1
|
Fu Y, Yin M, Cao L, Lu Y, Li Y, Zhang L. Capsule mutations serve as a key strategy of phage resistance evolution of K54 hypervirulent Klebsiella pneumoniae. Commun Biol 2025; 8:257. [PMID: 39966630 PMCID: PMC11836320 DOI: 10.1038/s42003-025-07687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Phage therapy is a promising antibacterial strategy against the antibiotic resistance crisis. The evolved phage resistance could pose a big challenge to clinical phage therapy. Therefore, it is necessary to conduct a comprehensive analysis of phage resistance mechanisms during treatment. Here, we characterize 37 phage-resistant mutants of hypervirulent K. pneumoniae strain SCNJ1 under phage-imposed selection in both in vitro and in vivo experiments. We show that 97.3% (36/37) of phage-resistant clones possessed at least one mutation in genes related to the CPS biosynthesis. Notably, the wcaJ gene emerges as a mutation hotspot, as mutations in this gene are detected at a high frequency under both conditions. In contrast, mutations in wzc exhibit more association with in vivo samples. These CPS-related mutants all exhibit compromised bacterial fitness and attenuated virulence in mice. Strain CM8 is the only non-CPS-related mutant, which has a bglA mutation that confers phage resistance and retains full fitness and virulence. This study highlights that laboratory characterization of phage resistance evolution can give useful insights for clinical phage therapy.
Collapse
Affiliation(s)
- Yu Fu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Yin
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Cao
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yanjun Lu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| | - Luhua Zhang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Stephens C, Martinez M, Leonardi V, Jaing J, Miller A. The Scr and Csc pathways for sucrose utilization co-exist in E. coli, but only the Scr pathway is widespread in other Enterobacteriaceae. Front Microbiol 2024; 15:1409295. [PMID: 39021635 PMCID: PMC11251922 DOI: 10.3389/fmicb.2024.1409295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Most Escherichia coli isolates from humans do not utilize D-sucrose as a substrate for fermentation or growth. Previous work has shown that the Csc pathway allows some E. coli to utilize sucrose for slow growth, and this pathway has been engineered in E. coli W strains to enhance use of sucrose as a feedstock for industrial applications. An alternative sucrose utilization pathway, Scr, was first identified in Klebsiella pneumoniae and has been reported in some E. coli and Salmonella enterica isolates. We show here that the Scr pathway is native to an important subset of E. coli phylogroup B2 lineages that lack the Csc pathway but grow rapidly on sucrose. Laboratory E. coli strains derived from MG1655 (phylogroup A, ST10) are unable to utilize sucrose and lack the scr and csc genes, but a recombinant plasmid-borne scr locus enables rapid growth on and fermentation of sucrose. Genome analyses of Enterobacteriaceae indicate that the scr locus is widespread in other Enterobacteriaceae; including Enterobacter and Klebsiella species, and some Citrobacter and Proteus species. In contrast, the Csc pathway is limited mostly to E. coli, some Shigella species (in which csc loci are rendered non-functional by various mutations), and Citrobacter freundii. The more efficient Scr pathway likely has greater potential than the Csc pathway for bioindustrial applications of E. coli and other Enterobacteriaceae using sucrose as a feedstock.
