1
|
Gioia G, Severgnini M, Cremonesi P, Castiglioni B, Freeman J, Sipka A, Santisteban C, Wieland M, Gallardo VA, Scott JG, Moroni P, Addis MF. Genomic Characterization of Mycoplasma arginini Isolated from a Housefly on a Dairy Farm and Comparison with Isolates from Bovine Milk and Lung Tissue. Microbiol Spectr 2023; 11:e0301022. [PMID: 37199649 PMCID: PMC10269790 DOI: 10.1128/spectrum.03010-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Mycoplasma mastitis can be highly contagious, unresponsive to treatment, and cause severe economic problems in affected herds. Notable routes of Mycoplasma spp. transmissions are contaminated milking equipment and animal contact through respiratory secretions. Only a few studies report the environment as a possible source of infection. Our group studied the presence of pathogens in houseflies (Musca domestica) in a New York State dairy in the United States. Among others, a Mycoplasma spp. was found in the gut of a housefly captured in the sick pen and identified as M. arginini. Here, we characterized its genome and investigated its relatedness with eight isolates from milk, one isolate from lung tissue collected in the same dairy, and five other dairies in New York State. We applied whole-genome sequencing and phylogenetic analysis based on the sequences of the 16S rRNA gene and 76 conserved proteins. We also assessed an in silico virulence profile by considering a panel of 94 putative virulence genes. As a result of the genome analysis, the housefly M. arginini isolate was highly similar to the milk isolates; interestingly, the similarity was highest with M. arginini isolated from milk on the same dairy farm where the housefly was captured. The housefly and milk M. arginini isolates possessed 54 of the 94 pathogenicity genes considered. Our data support the hypothesis that houseflies are carriers of Mycoplasma spp. and can be considered within the possible roots of environmental transmission of infection in dairy cows. Nevertheless, M. arginini pathogenicity will need to be investigated with dedicated studies. IMPORTANCE It is critical to control the spread of bovine mastitis caused by Mycoplasma spp., as this disease can be highly contagious and have a severe economic impact on affected dairies. A better understanding of possible transmission routes is crucial for infection control and prevention. Based on our data, the composite milk isolates are genetically similar to the housefly isolate. This provides evidence that the same Mycoplasma species found in milk and associated with mastitis can also be isolated from houseflies captured in the dairy environment.
Collapse
Affiliation(s)
- G. Gioia
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
| | - M. Severgnini
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - P. Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council, Lodi, Italy
| | - B. Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council, Lodi, Italy
| | - J. Freeman
- Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - A. Sipka
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
| | - C. Santisteban
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
| | - M. Wieland
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
| | - V. Alanis Gallardo
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - J. G. Scott
- Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - P. Moroni
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali-MiLab, University of Milan, Lodi, Italy
| | - M. F. Addis
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali-MiLab, University of Milan, Lodi, Italy
| |
Collapse
|
2
|
Kae1 of Saccharomyces cerevisiae KEOPS complex possesses ADP/GDP nucleotidase activity. Biochem J 2022; 479:2433-2447. [PMID: 36416748 DOI: 10.1042/bcj20220290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/24/2022]
Abstract
The KEOPS complex is an evolutionarily conserved protein complex in all three domains of life (Bacteria, Archaea, and Eukarya). In budding yeast Saccharomyces cerevisiae, the KEOPS complex (ScKEOPS) consists of five subunits, which are Kae1, Bud32, Cgi121, Pcc1, and Gon7. The KEOPS complex is an ATPase and is required for tRNA N6-threonylcarbamoyladenosine modification, telomere length maintenance, and efficient DNA repair. Here, recombinant ScKEOPS full complex and Kae1-Pcc1-Gon7 and Bud32-Cgi121 subcomplexes were purified and their biochemical activities were examined. KEOPS was observed to have ATPase and GTPase activities, which are predominantly attributed to the Bud32 subunit, as catalytically dead Bud32, but not catalytically dead Kae1, largely eliminated the ATPase/GTPase activity of KEOPS. In addition, KEOPS could hydrolyze ADP to adenosine or GDP to guanosine, and produce PPi, indicating that KEOPS is an ADP/GDP nucleotidase. Further mutagenesis characterization of Bud32 and Kae1 subunits revealed that Kae1, but not Bud32, is responsible for the ADP/GDP nucleotidase activity. In addition, the Kae1V309D mutant exhibited decreased ADP/GDP nucleotidase activity in vitro and shortened telomeres in vivo, but showed only a limited defect in t6A modification, suggesting that the ADP/GDP nucleotidase activity of KEOPS contributes to telomere length regulation.
Collapse
|
3
|
Beenstock J, Sicheri F. The structural and functional workings of KEOPS. Nucleic Acids Res 2021; 49:10818-10834. [PMID: 34614169 PMCID: PMC8565320 DOI: 10.1093/nar/gkab865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 11/14/2022] Open
Abstract
KEOPS (Kinase, Endopeptidase and Other Proteins of Small size) is a five-subunit protein complex that is highly conserved in eukaryotes and archaea and is essential for the fitness of cells and for animal development. In humans, mutations in KEOPS genes underlie Galloway-Mowat syndrome, which manifests in severe microcephaly and renal dysfunction that lead to childhood death. The Kae1 subunit of KEOPS catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine (t6A), while the auxiliary subunits Cgi121, the kinase/ATPase Bud32, Pcc1 and Gon7 play a supporting role. Kae1 orthologs are also present in bacteria and mitochondria but function in distinct complexes with proteins that are not related in structure or function to the auxiliary subunits of KEOPS. Over the past 15 years since its discovery, extensive study in the KEOPS field has provided many answers towards understanding the roles that KEOPS plays in cells and in human disease and how KEOPS carries out these functions. In this review, we provide an overview into recent advances in the study of KEOPS and illuminate exciting future directions.
Collapse
Affiliation(s)
- Jonah Beenstock
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Frank Sicheri
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Ontario, M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
4
|
Sjögren J, Lood R, Nägeli A. On enzymatic remodeling of IgG glycosylation; unique tools with broad applications. Glycobiology 2020; 30:254-267. [PMID: 31616919 PMCID: PMC7109354 DOI: 10.1093/glycob/cwz085] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/05/2019] [Accepted: 09/30/2019] [Indexed: 01/14/2023] Open
Abstract
The importance of IgG glycosylation has been known for many years not only by scientists in glycobiology but also by human pathogens that have evolved specific enzymes to modify these glycans with fundamental impact on IgG function. The rise of IgG as a major therapeutic scaffold for many cancer and immunological indications combined with the availability of unique enzymes acting specifically on IgG Fc-glycans have spurred a range of applications to study this important post-translational modification on IgG. This review article introduces why the IgG glycans are of distinguished interest, gives a background on the unique enzymatic tools available to study the IgG glycans and finally presents an overview of applications utilizing these enzymes for various modifications of the IgG glycans. The applications covered include site-specific glycan transglycosylation and conjugation, analytical workflows for monoclonal antibodies and serum diagnostics. Additionally, the review looks ahead and discusses the importance of O-glycosylation for IgG3, Fc-fusion proteins and other new formats of biopharmaceuticals.
Collapse
Affiliation(s)
| | - Rolf Lood
- Genovis AB, Scheelevägen 2, 223 63 Lund, Sweden
| | | |
Collapse
|
5
|
Samaniego-Barrón L, Luna-Castro S, Piña-Vázquez C, Suárez-Güemes F, de la Garza M. Two outer membrane proteins are bovine lactoferrin-binding proteins in Mannheimia haemolytica A1. Vet Res 2016; 47:93. [PMID: 27599994 PMCID: PMC5013584 DOI: 10.1186/s13567-016-0378-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/14/2016] [Indexed: 11/10/2022] Open
Abstract
Mannheimia haemolytica is a Gram negative bacterium that is part of the bovine respiratory disease, which causes important economic losses in the livestock industry. In the present work, the interaction between M. haemolytica A1 and bovine lactoferrin (BLf) was studied. This iron-chelating glycoprotein is part of the mammalian innate-immune system and is present in milk and mucosal secretions; Lf is also contained in neutrophils secondary granules, which release this glycoprotein at infection sites. It was evidenced that M. haemolytica was not able to use iron-charged BLf (BholoLf) as a sole iron source; nevertheless, iron-lacked BLf (BapoLf) showed a bactericidal effect against M. haemolytica with MIC of 4.88 ± 1.88 and 7.31 ± 1.62 μM for M. haemolytica strain F (field isolate) and M. haemolytica strain R (reference strain), respectively. Through overlay assays and 2-D electrophoresis, two OMP of 32.9 and 34.2 kDa with estimated IP of 8.18 and 9.35, respectively, were observed to bind both BapoLf and BholoLf; these OMP were identified by Maldi-Tof as OmpA (heat-modifiable OMP) and a membrane protein (porin). These M. haemolytica BLf binding proteins could be interacting in vivo with both forms of BLf depending on the iron state of the bovine.
Collapse
Affiliation(s)
- Luisa Samaniego-Barrón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, CP 07360 Ciudad de México, Mexico
| | - Sarahí Luna-Castro
- Facultad de Medicina Veterinaria y Zootecnia Dr. Norberto Treviño Zapata, Universidad Autónoma de Tamaulipas, Carretera a Cd. Mante Km 5, CP 87000 Ciudad Victoria, Tamaulipas Mexico
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, CP 07360 Ciudad de México, Mexico
| | - Francisco Suárez-Güemes
- Departamento de Microbiología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3000, Cd. Universitaria, Coyoacán, CP 04510 Ciudad de México, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, CP 07360 Ciudad de México, Mexico
| |
Collapse
|
6
|
Burrows L, Lam J, Lo R. The kdsA gene of Pasteurella trehalosi (haemolytica) serotype T3 is functionally and genetically homologous to that of Escherichia coli. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199600300410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A DNA fragment capable of complementing a temperature-sensitive mutation in the 3-deoxy-D- mannooctulosonic acid (Kdo) 8-phosphate synthase gene ( kdsA) of Salmonella enterica sv Typhimurium AG701i50 was cloned from the reference strain of Pasteurella trehalosi (haemolytica) serotype T3. Subcloning and DNA sequence analysis identified an open reading frame (ORF) of 854 nucleotides which could encode a protein of 31.0 kDa. Protein expression of this ORF using a T7 polymerase system yielded a unique polypeptide of approximately 31 kDa, in excellent agreement with predicted size of the encoded protein. The deduced amino acid sequence of this ORF has 88.8 and 94.3% homology with the KdsA proteins of Escherichia coli and Haemophilus influenzae, respectively. Southern blot analysis of chromosomal DNA showed that kdsA was present in all 16 serotypes of P. haemolytica/P. trehalosi. The position of the kdsA gene differed among the two species; only in P. trehalosi is kdsA located adjacent to the leukotoxin gene cluster (IktCABD).
