaps why their metabolism and physiology show considerable overlap. At physiological pH, formic acid is mainly present as the dissociated formate anion and therefore cannot diffuse freely across the cytoplasmic membrane. Specific and bidirectional translocation of formate across the cytoplasmic membrane is, however, achieved in E. coli by the homopentameric membrane protein, FocA. Formic acid translocation from the cytoplasm into the periplasm (efflux) serves to maintain a near-neutral cytosolic pH and to deliver formate to the periplasmically-oriented respiratory formate dehydrogenases, Fdh-N and Fdh-O. These enzymes oxidize formate, with the electrons being used to reduce nitrate, oxygen, or other acceptors. In the absence of exogenous electron acceptors, formate is re-imported into the cytoplasm by FocA, where it is sensed by the transcriptional regulator FhlA, resulting in induction of the formate regulon. The genes and operons of the formate regulon encode enzymes necessary to assemble the formate hydrogenlyase complex, which disproportionates formic acid into H2 and CO2. Combined, these mechanisms of dealing with formate help to maintain cellular pH homeostasis and are suggested to maintain the proton gradient during growth and in stationary phase cells. This review highlights our current understanding of how formate metabolism helps balance cellular pH, how it responds to the redox status, and how it helps conserve energy.
Collapse
Affiliation(s)
- R. Gary Sawers
- Institute for Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany
| |
Collapse
|
2
|
Bordel S, Martín-González D, Börner T, Muñoz R, Santos-Beneit F. Genome-scale metabolic model of the versatile bacterium Paracoccus denitrificans Pd1222. mSystems 2024; 9:e0107723. [PMID: 38180324 PMCID: PMC10878069 DOI: 10.1128/msystems.01077-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/26/2023] [Indexed: 01/06/2024] Open
Abstract
A genome scale metabolic model of the bacterium Paracoccus denitrificans has been constructed. The model containing 972 metabolic genes, 1,371 reactions, and 1,388 unique metabolites has been reconstructed. The model was used to carry out quantitative predictions of biomass yields on 10 different carbon sources under aerobic conditions. Yields on C1 compounds suggest that formate is oxidized by a formate dehydrogenase O, which uses ubiquinone as redox co-factor. The model also predicted the threshold methanol/mannitol uptake ratio, above which ribulose biphosphate carboxylase has to be expressed in order to optimize biomass yields. Biomass yields on acetate, formate, and succinate, when NO3- is used as electron acceptor, were also predicted correctly. The model reconstruction revealed the capability of P. denitrificans to grow on several non-conventional substrates such as adipic acid, 1,4-butanediol, 1,3-butanediol, and ethylene glycol. The capacity to grow on these substrates was tested experimentally, and the experimental biomass yields on these substrates were accurately predicted by the model.IMPORTANCEParacoccus denitrificans has been broadly used as a model denitrifying organism. It grows on a large portfolio of carbon sources, under aerobic and anoxic conditions. These characteristics, together with its amenability to genetic manipulations, make P. denitrificans a promising cell factory for industrial biotechnology. This paper presents and validates the first functional genome-scale metabolic model for P. denitrificans, which is a key tool to enable P. denitrificans as a platform for metabolic engineering and industrial biotechnology. Optimization of the biomass yield led to accurate predictions in a broad scope of substrates.
Collapse
Affiliation(s)
- Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
- />Institute of Sustainable Processes, Valladolid, Spain
| | - Diego Martín-González
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
- />Institute of Sustainable Processes, Valladolid, Spain
| | - Tim Börner
- HES-SO Valais/Wallis, School of Engineering, Institute of Life Technologies, Sion, Switzerland
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
- />Institute of Sustainable Processes, Valladolid, Spain
| | - Fernando Santos-Beneit
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
- />Institute of Sustainable Processes, Valladolid, Spain
| |
Collapse
|
3
|
Mock J, Schühle K, Linne U, Mock M, Heider J. A Synthetic Pathway for the Production of Benzylsuccinate in Escherichia coli. Molecules 2024; 29:415. [PMID: 38257328 PMCID: PMC10818641 DOI: 10.3390/molecules29020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
(R)-Benzylsuccinate is generated in anaerobic toluene degradation by the radical addition of toluene to fumarate and further degraded to benzoyl-CoA by a β-oxidation pathway. Using metabolic modules for benzoate transport and activation to benzoyl-CoA and the enzymes of benzylsuccinate β-oxidation, we established an artificial pathway for benzylsuccinate production in Escherichia coli, which is based on its degradation pathway running in reverse. Benzoate is supplied to the medium but needs to be converted to benzoyl-CoA by an uptake transporter and a benzoate-CoA ligase or CoA-transferase. In contrast, the second substrate succinate is endogenously produced from glucose under anaerobic conditions, and the constructed pathway includes a succinyl-CoA:benzylsuccinate CoA-transferase that activates it to the CoA-thioester. We present first evidence for the feasibility of this pathway and explore product yields under different growth conditions. Compared to aerobic cultures, the product yield increased more than 1000-fold in anaerobic glucose-fermenting cultures and showed further improvement under fumarate-respiring conditions. An important bottleneck to overcome appears to be product excretion, based on much higher recorded intracellular concentrations of benzylsuccinate, compared to those excreted. While no export system is known for benzylsuccinate, we observed an increased product yield after adding an unspecific mechanosensitive channel to the constructed pathway.
Collapse
Affiliation(s)
- Johanna Mock
- Fachbereich Biologe, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
- Synmikro Center Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Karola Schühle
- Fachbereich Biologe, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Uwe Linne
- Synmikro Center Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
- Fachbereich Chemie, Philipps-University Marburg, Hans-Meerwein-Str. 10, 35043 Marburg, Germany
| | - Marco Mock
- Fachbereich Biologe, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Johann Heider
- Fachbereich Biologe, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
- Synmikro Center Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| |
Collapse
|
4
|
Winter MG, Hughes ER, Muramatsu MK, Jimenez AG, Chanin RB, Spiga L, Gillis CC, McClelland M, Andrews-Polymenis H, Winter SE. Formate oxidation in the intestinal mucus layer enhances fitness of Salmonella enterica serovar Typhimurium. mBio 2023; 14:e0092123. [PMID: 37498116 PMCID: PMC10470504 DOI: 10.1128/mbio.00921-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
Salmonella enterica serovar Typhimurium induces intestinal inflammation to create a niche that fosters the outgrowth of the pathogen over the gut microbiota. Under inflammatory conditions, Salmonella utilizes terminal electron acceptors generated as byproducts of intestinal inflammation to generate cellular energy through respiration. However, the electron donating reactions in these electron transport chains are poorly understood. Here, we investigated how formate utilization through the respiratory formate dehydrogenase-N (FdnGHI) and formate dehydrogenase-O (FdoGHI) contribute to gut colonization of Salmonella. Both enzymes fulfilled redundant roles in enhancing fitness in a mouse model of Salmonella-induced colitis, and coupled to tetrathionate, nitrate, and oxygen respiration. The formic acid utilized by Salmonella during infection was generated by its own pyruvate-formate lyase as well as the gut microbiota. Transcription of formate dehydrogenases and pyruvate-formate lyase was significantly higher in bacteria residing in the mucus layer compared to the lumen. Furthermore, formate utilization conferred a more pronounced fitness advantage in the mucus, indicating that formate production and degradation occurred predominantly in the mucus layer. Our results provide new insights into how Salmonella adapts its energy metabolism to the local microenvironment in the gut. IMPORTANCE Bacterial pathogens must not only evade immune responses but also adapt their metabolism to successfully colonize their host. The microenvironments encountered by enteric pathogens differ based on anatomical location, such as small versus large intestine, spatial stratification by host factors, such as mucus layer and antimicrobial peptides, and distinct commensal microbial communities that inhabit these microenvironments. Our understanding of how Salmonella populations adapt its metabolism to different environments in the gut is incomplete. In the current study, we discovered that Salmonella utilizes formate as an electron donor to support respiration, and that formate oxidation predominantly occurs in the mucus layer. Our experiments suggest that spatially distinct Salmonella populations in the mucus layer and the lumen differ in their energy metabolism. Our findings enhance our understanding of the spatial nature of microbial metabolism and may have implications for other enteric pathogens as well as commensal host-associated microbial communities.