Collapse
Affiliation(s)
- Craig Stephens
- Department of Biology, Santa Clara University, Santa Clara, CA, United States
| | | | | | | | | |
Collapse
|
3
|
Diverse Horizontally-Acquired Gene Clusters Confer Sucrose Utilization to Different Lineages of the Marine Pathogen Photobacterium damselae subsp. damselae. Genes (Basel) 2020; 11:genes11111244. [PMID: 33105683 PMCID: PMC7690375 DOI: 10.3390/genes11111244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
The ability to metabolize sucrose is a variable trait within the family Vibrionaceae. The marine bacterium Photobacterium damselae subsp. damselae (Pdd), pathogenic for marine animals and humans, is generally described as negative for sucrose utilization (Scr−). Previous studies have reported sucrose-utilizing isolates (Scr+), but the genetic basis of this variable phenotype remains uncharacterized. Here, we carried out the genome sequencing of five Scr+ and two Scr−Pdd isolates and conducted a comparative genomics analysis with sixteen additional Pdd genomes sequenced in previous studies. We identified two different versions of a four-gene cluster (scr cluster) exclusive of Scr+ isolates encoding a PTS system sucrose-specific IIBC component (scrA), a fructokinase (scrK), a sucrose-6-phosphate hydrolase (scrB), and a sucrose operon repressor (scrR). A scrA deletion mutant did not ferment sucrose and was impaired for growth with sucrose as carbon source. Comparative genomics analyses suggested that scr clusters were acquired by horizontal transfer by different lineages of Pdd and were inserted into a recombination hot-spot in the Pdd genome. The incongruence of phylogenies based on housekeeping genes and on scr genes revealed that phylogenetically diverse gene clusters for sucrose utilization have undergone extensive horizontal transfer among species of Vibrio and Photobacterium.
Collapse
|
4
|
Sun L, Bertelshofer F, Greiner G, Böckmann RA. Characteristics of Sucrose Transport through the Sucrose-Specific Porin ScrY Studied by Molecular Dynamics Simulations. Front Bioeng Biotechnol 2016; 4:9. [PMID: 26913282 PMCID: PMC4753733 DOI: 10.3389/fbioe.2016.00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/25/2016] [Indexed: 11/17/2022] Open
Abstract
Sucrose-specific porin (ScrY) is a transmembrane protein that allows for the uptake of sucrose under growth-limiting conditions. The crystal structure of ScrY was resolved before by X-ray crystallography, both in its uncomplexed form and with bound sucrose. However, little is known about the molecular characteristics of the transport mechanism of ScrY. To date, there has not yet been any clear demonstration for sucrose transport through the ScrY. Here, the dynamics of the ScrY trimer embedded in a phospholipid bilayer as well as the characteristics of sucrose translocation were investigated by means of atomistic molecular dynamics (MD) simulations. The potential of mean force (PMF) for sucrose translocation through the pore showed two main energy barriers within the constriction region of ScrY. Energy decomposition allowed to pinpoint three aspartic acids as key residues opposing the passage of sucrose, all located within the L3 loop. Mutation of two aspartic acids to uncharged residues resulted in an accordingly modified electrostatics and decreased PMF barrier. The chosen methodology and results will aid in the design of porins with modified transport specificities.
Collapse
Affiliation(s)
- Liping Sun
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Franziska Bertelshofer
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Computer Graphics Group, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Günther Greiner
- Computer Graphics Group, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
5
|
The transport and mediation mechanisms of the common sugars in Escherichia coli. Biotechnol Adv 2014; 32:905-19. [DOI: 10.1016/j.biotechadv.2014.04.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/23/2014] [Accepted: 04/18/2014] [Indexed: 11/17/2022]
|
6
|
Steen JA, Bohlke N, Vickers CE, Nielsen LK. The trehalose phosphotransferase system (PTS) in E. coli W can transport low levels of sucrose that are sufficient to facilitate induction of the csc sucrose catabolism operon. PLoS One 2014; 9:e88688. [PMID: 24586369 PMCID: PMC3938415 DOI: 10.1371/journal.pone.0088688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 01/09/2014] [Indexed: 11/24/2022] Open
Abstract
Plasticity in substrate acceptance is a well-characterised phenomenon for disaccharide transporters. Sucrose, a non-reducing disaccharide, is usually metabolised via either the permease-mediated chromosomally-encoded sucrose catabolism (csc) regulon or the sucrose phosphotransferase system (PTS). E. coli W is a fast-growing strain which efficiently utilises sucrose at concentrations above 1% via the csc regulon. To examine if sucrose could be metabolised via other routes, a library of transposon mutants was generated and screened on 0.2% sucrose. One mutant identified from this library had an insertion in the repressor for the regulon controlling catabolism of the disaccharide trehalose (treR). A series of mutants was constructed to elucidate the mechanism of sucrose utilization in the treR insertion strain. Analysis of these mutants provided evidence that deletion of TreR enables uptake of sucrose via TreB, an enzyme II protein required for PTS-mediated uptake of trehalose. Once inside the cell, this sucrose is not processed by the TreC hydrolase, nor is it sufficient for growth of the strain. QRT-PCR analysis showed that levels of cscA (invertase) transcript increased in the WΔtreR mutant relative to the wild-type strain when grown under low sucrose conditions. This result suggests that the intracellular sucrose provided by TreB can facilitate de-repression of the csc regulon, leading to increased gene expression, sucrose uptake and sucrose utilization in the treR mutant.