Collapse
Affiliation(s)
- L.L. Burrows
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada
| | - J.S. Lam
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada
| | - R.Y.C. Lo
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada,
| |
Collapse
|
7
|
Mallari JP, Oksman A, Vaupel B, Goldberg DE. Kinase-associated endopeptidase 1 (Kae1) participates in an atypical ribosome-associated complex in the apicoplast of Plasmodium falciparum. J Biol Chem 2014; 289:30025-39. [PMID: 25204654 DOI: 10.1074/jbc.m114.586735] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The universally conserved kinase-associated endopeptidase 1 (Kae1) protein family has established roles in N(6)-threonylcarbamoyl adenosine tRNA modification, transcriptional regulation, and telomere homeostasis. These functions are performed in complex with a conserved core of protein binding partners. Herein we describe the localization, essentiality, and protein-protein interactions for Kae1 in the human malaria parasite Plasmodium falciparum. We found that the parasite expresses one Kae1 protein in the cytoplasm and a second protein in the apicoplast, a chloroplast remnant organelle involved in fatty acid, heme, and isoprenoid biosynthesis. To analyze the protein interaction networks for both Kae1 pathways, we developed a new proteomic cross-validation approach. This strategy compares immunoprecipitation-MS data sets across different cellular compartments to enrich for biologically relevant protein interactions. Our results show that cytoplasmic Kae1 forms a complex with Bud32 and Cgi121 as in other organisms, whereas apicoplast Kae1 makes novel interactions with multiple proteins in the apicoplast. Quantitative RT-PCR and immunoprecipitation studies indicate that apicoplast Kae1 and its partners interact specifically with the apicoplast ribosomes and with proteins involved in ribosome function. Together, these data indicate an expanded, apicoplast-specific role for Kae1 in the parasite.
Collapse
Affiliation(s)
- Jeremy P Mallari
- From the Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Anna Oksman
- From the Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Barbara Vaupel
- From the Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Daniel E Goldberg
- From the Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
8
|
Cohen M, Varki A. Modulation of glycan recognition by clustered saccharide patches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:75-125. [PMID: 24411170 DOI: 10.1016/b978-0-12-800097-7.00003-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All cells in nature are covered with a dense and complex array of glycan chains. Specific recognition and binding of glycans is a critical aspect of cellular interactions, both within and between species. Glycan-protein interactions tend to be of low affinity but high specificity, typically utilizing multivalency to generate the affinity required for biologically relevant binding. This review focuses on a higher level of glycan organization, the formation of clustered saccharide patches (CSPs), which can constitute unique ligands for highly specific interactions. Due to technical challenges, this aspect of glycan recognition remains poorly understood. We present a wealth of evidence for CSPs-mediated interactions, and discuss recent advances in experimental tools that are beginning to provide new insights into the composition and organization of CSPs. The examples presented here are likely the tip of the iceberg, and much further work is needed to elucidate fully this higher level of glycan organization.
Collapse
Affiliation(s)
- Miriam Cohen
- Department Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, USA.
| | - Ajit Varki
- Department of Medicine, University of California, San Diego, California, USA; Department Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, USA.
| |
Collapse
|
9
|
Hashimoto C, Hashimoto M, Honda H, Kato JI. Effects on IS1 transposition frequency of a mutation in the ygjD gene involved in an essential tRNA modification in Escherichia coli. FEMS Microbiol Lett 2013; 347:140-8. [PMID: 23909935 DOI: 10.1111/1574-6968.12227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 12/01/2022] Open
Abstract
The YgjD protein is essential for the synthesis of the universal tRNA modification, N(6) -threonylcarbamoyladenosine (t(6) A), which is necessary for the decoding of ANN codons. We isolated a suppressor (ygjDsup ) of the ygjD(ts) mutant by its permissive growth at high temperature in Escherichia coli. Resequencing of the ygjDsup mutant genome showed the presence of a complicated chromosome rearrangement, an inverse insertion of a large duplicated region (c. 450 kb) into a small deleted region. The temperature-resistant growth associated with ygjDsup was due to the presence of multicopy suppressor genes, yjeE and groL, of the ygjD(ts) mutation in the duplicated region. This DNA rearrangement was not simply mediated by IS1 transposition, but the duplicated region was flanked by IS1. We showed that the frequency of IS1 transposition was increased in ygjD(ts) mutants. The transposase of IS1 is coded for by the insB gene, and its translation occurs through a frameshift of a ribosome translating upstream of the insA gene. We showed that this frameshifting frequency was increased by the ygjD(ts) mutation. These results indicated that the mutation of the gene for tRNA modification, t(6) A, affected IS1 transposition.
Collapse
Affiliation(s)
- Chika Hashimoto
- Department of Biological Sciences, Graduate Schools of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | | | | | | |
Collapse
|
10
|
Perrochia L, Guetta D, Hecker A, Forterre P, Basta T. Functional assignment of KEOPS/EKC complex subunits in the biosynthesis of the universal t6A tRNA modification. Nucleic Acids Res 2013; 41:9484-99. [PMID: 23945934 PMCID: PMC3814370 DOI: 10.1093/nar/gkt720] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
N(6)-threonylcarbamoyladenosine (t(6)A) is a universal tRNA modification essential for normal cell growth and accurate translation. In Archaea and Eukarya, the universal protein Sua5 and the conserved KEOPS/EKC complex together catalyze t(6)A biosynthesis. The KEOPS/EKC complex is composed of Kae1, a universal metalloprotein belonging to the ASHKA superfamily of ATPases; Bud32, an atypical protein kinase and two small proteins, Cgi121 and Pcc1. In this study, we investigated the requirement and functional role of KEOPS/EKC subunits for biosynthesis of t(6)A. We demonstrated that Pcc1, Kae1 and Bud32 form a minimal functional unit, whereas Cgi121 acts as an allosteric regulator. We confirmed that Pcc1 promotes dimerization of the KEOPS/EKC complex and uncovered that together with Kae1, it forms the tRNA binding core of the complex. Kae1 binds l-threonyl-carbamoyl-AMP intermediate in a metal-dependent fashion and transfers the l-threonyl-carbamoyl moiety to substrate tRNA. Surprisingly, we found that Bud32 is regulated by Kae1 and does not function as a protein kinase but as a P-loop ATPase possibly involved in tRNA dissociation. Overall, our data support a mechanistic model in which the final step in the biosynthesis of t(6)A relies on a strictly catalytic component, Kae1, and three partner proteins necessary for dimerization, tRNA binding and regulation.
Collapse
Affiliation(s)
- Ludovic Perrochia
- Institut de Génétique et Microbiologie, Université Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France and Université de Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres-Microorganismes, Labex ARBRE, FR EFABA, Faculté des Sciences, 54500 Vandoeuvre, France
| | | | | | | | | |
Collapse
|
11
|
Aruni AW, Roy F, Sandberg L, Fletcher HM. Proteome variation among Filifactor alocis strains. Proteomics 2013; 12:3343-64. [PMID: 23008013 DOI: 10.1002/pmic.201200211] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/23/2012] [Accepted: 09/03/2012] [Indexed: 01/12/2023]
Abstract
Filifactor alocis, a Gram-positive anaerobic rod, is now considered one of the marker organisms associated with periodontal disease. Although there was heterogeneity in its virulence potential, this bacterium was shown to have virulence properties that may enhance its ability to survive and persist in the periodontal pocket. To gain further insight into a possible mechanism(s) of pathogenesis, the proteome of F. alocis strains was evaluated. Proteins including several proteases, neutrophil-activating protein A and calcium-binding acid repeat protein, were identified in F. alocis. During the invasion of HeLa cells, there was increased expression of several of the genes encoding these proteins in the potentially more virulent F. alocis D-62D compared to F. alocis ATCC 35896, the type strain. A comparative protein in silico analysis of the proteome revealed more cell wall anchoring proteins in the F. alocis D-62D compared to F. alocis ATCC 35896. Their expression was enhanced by coinfection with Porphyromonas gingivalis. Taken together, the variation in the pathogenic potential of the F. alocis strains may be related to the differential expression of several putative virulence factors.
Collapse
Affiliation(s)
- A Wilson Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
12
|
Nichols CE, Lamb HK, Thompson P, El Omari K, Lockyer M, Charles I, Hawkins AR, Stammers DK. Crystal structure of the dimer of two essential Salmonella typhimurium proteins, YgjD & YeaZ and calorimetric evidence for the formation of a ternary YgjD-YeaZ-YjeE complex. Protein Sci 2013; 22:628-40. [PMID: 23471679 DOI: 10.1002/pro.2247] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/22/2013] [Accepted: 03/01/2013] [Indexed: 11/07/2022]
Abstract
YgjD from COG0533 is amongst a small group of highly conserved proteins present in all three domains of life. Various roles and biochemical functions (including sialoprotease and endonuclease activities) have been ascribed to YgjD and orthologs, the most recent, however, is involvement in the post transcriptional modification of certain tRNAs by formation of N6-threonyl-adenosine (t⁶A) at position 37. In bacteria, YgjD is essential and along with YeaZ, YjeE, and YrdC has been shown to be 'necessary and sufficient' for the tRNA modification. To further define interactions and possible roles for some of this set of proteins we have undertaken structural and biochemical studies. We show that formation of the previously reported heterodimer of YgjD-YeaZ involves ordering of the C-terminal region of YeaZ which extends along the surface of YgjD in the crystal structure. ATPγS or AMP is observed in YgjD while no nucleotide is bound on YeaZ. ITC experiments reveal previously unreported binary and ternary complexes which can be nucleotide dependent. The stoichiometry of the YeaZ-YgjD complex is 1:1 with a K(D) of 0.3 µM. YgjD and YjeE interact only in the presence of ATP, while YjeE binds to YgjD-YeaZ in the presence of ATP or ADP with a K(D) of 6 µM. YgjD doesn't bind the precursors of t⁶A, threonine, and bicarbonate. These results show a more complex set of interactions than previously thought, which may have a regulatory role. The understanding gained should help in deriving inhibitors of these essential proteins that might have potential as antibacterial drugs.
Collapse
Affiliation(s)
- C E Nichols
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Perrochia L, Crozat E, Hecker A, Zhang W, Bareille J, Collinet B, van Tilbeurgh H, Forterre P, Basta T. In vitro biosynthesis of a universal t6A tRNA modification in Archaea and Eukarya. Nucleic Acids Res 2012; 41:1953-64. [PMID: 23258706 PMCID: PMC3561968 DOI: 10.1093/nar/gks1287] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
N6-threonylcarbamoyladenosine (t6A) is a modified nucleotide found in all transfer RNAs (tRNAs) decoding codons starting with adenosine. Its role is to facilitate codon–anticodon pairing and to prevent frameshifting during protein synthesis. Genetic studies demonstrated that two universal proteins, Kae1/YgjD and Sua5/YrdC, are necessary for t6A synthesis in Saccharomyces cerevisiae and Escherichia coli. In Archaea and Eukarya, Kae1 is part of a conserved protein complex named kinase, endopeptidase and other proteins of small size (KEOPS), together with three proteins that have no bacterial homologues. Here, we reconstituted for the first time an in vitro system for t6A modification in Archaea and Eukarya, using purified KEOPS and Sua5. We demonstrated binding of tRNAs to archaeal KEOPS and detected two distinct adenosine triphosphate (ATP)-dependent steps occurring in the course of the synthesis. Our data, together with recent reconstitution of an in vitro bacterial system, indicated that t6A cannot be catalysed by Sua5/YrdC and Kae1/YgjD alone but requires accessory proteins that are not universal. Remarkably, we observed interdomain complementation when bacterial, archaeal and eukaryotic proteins were combined in vitro, suggesting a conserved catalytic mechanism for the biosynthesis of t6A in nature. These findings shed light on the reaction mechanism of t6A synthesis and evolution of molecular systems that promote translation fidelity in present-day cells.