Collapse
Affiliation(s)
- Maria G. Winter
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, Davis, California, USA
| | - Elizabeth R. Hughes
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew K. Muramatsu
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, Davis, California, USA
| | - Angel G. Jimenez
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rachael B. Chanin
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Luisella Spiga
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Caroline C. Gillis
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, UC Irvine, Irvine, California, USA
| | - Helene Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, Texas A&M College of Medicine, College Station, Texas, USA
| | - Sebastian E. Winter
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, Davis, California, USA
| |
Collapse
|
5
|
Zvi-Kedem T, Vintila S, Kleiner M, Tchernov D, Rubin-Blum M. Metabolic handoffs between multiple symbionts may benefit the deep-sea bathymodioline mussels. ISME COMMUNICATIONS 2023; 3:48. [PMID: 37210404 PMCID: PMC10199937 DOI: 10.1038/s43705-023-00254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Bathymodioline mussels rely on thiotrophic and/or methanotrophic chemosynthetic symbionts for nutrition, yet, secondary heterotrophic symbionts are often present and play an unknown role in the fitness of the organism. The bathymodioline Idas mussels that thrive in gas seeps and on sunken wood in the Mediterranean Sea and the Atlantic Ocean, host at least six symbiont lineages that often co-occur. These lineages include the primary symbionts chemosynthetic methane- and sulfur-oxidizing gammaproteobacteria, and the secondary symbionts, Methylophagaceae, Nitrincolaceae and Flavobacteriaceae, whose physiology and metabolism are obscure. Little is known about if and how these symbionts interact or exchange metabolites. Here we curated metagenome-assembled genomes of Idas modiolaeformis symbionts and used genome-centered metatranscriptomics and metaproteomics to assess key symbiont functions. The Methylophagaceae symbiont is a methylotrophic autotroph, as it encoded and expressed the ribulose monophosphate and Calvin-Benson-Bassham cycle enzymes, particularly RuBisCO. The Nitrincolaceae ASP10-02a symbiont likely fuels its metabolism with nitrogen-rich macromolecules and may provide the holobiont with vitamin B12. The Urechidicola (Flavobacteriaceae) symbionts likely degrade glycans and may remove NO. Our findings indicate that these flexible associations allow for expanding the range of substrates and environmental niches, via new metabolic functions and handoffs.
Collapse
Affiliation(s)
- Tal Zvi-Kedem
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, 3108000, Israel
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Maxim Rubin-Blum
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, 3108000, Israel.
| |
Collapse
|
6
|
Graham JE, Niks D, Zane GM, Gui Q, Hom K, Hille R, Wall JD, Raman CS. How a Formate Dehydrogenase Responds to Oxygen: Unexpected O 2 Insensitivity of an Enzyme Harboring Tungstopterin, Selenocysteine, and [4Fe–4S] Clusters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joel E. Graham
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland21201, United States
| | - Dimitri Niks
- Department of Biochemistry, University of California, Riverside, California92521, United States
| | - Grant M. Zane
- Department of Biochemistry, University of Missouri, Columbia, Missouri65211, United States
| | - Qin Gui
- Department of Biochemistry, University of Missouri, Columbia, Missouri65211, United States
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland21201, United States
| | - Russ Hille
- Department of Biochemistry, University of California, Riverside, California92521, United States
| | - Judy D. Wall
- Department of Biochemistry, University of Missouri, Columbia, Missouri65211, United States
| | - C. S. Raman
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland21201, United States
| |
Collapse
|
7
|
Chung CZ, Söll D, Krahn N. Using selenocysteine-specific reporters to screen for efficient tRNA Sec variants. Methods Enzymol 2022; 662:63-93. [PMID: 35101219 DOI: 10.1016/bs.mie.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The unique properties of selenocysteine (Sec) have generated an interest in the scientific community to site-specifically incorporate Sec into a protein of choice. Current technologies have rewired the natural Sec-specific translation factor-dependent selenoprotein biosynthesis pathway by harnessing the canonical elongation factor (EF-Tu) to simplify the requirements for Sec incorporation in Escherichia coli. This strategy is versatile and can be applied to Sec incorporation at any position in a protein of interest. However, selenoprotein production is still limited by yield and serine misincorporation. This protocol outlines a method in E. coli to design and optimize tRNA libraries which can be selected and screened for by the use of Sec-specific intein-based reporters. This provides a fast and simple way to engineer tRNAs with enhanced Sec-incorporation ability.
Collapse
Affiliation(s)
- Christina Z Chung
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States; Department of Chemistry, Yale University, New Haven, CT, United States.
| | - Natalie Krahn
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
8
|
Duprey A, Groisman EA. The regulation of DNA supercoiling across evolution. Protein Sci 2021; 30:2042-2056. [PMID: 34398513 PMCID: PMC8442966 DOI: 10.1002/pro.4171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/11/2022]
Abstract
DNA supercoiling controls a variety of cellular processes, including transcription, recombination, chromosome replication, and segregation, across all domains of life. As a physical property, DNA supercoiling alters the double helix structure by under- or over-winding it. Intriguingly, the evolution of DNA supercoiling reveals both similarities and differences in its properties and regulation across the three domains of life. Whereas all organisms exhibit local, constrained DNA supercoiling, only bacteria and archaea exhibit unconstrained global supercoiling. DNA supercoiling emerges naturally from certain cellular processes and can also be changed by enzymes called topoisomerases. While structurally and mechanistically distinct, topoisomerases that dissipate excessive supercoils exist in all domains of life. By contrast, topoisomerases that introduce positive or negative supercoils exist only in bacteria and archaea. The abundance of topoisomerases is also transcriptionally and post-transcriptionally regulated in domain-specific ways. Nucleoid-associated proteins, metabolites, and physicochemical factors influence DNA supercoiling by acting on the DNA itself or by impacting the activity of topoisomerases. Overall, the unique strategies that organisms have evolved to regulate DNA supercoiling hold significant therapeutic potential, such as bactericidal agents that target bacteria-specific processes or anticancer drugs that hinder abnormal DNA replication by acting on eukaryotic topoisomerases specialized in this process. The investigation of DNA supercoiling therefore reveals general principles, conserved mechanisms, and kingdom-specific variations relevant to a wide range of biological questions.
Collapse
Affiliation(s)
- Alexandre Duprey
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
| | - Eduardo A. Groisman
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
- Yale Microbial Sciences InstituteWest HavenConnecticutUSA
| |
Collapse
|
9
|
Dacquay LC, Tsang D, Chan D, Parkinson J, Philpott DJ, McMillen DR. E.coli Nissle increases transcription of flagella assembly and formate hydrogenlyase genes in response to colitis. Gut Microbes 2021; 13:1994832. [PMID: 34751631 PMCID: PMC8583297 DOI: 10.1080/19490976.2021.1994832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli Nissle (EcN), a probiotic bacterium, has been employed in treating inflammatory bowel disease, but the nature of its therapeutic effect is not fully understood. Intestinal inflammation alters the environment, exposing the microbial population to new stresses and eliciting transcriptional responses. We administered EcN to germ-free mice and then compared its transcriptional response between DSS-treated and untreated conditions using RNA-seq analysis to identify 187 differentially expressed genes (119 upregulated, 68 downregulated) and verifying a subset with qRT-PCR. The upregulated genes included many involved in flagella biosynthesis and motility, as well as several members of the formate hydrogenlyase complex. Despite prior evidence that these pathways are both transcriptionally regulated by nitric oxide, in vitro tests did not establish that nitric oxide exposure alone elicited the transcriptional response. The results provide new information on the transcriptional response of EcN to inflammation and establish a basis for further investigation of its anti-inflammatory activity.