Collapse
Affiliation(s)
- Jennifer A. Steen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Nina Bohlke
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Claudia E. Vickers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| | - Lars K. Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Proteomic analysis of Neorickettsia sennetsu surface-exposed proteins and porin activity of the major surface protein P51. J Bacteriol 2010; 192:5898-905. [PMID: 20833807 DOI: 10.1128/jb.00632-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neorickettsia sennetsu is an obligate intracellular bacterium of monocytes and macrophages and is the etiologic agent of human Sennetsu neorickettsiosis. Neorickettsia proteins expressed in mammalian host cells, including the surface proteins of Neorickettsia spp., have not been defined. In this paper, we isolated surface-exposed proteins from N. sennetsu by biotin surface labeling followed by streptavidin-affinity chromatography. Forty-two of the total of 936 (4.5%) N. sennetsu open reading frames (ORFs) were detected by liquid chromatography-tandem mass spectrometry (LC/MS/MS), including six hypothetical proteins. Among the major proteins identified were the two major β-barrel proteins: the 51-kDa antigen (P51) and Neorickettsia surface protein 3 (Nsp3). Immunofluorescence labeling not only confirmed surface exposure of these proteins but also showed rosary-like circumferential labeling with anti-P51 for the majority of bacteria and polar to diffuse punctate labeling with anti-Nsp3 for a minority of bacteria. We found that the isolated outer membrane of N. sennetsu had porin activity, as measured by a proteoliposome swelling assay. This activity allowed the diffusion of L-glutamine, the monosaccharides arabinose and glucose, and the tetrasaccharide stachyose, which could be inhibited with anti-P51 antibody. We purified native P51 and Nsp3 under nondenaturing conditions. When reconstituted into proteoliposomes, purified P51, but not Nsp3, exhibited prominent porin activity. This the first proteomic study of a Neorickettsia sp. showing new sets of proteins evolved as major surface proteins for Neorickettsia and the first identification of a porin for the genus Neorickettsia.
Collapse
|
8
|
Green S, Studholme DJ, Laue BE, Dorati F, Lovell H, Arnold D, Cottrell JE, Bridgett S, Blaxter M, Huitema E, Thwaites R, Sharp PM, Jackson RW, Kamoun S. Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS One 2010; 5:e10224. [PMID: 20419105 PMCID: PMC2856684 DOI: 10.1371/journal.pone.0010224] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 03/26/2010] [Indexed: 11/19/2022] Open
Abstract
A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.