Collapse
Affiliation(s)
- Ludovic Perrochia
- Institut de Génétique et Microbiologie, Université Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Onodera T, Satoh K, Ohta T, Narumi I. Deinococcus radiodurans YgjD and YeaZ are involved in the repair of DNA cross-links. Extremophiles 2012; 17:171-9. [DOI: 10.1007/s00792-012-0506-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/29/2012] [Indexed: 12/29/2022]
|
15
|
Naor A, Thiaville PC, Altman-Price N, Cohen-Or I, Allers T, de Crécy-Lagard V, Gophna U. A genetic investigation of the KEOPS complex in halophilic Archaea. PLoS One 2012; 7:e43013. [PMID: 22927945 PMCID: PMC3426518 DOI: 10.1371/journal.pone.0043013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/17/2012] [Indexed: 12/01/2022] Open
Abstract
KEOPS is an important cellular complex conserved in Eukarya, with some subunits conserved in Archaea and Bacteria. This complex was recently found to play an essential role in formation of the tRNA modification threonylcarbamoyladenosine (t6A), and was previously associated with telomere length maintenance and transcription. KEOPS subunits are conserved in Archaea, especially in the Euryarchaea, where they had been studied in vitro. Here we attempted to delete the genes encoding the four conserved subunits of the KEOPS complex in the euryarchaeote Haloferax volcanii and study their phenotypes in vivo. The fused kae1-bud32 gene was shown to be essential as was cgi121, which is dispensable in yeast. In contrast, pcc1 (encoding the putative dimerizing unit of KEOPS) was not essential in H. volcanii. Deletion of pcc1 led to pleiotropic phenotypes, including decreased growth rate, reduced levels of t6A modification, and elevated levels of intra-cellular glycation products.
Collapse
Affiliation(s)
- Adit Naor
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Patrick C. Thiaville
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Neta Altman-Price
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ifat Cohen-Or
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Thorsten Allers
- School of Biology, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (VdC); (UG)
| | - Uri Gophna
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (VdC); (UG)
| |
Collapse
|
16
|
Insights into the gene expression profile of uncultivable hemotrophic Mycoplasma suis during acute infection, obtained using proteome analysis. J Bacteriol 2012; 194:1505-14. [PMID: 22267506 DOI: 10.1128/jb.00002-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hemotrophic mycoplasmas, bacteria without cell walls whose niche is the erythrocytes of their hosts, have never been cultivated in vitro. Therefore, knowledge of their pathogenesis is fundamental. Mycoplasma suis infects pigs, causing either acute fatal hemolytic anemia or chronic low-grade anemia, growth retardation, and immune suppression. Recently, the complete genomes of two hemotrophic mycoplasma species, M. suis and M. haemofelis, were sequenced, offering new strategies for the analysis of their pathogenesis. In this study we implemented a proteomic approach to identify M. suis proteins during acute infection by using tandem mass spectrometry. Twenty-two percent of the predicted proteins encoded in M. suis strain KI_3806 were identified. These included nearly all encoded proteins of glycolysis and nucleotide metabolism. The proteins for lipid metabolism, however, were underrepresented. A high proportion of the detected proteins are involved in information storage and processing (72.6%). In addition, several proteins of different functionalities, i.e., posttranslational modification, membrane genesis, signal transduction, intracellular trafficking, inorganic ion transport, and defense mechanisms, were identified. In its reduced genome, M. suis harbors 65.3% (strain Illinois) and 65.9% (strain KI_3806) of the genes encode hypothetical proteins. Of these, only 6.3% were identified at the proteome level. All proteins identified in this study are present in both M. suis strains and are encoded in more highly conserved regions of the genome sequence. In conclusion, our proteome approach is a further step toward the elucidation of the pathogenesis and life cycle of M. suis as well as the establishment of an in vitro cultivation system.
Collapse
|
17
|
Effects on transcription of mutations in ygjD, yeaZ, and yjeE genes, which are involved in a universal tRNA modification in Escherichia coli. J Bacteriol 2011; 193:6075-9. [PMID: 21873492 DOI: 10.1128/jb.05733-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli ygjD gene is critical for the universal tRNA modification N(6)-threonylcarbamoyladenosine, together with two other essential genes, yeaZ and yjeE. This study showed that the transcription of the thr and ilv operons in ygjD mutants was increased through the inhibition of transcription attenuation and that dnaG transcription was reduced.
Collapse
|
18
|
Guimaraes AMS, Santos AP, SanMiguel P, Walter T, Timenetsky J, Messick JB. Complete genome sequence of Mycoplasma suis and insights into its biology and adaption to an erythrocyte niche. PLoS One 2011; 6:e19574. [PMID: 21573007 PMCID: PMC3091866 DOI: 10.1371/journal.pone.0019574] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/01/2011] [Indexed: 12/01/2022] Open
Abstract
Mycoplasma suis, the causative agent of porcine infectious anemia, has never been cultured in vitro and mechanisms by which it causes disease are poorly understood. Thus, the objective herein was to use whole genome sequencing and analysis of M. suis to define pathogenicity mechanisms and biochemical pathways. M. suis was harvested from the blood of an experimentally infected pig. Following DNA extraction and construction of a paired end library, whole-genome sequencing was performed using GS-FLX (454) and Titanium chemistry. Reads on paired-end constructs were assembled using GS De Novo Assembler and gaps closed by primer walking; assembly was validated by PFGE. Glimmer and Manatee Annotation Engine were used to predict and annotate protein-coding sequences (CDS). The M. suis genome consists of a single, 742,431 bp chromosome with low G+C content of 31.1%. A total of 844 CDS, 3 single copies, unlinked rRNA genes and 32 tRNAs were identified. Gene homologies and GC skew graph show that M. suis has a typical Mollicutes oriC. The predicted metabolic pathway is concise, showing evidence of adaptation to blood environment. M. suis is a glycolytic species, obtaining energy through sugars fermentation and ATP-synthase. The pentose-phosphate pathway, metabolism of cofactors and vitamins, pyruvate dehydrogenase and NAD+ kinase are missing. Thus, ribose, NADH, NADPH and coenzyme A are possibly essential for its growth. M. suis can generate purines from hypoxanthine, which is secreted by RBCs, and cytidine nucleotides from uracil. Toxins orthologs were not identified. We suggest that M. suis may cause disease by scavenging and competing for host' nutrients, leading to decreased life-span of RBCs. In summary, genome analysis shows that M. suis is dependent on host cell metabolism and this characteristic is likely to be linked to its pathogenicity. The prediction of essential nutrients will aid the development of in vitro cultivation systems.
Collapse
Affiliation(s)
- Ana M. S. Guimaraes
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- CAPES-Fulbright Program, Ministério da Educação, Brasília, Brazil
- * E-mail: (AMSG); (JBM)
| | - Andrea P. Santos
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Phillip SanMiguel
- Purdue Genomics Core Facility, Purdue University, West Lafayette, Indiana, United States of America
| | - Thomas Walter
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Jorge Timenetsky
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Joanne B. Messick
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (AMSG); (JBM)
| |
Collapse
|
19
|
A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification. EMBO J 2011; 30:882-93. [PMID: 21285948 DOI: 10.1038/emboj.2010.363] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/21/2010] [Indexed: 11/09/2022] Open
Abstract
The YgjD/Kae1 family (COG0533) has been on the top-10 list of universally conserved proteins of unknown function for over 5 years. It has been linked to DNA maintenance in bacteria and mitochondria and transcription regulation and telomere homeostasis in eukaryotes, but its actual function has never been found. Based on a comparative genomic and structural analysis, we predicted this family was involved in the biosynthesis of N(6)-threonylcarbamoyl adenosine, a universal modification found at position 37 of tRNAs decoding ANN codons. This was confirmed as a yeast mutant lacking Kae1 is devoid of t(6)A. t(6)A(-) strains were also used to reveal that t(6)A has a critical role in initiation codon restriction to AUG and in restricting frameshifting at tandem ANN codons. We also showed that YaeZ, a YgjD paralog, is required for YgjD function in vivo in bacteria. This work lays the foundation for understanding the pleiotropic role of this universal protein family.
Collapse
|
20
|
The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A. EMBO J 2010; 30:873-81. [PMID: 21183954 DOI: 10.1038/emboj.2010.343] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 12/01/2010] [Indexed: 11/09/2022] Open
Abstract
The highly conserved Kinase, Endopeptidase and Other Proteins of small Size (KEOPS)/Endopeptidase-like and Kinase associated to transcribed Chromatin (EKC) protein complex has been implicated in transcription, telomere maintenance and chromosome segregation, but its exact function remains unknown. The complex consists of five proteins, Kinase-Associated Endopeptidase (Kae1), a highly conserved protein present in bacteria, archaea and eukaryotes, a kinase (Bud32) and three additional small polypeptides. We showed that the complex is required for a universal tRNA modification, threonyl carbamoyl adenosine (t6A), found in all tRNAs that pair with ANN codons in mRNA. We also showed that the bacterial ortholog of Kae1, YgjD, is required for t6A modification of Escherichia coli tRNAs. The ATPase activity of Kae1 and the kinase activity of Bud32 are required for the modification. The yeast protein Sua5 has been reported previously to be required for t6A synthesis. Using yeast extracts, we established an in vitro system for the synthesis of t6A that requires Sua5, Kae1, threonine, bicarbonate and ATP. It remains to be determined whether all reported defects of KEOPS/EKC mutants can be attributed to the lack of t6A, or whether the complex has multiple functions.
Collapse
|
21
|
The ubiquitous conserved glycopeptidase Gcp prevents accumulation of toxic glycated proteins. mBio 2010; 1. [PMID: 20824107 PMCID: PMC2932512 DOI: 10.1128/mbio.00195-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 07/26/2010] [Indexed: 12/03/2022] Open
Abstract
Amadori-modified proteins (AMPs) are the products of nonenzymatic glycation formed by reaction of reducing sugars with primary amine-containing amino acids and can develop into advanced glycated end products (AGEs), highly stable toxic compounds. AGEs are known to participate in many age-related human diseases, including cardiovascular, neurological, and liver diseases. The metabolism of these glycated proteins is not yet understood, and the mechanisms that reduce their accumulation are not known so far. Here, we show for Escherichia coli that a conserved glycopeptidase (Gcp, also called Kae1), which is encoded by nearly every sequenced genome in the three domains of life, prevents the accumulation of Amadori products and AGEs. Using mutants, we show that Gcp depletion results in accumulation of AMPs and eventually leads to the accumulation of AGEs. We demonstrate that Gcp binds to glycated proteins, including pyruvate dehydrogenase, previously shown to be a glycation-prone enzyme. Our experiments also show that the severe phenotype of Gcp depletion can be relieved under conditions of low intracellular glycation. As glycated proteins are ubiquitous, the involvement of Gcp in the metabolism of AMPs and AGEs is likely to have been conserved in evolution, suggesting a universal involvement of Gcp in cellular aging and explaining the essentiality of Gcp in many organisms. Glycated proteins (Amadori-modified proteins [AMPs] and advanced glycated end products [AGEs]) are known to participate in many age-related diseases. Their existence in fast-growing organisms was considered unlikely, as their formation was assumed to be slow. Yet, recent evidence demonstrated their existence in bacteria, and our data suggest a bacterial mechanism that reduced their accumulation. We identify in Escherichia coli a protein, Gcp, which carries out this function. Gcp is conserved in all domains of life and is essential in many organisms. Although it was annotated as a chaperon protease, there were no experimental data to support this function. Our findings are compatible with the annotation and will open up studies of the bacterial metabolism of glycated proteins. Furthermore, the data from the bacterial systems may also be instrumental in understanding the metabolism of glycated proteins, including their toxicity in human health and disease.