Collapse
Affiliation(s)
- Louis C Dacquay
- Departments of Chemical and Physical Sciences, Cell and Systems Biology, Chemistry, and Physics, University of Toronto, Toronto, Canada
| | - Derek Tsang
- Departments of Chemical and Physical Sciences, Cell and Systems Biology, Chemistry, and Physics, University of Toronto, Toronto, Canada
| | - Donny Chan
- Departments of Chemical and Physical Sciences, Cell and Systems Biology, Chemistry, and Physics, University of Toronto, Toronto, Canada
| | - John Parkinson
- Departments of Chemical and Physical Sciences, Cell and Systems Biology, Chemistry, and Physics, University of Toronto, Toronto, Canada
| | - Dana J Philpott
- Departments of Chemical and Physical Sciences, Cell and Systems Biology, Chemistry, and Physics, University of Toronto, Toronto, Canada
| | - David R McMillen
- Departments of Chemical and Physical Sciences, Cell and Systems Biology, Chemistry, and Physics, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Seryl-tRNA synthetase specificity for tRNA Sec in Bacterial Sec biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140438. [PMID: 32330624 DOI: 10.1016/j.bbapap.2020.140438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/08/2020] [Accepted: 04/18/2020] [Indexed: 11/21/2022]
Abstract
tRNA synthetases are responsible for decoding the molecular information, from codons to amino acids. Seryl-tRNA synthetase (SerRS), besides the five isoacceptors of tRNASer, recognizes tRNA[Ser]Sec for the incorporation of selenocysteine (Sec, U) into selenoproteins. The selenocysteine synthesis pathway is known and is dependent on several protein-protein and protein-RNA interactions. Those interactions are not fully described, in particular, involving tRNA[Ser]Sec and SerRS. Here we describe the molecular interactions between the Escherichia coli Seryl-tRNA synthetase (EcSerRS) and tRNA[Ser]Sec in order to determine their specificity, selectivity and binding order, leading to tRNA aminoacylation. The dissociation constant of EcSerRS and tRNA[Ser]Sec was determined as (126 ± 20) nM. We also demonstrate that EcSerRS binds initially to tRNA[Ser]Sec in the presence of ATP for further recognition by E. coli selenocysteine synthetase (EcSelA) for Ser to Sec conversion. The proposed studies clarify the mechanism of tRNA[Ser]Sec incorporation in Bacteria as well as of other domains of life.
Collapse
|
11
|
Iwadate Y, Funabasama N, Kato JI. Involvement of formate dehydrogenases in stationary phase oxidative stress tolerance in Escherichia coli. FEMS Microbiol Lett 2018; 364:4243112. [PMID: 29044403 DOI: 10.1093/femsle/fnx193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/11/2017] [Indexed: 01/24/2023] Open
Abstract
Previously, we constructed a series of reduced-genome strains of Escherichia coli by combining large-scale chromosome deletions and then tested the sensitivity of these strains to the redox-cycling drug menadione. In this study, we analyzed a deletion that increased menadione sensitivity and discovered that loss of selenocysteine synthase genes was responsible for the strain's reduced tolerance to oxidative stress. Mutants of formate dehydrogenases, which are selenocysteine-containing enzymes, were also sensitive to menadione, indicating that these enzymes are involved in oxidative stress during stationary phase, specifically under microaerobic conditions in the presence of glucose. Among three formate dehydrogenases encoded by the E. coli genome, two were responsible for the observed phenotypes: formate dehydrogenase-H and -O. In a mutant of fdhD, which encodes a sulfur transferase that is essential for formate dehydrogenase activity, formate dehydrogenase-O could still contribute to oxidative stress tolerance, revealing a novel role for this protein. Consistent with this, overproduction of the electron transfer subunits of this enzyme, FdoH and FdoI, increased menadione tolerance and supported survival in stationary phase. These results suggested that formate dehydrogenase-O serves as an electron transfer element in glucose metabolism to promote oxidative stress tolerance and survival in stationary phase.
Collapse
Affiliation(s)
- Yumi Iwadate
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Noriyuki Funabasama
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Jun-Ichi Kato
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
12
|
Serrão VHB, Silva IR, da Silva MTA, Scortecci JF, de Freitas Fernandes A, Thiemann OH. The unique tRNASec and its role in selenocysteine biosynthesis. Amino Acids 2018; 50:1145-1167. [DOI: 10.1007/s00726-018-2595-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/26/2018] [Indexed: 12/26/2022]
|
13
|
Pinske C. The Ferredoxin-Like Proteins HydN and YsaA Enhance Redox Dye-Linked Activity of the Formate Dehydrogenase H Component of the Formate Hydrogenlyase Complex. Front Microbiol 2018; 9:1238. [PMID: 29942290 PMCID: PMC6004506 DOI: 10.3389/fmicb.2018.01238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/23/2018] [Indexed: 12/30/2022] Open
Abstract
Formate dehydrogenase H (FDH-H) and [NiFe]-hydrogenase 3 (Hyd-3) form the catalytic components of the hydrogen-producing formate hydrogenlyase (FHL) complex, which disproportionates formate to H2 and CO2 during mixed acid fermentation in enterobacteria. FHL comprises minimally seven proteins and little is understood about how this complex is assembled. Early studies identified a ferredoxin-like protein, HydN, as being involved in FDH-H assembly into the FHL complex. In order to understand how FDH-H and its small subunit HycB, which is also a ferredoxin-like protein, attach to the FHL complex, the possible roles of HydN and its paralogue, YsaA, in FHL complex stability and assembly were investigated. Deletion of the hycB gene reduced redox dye-mediated FDH-H activity to approximately 10%, abolished FHL-dependent H2-production, and reduced Hyd-3 activity. These data are consistent with HycB being an essential electron transfer component of the FHL complex. The FDH-H activity of the hydN and the ysaA deletion strains was reduced to 59 and 57% of the parental, while the double deletion reduced activity of FDH-H to 28% and the triple deletion with hycB to 1%. Remarkably, and in contrast to the hycB deletion, the absence of HydN and YsaA was without significant effect on FHL-dependent H2-production or total Hyd-3 activity; FDH-H protein levels were also unaltered. This is the first description of a phenotype for the E. coli ysaA deletion strain and identifies it as a novel factor required for optimal redox dye-linked FDH-H activity. A ysaA deletion strain could be complemented for FDH-H activity by hydN and ysaA, but the hydN deletion strain could not be complemented. Introduction of these plasmids did not affect H2 production. Bacterial two-hybrid interactions showed that YsaA, HydN, and HycB interact with each other and with the FDH-H protein. Further novel anaerobic cross-interactions of 10 ferredoxin-like proteins in E. coli were also discovered and described. Together, these data indicate that FDH-H activity measured with the redox dye benzyl viologen is the sum of the FDH-H protein interacting with three independent small subunits and suggest that FDH-H can associate with different redox-protein complexes in the anaerobic cell to supply electrons from formate oxidation.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
14
|
Gößringer M, Lechner M, Brillante N, Weber C, Rossmanith W, Hartmann RK. Protein-only RNase P function in Escherichia coli: viability, processing defects and differences between PRORP isoenzymes. Nucleic Acids Res 2017; 45:7441-7454. [PMID: 28499021 PMCID: PMC5499578 DOI: 10.1093/nar/gkx405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 11/12/2022] Open
Abstract
The RNase P family comprises structurally diverse endoribonucleases ranging from complex ribonucleoproteins to single polypeptides. We show that the organellar (AtPRORP1) and the two nuclear (AtPRORP2,3) single-polypeptide RNase P isoenzymes from Arabidopsis thaliana confer viability to Escherichia coli cells with a lethal knockdown of its endogenous RNA-based RNase P. RNA-Seq revealed that AtPRORP1, compared with bacterial RNase P or AtPRORP3, cleaves several precursor tRNAs (pre-tRNAs) aberrantly in E. coli. Aberrant cleavage by AtPRORP1 was mainly observed for pre-tRNAs that can form short acceptor-stem extensions involving G:C base pairs, including tRNAAsp(GUC), tRNASer(CGA) and tRNAHis. However, both AtPRORP1 and 3 were defective in processing of E. coli pre-tRNASec carrying an acceptor stem expanded by three G:C base pairs. Instead, pre-tRNASec was degraded, suggesting that tRNASec is dispensable for E. coli under laboratory conditions. AtPRORP1, 2 and 3 are also essentially unable to process the primary transcript of 4.5S RNA, a hairpin-like non-tRNA substrate processed by E. coli RNase P, indicating that PRORP enzymes have a narrower, more tRNA-centric substrate spectrum than bacterial RNA-based RNase P enzymes. The cells' viability also suggests that the essential function of the signal recognition particle can be maintained with a 5΄-extended 4.5S RNA.