Collapse
Affiliation(s)
- Sarah Green
- Centre for Forestry and Climate Change, Forest Research, Roslin, Midlothian, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hugouvieux-Cotte-Pattat N, Charaoui-Boukerzaza S. Catabolism of raffinose, sucrose, and melibiose in Erwinia chrysanthemi 3937. J Bacteriol 2009; 191:6960-7. [PMID: 19734309 PMCID: PMC2772473 DOI: 10.1128/jb.00594-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 08/28/2009] [Indexed: 11/20/2022] Open
Abstract
Erwinia chrysanthemi (Dickeya dadantii) is a plant pathogenic bacterium that has a large capacity to degrade the plant cell wall polysaccharides. The present study reports the metabolic pathways used by E. chrysanthemi to assimilate the oligosaccharides sucrose and raffinose, which are particularly abundant plant sugars. E. chrysanthemi is able to use sucrose, raffinose, or melibiose as a sole carbon source for growth. The two gene clusters scrKYABR and rafRBA are necessary for their catabolism. The phenotypic analysis of scr and raf mutants revealed cross-links between the assimilation pathways of these oligosaccharides. Sucrose catabolism is mediated by the genes scrKYAB. While the raf cluster is sufficient to catabolize melibiose, it is incomplete for raffinose catabolism, which needs two additional steps that are provided by scrY and scrB. The scr and raf clusters are controlled by specific repressors, ScrR and RafR, respectively. Both clusters are controlled by the global activator of carbohydrate catabolism, the cyclic AMP receptor protein (CRP). E. chrysanthemi growth with lactose is possible only for mutants with a derepressed nonspecific lactose transport system, which was identified as RafB. RafR inactivation allows the bacteria to the assimilate the novel substrates lactose, lactulose, stachyose, and melibionic acid. The raf genes also are involved in the assimilation of alpha- and beta-methyl-D-galactosides. Mutations in the raf or scr genes did not significantly affect E. chrysanthemi virulence. This could be explained by the large variety of carbon sources available in the plant tissue macerated by E. chrysanthemi.
Collapse
Affiliation(s)
- Nicole Hugouvieux-Cotte-Pattat
- Université de Lyon, Microbiologie Adaptation et Pathogénie UMR5240, batiment Lwoff, 10 rue Dubois, Domaine Scientifique de la Doua, 69622 Villeurbanne Cedex, France.
| | | |
Collapse
|
10
|
Treviño-Quintanilla LG, Escalante A, Caro AD, Martínez A, González R, Puente JL, Bolívar F, Gosset G. The phosphotransferase system-dependent sucrose utilization regulon in enteropathogenic Escherichia coli strains is located in a variable chromosomal region containing iap sequences. J Mol Microbiol Biotechnol 2007; 13:117-25. [PMID: 17693719 DOI: 10.1159/000103603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The capacity to utilize sucrose as a carbon and energy source (Scr(+) phenotype) is a highly variable trait among Escherichia coli strains. In this study, seven enteropathogenic E. coli (EPEC) strains from different sources were studied for their capacity to grow using sucrose. Liquid media cultures showed that all analyzed strains have the Scr(+) phenotype and two distinct groups were defined: one of five and another of two strains displaying doubling times of 67 and 125 min, respectively. The genes conferring the Scr(+) phenotype in one of the fast-growing strains (T19) were cloned and sequenced. Comparative sequence analysis revealed that this strain possesses the scr regulon genes scrKYABR, encoding phosphoenolpyruvate:phosphotransferase system-dependent sucrose transport and utilization activities. Transcript level quantification revealed sucrose-dependent induction of scrK and scrR genes in fast-growing strains, whereas no transcripts were detected in slow-growing strains. Sequence comparison analysis revealed that the scr genes in strain T19 are almost identical to those present in the scr regulon of prototype EPEC E2348/69 and in both strains, the scr genes are inserted in the chromosomal intergenic region of hypothetical genes ygcE and ygcF. Comparison of the ygcE-ygcF intergenic region sequence of strains MG1655, enterohemorrhagic EDL933, uropathogenic ECFT073 and EPEC T19-E2348/69 revealed that the number of extragenic highly repeated iap sequences corresponded to nine, four, two and none, respectively. These results show that the iap sequence-containing chromosomal ygcE-ygcF intergenic region is highly variable in E. coli.