Collapse
|
22
|
Singh K, Ritchey JW, Confer AW. Mannheimia haemolytica: bacterial-host interactions in bovine pneumonia. Vet Pathol 2010; 48:338-48. [PMID: 20685916 DOI: 10.1177/0300985810377182] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mannheimia haemolytica serotype S1 is considered the predominant cause of bovine pneumonic pasteurellosis, or shipping fever. Various virulence factors allow M haemolytica to colonize the lungs and establish infection. These virulence factors include leukotoxin (LKT), lipopolysaccharide, adhesins, capsule, outer membrane proteins, and various proteases. The effects of LKT are species specific for ruminants, which stem from its unique interaction with the bovine β2 integrin receptor present on leukocytes. At low concentration, LKT can activate bovine leukocytes to undergo respiratory burst and degranulation and stimulate cytokine release from macrophages and histamine release from mast cells. At higher concentration, LKT induces formation of transmembrane pores and subsequent oncotic cell necrosis. The interaction of LKT with leukocytes is followed by activation of these leukocytes to undergo oxidative burst and release proinflammatory cytokines such as interleukins 1, 6, and 8 and tumor necrosis factor α. Tumor necrosis factor α and other proinflammatory cytokines contribute to the accumulation of leukocytes in the lung. Formation of transmembrane pores and subsequent cytolysis of activated leukocytes possibly cause leakage of products of respiratory burst and other inflammatory mediators into the surrounding pulmonary parenchyma and so give rise to fibrinous and necrotizing lobar pneumonia. The effects of LKT are enhanced by lipopolysaccharide, which is associated with the release of proinflammatory cytokines from the leukocytes, activation of complement and coagulation cascade, and cell cytolysis. Similarly, adhesins, capsule, outer membrane proteins, and proteases assist in pulmonary colonization, evasion of immune response, and establishment of the infection. This review focuses on the roles of these virulence factors in the pathogenesis of shipping fever.
Collapse
Affiliation(s)
- K Singh
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA.
| | | | | |
Collapse
|
23
|
Li W, Liu L, Qiu D, Chen H, Zhou R. Identification of Streptococcus suis serotype 2 genes preferentially expressed in the natural host. Int J Med Microbiol 2010; 300:482-8. [PMID: 20554247 DOI: 10.1016/j.ijmm.2010.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/16/2010] [Accepted: 04/18/2010] [Indexed: 01/01/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen for swine and humans. Previous research about the mechanism of SS2 infection was largely established on in vitro or ex vivo models. In this study, we focused on the identification of SS2 genes preferentially expressed in vivo during natural infection in pigs. Eighty SS2 genes were identified to be up-regulated in the porcine brains and lungs by selective capture of transcribed sequences (SCOTS) and comparative dot blot analysis, followed by quantitative RT-PCR validation. These genes could be classified into 5 functional categories: metabolism, cell wall associated proteins, transporters, cell replication, and function unknown. Some of these genes may contribute to the survival and pathogenesis of SS2 in the host via the following strategies. First, SS2 evades the host innate immune clearance through modifying its metabolism and cell wall composition as indicated by the up-regulation of the corresponding gene ldh and pbp2A, respectively. Secondly, SS2 adapts to the in vivo conditions by inducing the expression of the two-component signal transduction system VicKR which may function on the target genes such as pcsB involved in stress response and cell wall biosynthesis. Thirdly, SS2 enhances its virulence in vivo by up-regulating the virulence genes, such as sly, pdgA, ssp, gidA, gcp and hp1311. Further study of these in vivo up-regulated genes will contribute to understanding the in vivo survival mechanism and pathogenesis of SS2.
Collapse
Affiliation(s)
- Wei Li
- Division of Animal Infectious Diseases in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street 1, Hongshan District, Wuhan, Hubei 430070, China
| | | | | | | | | |
Collapse
|
24
|
Mulkidjanian AY, Galperin MY. On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol Direct 2009; 4:27. [PMID: 19703275 PMCID: PMC2749021 DOI: 10.1186/1745-6150-4-27] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 08/24/2009] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The accompanying article (A.Y. Mulkidjanian, Biology Direct 4:26) puts forward a detailed hypothesis on the role of zinc sulfide (ZnS) in the origin of life on Earth. The hypothesis suggests that life emerged within compartmentalized, photosynthesizing ZnS formations of hydrothermal origin (the Zn world), assembled in sub-aerial settings on the surface of the primeval Earth. RESULTS If life started within photosynthesizing ZnS compartments, it should have been able to evolve under the conditions of elevated levels of Zn2+ ions, byproducts of the ZnS-mediated photosynthesis. Therefore, the Zn world hypothesis leads to a set of testable predictions regarding the specific roles of Zn2+ ions in modern organisms, particularly in RNA and protein structures related to the procession of RNA and the "evolutionarily old" cellular functions. We checked these predictions using publicly available data and obtained evidence suggesting that the development of the primeval life forms up to the stage of the Last Universal Common Ancestor proceeded in zinc-rich settings. Testing of the hypothesis has revealed the possible supportive role of manganese sulfide in the primeval photosynthesis. In addition, we demonstrate the explanatory power of the Zn world concept by elucidating several points that so far remained without acceptable rationalization. In particular, this concept implies a new scenario for the separation of Bacteria and Archaea and the origin of Eukarya. CONCLUSION The ability of the Zn world hypothesis to generate non-trivial veritable predictions and explain previously obscure items gives credence to its key postulate that the development of the first life forms started within zinc-rich formations of hydrothermal origin and was driven by solar UV irradiation. This concept implies that the geochemical conditions conducive to the origin of life may have persisted only as long as the atmospheric CO2 pressure remained above ca. 10 bar. This work envisions the first Earth biotopes as photosynthesizing and habitable areas of porous ZnS and MnS precipitates around primeval hot springs. Further work will be needed to provide details on the life within these communities and to elucidate the primordial (bio)chemical reactions. REVIEWERS This article was reviewed by Arcady Mushegian, Eugene Koonin, and Patrick Forterre. For the full reviews, please go to the Reviewers' reports section.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- School of Physics, Universität Osnabrück, D-49069 Osnabrück, Germany
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
25
|
Handford JI, Ize B, Buchanan G, Butland GP, Greenblatt J, Emili A, Palmer T. Conserved network of proteins essential for bacterial viability. J Bacteriol 2009; 191:4732-49. [PMID: 19376873 PMCID: PMC2715707 DOI: 10.1128/jb.00136-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 04/07/2009] [Indexed: 12/28/2022] Open
Abstract
The yjeE, yeaZ, and ygjD genes are highly conserved in the genomes of eubacteria, and ygjD orthologs are also found throughout the Archaea and eukaryotes. In this study, we have constructed conditional expression strains for each of these genes in the model organism Escherichia coli K12. We show that each gene is essential for the viability of E. coli under laboratory growth conditions. Growth of the conditional strains under nonpermissive conditions results in dramatic changes in cell ultrastructure. Deliberate repression of the expression of yeaZ results in cells with highly condensed nucleoids, while repression of yjeE and ygjD expression results in at least a proportion of very enlarged cells with an unusual peripheral distribution of DNA. Each of the three conditional expression strains can be complemented by multicopy clones harboring the rstA gene, which encodes a two-component-system response regulator, strongly suggesting that these proteins are involved in the same essential cellular pathway. The results of bacterial two-hybrid experiments show that YeaZ can interact with both YjeE and YgjD but that YgjD is the preferred interaction partner. The results of in vitro experiments indicate that YeaZ mediates the proteolysis of YgjD, suggesting that YeaZ and YjeE act as regulators to control the activity of this protein. Our results are consistent with these proteins forming a link between DNA metabolism and cell division.
Collapse
Affiliation(s)
- Jennifer I Handford
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
26
|
Oberto J, Breuil N, Hecker A, Farina F, Brochier-Armanet C, Culetto E, Forterre P. Qri7/OSGEPL, the mitochondrial version of the universal Kae1/YgjD protein, is essential for mitochondrial genome maintenance. Nucleic Acids Res 2009; 37:5343-52. [PMID: 19578062 PMCID: PMC2760799 DOI: 10.1093/nar/gkp557] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Yeast Qri7 and human OSGEPL are members of the orthologous Kae1(OSGEP)/YgjD protein family, the last class of universally conserved proteins without assigned function. Phylogenetic analyses indicate that the eukaryotic Qri7(OSGEPL) proteins originated from bacterial YgjD proteins. We have recently shown that the archaeal Kae1 protein is a DNA-binding protein that exhibits apurinic endonuclease activity in vitro. We show here that the Qri7/OSGEPL proteins localize in mitochondria and are involved in mitochondrial genome maintenance in two model eukaryotic organisms, Saccharomyces cerevisiae and Caenorhabditis elegans. Furthermore, S. cerevisiae Qri7 complements the loss of the bacterial YgjD protein in Escherichia coli, suggesting that Qri7/OSGEPL and YgjD proteins have retained similar functions in modern organisms. We suggest to name members of the Kae1(OSGEP)/YgjD family UGMP, for Universal Genome Maintenance Proteins.
Collapse
Affiliation(s)
- Jacques Oberto
- Université Paris-Sud 11, CNRS, UMR8621, Institut de Génétique et Microbiologie, 91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|
27
|
The universal Kae1 protein and the associated Bud32 kinase (PRPK), a mysterious protein couple probably essential for genome maintenance in Archaea and Eukarya. Biochem Soc Trans 2009; 37:29-35. [PMID: 19143597 DOI: 10.1042/bst0370029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The similarities between essential molecular mechanisms in Archaea and Eukarya make it possible to discover, using comparative genomics, new fundamental mechanisms conserved between these two domains. We are studying a complex of two proteins conserved in Archaea and Eukarya whose precise biological role and biochemical function remain unknown. One of them is a universal protein known as Kae1 (kinase-asociated endopeptidase 1). The second protein is a serine/threonine kinase corresponding to the proteins Bud32 in Saccharomyces cerevisiae and PRPK (p53-related protein kinase) in humans. The genes encoding the archaeal orthologues of Kae1 and PRPK are either contiguous or even fused in many archaeal genomes. In S. cerevisiae, Kae1 and Bud32 (PRPK) belong to a chromatin-associated complex [KEOPS (kinase, endopeptidase and other proteins of small size)/EKC (endopeptidase-like kinase chromatin-associated)] that is essential for telomere elongation and transcription of essential genes. Although Kae1 is annotated as O-sialoglycoprotein endopeptidase in most genomes, we found that the Kae1 protein from Pyrococcus abyssi has no protease activity, but is an atypical DNA-binding protein with an AP (apurinic) lyase activity. The structure of the fusion protein from Methanocaldococcus jannaschii revealed that Kae1 maintains the ATP-binding site of Bud32 [corrected] in an inactive configuration. We have in fact found that Kae1 inhibits the kinase activity of Bud32 (PRPK) in vitro. Understanding the precise biochemical function and biological role of these two proteins (which are probably essential for genome maintenance) remains a major challenge.