Collapse
Affiliation(s)
- Markus Gößringer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Marcus Lechner
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Nadia Brillante
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Christoph Weber
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| |
Collapse
|
15
|
Jaroschinsky M, Pinske C, Gary Sawers R. Differential effects of isc operon mutations on the biosynthesis and activity of key anaerobic metalloenzymes in Escherichia coli. MICROBIOLOGY-SGM 2017. [PMID: 28640740 DOI: 10.1099/mic.0.000481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli has two machineries for the synthesis of FeS clusters, namely Isc (iron-sulfur cluster) and Suf (sulfur formation). The Isc machinery, encoded by the iscRSUA-hscBA-fdx-iscXoperon, plays a crucial role in the biogenesis of FeS clusters for the oxidoreductases of aerobic metabolism. Less is known, however, about the role of ISC in the maturation of key multi-subunit metalloenzymes of anaerobic metabolism. Here, we determined the contribution of each iscoperon gene product towards the functionality of the major anaerobic oxidoreductases in E. coli, including three [NiFe]-hydrogenases (Hyd), two respiratory formate dehydrogenases (FDH) and nitrate reductase (NAR). Mutants lacking the cysteine desulfurase, IscS, lacked activity of all six enzymes, as well as the activity of fumaratereductase, and this was due to deficiencies in enzyme biosynthesis, maturation or FeS cluster insertion into electron-transfer components. Notably, based on anaerobic growth characteristics and metabolite patterns, the activity of the radical-S-adenosylmethionine enzyme pyruvate formate-lyase activase was independent of IscS, suggesting that FeS biogenesis for this ancient enzyme has different requirements. Mutants lacking either the scaffold protein IscU, the ferredoxin Fdx or the chaperones HscA or HscB had similar enzyme phenotypes: five of the oxidoreductases were essentially inactive, with the exception being the Hyd-3 enzyme, which formed part of the H2-producing formate hydrogenlyase (FHL) complex. Neither the frataxin-homologue CyaY nor the IscX protein was essential for synthesis of the three Hyd enzymes. Thus, while IscS is essential for H2 production in E. coli, the other ISC components are non-essential.
Collapse
Affiliation(s)
- Monique Jaroschinsky
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str 3, 06120 Halle (Saale), Germany.,Present address: ICP Analytik GmbH & Co. KG, Brandenburger Platz 1, 24211 Preetz, Germany
| | - Constanze Pinske
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str 3, 06120 Halle (Saale), Germany
| | - R Gary Sawers
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str 3, 06120 Halle (Saale), Germany
| |
Collapse
|
16
|
First Insights into the Genome Sequence of the Alkaliphilic Thermotolerant Bacterium Clostridium thermoalcaliphilum JW/YL23-2
T. GENOME ANNOUNCEMENTS 2017; 5:5/20/e00368-17. [PMID: 28522721 PMCID: PMC5477331 DOI: 10.1128/genomea.00368-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Clostridium thermoalcaliphilum
is an obligate anaerobic and rod-shaped bacterium isolated from sewage sludge. It is an alkaliphilic thermotolerant organism and utilizes sucrose, glucose, fructose, maltose, cellobiose, amino acids, and Casamino Acids as substrates. The draft genome comprises 2.031 Mbp and 2,027 predicted protein-coding genes.
Collapse
|
17
|
Cheng Q, Arnér ESJ. Selenocysteine Insertion at a Predefined UAG Codon in a Release Factor 1 (RF1)-depleted Escherichia coli Host Strain Bypasses Species Barriers in Recombinant Selenoprotein Translation. J Biol Chem 2017; 292:5476-5487. [PMID: 28193838 DOI: 10.1074/jbc.m117.776310] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/02/2017] [Indexed: 11/06/2022] Open
Abstract
Selenoproteins contain the amino acid selenocysteine (Sec), co-translationally inserted at a predefined UGA opal codon by means of Sec-specific translation machineries. In Escherichia coli, this process is dependent upon binding of the Sec-dedicated elongation factor SelB to a Sec insertion sequence (SECIS) element in the selenoprotein-encoding mRNA and competes with UGA-directed translational termination. Here, we found that Sec can also be efficiently incorporated at a predefined UAG amber codon, thereby competing with RF1 rather than RF2. Subsequently, utilizing the RF1-depleted E. coli strain C321.ΔA, we could produce mammalian selenoprotein thioredoxin reductases with unsurpassed purity and yield. We also found that a SECIS element was no longer absolutely required in such a system. Human glutathione peroxidase 1 could thereby also be produced, and we could confirm a previously proposed catalytic tetrad in this selenoprotein. We believe that the versatility of this new UAG-directed production methodology should enable many further studies of diverse selenoproteins.
Collapse
Affiliation(s)
- Qing Cheng
- From the Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Elias S J Arnér
- From the Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
18
|
Maia LB, Moura I, Moura JJ. EPR Spectroscopy on Mononuclear Molybdenum-Containing Enzymes. FUTURE DIRECTIONS IN METALLOPROTEIN AND METALLOENZYME RESEARCH 2017. [DOI: 10.1007/978-3-319-59100-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Crystal structures of the human elongation factor eEFSec suggest a non-canonical mechanism for selenocysteine incorporation. Nat Commun 2016; 7:12941. [PMID: 27708257 PMCID: PMC5059743 DOI: 10.1038/ncomms12941] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/17/2016] [Indexed: 01/07/2023] Open
Abstract
Selenocysteine is the only proteinogenic amino acid encoded by a recoded in-frame UGA codon that does not operate as the canonical opal stop codon. A specialized translation elongation factor, eEFSec in eukaryotes and SelB in prokaryotes, promotes selenocysteine incorporation into selenoproteins by a still poorly understood mechanism. Our structural and biochemical results reveal that four domains of human eEFSec fold into a chalice-like structure that has similar binding affinities for GDP, GTP and other guanine nucleotides. Surprisingly, unlike in eEF1A and EF-Tu, the guanine nucleotide exchange does not cause a major conformational change in domain 1 of eEFSec, but instead induces a swing of domain 4. We propose that eEFSec employs a non-canonical mechanism involving the distinct C-terminal domain 4 for the release of the selenocysteinyl-tRNA during decoding on the ribosome.
Collapse
|
20
|
Abstract
Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute of Biology/Microbiology, Martin Luther University, Halle-Wittenberg, 06120 Halle, Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
21
|
Lopez CA, Miller BM, Rivera-Chávez F, Velazquez EM, Byndloss MX, Chávez-Arroyo A, Lokken KL, Tsolis RM, Winter SE, Bäumler AJ. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration. Science 2016; 353:1249-53. [PMID: 27634526 PMCID: PMC5127919 DOI: 10.1126/science.aag3042] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022]
Abstract
Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here, we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration.
Collapse
Affiliation(s)
- Christopher A Lopez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Brittany M Miller
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Fabian Rivera-Chávez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Eric M Velazquez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Alfredo Chávez-Arroyo
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Kristen L Lokken
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA.
| |
Collapse
|
22
|
Abstract
About 50 years ago, research on the biological function of the element selenium was initiated by the report of J. Pinsent that generation of formate dehydrogenase activity by Escherichia coli requires the presence of both selenite and molybdate in the growth medium. In nature, selenium is predominantly associated with sulfur minerals, the Se/S ratios of which vary widely depending on the geological formation. Because of the chemical similarity between the two elements, selenium can intrude into the sulfur pathway at high Se/S ratios and can be statistically incorporated into polypeptides. The central macromolecule for the synthesis and incorporation of selenocysteine is a specialized tRNA, designated tRNASec. It is the product of the selC (previously fdhC) gene. tRNASec fulfils a multitude of functions, which are based on its unique structural properties, compared to canonical elongator RNAs. tRNASec possesses the discriminator base G73 and the identity elements of serine-specific tRNA isoacceptors. The conversion of seryl-tRNASec into selenocysteyl-tRNASec is catalyzed by selenocysteine synthase, the product of the selA gene (previously the fdhA locus, which was later shown to harbor two genes, selA and selB). The crucial element for the regulation is a putative secondary structure at the 5' end of the untranslated region of the selAB mRNA. The generation and analysis of transcriptional and translational reporter gene fusions of selA and selB yield an expression pattern identical to that obtained by measuring the actual amounts of SelA and SelB proteins.
Collapse
|
23
|
Hartwig S, Pinske C, Sawers RG. Chromogenic assessment of the three molybdo-selenoprotein formate dehydrogenases in Escherichia coli. Biochem Biophys Rep 2015; 1:62-67. [PMID: 29124134 PMCID: PMC5668559 DOI: 10.1016/j.bbrep.2015.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/05/2015] [Accepted: 03/18/2015] [Indexed: 12/05/2022] Open
Abstract
Escherichia coli synthesizes three selenocysteine-dependent formate dehydrogenases (Fdh) that also have a molybdenum cofactor. Fdh-H couples formate oxidation with proton reduction in the formate hydrogenlyase (FHL) complex. The activity of Fdh-H in solution can be measured with artificial redox dyes but, unlike Fdh-O and Fdh-N, it has never been observed by chromogenic activity staining after non-denaturing polyacrylamide gel electrophoresis (PAGE). Here, we demonstrate that Fdh-H activity is present in extracts of cells from stationary phase cultures and forms a single, fast-migrating species. The activity is oxygen labile during electrophoresis explaining why it has not been previously observed as a discreet activity band. The appearance of Fdh-H activity was dependent on an active selenocysteine incorporation system, but was independent of the [NiFe]-hydrogenases (Hyd), 1, 2 or 3. We also identified new active complexes of Fdh-N and Fdh-O during fermentative growth. The findings of this study indicate that Fdh-H does not form a strong complex with other Fdh or Hyd enzymes, which is in line with it being able to deliver electrons to more than one redox-active enzyme complex. A chromogenic activity stain to identify formate dehydrogenase H was developed. Fdh-H activity was identified in stationary phase fermenting cells. Fdh-H activity was only observed if electrophoresis was performed anaerobically. Fdh-H activity was independent of an active hydrogenase 3 enzyme. New active forms of formate dehydrogenases O and N were identified.