Collapse
Affiliation(s)
- Luis Gerardo Treviño-Quintanilla
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Brzuszkiewicz E, Brüggemann H, Liesegang H, Emmerth M, Ölschläger T, Nagy G, Albermann K, Wagner C, Buchrieser C, Emődy L, Gottschalk G, Hacker J, Dobrindt U. How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci U S A 2006; 103:12879-84. [PMID: 16912116 PMCID: PMC1568941 DOI: 10.1073/pnas.0603038103] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Indexed: 01/16/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strain 536 (O6:K15:H31) is one of the model organisms of extraintestinal pathogenic E. coli (ExPEC). To analyze this strain's genetic basis of urovirulence, we sequenced the entire genome and compared the data with the genome sequence of UPEC strain CFT073 (O6:K2:H1) and to the available genomes of nonpathogenic E. coli strain MG1655 (K-12) and enterohemorrhagic E. coli. The genome of strain 536 is approximately 292 kb smaller than that of strain CFT073. Genomic differences between both UPEC are mainly restricted to large pathogenicity islands, parts of which are unique to strain 536 or CFT073. Genome comparison underlines that repeated insertions and deletions in certain parts of the genome contribute to genome evolution. Furthermore, 427 and 432 genes are only present in strain 536 or in both UPEC, respectively. The majority of the latter genes is encoded within smaller horizontally acquired DNA regions scattered all over the genome. Several of these genes are involved in increasing the pathogens' fitness and adaptability. Analysis of virulence-associated traits expressed in the two UPEC O6 strains, together with genome comparison, demonstrate the marked genetic and phenotypic variability among UPEC. The ability to accumulate and express a variety of virulence-associated genes distinguishes ExPEC from many commensals and forms the basis for the individual virulence potential of ExPEC. Accordingly, instead of a common virulence mechanism, different ways exist among ExPEC to cause disease.
Collapse
Affiliation(s)
- Elzbieta Brzuszkiewicz
- *Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
- Institute for Molecular Biology of Infectious Diseases, Bayerische Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Holger Brüggemann
- *Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
- Laboratoire de Génomique des Microorganismes Pathogènes, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Heiko Liesegang
- *Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Melanie Emmerth
- Institute for Molecular Biology of Infectious Diseases, Bayerische Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Tobias Ölschläger
- Institute for Molecular Biology of Infectious Diseases, Bayerische Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Gábor Nagy
- Institute of Medical Microbiology and Immunology, University of Pécs, Szigeti ut 12, 7624 Pécs, Hungary
| | - Kaj Albermann
- Biomax Informatics AG, Lochhamerstrasse 9, 82152 Martinsried, Germany; and
| | - Christian Wagner
- Biomax Informatics AG, Lochhamerstrasse 9, 82152 Martinsried, Germany; and
| | - Carmen Buchrieser
- Laboratoire de Génomique des Microorganismes Pathogènes, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Levente Emődy
- Institute of Medical Microbiology and Immunology, University of Pécs, Szigeti ut 12, 7624 Pécs, Hungary
| | - Gerhard Gottschalk
- *Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Jörg Hacker
- Institute for Molecular Biology of Infectious Diseases, Bayerische Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Ulrich Dobrindt
- Institute for Molecular Biology of Infectious Diseases, Bayerische Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|
12
|
Bucarey SA, Villagra NA, Fuentes JA, Mora GC. The cotranscribed Salmonella enterica sv. Typhi tsx and impX genes encode opposing nucleoside-specific import and export proteins. Genetics 2006; 173:25-34. [PMID: 16489221 PMCID: PMC1461456 DOI: 10.1534/genetics.105.054700] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Salmonella enterica tsx gene encodes a nucleoside-specific outer membrane channel. The Tsx porin is essential for the prototrophic growth of S. enterica sv. Typhi in the absence of nucleosides. RT-PCR analysis shows that the tsx gene is cotranscribed with an open reading frame unique to S. enterica, impX (STY0450), which encodes an inner membrane protein 108 amino acids in length, which is predicted to have only two transmembrane alpha-helices. Fusions of the lacZ gene to both tsx and impX reveal that the transcription of both genes is induced in the presence of adenosine. A null mutation in the S. Typhi impX gene suppresses the induced auxotrophy for adenosine or thymidine resulting from a tsx mutation and confers sensitivity to high concentrations of adenosine or thymidine. The ImpX protein, when tagged with a 3xFLAG epitope, is functional and associates with the inner membrane; impX mutants are defective in the export of 3H-radiolabeled thymidine. Taken together, these and other results suggest that the S. Typhi Tsx porin and ImpX inner membrane protein facilitate competing mechanisms of thymidine influx and efflux, respectively, to maintain the steady-state levels of internal nucleoside pools.