Collapse
|
28
|
Mao DY, Neculai D, Downey M, Orlicky S, Haffani YZ, Ceccarelli DF, Ho JS, Szilard RK, Zhang W, Ho CS, Wan L, Fares C, Rumpel S, Kurinov I, Arrowsmith CH, Durocher D, Sicheri F. Atomic structure of the KEOPS complex: an ancient protein kinase-containing molecular machine. Mol Cell 2008; 32:259-75. [PMID: 18951093 PMCID: PMC3098719 DOI: 10.1016/j.molcel.2008.10.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 09/24/2008] [Accepted: 10/02/2008] [Indexed: 11/19/2022]
Abstract
Kae1 is a universally conserved ATPase and part of the essential gene set in bacteria. In archaea and eukaryotes, Kae1 is embedded within the protein kinase-containing KEOPS complex. Mutation of KEOPS subunits in yeast leads to striking telomere and transcription defects, but the exact biochemical function of KEOPS is not known. As a first step to elucidating its function, we solved the atomic structure of archaea-derived KEOPS complexes involving Kae1, Bud32, Pcc1, and Cgi121 subunits. Our studies suggest that Kae1 is regulated at two levels by the primordial protein kinase Bud32, which is itself regulated by Cgi121. Moreover, Pcc1 appears to function as a dimerization module, perhaps suggesting that KEOPS may be a processive molecular machine. Lastly, as Bud32 lacks the conventional substrate-recognition infrastructure of eukaryotic protein kinases including an activation segment, Bud32 may provide a glimpse of the evolutionary history of the protein kinase family.
Collapse
Affiliation(s)
- Daniel Y.L. Mao
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
| | - Dante Neculai
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
| | - Michael Downey
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Orlicky
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
| | - Yosr Z. Haffani
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
| | - Derek F. Ceccarelli
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
| | - Jenny S.L. Ho
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children and University of Toronto, 555 University Avenue, Toronto, ON, Canada, M5G 1X8
| | - Rachel K. Szilard
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
| | - Wei Zhang
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia S. Ho
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
| | - Leo Wan
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
| | - Christophe Fares
- Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G 1L7
| | - Sigrun Rumpel
- Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G 1L7
| | - Igor Kurinov
- Cornell University, Department of Chemistry and Chemical Biology, NE-CAT, Bldg. 436E, Advanced Photon Source, 9700 S. Cass Ave., Argonne, IL, 60439
| | - Cheryl H. Arrowsmith
- Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G 1L7
| | - Daniel Durocher
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Frank Sicheri
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Löwer M, Weydig C, Metzler D, Reuter A, Starzinski-Powitz A, Wessler S, Schneider G. Prediction of extracellular proteases of the human pathogen Helicobacter pylori reveals proteolytic activity of the Hp1018/19 protein HtrA. PLoS One 2008; 3:e3510. [PMID: 18946507 PMCID: PMC2567035 DOI: 10.1371/journal.pone.0003510] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 09/30/2008] [Indexed: 01/13/2023] Open
Abstract
Exported proteases of Helicobacter pylori (H. pylori) are potentially involved in pathogen-associated disorders leading to gastric inflammation and neoplasia. By comprehensive sequence screening of the H. pylori proteome for predicted secreted proteases, we retrieved several candidate genes. We detected caseinolytic activities of several such proteases, which are released independently from the H. pylori type IV secretion system encoded by the cag pathogenicity island (cagPAI). Among these, we found the predicted serine protease HtrA (Hp1019), which was previously identified in the bacterial secretome of H. pylori. Importantly, we further found that the H. pylori genes hp1018 and hp1019 represent a single gene likely coding for an exported protein. Here, we directly verified proteolytic activity of HtrA in vitro and identified the HtrA protease in zymograms by mass spectrometry. Overexpressed and purified HtrA exhibited pronounced proteolytic activity, which is inactivated after mutation of Ser205 to alanine in the predicted active center of HtrA. These data demonstrate that H. pylori secretes HtrA as an active protease, which might represent a novel candidate target for therapeutic intervention strategies.
Collapse
Affiliation(s)
- Martin Löwer
- Goethe-University, Institute of Cell Biology and Neuroscience / CMP, Frankfurt am Main, Germany
| | | | - Dirk Metzler
- Goethe-University, Institute of Computer Science, Frankfurt am Main, Germany
| | - Andreas Reuter
- Paul-Ehrlich Institute, Department of Allergology, Langen, Germany
| | - Anna Starzinski-Powitz
- Goethe-University, Institute of Cell Biology and Neuroscience / CMP, Frankfurt am Main, Germany
| | - Silja Wessler
- Junior Research Group, Paul-Ehrlich Institute, Langen, Germany
| | - Gisbert Schneider
- Goethe-University, Institute of Cell Biology and Neuroscience / CMP, Frankfurt am Main, Germany
| |
Collapse
|
30
|
Viratyosin W, Ingsriswang S, Pacharawongsakda E, Palittapongarnpim P. Genome-wide subcellular localization of putative outer membrane and extracellular proteins in Leptospira interrogans serovar Lai genome using bioinformatics approaches. BMC Genomics 2008; 9:181. [PMID: 18423054 PMCID: PMC2387172 DOI: 10.1186/1471-2164-9-181] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 04/21/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In bacterial pathogens, both cell surface-exposed outer membrane proteins and proteins secreted into the extracellular environment play crucial roles in host-pathogen interaction and pathogenesis. Considerable efforts have been made to identify outer membrane (OM) and extracellular (EX) proteins produced by Leptospira interrogans, which may be used as novel targets for the development of infection markers and leptospirosis vaccines. RESULT In this study we used a novel computational framework based on combined prediction methods with deduction concept to identify putative OM and EX proteins encoded by the Leptospira interrogans genome. The framework consists of the following steps: (1) identifying proteins homologous to known proteins in subcellular localization databases derived from the "consensus vote" of computational predictions, (2) incorporating homology based search and structural information to enhance gene annotation and functional identification to infer the specific structural characters and localizations, and (3) developing a specific classifier for cytoplasmic proteins (CP) and cytoplasmic membrane proteins (CM) using Linear discriminant analysis (LDA). We have identified 114 putative EX and 63 putative OM proteins, of which 41% are conserved or hypothetical proteins containing sequence and/or protein folding structures similar to those of known EX and OM proteins. CONCLUSION Overall results derived from the combined computational analysis correlate with the available experimental evidence. This is the most extensive in silico protein subcellular localization identification to date for Leptospira interrogans serovar Lai genome that may be useful in protein annotation, discovery of novel genes and understanding the biology of Leptospira.
Collapse
Affiliation(s)
- Wasna Viratyosin
- BIOTEC Central Research Unit, National Center for Genetic Engineering and Biotechnology, Pathumthani, 12120, Thailand.
| | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
32
|
Hecker A, Leulliot N, Gadelle D, Graille M, Justome A, Dorlet P, Brochier C, Quevillon-Cheruel S, Le Cam E, van Tilbeurgh H, Forterre P. An archaeal orthologue of the universal protein Kae1 is an iron metalloprotein which exhibits atypical DNA-binding properties and apurinic-endonuclease activity in vitro. Nucleic Acids Res 2007; 35:6042-51. [PMID: 17766251 PMCID: PMC2094082 DOI: 10.1093/nar/gkm554] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Kae1 (Kinase-associated endopeptidase 1) protein is a member of the recently identified transcription complex EKC and telomeres maintenance complex KEOPS in yeast. Kae1 homologues are encoded by all sequenced genomes in the three domains of life. Although annotated as putative endopeptidases, the actual functions of these universal proteins are unknown. Here we show that the purified Kae1 protein (Pa-Kae1) from Pyrococcus abyssi is an iron-protein with a novel type of ATP-binding site. Surprisingly, this protein did not exhibit endopeptidase activity in vitro but binds cooperatively to single and double-stranded DNA and induces unusual DNA conformational change. Furthermore, Pa-Kae1 exhibits a class I apurinic (AP)-endonuclease activity (AP-lyase). Both DNA binding and AP-endonuclease activity are inhibited by ATP. Kae1 is thus a novel and atypical universal DNA interacting protein whose importance could rival those of RecA (RadA/Rad51) in the maintenance of genome integrity in all living cells.