Collapse
Affiliation(s)
- Stefanie Hartwig
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Constanze Pinske
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - R Gary Sawers
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| |
Collapse
|
24
|
Molybdenum and tungsten-dependent formate dehydrogenases. J Biol Inorg Chem 2014; 20:287-309. [DOI: 10.1007/s00775-014-1218-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 11/09/2014] [Indexed: 11/25/2022]
|
25
|
Zorn M, Ihling CH, Golbik R, Sawers RG, Sinz A. Mapping Cell Envelope and Periplasm Protein Interactions of Escherichia coli Respiratory Formate Dehydrogenases by Chemical Cross-Linking and Mass Spectrometry. J Proteome Res 2014; 13:5524-35. [DOI: 10.1021/pr5004906] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Michael Zorn
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Christian H. Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | | | | | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| |
Collapse
|
26
|
Lv X, Liu H, Ke M, Gong H. Exploring the pH-dependent substrate transport mechanism of FocA using molecular dynamics simulation. Biophys J 2014; 105:2714-23. [PMID: 24359743 DOI: 10.1016/j.bpj.2013.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 12/19/2022] Open
Abstract
FocA belongs to the formate-nitrate transporter family and plays an essential role in the export and uptake of formate in organisms. According to the available crystal structures, the N-terminal residues of FocA are structurally featureless at physiological conditions but at reduced pH form helices to harbor the cytoplasmic entrance of the substrate permeation pathway, which apparently explains the cessation of electrical signal observed in electrophysiological experiments. In this work, we found by structural analysis and molecular dynamics simulations that those N-terminal helices cannot effectively preclude the substrate permeation. Equilibrium simulations and thermodynamic calculations suggest that FocA is permeable to both formate and formic acid, the latter of which is transparent to electrophysiological studies as an electrically neutral species. Hence, the cease of electrical current at acidic pH may be caused by the change of the transported substrate from formate to formic acid. In addition, the mechanism of formate export at physiological pH is discussed.
Collapse
Affiliation(s)
- Xiaoying Lv
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huihui Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Meng Ke
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
27
|
Transcriptional Response of Selenopolypeptide Genes and Selenocysteine Biosynthesis Machinery Genes in Escherichia coli during Selenite Reduction. Int J Microbiol 2014; 2014:394835. [PMID: 24839442 PMCID: PMC4009273 DOI: 10.1155/2014/394835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 02/28/2014] [Accepted: 03/16/2014] [Indexed: 01/05/2023] Open
Abstract
Bacteria can reduce toxic selenite into less toxic, elemental selenium (Se0), but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3) treatment and then used quantitative real-time PCR (qRT-PCR) to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys) biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown. We determined that 5 mM Na2SeO3 treatment inhibited growth by ∼50% while 0.001 to 0.01 mM treatments stimulated cell growth by ∼30%. Under 50% inhibitory or 30% stimulatory Na2SeO3 concentration, selenopolypeptide genes (fdnG, fdoG, and fdhF) whose products require SeCys but not SeCys biosynthesis machinery genes were found to be induced ≥2-fold. In addition, one sulfur (S) metabolic gene iscS and two previously reported selenite-responsive genes sodA and gutS were also induced ≥2-fold under 50% inhibitory concentration. Our findings provide insight about the detoxification of selenite in E. coli via induction of these genes involved in the selenite reduction process.
Collapse
|
28
|
Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotechnol 2014; 98:4757-70. [PMID: 24615384 DOI: 10.1007/s00253-014-5600-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 12/20/2022]
Abstract
Glycerol is an attractive carbon source for biofuel production since it is cheap and abundant due to the increasing demand for renewable and clean energy sources, which includes production of biodiesel. This research aims to enhance hydrogen production by Escherichia coli from glycerol by manipulating its metabolic pathways via targeted deletions. Since our past strain, which had been engineered for producing hydrogen from glucose, was not suitable for producing hydrogen from glycerol, we rescreened 14 genes related to hydrogen production and glycerol metabolism. We found that 10 single knockouts are beneficial for enhanced hydrogen production from glycerol, namely, frdC (encoding for furmarate reductase), ldhA (lactate dehydrogenase), fdnG (formate dehydrogenase), ppc (phosphoenolpyruvate carboxylase), narG (nitrate reductase), focA (formate transporter), hyaB (the large subunit of hydrogenase 1), aceE (pyruvate dehydrogenase), mgsA (methylglyoxal synthase), and hycA (a regulator of the transcriptional regulator FhlA). On that basis, we created multiple knockout strains via successive P1 transductions. Simultaneous knockouts of frdC, ldhA, fdnG, ppc, narG, mgsA, and hycA created the best strain that produced 5-fold higher hydrogen and had a 5-fold higher hydrogen yield than the parent strain. The engineered strain also reached the theoretical maximum yield of 1 mol H2/mol glycerol after 48 h. Under low partial pressure fermentation, the strain grew over 2-fold faster, indicating faster utilization of glycerol and production of hydrogen. By combining metabolic engineering and low partial pressure fermentation, hydrogen production from glycerol was enhanced significantly.
Collapse
|
29
|
Sousa PM, Videira MA, Melo AM. The formate:oxygen oxidoreductase supercomplex of Escherichia coli
aerobic respiratory chain. FEBS Lett 2013; 587:2559-64. [DOI: 10.1016/j.febslet.2013.06.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 01/20/2023]
|
30
|
Zorn M, Ihling CH, Golbik R, Sawers RG, Sinz A. Selective selC-independent selenocysteine incorporation into formate dehydrogenases. PLoS One 2013; 8:e61913. [PMID: 23634217 PMCID: PMC3636253 DOI: 10.1371/journal.pone.0061913] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/14/2013] [Indexed: 11/18/2022] Open
Abstract
The formate dehydrogenases (Fdh) Fdh-O, Fdh-N, and Fdh-H, are the only proteins in Escherichia coli that incorporate selenocysteine at a specific position by decoding a UGA codon. However, an excess of selenium can lead to toxicity through misincorporation of selenocysteine into proteins. To determine whether selenocysteine substitutes for cysteine, we grew Escherichia coli in the presence of excess sodium selenite. The respiratory Fdh-N and Fdh-O enzymes, along with nitrate reductase (Nar) were co-purified from wild type strain MC4100 after anaerobic growth with nitrate and either 2 µM or 100 µM selenite. Mass spectrometric analysis of the catalytic subunits of both Fdhs identified the UGA-specified selenocysteine residue and revealed incorporation of additional, ‘non-specific’ selenocysteinyl residues, which always replaced particular cysteinyl residues. Although variable, their incorporation was not random and was independent of the selenite concentration used. Notably, these cysteines are likely to be non-essential for catalysis and they do not coordinate the iron-sulfur cluster. The remaining cysteinyl residues that could be identified were never substituted by selenocysteine. Selenomethionine was never observed in our analyses. Non-random substitution of particular cysteinyl residues was also noted in the electron-transferring subunit of both Fdhs as well as in the subunits of the Nar enzyme. Nar isolated from an E. coli selC mutant also showed a similar selenocysteine incorporation pattern to the wild-type indicating that non-specific selenocysteine incorporation was independent of the specific selenocysteine pathway. Thus, selenide replaces sulfide in the biosynthesis of cysteine and misacylated selenocysteyl-tRNACys decodes either UGU or UGC codons, which usually specify cysteine. Nevertheless, not every UGU or UGC codon was decoded as selenocysteine. Together, our results suggest that a degree of misincorporation of selenocysteine into enzymes through replacement of particular, non-essential cysteines, is tolerated and this might act as a buffering system to cope with excessive intracellular selenium.