Collapse
Affiliation(s)
- Sergio A Bucarey
- Programa Doctorado de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
13
|
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium exhibit a remarkable versatility in the usage of different sugars as the sole source of carbon and energy, reflecting their ability to make use of the digested meals of mammalia and of the ample offerings in the wild. Degradation of sugars starts with their energy-dependent uptake through the cytoplasmic membrane and is carried on further by specific enzymes in the cytoplasm, destined finally for degradation in central metabolic pathways. As variant as the different sugars are, the biochemical strategies to act on them are few. They include phosphorylation, keto-enol isomerization, oxido/reductions, and aldol cleavage. The catabolic repertoire for using carbohydrate sources is largely the same in E. coli and in serovar Typhimurium. Nonetheless, significant differences are found, even among the strains and substrains of each species. We have grouped the sugars to be discussed according to their first step in metabolism, which is their active transport, and follow their path to glycolysis, catalyzed by the sugar-specific enzymes. We will first discuss the phosphotransferase system (PTS) sugars, then the sugars transported by ATP-binding cassette (ABC) transporters, followed by those that are taken up via proton motive force (PMF)-dependent transporters. We have focused on the catabolism and pathway regulation of hexose and pentose monosaccharides as well as the corresponding sugar alcohols but have also included disaccharides and simple glycosides while excluding polysaccharide catabolism, except for maltodextrins.
Collapse
Affiliation(s)
- Christoph Mayer
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
14
|
Ye J, van den Berg B. Crystal structure of the bacterial nucleoside transporter Tsx. EMBO J 2004; 23:3187-95. [PMID: 15272310 PMCID: PMC514505 DOI: 10.1038/sj.emboj.7600330] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 06/24/2004] [Indexed: 11/08/2022] Open
Abstract
Tsx is a nucleoside-specific outer membrane (OM) transporter of Gram-negative bacteria. We present crystal structures of Escherichia coli Tsx in the absence and presence of nucleosides. These structures provide a mechanism for nucleoside transport across the bacterial OM. Tsx forms a monomeric, 12-stranded beta-barrel with a long and narrow channel spanning the outer membrane. The channel, which is shaped like a keyhole, contains several distinct nucleoside-binding sites, two of which are well defined. The base moiety of the nucleoside is located in the narrow part of the keyhole, while the sugar occupies the wider opening. Pairs of aromatic residues and flanking ionizable residues are involved in nucleoside binding. Nucleoside transport presumably occurs by diffusion from one binding site to the next.
Collapse
Affiliation(s)
- Jiqing Ye
- Department of Cell Biology, Howard Hughes Medical Institute and Harvard Medical School, Boston, MA, USA
| | - Bert van den Berg
- Department of Cell Biology, Howard Hughes Medical Institute and Harvard Medical School, Boston, MA, USA
- Present address: University of Massachusetts Medical School, Program in Molecular Medicine, 373 Plantation Street, Worcester, MA 01605, USA
- Department of Cell Biology, Howard Hughes Medical Institute and Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. Tel.: +1 617 432 0637; Fax: +1 617 432 1190; E-mail: or
| |
Collapse
|
15
|
Abstract
Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions.
Collapse
Affiliation(s)
- Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA.