Collapse
Affiliation(s)
- Arnaud Hecker
- Institut de Génétique et Microbiologie, Univ. Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Univ. Paris-Sud, IFR115, UMR8619-CNRS, 91405 Orsay, France, Institut Gustave Roussy, Interactions Moléculaires et Cancer, UMR8126-CNRS, 94805 Villejuif Cedex, France, Institut de Chimie Moléculaire et des Matériaux, Univ. Paris-Sud, UMR8182-CNRS, 91405 Orsay, France, Institut de Biologie Structurale et de Microbiologie, Laboratoire de Chimie Bactérienne, UPR9043-CNRS, 13402 Marseille Cedex 20, France, Université de Provence - Aix-Marseille I, 13331 Marseille Cedex 3, France and Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Nicolas Leulliot
- Institut de Génétique et Microbiologie, Univ. Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Univ. Paris-Sud, IFR115, UMR8619-CNRS, 91405 Orsay, France, Institut Gustave Roussy, Interactions Moléculaires et Cancer, UMR8126-CNRS, 94805 Villejuif Cedex, France, Institut de Chimie Moléculaire et des Matériaux, Univ. Paris-Sud, UMR8182-CNRS, 91405 Orsay, France, Institut de Biologie Structurale et de Microbiologie, Laboratoire de Chimie Bactérienne, UPR9043-CNRS, 13402 Marseille Cedex 20, France, Université de Provence - Aix-Marseille I, 13331 Marseille Cedex 3, France and Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Danièle Gadelle
- Institut de Génétique et Microbiologie, Univ. Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Univ. Paris-Sud, IFR115, UMR8619-CNRS, 91405 Orsay, France, Institut Gustave Roussy, Interactions Moléculaires et Cancer, UMR8126-CNRS, 94805 Villejuif Cedex, France, Institut de Chimie Moléculaire et des Matériaux, Univ. Paris-Sud, UMR8182-CNRS, 91405 Orsay, France, Institut de Biologie Structurale et de Microbiologie, Laboratoire de Chimie Bactérienne, UPR9043-CNRS, 13402 Marseille Cedex 20, France, Université de Provence - Aix-Marseille I, 13331 Marseille Cedex 3, France and Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Marc Graille
- Institut de Génétique et Microbiologie, Univ. Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Univ. Paris-Sud, IFR115, UMR8619-CNRS, 91405 Orsay, France, Institut Gustave Roussy, Interactions Moléculaires et Cancer, UMR8126-CNRS, 94805 Villejuif Cedex, France, Institut de Chimie Moléculaire et des Matériaux, Univ. Paris-Sud, UMR8182-CNRS, 91405 Orsay, France, Institut de Biologie Structurale et de Microbiologie, Laboratoire de Chimie Bactérienne, UPR9043-CNRS, 13402 Marseille Cedex 20, France, Université de Provence - Aix-Marseille I, 13331 Marseille Cedex 3, France and Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Anthony Justome
- Institut de Génétique et Microbiologie, Univ. Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Univ. Paris-Sud, IFR115, UMR8619-CNRS, 91405 Orsay, France, Institut Gustave Roussy, Interactions Moléculaires et Cancer, UMR8126-CNRS, 94805 Villejuif Cedex, France, Institut de Chimie Moléculaire et des Matériaux, Univ. Paris-Sud, UMR8182-CNRS, 91405 Orsay, France, Institut de Biologie Structurale et de Microbiologie, Laboratoire de Chimie Bactérienne, UPR9043-CNRS, 13402 Marseille Cedex 20, France, Université de Provence - Aix-Marseille I, 13331 Marseille Cedex 3, France and Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Pierre Dorlet
- Institut de Génétique et Microbiologie, Univ. Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Univ. Paris-Sud, IFR115, UMR8619-CNRS, 91405 Orsay, France, Institut Gustave Roussy, Interactions Moléculaires et Cancer, UMR8126-CNRS, 94805 Villejuif Cedex, France, Institut de Chimie Moléculaire et des Matériaux, Univ. Paris-Sud, UMR8182-CNRS, 91405 Orsay, France, Institut de Biologie Structurale et de Microbiologie, Laboratoire de Chimie Bactérienne, UPR9043-CNRS, 13402 Marseille Cedex 20, France, Université de Provence - Aix-Marseille I, 13331 Marseille Cedex 3, France and Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Céline Brochier
- Institut de Génétique et Microbiologie, Univ. Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Univ. Paris-Sud, IFR115, UMR8619-CNRS, 91405 Orsay, France, Institut Gustave Roussy, Interactions Moléculaires et Cancer, UMR8126-CNRS, 94805 Villejuif Cedex, France, Institut de Chimie Moléculaire et des Matériaux, Univ. Paris-Sud, UMR8182-CNRS, 91405 Orsay, France, Institut de Biologie Structurale et de Microbiologie, Laboratoire de Chimie Bactérienne, UPR9043-CNRS, 13402 Marseille Cedex 20, France, Université de Provence - Aix-Marseille I, 13331 Marseille Cedex 3, France and Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Sophie Quevillon-Cheruel
- Institut de Génétique et Microbiologie, Univ. Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Univ. Paris-Sud, IFR115, UMR8619-CNRS, 91405 Orsay, France, Institut Gustave Roussy, Interactions Moléculaires et Cancer, UMR8126-CNRS, 94805 Villejuif Cedex, France, Institut de Chimie Moléculaire et des Matériaux, Univ. Paris-Sud, UMR8182-CNRS, 91405 Orsay, France, Institut de Biologie Structurale et de Microbiologie, Laboratoire de Chimie Bactérienne, UPR9043-CNRS, 13402 Marseille Cedex 20, France, Université de Provence - Aix-Marseille I, 13331 Marseille Cedex 3, France and Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Eric Le Cam
- Institut de Génétique et Microbiologie, Univ. Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Univ. Paris-Sud, IFR115, UMR8619-CNRS, 91405 Orsay, France, Institut Gustave Roussy, Interactions Moléculaires et Cancer, UMR8126-CNRS, 94805 Villejuif Cedex, France, Institut de Chimie Moléculaire et des Matériaux, Univ. Paris-Sud, UMR8182-CNRS, 91405 Orsay, France, Institut de Biologie Structurale et de Microbiologie, Laboratoire de Chimie Bactérienne, UPR9043-CNRS, 13402 Marseille Cedex 20, France, Université de Provence - Aix-Marseille I, 13331 Marseille Cedex 3, France and Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Herman van Tilbeurgh
- Institut de Génétique et Microbiologie, Univ. Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Univ. Paris-Sud, IFR115, UMR8619-CNRS, 91405 Orsay, France, Institut Gustave Roussy, Interactions Moléculaires et Cancer, UMR8126-CNRS, 94805 Villejuif Cedex, France, Institut de Chimie Moléculaire et des Matériaux, Univ. Paris-Sud, UMR8182-CNRS, 91405 Orsay, France, Institut de Biologie Structurale et de Microbiologie, Laboratoire de Chimie Bactérienne, UPR9043-CNRS, 13402 Marseille Cedex 20, France, Université de Provence - Aix-Marseille I, 13331 Marseille Cedex 3, France and Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Patrick Forterre
- Institut de Génétique et Microbiologie, Univ. Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Univ. Paris-Sud, IFR115, UMR8619-CNRS, 91405 Orsay, France, Institut Gustave Roussy, Interactions Moléculaires et Cancer, UMR8126-CNRS, 94805 Villejuif Cedex, France, Institut de Chimie Moléculaire et des Matériaux, Univ. Paris-Sud, UMR8182-CNRS, 91405 Orsay, France, Institut de Biologie Structurale et de Microbiologie, Laboratoire de Chimie Bactérienne, UPR9043-CNRS, 13402 Marseille Cedex 20, France, Université de Provence - Aix-Marseille I, 13331 Marseille Cedex 3, France and Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
- *To whom correspondence should be addressed. +33 1 69 15 74 89+33 1 69 15 78 08 Correspondence may also be addressed to Herman van Tilbeurgh.
| |
Collapse
|
33
|
Kisseleva-Romanova E, Lopreiato R, Baudin-Baillieu A, Rousselle JC, Ilan L, Hofmann K, Namane A, Mann C, Libri D. Yeast homolog of a cancer-testis antigen defines a new transcription complex. EMBO J 2006; 25:3576-85. [PMID: 16874308 PMCID: PMC1538566 DOI: 10.1038/sj.emboj.7601235] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 06/20/2006] [Indexed: 01/13/2023] Open
Abstract
We have isolated a new yeast gene (PCC1) that codes for a factor homologous to human cancer-testis antigens. We provide evidence that Pcc1p is a new transcription factor and that its mutation affects expression of several genes, some of which are involved in cell cycle progression and polarized growth. Mutation of Pcc1p also affects the expression of GAL genes by impairing the recruitment of the SAGA and Mediator co-activators. We characterize a new complex that contains Pcc1p, a kinase, Bud32p, a putative endopeptidase, Kae1p and two additional proteins encoded by ORFs YJL184w and YMLO36w. Genetic and physical interactions among these proteins strongly suggest that this complex is a functional unit. Chromatin immunoprecipitation experiments and multiple genetic interactions of pcc1 mutants with mutants of the transcription apparatus and chromatin modifying enzymes underscore the direct role of the complex in transcription. Functional complementation experiments indicate that the transcriptional function of this set of genes is conserved throughout evolution.
Collapse
Affiliation(s)
- Elena Kisseleva-Romanova
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, Paris, France
| | - Raffaele Lopreiato
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, Paris, France
| | - Agnès Baudin-Baillieu
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, Paris, France
| | | | - Laila Ilan
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, Paris, France
| | | | - Abdelkader Namane
- Institut Pasteur, Génopole, Plate-Forme de Protéomique, Paris Cedex, France
| | - Carl Mann
- Biochemistry Department, F Edward Hébert School of Medicine, USUHS, Bethesda, MD, USA
| | - Domenico Libri
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, Paris, France
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, 91190 Gif sur Yvette, Paris, France. Tel.: +33 1 69823809; Fax: +33 1 69823877; E-mail:
| |
Collapse
|
34
|
Nichols CE, Johnson C, Lockyer M, Charles IG, Lamb HK, Hawkins AR, Stammers DK. Structural characterization of Salmonella typhimurium YeaZ, an M22 O-sialoglycoprotein endopeptidase homolog. Proteins 2006; 64:111-23. [PMID: 16617437 DOI: 10.1002/prot.20982] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Salmonella typhimurium "yeaZ" gene (StyeaZ) encodes an essential protein of unknown function (StYeaZ), which has previously been annotated as a putative homolog of the Pasteurella haemolytica M22 O-sialoglycoprotein endopeptidase Gcp. YeaZ has also recently been reported as the first example of an RPF from a gram-negative bacterial species. To further characterize the properties of StYeaZ and the widely occurring MK-M22 family, we describe the purification, biochemical analysis, crystallization, and structure determination of StYeaZ. The crystal structure of StYeaZ reveals a classic two-lobed actin-like fold with structural features consistent with nucleotide binding. However, microcalorimetry experiments indicated that StYeaZ neither binds polyphosphates nor a wide range of nucleotides. Additionally, biochemical assays show that YeaZ is not an active O-sialoglycoprotein endopeptidase, consistent with the lack of the critical zinc binding motif. We present a detailed comparison of YeaZ with available structural homologs, the first reported structural analysis of an MK-M22 family member. The analysis indicates that StYeaZ has an unusual orientation of the A and B lobes which may require substantial relative movement or interaction with a partner protein in order to bind ligands. Comparison of the fold of YeaZ with that of a known RPF domain from a gram-positive species shows significant structural differences and therefore potentially distinctive RPF mechanisms for these two bacterial classes.
Collapse
Affiliation(s)
- C E Nichols
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
35
|
Keep NH, Ward JM, Cohen-Gonsaud M, Henderson B. Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends Microbiol 2006; 14:271-6. [PMID: 16675219 DOI: 10.1016/j.tim.2006.04.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 03/02/2006] [Accepted: 04/20/2006] [Indexed: 11/27/2022]
Abstract
When stressed, bacteria can enter various non-dividing states, which are medically important. For example, dormancy is used by Mycobacterium tuberculosis to evade host responses. A major breakthrough has been the discovery of resuscitation-promoting factor (Rpf) from Micrococcus luteus, which is an extremely potent anti-dormancy factor. Mycobacteria have multiple proteins that contain this domain. Surprisingly, the highly conserved resuscitation-promoting factor domain has strong structural similarities to lysozyme and soluble lytic transglycosylases, and it has been demonstrated that resuscitation-promoting factors cleave peptidoglycan. This suggests that the activation of dormant cells requires peptidoglycan hydrolysis, which either alters the mechanical properties of the cell wall to facilitate cell division or releases lysis products that function as anti-dormancy signals.
Collapse
Affiliation(s)
- Nicholas H Keep
- School of Crystallography and Institute of Structural Molecular Biology, Birkbeck, University of London, Malet Street, London, UK, WC1E 7HX
| | | | | | | |
Collapse
|
36
|
De Castro RE, Maupin-Furlow JA, Giménez MI, Herrera Seitz MK, Sánchez JJ. Haloarchaeal proteases and proteolytic systems. FEMS Microbiol Rev 2006; 30:17-35. [PMID: 16438678 DOI: 10.1111/j.1574-6976.2005.00003.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Proteases play key roles in many biological processes and have numerous applications in biotechnology and industry. Recent advances in the genetics, genomics and biochemistry of the halophilic Archaea provide a tremendous opportunity for understanding proteases and their function in the context of an archaeal cell. This review summarizes our current knowledge of haloarchaeal proteases and provides a reference for future research.