Collapse
Affiliation(s)
- Michael Zorn
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian H. Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralph Golbik
- Institute of Biochemistry, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - R. Gary Sawers
- Institute of Microbiology, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany
- * E-mail: (RGS); (AS)
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
- * E-mail: (RGS); (AS)
| |
Collapse
|
31
|
Effects of combinatorial expression of selA, selB and selC genes on the efficiency of selenocysteine incorporation in Escherichia coli. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-2250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Coordination of FocA and pyruvate formate-lyase synthesis in Escherichia coli demonstrates preferential translocation of formate over other mixed-acid fermentation products. J Bacteriol 2013; 195:1428-35. [PMID: 23335413 DOI: 10.1128/jb.02166-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterobacteria such as Escherichia coli generate formate, lactate, acetate, and succinate as major acidic fermentation products. Accumulation of these products in the cytoplasm would lead to uncoupling of the membrane potential, and therefore they must be either metabolized rapidly or exported from the cell. E. coli has three membrane-localized formate dehydrogenases (FDHs) that oxidize formate. Two of these have their respective active sites facing the periplasm, and the other is in the cytoplasm. The bidirectional FocA channel translocates formate across the membrane delivering substrate to these FDHs. FocA synthesis is tightly coupled to synthesis of pyruvate formate-lyase (PflB), which generates formate. In this study, we analyze the consequences on the fermentation product spectrum of altering FocA levels, uncoupling FocA from PflB synthesis or blocking formate metabolism. Changing the focA translation initiation codon from GUG to AUG resulted in a 20-fold increase in FocA during fermentation and an ∼3-fold increase in PflB. Nevertheless, the fermentation product spectrum throughout the growth phase remained similar to that of the wild type. Formate, acetate, and succinate were exported, but only formate was reimported by these cells. Lactate accumulated in the growth medium only in mutants lacking FocA, despite retaining active PflB, or when formate could not be metabolized intracellularly. Together, these results indicate that FocA has a strong preference for formate as a substrate in vivo and not other acidic fermentation products. The tight coupling between FocA and PflB synthesis ensures adequate substrate delivery to the appropriate FDH.
Collapse
|
33
|
Abstract
Despite the fact that the genetic code is known to vary between organisms in rare cases, it is believed that in the lifetime of a single cell the code is stable. We found Acetohalobium arabaticum cells grown on pyruvate genetically encode 20 amino acids, but in the presence of trimethylamine (TMA), A. arabaticum dynamically expands its genetic code to 21 amino acids including pyrrolysine (Pyl). A. arabaticum is the only known organism that modulates the size of its genetic code in response to its environment and energy source. The gene cassette pylTSBCD, required to biosynthesize and genetically encode UAG codons as Pyl, is present in the genomes of 24 anaerobic archaea and bacteria. Unlike archaeal Pyl-decoding organisms that constitutively encode Pyl, we observed that A. arabaticum controls Pyl encoding by down-regulating transcription of the entire Pyl operon under growth conditions lacking TMA, to the point where no detectable Pyl-tRNA(Pyl) is made in vivo. Pyl-decoding archaea adapted to an expanded genetic code by minimizing TAG codon frequency to typically ~5% of ORFs, whereas Pyl-decoding bacteria (~20% of ORFs contain in-frame TAGs) regulate Pyl-tRNA(Pyl) formation and translation of UAG by transcriptional deactivation of genes in the Pyl operon. We further demonstrate that Pyl encoding occurs in a bacterium that naturally encodes the Pyl operon, and identified Pyl residues by mass spectrometry in A. arabaticum proteins including two methylamine methyltransferases.
Collapse
|
34
|
Trchounian K, Pinske C, Sawers RG, Trchounian A. Characterization of Escherichia coli [NiFe]-hydrogenase distribution during fermentative growth at different pHs. Cell Biochem Biophys 2012; 62:433-40. [PMID: 22095389 DOI: 10.1007/s12013-011-9325-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The contribution made by each of the three active [NiFe]-hydrogenases (Hyd) of Escherichia coli during fermentation of glucose or glycerol in peptone-based medium at different pHs was analysed. The activities of the hydrogen-oxidizing Hyd-1 and Hyd-2 enzymes showed a reciprocal dependence on the pH of the medium while Hyd-3, a key component of the hydrogen-evolving formate hydrogenlyase complex, was mainly active at pH 6.5. Our findings identify the conditions during fermentation of glucose or glycerol under which each [NiFe]-hydrogenase is optimally active and demonstrate a previously unrecognized dependence on Hyd-1 activity at low pH.
Collapse
Affiliation(s)
- Karen Trchounian
- Department of Biophysics, Yerevan State University, 1 A. Manoukian Str., 0025 Yerevan, Armenia
| | | | | | | |
Collapse
|
35
|
Zymographic differentiation of [NiFe]-hydrogenases 1, 2 and 3 of Escherichia coli K-12. BMC Microbiol 2012; 12:134. [PMID: 22769583 PMCID: PMC3431244 DOI: 10.1186/1471-2180-12-134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 06/25/2012] [Indexed: 11/10/2022] Open
Abstract
Background When grown under anaerobic conditions, Escherichia coli K-12 is able to synthesize three active [NiFe]-hydrogenases (Hyd1-3). Two of these hydrogenases are respiratory enzymes catalysing hydrogen oxidation, whereby Hyd-1 is oxygen-tolerant and Hyd-2 is considered a standard oxygen-sensitive hydrogenase. Hyd-3, together with formate dehydrogenase H (Fdh-H), forms the formate hydrogenlyase (FHL) complex, which is responsible for H2 evolution by intact cells. Hydrogen oxidation activity can be assayed for all three hydrogenases using benzyl viologen (BV; Eo′ = -360 mV) as an artificial electron acceptor; however ascribing activities to specific isoenzymes is not trivial. Previously, an in-gel assay could differentiate Hyd-1 and Hyd-2, while Hyd-3 had long been considered too unstable to be visualized on such native gels. This study identifies conditions allowing differentiation of all three enzymes using simple in-gel zymographic assays. Results Using a modified in-gel assay hydrogen-dependent BV reduction catalyzed by Hyd-3 has been described for the first time. High hydrogen concentrations facilitated visualization of Hyd-3 activity. The activity was membrane-associated and although not essential for visualization of Hyd-3, the activity was maximal in the presence of a functional Fdh-H enzyme. Furthermore, through the use of nitroblue tetrazolium (NBT; Eo′ = -80 mV) it was demonstrated that Hyd-1 reduces this redox dye in a hydrogen-dependent manner, while neither Hyd-2 nor Hyd-3 could couple hydrogen oxidation to NBT reduction. Hydrogen-dependent reduction of NBT was also catalysed by an oxygen-sensitive variant of Hyd-1 that had a supernumerary cysteine residue at position 19 of the small subunit substituted for glycine. This finding suggests that tolerance toward oxygen is not the main determinant that governs electron donation to more redox-positive electron acceptors such as NBT. Conclusions The utilization of particular electron acceptors at different hydrogen concentrations and redox potentials correlates with the known physiological functions of the respective hydrogenase. The ability to rapidly distinguish between oxygen-tolerant and standard [NiFe]-hydrogenases provides a facile new screen for the discovery of novel enzymes. A reliable assay for Hyd-3 will reinvigorate studies on the characterisation of the hydrogen-evolving FHL complex.
Collapse
|
36
|
Pinske C, Bönn M, Krüger S, Lindenstrauß U, Sawers RG. Metabolic deficiences revealed in the biotechnologically important model bacterium Escherichia coli BL21(DE3). PLoS One 2011; 6:e22830. [PMID: 21826210 PMCID: PMC3149613 DOI: 10.1371/journal.pone.0022830] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/01/2011] [Indexed: 11/26/2022] Open
Abstract
The Escherichia coli B strain BL21(DE3) has had a profound impact on biotechnology through its use in the production of recombinant proteins. Little is understood, however, regarding the physiology of this important E. coli strain. We show here that BL21(DE3) totally lacks activity of the four [NiFe]-hydrogenases, the three molybdenum- and selenium-containing formate dehydrogenases and molybdenum-dependent nitrate reductase. Nevertheless, all of the structural genes necessary for the synthesis of the respective anaerobic metalloenzymes are present in the genome. However, the genes encoding the high-affinity molybdate transport system and the molybdenum-responsive transcriptional regulator ModE are absent from the genome. Moreover, BL21(DE3) has a nonsense mutation in the gene encoding the global oxygen-responsive transcriptional regulator FNR. The activities of the two hydrogen-oxidizing hydrogenases, therefore, could be restored to BL21(DE3) by supplementing the growth medium with high concentrations of Ni²⁺ (Ni²⁺-transport is FNR-dependent) or by introducing a wild-type copy of the fnr gene. Only combined addition of plasmid-encoded fnr and high concentrations of MoO₄²⁻ ions could restore hydrogen production to BL21(DE3); however, to only 25-30% of a K-12 wildtype. We could show that limited hydrogen production from the enzyme complex responsible for formate-dependent hydrogen evolution was due solely to reduced activity of the formate dehydrogenase (FDH-H), not the hydrogenase component. The activity of the FNR-dependent formate dehydrogenase, FDH-N, could not be restored, even when the fnr gene and MoO₄²⁻ were supplied; however, nitrate reductase activity could be recovered by combined addition of MoO₄²⁻ and the fnr gene. This suggested that a further component specific for biosynthesis or activity of formate dehydrogenases H and N was missing. Re-introduction of the gene encoding ModE could only partially restore the activities of both enzymes. Taken together these results demonstrate that BL21(DE3) has major defects in anaerobic metabolism, metal ion transport and metalloprotein biosynthesis.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Bönn
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sara Krüger
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ute Lindenstrauß
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - R. Gary Sawers
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
37
|
Soboh B, Pinske C, Kuhns M, Waclawek M, Ihling C, Trchounian K, Trchounian A, Sinz A, Sawers G. The respiratory molybdo-selenoprotein formate dehydrogenases of Escherichia coli have hydrogen: benzyl viologen oxidoreductase activity. BMC Microbiol 2011; 11:173. [PMID: 21806784 PMCID: PMC3160892 DOI: 10.1186/1471-2180-11-173] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/01/2011] [Indexed: 11/25/2022] Open
Abstract
Background Escherichia coli synthesizes three membrane-bound molybdenum- and selenocysteine-containing formate dehydrogenases, as well as up to four membrane-bound [NiFe]-hydrogenases. Two of the formate dehydrogenases (Fdh-N and Fdh-O) and two of the hydrogenases (Hyd-1 and Hyd-2) have their respective catalytic subunits located in the periplasm and these enzymes have been shown previously to oxidize formate and hydrogen, respectively, and thus function in energy metabolism. Mutants unable to synthesize the [NiFe]-hydrogenases retain a H2: benzyl viologen oxidoreductase activity. The aim of this study was to identify the enzyme or enzymes responsible for this activity. Results Here we report the identification of a new H2: benzyl viologen oxidoreductase enzyme activity in E. coli that is independent of the [NiFe]-hydrogenases. This enzyme activity was originally identified after non-denaturing polyacrylamide gel electrophoresis and visualization of hydrogen-oxidizing activity by specific staining. Analysis of a crude extract derived from a variety of E. coli mutants unable to synthesize any [NiFe]-hydrogenase-associated enzyme activity revealed that the mutants retained this specific hydrogen-oxidizing activity. Enrichment of this enzyme activity from solubilised membrane fractions of the hydrogenase-negative mutant FTD147 by ion-exchange, hydrophobic interaction and size-exclusion chromatographies followed by mass spectrometric analysis identified the enzymes Fdh-N and Fdh-O. Analysis of defined mutants devoid of selenocysteine biosynthetic capacity or carrying deletions in the genes encoding the catalytic subunits of Fdh-N and Fdh-O demonstrated that both enzymes catalyze hydrogen activation. Fdh-N and Fdh-O can also transfer the electrons derived from oxidation of hydrogen to other redox dyes. Conclusions The related respiratory molybdo-selenoproteins Fdh-N and Fdh-O of Escherichia coli have hydrogen-oxidizing activity. These findings demonstrate that the energy-conserving selenium- and molybdenum-dependent formate dehydrogenases Fdh-N and Fdh-O exhibit a degree of promiscuity with respect to the electron donor they use and identify a new class of dihydrogen-oxidizing enzyme.
Collapse
Affiliation(s)
- Basem Soboh
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str, 3, 06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yu H, Kim KS. The involvement of SelB in the expression of cytotoxic necrotizing factor 1 in Escherichia coli. FEBS Lett 2011; 585:1934-40. [DOI: 10.1016/j.febslet.2011.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/25/2011] [Accepted: 05/02/2011] [Indexed: 11/27/2022]
|
39
|
A selenium-dependent xanthine dehydrogenase triggers biofilm proliferation in Enterococcus faecalis through oxidant production. J Bacteriol 2011; 193:1643-52. [PMID: 21257770 DOI: 10.1128/jb.01063-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Selenium has been shown to be present as a labile cofactor in a small class of molybdenum hydroxylase enzymes in several species of clostridia that specialize in the fermentation of purines and pyrimidines. This labile cofactor is poorly understood, yet recent bioinformatic studies have suggested that Enterococcus faecalis could serve as a model system to better understand the way in which this enzyme cofactor is built and the role of these metalloenzymes in the physiology of the organism. An mRNA that encodes a predicted selenium-dependent molybdenum hydroxylase (SDMH) has also been shown to be specifically increased during the transition from planktonic growth to biofilm growth. Based on these studies, we examined whether this organism produces an SDMH and probed whether selenoproteins may play a role in biofilm physiology. We observed a substantial increase in biofilm density upon the addition of uric acid to cells grown in a defined culture medium, but only when molybdate (Mo) and selenite (Se) were also added. We also observed a significant increase in biofilm density in cells cultured in tryptic soy broth with 1% glucose (TSBG) when selenite was added. In-frame deletion of selD, which encodes selenophosphate synthetase, also blocked biofilm formation that occurred upon addition of selenium. Moreover, mutation in the gene encoding the molybdoenzyme (xdh) prevented the induction of biofilm proliferation upon supplementation with selenium. Tungstate or auranofin addition also blocked this enhanced biofilm density, likely through inhibition of molybdenum or selenium cofactor synthesis. A large protein complex labeled with (75)Se is present in higher concentrations in biofilms than in planktonic cells, and the same complex is formed in TSBG. Xanthine dehydrogenase activity correlates with the presence of this labile selenoprotein complex and is absent in a selD or an xdh mutant. Enhanced biofilm density correlates strongly with higher levels of extracellular peroxide, which is produced upon the addition of selenite to TSBG. Peroxide levels are not increased in either the selD or the xdh mutant upon addition of selenite. Extracellular superoxide production, a phenomenon well established to be linked to clinical isolates, is abolished in both mutant strains. Taken together, these data provide evidence that an SDMH is involved in biofilm formation in Enterococcus faecalis, contributing to oxidant production either directly or alternatively through its involvement in redox-dependent processes linked to oxidant production.
Collapse
|
40
|
Supramolecular organizations in the aerobic respiratory chain of Escherichia coli. Biochimie 2010; 93:418-25. [PMID: 21040753 DOI: 10.1016/j.biochi.2010.10.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 10/20/2010] [Indexed: 12/26/2022]
Abstract
The organization of respiratory chain complexes in supercomplexes has been shown in the mitochondria of several eukaryotes and in the cell membranes of some bacteria. These supercomplexes are suggested to be important for oxidative phosphorylation efficiency and to prevent the formation of reactive oxygen species. Here we describe, for the first time, the identification of supramolecular organizations in the aerobic respiratory chain of Escherichia coli, including a trimer of succinate dehydrogenase. Furthermore, two heterooligomerizations have been shown: one resulting from the association of the NADH:quinone oxidoreductases NDH-1 and NDH-2, and another composed by the cytochrome bo(3) quinol:oxygen reductase, cytochrome bd quinol:oxygen reductase and formate dehydrogenase (fdo). These results are supported by blue native-electrophoresis, mass spectrometry and kinetic data of wild type and mutant E . coli strains.
Collapse
|
41
|
Schwarz C, Poss Z, Hoffmann D, Appel J. Hydrogenases and Hydrogen Metabolism in Photosynthetic Prokaryotes. RECENT ADVANCES IN PHOTOTROPHIC PROKARYOTES 2010; 675:305-48. [DOI: 10.1007/978-1-4419-1528-3_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Yoshizawa S, Böck A. The many levels of control on bacterial selenoprotein synthesis. Biochim Biophys Acta Gen Subj 2009; 1790:1404-14. [DOI: 10.1016/j.bbagen.2009.03.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/28/2022]
|
43
|
Stock T, Rother M. Selenoproteins in Archaea and Gram-positive bacteria. Biochim Biophys Acta Gen Subj 2009; 1790:1520-32. [PMID: 19344749 DOI: 10.1016/j.bbagen.2009.03.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 03/23/2009] [Accepted: 03/23/2009] [Indexed: 01/23/2023]
Abstract
Selenium is an essential trace element for many organisms by serving important catalytic roles in the form of the 21st co-translationally inserted amino acid selenocysteine. It is mostly found in redox-active proteins in members of all three domains of life and analysis of the ever-increasing number of genome sequences has facilitated identification of the encoded selenoproteins. Available data from biochemical, sequence, and structure analyses indicate that Gram-positive bacteria synthesize and incorporate selenocysteine via the same pathway as enterobacteria. However, recent in vivo studies indicate that selenocysteine-decoding is much less stringent in Gram-positive bacteria than in Escherichia coli. For years, knowledge about the pathway of selenocysteine synthesis in Archaea and Eukarya was only fragmentary, but genetic and biochemical studies guided by analysis of genome sequences of Sec-encoding archaea has not only led to the characterization of the pathways but has also shown that they are principally identical. This review summarizes current knowledge about the metabolic pathways of Archaea and Gram-positive bacteria where selenium is involved, about the known selenoproteins, and about the respective pathways employed in selenoprotein synthesis.