Collapse
Affiliation(s)
- Rosana E De Castro
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| | | | | | | | | |
Collapse
|
37
|
Starr AE, Dan T, Minhas K, Shewen PE, Coomber BL. Potential involvement of gelatinases and their inhibitors in Mannheimia haemolytica pneumonia in cattle. Infect Immun 2004; 72:4393-400. [PMID: 15271895 PMCID: PMC470690 DOI: 10.1128/iai.72.8.4393-4400.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 01/05/2004] [Accepted: 04/15/2004] [Indexed: 11/20/2022] Open
Abstract
Mannheimia haemolytica infection of the lower respiratory tract of cattle results in a bronchofibrinous pneumonia characterized by massive cellular influx and lung tissue remodeling and scarring. Since altered levels of gelatinases and their inhibitors have been detected in a variety of inflammatory conditions and are associated with tissue remodeling, we examined the presence of gelatinases in lesional and nonlesional lung tissue obtained from calves experimentally infected with M. haemolytica. Lesional tissue had elevated levels of progelatinase A and B and active gelatinase A and B when compared with nonlesional tissue obtained from the same lung lobe. In vitro, M. haemolytica products stimulated production of gelatinase B, but not its activation, by bovine monocytes. Alveolar macrophages showed constitutive production of gelatinase B but no change in response to M. haemolytica products. Bovine neutrophils exposed to M. haemolytica products also released gelatinase B, and there was a significant increase in the activated form of this enzyme. These effects were virtually identical when recombinant O-sialoglycoprotease was used to stimulate these cells. M. haemolytica products also enhanced the expression by bovine monocytes and alveolar macrophages of the tissue inhibitor of metalloproteinase 1. Our results provide evidence that matrix metalloproteinases are activated in lung lesions from cattle with shipping fever and that M. haemolytica virulence products induce production, release, and especially activation of gelatinase B by bovine inflammatory cells in vitro.
Collapse
Affiliation(s)
- Amanda E Starr
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
38
|
Lopreiato R, Facchin S, Sartori G, Arrigoni G, Casonato S, Ruzzene M, Pinna LA, Carignani G. Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin. Biochem J 2004; 377:395-405. [PMID: 14519092 PMCID: PMC1223863 DOI: 10.1042/bj20030638] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Revised: 09/30/2003] [Accepted: 09/30/2003] [Indexed: 11/17/2022]
Abstract
The Saccharomyces cerevisiae piD261/Bud32 protein and its structural homologues, which are present along the Archaea-Eukarya lineage, constitute a novel protein kinase family (the piD261 family) distantly related in sequence to the eukaryotic protein kinase superfamily. It has been demonstrated that the yeast protein displays Ser/Thr phosphotransferase activity in vitro and contains all the invariant residues of the family. This novel protein kinase appears to play an important cellular role as deletion in yeast of the gene encoding piD261/Bud32 results in the alteration of fundamental processes such as cell growth and sporulation. In this work we show that the phosphotransferase activity of Bud32 is relevant to its functionality in vivo, but is not the unique role of the protein, since mutants which have lost catalytic activity but not native conformation can partially complement the disruption of the gene encoding piD261/Bud32. A two-hybrid approach has led to the identification of several proteins interacting with Bud32; in particular a glutaredoxin (Grx4), a putative glycoprotease (Ykr038/Kae1) and proteins of the Imd (inosine monophosphate dehydrogenase) family seem most plausible interactors. We further demonstrate that Grx4 directly interacts with Bud32 and that it is phosphorylated in vitro by Bud32 at Ser-134. The functional significance of the interaction between Bud32 and the putative protease Ykr038/Kae1 is supported by its evolutionary conservation.
Collapse
Affiliation(s)
- Raffaele Lopreiato
- Dipartimento di Chimica Biologica, Università di Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Davis RE, Jomantiene R, Zhao Y, Dally EL. Folate biosynthesis pseudogenes, PsifolP and PsifolK, and an O-sialoglycoprotein endopeptidase gene homolog in the phytoplasma genome. DNA Cell Biol 2004; 22:697-706. [PMID: 14659042 DOI: 10.1089/104454903770946674] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phytoplasmas are wall-less phytopathogenic prokaryotes of small genome sizes that are obligate parasites of insect vectors and plant hosts. We have cloned a clover phyllody (CPh) phytoplasma DNA locus containing five potential coding sequences. Two were identified as pseudogenes (PsifolP and PsifolK) homologous to folP and folK genes, which encode dihydropteroate synthase (DHPS) and 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), respectively, in other bacteria. Evolution of the phytoplasma presumably involved loss of functions through the formation of these and other pseudogenes during adaptation to obligate parasitism. The findings suggest that the phytoplasma lacks capacity for de novo folate biosynthesis and possesses a transport system for absorption of preformed folate from host cells. The PsifolP-PsifolK region was flanked by three open reading frames (ORFs) encoding a DegV family protein, a hypothetical protein with a P60-like lipoprotein domain homologous with the P60-like Mycoplasma hominis protein, and a glycoprotease (Gcp) protein that possibly functions as a host adaptation or virulence factor.
Collapse
Affiliation(s)
- Robert E Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Room 118, Building 004, BARC West, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
40
|
Grass G, Schierhorn A, Sorkau E, Müller H, Rücknagel P, Nies DH, Fricke B. Camelysin is a novel surface metalloproteinase from Bacillus cereus. Infect Immun 2004; 72:219-28. [PMID: 14688099 PMCID: PMC343988 DOI: 10.1128/iai.72.1.219-228.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 09/02/2003] [Accepted: 10/10/2003] [Indexed: 11/20/2022] Open
Abstract
Bacillus cereus frequently causes food poisoning or nosocomial diseases. Vegetative cells express the novel surface metalloproteinase camelysin (casein-cleaving metalloproteinase) during exponential growth on complex, peptide-rich media. Camelysin is strongly bound to the cell surface and can be solubilized only by detergents or butanol. Camelysin spontaneously migrates from the surface of intact bacterial cells to preformed liposomes. The complete sequence of the camelysin-encoding gene, calY, was determined by reverse PCR on the basis of the N-terminal sequence and some internal tryptic cleavage peptides. The calY gene codes for a polypeptide of 21.569 kDa with a putative signal peptide of 27 amino acids (2.513 kDa) preceding the mature protein (19.056 kDa). Although the predicted amino acid sequence of CalY does not exhibit a typical metalloprotease consensus sequence, high-pressure liquid chromatography-purified camelysin contains one zinc ion per protein molecule. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and tryptic peptide mass fingerprinting confirmed the identity of this zinc-binding protein as CalY. Disruption of the calY gene results in a strong decrease in the cell-bound proteolytic activity on various substrates.
Collapse
Affiliation(s)
- Gregor Grass
- Institute for Microbiology, Faculty of Life Sciences, Martin Luther University, D-06097 Halle, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Ikeda S, Ayabe H, Mori K, Seki Y, Seki S. Identification of the functional elements in the bidirectional promoter of the mouse O-sialoglycoprotein endopeptidase and APEX nuclease genes. Biochem Biophys Res Commun 2002; 296:785-91. [PMID: 12200116 DOI: 10.1016/s0006-291x(02)00939-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The gene for mammalian O-sialoglycoprotein endopeptidase (Osgep) lies immediately adjacent to the gene for the APEX nuclease (Apex), a multifunctional DNA repair enzyme, in a head-to-head orientation. To clarify the regulation of these divergent genes, we studied their promoter regions with luciferase reporters. Deletion analysis of a fragment containing the entire mouse Apex gene suggested that cis-acting elements driving in the direction of Osgep are widely distributed in the mApex gene, in the antisense orientation. We investigated in detail cis-acting elements near the transcription initiation site of mOsgep. The spacer sequence between mOsgep and mApex was shown to have bidirectional promoter activity and it has been reported that two CCAAT boxes promote basal transcription in the direction of mApex. However, only one of the CCAAT boxes proximal to the transcription initiation site of mOsgep was important for transcription towards mOsgep. An Sp1-binding sequence was found to be involved in bidirectional transcription and a CRE/ATF-like sequence was shown to function as a repressor of mOsgep transcription. Quantitative RT-PCR showed that the mApex and mOsgep genes were expressed in all tissues examined and that expression of mOsgep was low compared with mApex.
Collapse
Affiliation(s)
- Shogo Ikeda
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Okayama 700-0005, Japan.
| | | | | | | | | |
Collapse
|
42
|
Crasta KC, Chua KL, Subramaniam S, Frey J, Loh H, Tan HM. Identification and characterization of CAMP cohemolysin as a potential virulence factor of Riemerella anatipestifer. J Bacteriol 2002; 184:1932-9. [PMID: 11889100 PMCID: PMC134935 DOI: 10.1128/jb.184.7.1932-1939.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2001] [Accepted: 12/11/2001] [Indexed: 11/20/2022] Open
Abstract
Riemerella anatipestifer is responsible for exudative septicemia in ducks. The genetic determinant of the CAMP cohemolysin, cam, from a strain of R. anatipestifer was cloned and expressed in Escherichia coli. Chromosomal DNA from serotype 19 strain 30/90 was used to construct a gene library in pBluescript II SK(-) vector in E. coli XL-1-Blue strain. The clones containing recombinant plasmids were screened for the CAMP reaction with Staphylococcus aureus. Those that showed cohemolysis were chosen for further analysis by sequencing. One of these clones, JFRA8, was subcloned to identify the smallest possible DNA fragment containing the CAMP cohemolysin determinant, which was located on a 3,566-bp BamHI-BstXI fragment which specified a 1,026-bp open reading frame. Clones containing recombinant plasmids carrying cam obtained by PCR cloning into E. coli M15 strain secreted an active CAMP cohemolysin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analyses confirmed that the recombinant strain expressed a protein with a molecular mass of 37 kDa and that strains from serotypes 1, 2, 3, 5, 6, and 19 expressed the cohemolysin. The deduced amino acid sequence showed high homology to those of O-sialoglycoprotein endopeptidases. Hydrolysis of radioiodinated glycophorin A confirmed that Cam is a sialoglycoprotease.
Collapse
Affiliation(s)
- Karen C Crasta
- Institute of Molecular Agrobiology, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
43
|
Seki Y, Ikeda S, Kiyohara H, Ayabe H, Seki T, Matsui H. Sequencing analysis of a putative human O-sialoglycoprotein endopeptidase gene (OSGEP) and analysis of a bidirectional promoter between the OSGEP and APEX genes. Gene 2002; 285:101-8. [PMID: 12039036 DOI: 10.1016/s0378-1119(02)00429-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We performed cDNA and genomic cloning, sequencing and promoter analysis of the putative human O-sialoglycoprotein endopeptidase gene OSGEP (a homologue of gcp, a Pasteurella haemolytica A1 glycoprotease). The cloned OSGEP cDNA is 1311 nucleotides long, and encodes a protein consisting of 335 amino acids with predicted molecular mass of 36.4 kDa. The amino acid sequence of OSGEP showed 29.7% identity with that of P. haemolytica glycoprotease. The OSGEP gene is 7.75 kb long, consists of 11 exons and 10 introns, and lies immediately adjacent to the APEX gene (which encodes APEX nuclease, a multifunctional DNA repair enzyme) in 5'-to-5' orientation. The promoter region of the OSGEP gene lacks the typical TATA box, but has putative regulatory elements in the CpG island. Northern blot analysis showed ubiquitous expression of the OSGEP gene in several tissues, and we observed similarities in expression patterns between OSGEP and APEX. In order to study the regulation of OSGEP gene expression, we analyzed the OSGEP promoter region by luciferase assay using HeLa cells. A functional region required for full transcription activity was narrowed down to a 23 bp region containing a CCAAT box. It has been reported that this CCAAT box promotes basal transcription in the APEX direction. We thus conclude that a bidirectional promoter containing a CCAAT box regulates transcription of both the OSGEP and APEX genes.