Collapse
Affiliation(s)
- Tilmann Stock
- Molekulare Mikrobiologie und Bioenergetik, Institut für Molekulare Biowissenschaften, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | | |
Collapse
|
44
|
Yuan J, Palioura S, Salazar JC, Su D, O'Donoghue P, Hohn MJ, Cardoso AM, Whitman WB, Söll D. RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc Natl Acad Sci U S A 2006; 103:18923-7. [PMID: 17142313 PMCID: PMC1748153 DOI: 10.1073/pnas.0609703104] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The trace element selenium is found in proteins as selenocysteine (Sec), the 21st amino acid to participate in ribosome-mediated translation. The substrate for ribosomal protein synthesis is selenocysteinyl-tRNA(Sec). Its biosynthesis from seryl-tRNA(Sec) has been established for bacteria, but the mechanism of conversion from Ser-tRNA(Sec) remained unresolved for archaea and eukarya. Here, we provide evidence for a different route present in these domains of life that requires the tRNA(Sec)-dependent conversion of O-phosphoserine (Sep) to Sec. In this two-step pathway, O-phosphoseryl-tRNA(Sec) kinase (PSTK) converts Ser-tRNA(Sec) to Sep-tRNA(Sec). This misacylated tRNA is the obligatory precursor for a Sep-tRNA:Sec-tRNA synthase (SepSecS); this protein was previously annotated as SLA/LP. The human and archaeal SepSecS genes complement in vivo an Escherichia coli Sec synthase (SelA) deletion strain. Furthermore, purified recombinant SepSecS converts Sep-tRNA(Sec) into Sec-tRNA(Sec) in vitro in the presence of sodium selenite and purified recombinant E. coli selenophosphate synthetase (SelD). Phylogenetic arguments suggest that Sec decoding was present in the last universal common ancestor. SepSecS and PSTK coevolved with the archaeal and eukaryotic lineages, but the history of PSTK is marked by several horizontal gene transfer events, including transfer to non-Sec-decoding Cyanobacteria and fungi.
Collapse
Affiliation(s)
- Jing Yuan
- Departments of *Molecular Biophysics and Biochemistry and
| | | | | | - Dan Su
- Departments of *Molecular Biophysics and Biochemistry and
| | | | | | | | - William B. Whitman
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605
| | - Dieter Söll
- Departments of *Molecular Biophysics and Biochemistry and
- Chemistry, Yale University, New Haven, CT 06520-8114; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Abstract
A recent analysis of sequences derived from organisms in the Sargasso Sea has revealed a surprisingly different set of selenium-containing proteins than that previously found in sequenced genomes. A recent analysis of sequences derived from organisms in the Sargasso Sea has revealed a surprisingly different set of selenium-containing proteins than that previously found in sequenced genomes and suggests that selenocysteine utilization has been lost by many groups of organisms during evolution.
Collapse
Affiliation(s)
- Paul R Copeland
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
46
|
Abstract
The production of dihydrogen by Escherichia coli and other members of the Enterobacteriaceae is one of the classic features of mixed-acid fermentation. Synthesis of the multicomponent, membrane-associated FHL (formate hydrogenlyase) enzyme complex, which disproportionates formate into CO2 and H2, has an absolute requirement for formate. Formate, therefore, represents a signature molecule in the fermenting E. coli cell and factors that determine formate metabolism control FHL synthesis and consequently dihydrogen evolution.
Collapse
Affiliation(s)
- R G Sawers
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
47
|
Jayakumar PC, Musande VV, Shouche YS, Patole MS. The Selenophosphate synthetase gene from Leishmania major. ACTA ACUST UNITED AC 2004; 15:66-70. [PMID: 15354357 DOI: 10.1080/10425170310001623653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Selenophosphate synthetase coding sequence was cloned from Leishmania major by RT-PCR amplification. The DNA sequence was found to have an open reading frame encoding protein with 398 amino acids and does not have in-frame UGA codon. The deduced amino acid sequence indicates that it has cysteine residue instead of selenocysteine at the active site of enzyme. Amino acid sequence alignment of Selenophosphate synthetase from parasite with the human enzyme showed approximately 45% homology. The sequences also indicated presence of conserved amino acid residues and motifs that are present in mammalian Selenophosphate synthetase. Southern analysis done with restriction enzyme digested genomic DNA and pulse filed separated chromosome suggests that L. major genome contain a single copy of Selenophosphate synthetase sequence. Expression analysis by Northern analysis and RT-PCR indicated Selenophosphate synthetase mRNA is present in promastigote and amastigote stages of parasite.
Collapse
Affiliation(s)
- P Cyril Jayakumar
- National Centrefor Cell Science, University of Pune Campus, Ganesh Khind, Pune 411007, India
| | | | | | | |
Collapse
|
48
|
Abstract
Respiration involves the oxidation and reduction of substrate for the redox-linked formation of a protonmotive force (PMF) across the inner membrane of mitochondria or the plasma membrane of bacteria. A mechanism for PMF generation was first suggested by Mitchell in his chemiosmotic theory. In the original formulations of the theory, Mitchell envisaged that proton translocation was driven by a 'redox loop' between two catalytically distinct enzyme complexes. Experimental data have shown that this redox loop does not operate in mitochondria, but has been confirmed as an important mechanism in bacteria. The nitrate respiratory pathway in Escherichia coli is a paradigm for a protonmotive redox loop. The structure of one of the enzymes in this two-component system, formate dehydrogenase-N, has revealed the structural basis for the PMF generation by the redox loop mechanism and this forms the basis of this review.
Collapse
Affiliation(s)
- Mika Jormakka
- Division of Biomedical Sciences, Imperial College London, London SW7 2AZ, UK.
| | | | | |
Collapse
|
49
|
Thanbichler M, Böck A. The function of SECIS RNA in translational control of gene expression in Escherichia coli. EMBO J 2002; 21:6925-34. [PMID: 12486013 PMCID: PMC139081 DOI: 10.1093/emboj/cdf673] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The incorporation of selenocysteine into proteins is directed by specific UGA codons and mRNA secondary structures, designated SECIS elements. In bacteria, these elements are positioned within the reading frame of selenoprotein mRNAs immediately downstream of the triplet coding for selenocysteine, and they tether a complex of the selenocysteine-specific elongation factor SelB, GTP and selenocysteyl-tRNA(Sec) to the site of UGA decoding. A SECIS-like structure was identified in the 5' non-translated region of the selAB transcript, encoding selenocysteine synthase and SelB. It specifically binds to SelB and the formation of a SelB.GTP.selenocysteyl-tRNA(Sec) complex on the SECIS-like element represses expression of the downstream gene. This effect is abolished by mutations preventing formation of the complex. The regulatory pattern observed correlated with the levels of sel gene products. As quaternary complex formation on the SECIS-like element did not influence the transcription rate and only slightly reduced the level of selAB mRNA, it was concluded that the structure is involved in regulating translation initiation efficiency, thereby coupling selenocysteine biosynthesis to the availability of the trace element selenium.
Collapse
Affiliation(s)
| | - August Böck
- Department of Biology I, Microbiology, University of Munich, Maria-Ward-Straße 1a, D-80638 Munich, Germany
Corresponding author e-mail:
| |
Collapse
|
50
|
Kyriakopoulos A, Behne D. Selenium-containing proteins in mammals and other forms of life. Rev Physiol Biochem Pharmacol 2002; 145:1-46. [PMID: 12224526 DOI: 10.1007/bfb0116430] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- A Kyriakopoulos
- Hahn-Meitner-Institut Berlin, Department Molecular Trace Element Research in the Life Sciences, Glienicker Str. 100, 14109 Berlin, Germany
| | | |
Collapse
|