Collapse
Affiliation(s)
- Yuichi Seki
- Department of Physiology, Okayama University Graduate School of Medicine and Dentistry, 700-8558, Okayama, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Using a molecular genetic approach, the genes that code for the various virulence factors of Mannheimia haemolytica A1 have been cloned for detailed characterizations. These included analysis of the encoded proteins, their biological activities, secretion of the molecules from the bacterium as well as their use in a vaccine component. Two newly characterized antigens of M. haemolytica A1 have been identified. The first one is a TonB-dependent iron regulated outer-membrane receptor that is distinct from the transferrin binding proteins. The 84kDa Irp protein exhibits features including a TonB box and a 50 amino acid region that can adopt occluded beta-barrel structures similar to the "plug" domain of the Escherichia coli FhuA and FepA crystal structures. Homologues of Irp were identified by analysis of the genome sequences of a number of Gram negative mucosal pathogens, including Neisseria meningitidis and N. gonorrhoeae. The Neisserial irp genes were cloned by PCR and expressed the 84kDa protein as expected, demonstrating that they are functional genes. In addition to being regulated by iron and Fur, irp(Mh) undergoes phase variation by a slipped-strand mispairing mechanism and may represent a contingency locus for iron acquisition during an infection. Another locus that codes for a putative adhesin molecule has also been partially characterized. This putative adhesin protein is highly homologous with the high-molecular-weight adhesin proteins of non-piliated non-typable strains of Haemophilus influenzae (NTHi) including Hia, Hsf, HMW1, HMW2. Currently, we have cloned the DNA that codes for 2223 amino acids (225kDa) and is still missing the stop codon. It is anticipated that when complete, the protein could be close to 240kDa, similar to the molecular mass of Hsf. Though incomplete, analysis of the adhesin showed that it exhibits characteristics of autotransporter (AT) proteins. The role of this high-molecular-weight adhesin in infection is being investigated.
Collapse
Affiliation(s)
- R Y Lo
- Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
45
|
Lo RY, McKerral LJ, Hills TL, Kostrzynska M. Analysis of the capsule biosynthetic locus of Mannheimia (Pasteurella) haemolytica A1 and proposal of a nomenclature system. Infect Immun 2001; 69:4458-64. [PMID: 11401986 PMCID: PMC98519 DOI: 10.1128/iai.69.7.4458-4464.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 16-kbp DNA region that contains genes involved in the biosynthesis of the capsule of Mannheimia (Pasteurella) haemolytica A1 has been characterized. The gene cluster can be divided into three regions like those of the typical group II capsule biosynthetic clusters in gram-negative bacteria. Region 1 contains four genes (wzt, wzm, wzf, and wza) which code for an ATP-binding cassette transport apparatus for the secretion of the capsule materials across the membranes. The M. haemolytica A1 wzt and wzm genes were able to complement Escherichia coli kpsT and kpsM mutants, respectively. Further, the ATP binding activity of Wzt was demonstrated by its affinity for ATP-agarose, and the lipoprotein nature of Wza was supported by [(3)H]palmitate labeling. Region 2 contains six genes; four genes (orf1/2/3/4) code for unique functions for which no homologues have been identified to date. The remaining two genes (nmaA and nmaB) code for homologues of UDP-N-acetylglucosamine-2-epimerase and UDP-N-acetylmannosamine dehydrogenase, respectively. These two proteins are highly homologous to the E. coli WecB and WecC proteins (formerly known as RffE and RffD), which are involved in the biosynthesis of enterobacterial common antigen (ECA). Complementation of an E. coli rffE/D mutant with the M. haemolytica A1 nmaA/B genes resulted in the restoration of ECA biosynthesis. Region 3 contains two genes (wbrA and wbrB) which are suggested to be involved in the phospholipid modification of capsular materials.
Collapse
Affiliation(s)
- R Y Lo
- Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | |
Collapse
|
46
|
Ladds G, Davey J. Identification of proteases with shared functions to the proprotein processing protease Krp1 in the fission yeast Schizosaccharomyces pombe. Mol Microbiol 2000; 38:839-53. [PMID: 11115118 DOI: 10.1046/j.1365-2958.2000.02180.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many secretory proteins are synthesized as inactive proproteins that undergo proteolytic activation as they travel through the eukaryotic secretory pathway. The best characterized family of processing enzymes are the prohormone convertases or kexins, and these are responsible for the processing of a wide variety of prohormones and other precursors. Recent work has identified other proteases that appear to be involved in proprotein processing, but characterization of these enzymes is at an early stage. Krp1 is the only kexin identified in the fission yeast Schizosaccharomyces pombe, in which it is essential for cell viability. We have used a genetic screen to identify four proteases with specificities that overlap Krp1. Two are serine proteases, one is a zinc metalloprotease (glycoprotease) and one is an aspartyl protease that belongs to the recently described yapsin family of processing enzymes. All four proteases support the growth of a yeast strain lacking Krp1, and each is able to process the P-factor precursor, the only substrate currently known to be processed by Krp1.
Collapse
Affiliation(s)
- G Ladds
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
47
|
Richter R, Hejazi M, Kraft R, Ziegler K, Lockau W. Cyanophycinase, a peptidase degrading the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartic acid (cyanophycin): molecular cloning of the gene of Synechocystis sp. PCC 6803, expression in Escherichia coli, and biochemical characterization of the purified enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:163-9. [PMID: 10429200 DOI: 10.1046/j.1432-1327.1999.00479.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The branched polypeptide multi-L-arginyl-poly-L-aspartic acid, also called cyanophycin, is a water-insoluble reserve material of cyanobacteria. The polymer is degraded by a specific hydrolytic enzyme called cyanophycinase. By heterologous expression in Escherichia coli, a gene encoding cyanophycinase has been identified in the sequenced genome of Synechocystis sp. PCC 6803. The gene, designated cphB, codes for a protein of 29.4 kDa. The high level of expression of active cyanophycinase in E. coli from the Synechocystis gene allowed for its purification to electrophoretic homogeneity. The enzyme, which appears to be specific for cyanophycin, hydrolysed the polymer to a dipeptide consisting of aspartic acid and arginine. Based on inhibitor sensitivity and primary sequence, cyanophycinase appears to be a serine-type exopeptidase related to dipeptidase E [Conlin, C.A., Haakensson, K., Liljas, A. & Miller, C.G. (1994) J. Bacteriol. 176, 166-172].
Collapse
Affiliation(s)
- R Richter
- Biochemie der Pflanzen, Humboldt-Universität, Berlin, Germany
| | | | | | | | | |
Collapse
|
48
|
Arigoni F, Talabot F, Peitsch M, Edgerton MD, Meldrum E, Allet E, Fish R, Jamotte T, Curchod ML, Loferer H. A genome-based approach for the identification of essential bacterial genes. Nat Biotechnol 1998; 16:851-6. [PMID: 9743119 DOI: 10.1038/nbt0998-851] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have used comparative genomics to identify 26 Escherichia coli open reading frames that are both of unknown function (hypothetical open reading frames or y-genes) and conserved in the compact genome of Mycoplasma genitalium. Not surprisingly, these genes are broadly conserved in the bacterial world. We used a markerless knockout strategy to screen for essential E. coli genes. To verify this phenotype, we constructed conditional mutants in genes for which no null mutants could be obtained. In total we identified six genes that are essential for E. coli (yhbZ, ygjD, ycfB, yfil, yihA, and yjeQ). The respective orthologs of the genes yhbZ, ygjD, ycfB, yjeQ, and yihA are also essential in Bacillus subtilis. This low number of essential genes was unexpected and might be due to a characteristic of the versatile genomes of E. coli and B. subtilis that is comparable to the phenomenon of nonorthologous gene displacement. The gene ygjD, encoding a sialoglycoprotease, was eliminated from a minimal genome computationally derived from a comparison of the Haemophilus influenzae and M. genitalium genomes. We show that ygjD and its ortholog ydiE are essential in E. coli and B. subtilis, respectively. Thus, we include this gene in a minimal genome. This study systematically integrates comparative genomics and targeted gene disruptions to identify broadly conserved bacterial genes of unknown function required for survival on complex media.
Collapse
Affiliation(s)
- F Arigoni
- Geneva Biomedical Research Institute, Glaxo Wellcome Research and Development S.A., Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nardini PM, Mellors A, Lo RY. Characterization of a fourth lipoprotein from Pasteurella haemolytica A1 and its homology to the OmpA family of outer membrane proteins. FEMS Microbiol Lett 1998; 165:71-7. [PMID: 9711841 DOI: 10.1111/j.1574-6968.1998.tb13129.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A fourth lipoprotein gene from Pasteurella haemolytica A1 was cloned and characterized. The plpD gene encodes a 31-kDa lipoprotein (Plp4) which could be recognized in Western immunoblot by sera from calves immunized with the culture supernatant vaccine Presponse. This suggests that Plp4 is one of the immunogenic molecules in the P. haemolytica A1 culture supernatant. The lipoprotein nature of Plp4 was confirmed by labelling with [3H]palmitate and inhibition of leader peptide cleavage with globomycin. A homology search with databanks showed extensive homology between Plp4 and a 31-kDa antigen from Haemophilus somnus and a 19.2-kDa antigen from Neisseria meningitidis. Additional homology of the distal half of Plp4 was identified with a number of bacterial outer membrane proteins belonging to the OmpA family. Plp4 appears to be a novel type of outer membrane protein that contains motifs typical of OmpA but which is also lipid modified.
Collapse
Affiliation(s)
- P M Nardini
- Department of Chemistry and Biochemistry, University of Guelph, Ont., Canada
| | | | | |
Collapse
|
50
|
Zuther E, Schubert H, Hagemann M. Mutation of a gene encoding a putative glycoprotease leads to reduced salt tolerance, altered pigmentation, and cyanophycin accumulation in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 1998; 180:1715-22. [PMID: 9537367 PMCID: PMC107082 DOI: 10.1128/jb.180.7.1715-1722.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The salt-sensitive mutant 549 of the cyanobacterium Synechocystis sp. strain PCC 6803 was genetically and physiologically characterized. The mutated site and corresponding wild-type site were cloned and partially sequenced. The genetic analysis revealed that during the mutation about 1.8 kb was deleted from the chromosome of mutant 549. This deletion affected four open reading frames: a gcp gene homolog, the psaFJ genes, and an unknown gene. After construction of mutants with single mutations, only the gcp mutant showed a reduction in salt tolerance comparable to that of the initial mutant, indicating that the deletion of this gene was responsible for the salt sensitivity and that the other genes were of minor importance. Besides the reduced salt tolerance, a remarkable change in pigmentation was observed that became more pronounced in salt-stressed cells. The phycobilipigment content decreased, and that of carotenoids increased. Investigations of changes in the ultrastructure revealed an increase in the amount of characteristic inclusion bodies containing the high-molecular-weight nitrogen storage polymer cyanophycin (polyaspartate and arginine). The salt-induced accumulation of cyanophycin was confirmed by chemical estimations. The putative glycoprotease encoded by the gcp gene might be responsible for the degradation of cyanophycin in Synechocystis. Mutation of this gene leads to nitrogen starvation of the cells, accompanied by characteristic changes in pigmentation, ultrastructure, and salt tolerance level.
Collapse
Affiliation(s)
- E Zuther
- Fachbereich Biologie, Universität Rostock, Germany
| | | | | |
Collapse
|