| |
Collapse
|
16
|
Michels J, Geyer A, Mocanu V, Welte W, Burlingame AL, Przybylski M. Structure and functional characterization of the periplasmic N-terminal polypeptide domain of the sugar-specific ion channel protein (ScrY porin). Protein Sci 2002; 11:1565-74. [PMID: 12021455 PMCID: PMC2373611 DOI: 10.1110/ps.2760102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The structure of the sucrose-specific porin (ScrY) from Salmonella typhimurium has been elucidated by X-ray crystallography to consist of 18 antiparallel beta-strands, associated as a trimer complex similar to ion-transport channels. However, the 71-amino-acid-residue N-terminal periplasmic domain was not determined from the crystal structure due to the absence of sufficient electron density. The N-terminal polypeptide contains a coiled-coil structural motif and has been assumed to play a role in the sugar binding of ScrY porin. In this study the proteolytic stability and a specific proteolytic truncation site at the N-terminal domain were identified by the complete primary structure characterization of ScrY porin, using MALDI mass spectrometry and post-source-decay fragmentation. The secondary structure and supramolecular association of the coiled-coil N-terminal domain were determined by chemical synthesis of the complete N-terminal polypeptide and several partial sequences and their spectroscopic, biophysical, and mass spectrometric characterization. Circular dichroism spectra revealed predominant alpha-helical conformation for the putative coiled-coil domain comprising residues 4-46. Specific association to both dimer and trimer complexes was identified by electrospray ionization mass spectra and was ascertained by dynamic light scattering and electrophoresis data. The role of the N-terminal domain in sugar binding was examined by comparative TR-NOE-NMR spectroscopy of the complete ScrY porin and a recombinant mutant, ScrY(delta1-62), lacking the N-terminal polypeptide. The TR-NOE-NMR data showed a strong influence of ScrY porin on the sugar-binding affinity and suggested a possible function of the periplasmic N terminus for supramolecular stabilization and low-affinity sugar binding.
Collapse
Affiliation(s)
- Jenny Michels
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Van Gelder P, Dutzler R, Dumas F, Koebnik R, Schirmer T. Sucrose transport through maltoporin mutants of Escherichia coli. PROTEIN ENGINEERING 2001; 14:943-8. [PMID: 11742115 DOI: 10.1093/protein/14.11.943] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Maltoporin (LamB) and sucrose porin (ScrY) reside in the bacterial outer membrane and facilitate the passive diffusion of maltodextrins and sucrose, respectively. To gain further insight into the determinants of solute specificity, LamB mutants were designed to allow translocation of sucrose, which hardly translocates through wild-type LamB. Three LamB mutants were studied. (a) Based on sequence and structure alignment of LamB with ScrY, two LamB triple mutants were generated (R109D, Y118D,D121F; R109N,Y118D,D121F) to mimic the ScrY constriction. The crystal structure of the first of these mutants was determined to be 3.2 A and showed an increased ScrY-like cross-section except for D109 that protrudes into the channel. (b) Based on this crystal structure a double mutant was generated by truncation of the two residues that obstruct the channel most in LamB (R109A,Y118A). Analysis of liposome swelling and in vivo sugar uptake demonstrated substantial sucrose permeation through all mutants with the double alanine mutant performing best. The triple mutants did not show a well-defined binding site as indicated by sugar-induced ion current noise analysis, which can be explained by remaining steric interference as deduced from the crystal structure. Binding, however, was observed for the double mutant that had the obstructing residues truncated to alanines.
Collapse
Affiliation(s)
- P Van Gelder
- Division of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Bogs J, Geider K. Molecular analysis of sucrose metabolism of Erwinia amylovora and influence on bacterial virulence. J Bacteriol 2000; 182:5351-8. [PMID: 10986236 PMCID: PMC110976 DOI: 10.1128/jb.182.19.5351-5358.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sucrose is an important storage and transport sugar of plants and an energy source for many phytopathogenic bacteria. To analyze regulation and biochemistry of sucrose metabolism of the fire blight pathogen Erwinia amylovora, a chromosomal fragment which enabled Escherichia coli to utilize sucrose as sole carbon source was cloned. By transposon mutagenesis, the scr regulon of E. amylovora was tagged, and its nucleotide sequence was determined. Five open reading frames, with the genes scrK, scrY, scrA, scrB, and scrR, had high homology to genes of the scr regulons from Klebsiella pneumoniae and plasmid pUR400. scrB and scrR of E. amylovora were fused to a histidine tag and to the maltose-binding protein (MalE) of E. coli, respectively. ScrB (53 kDa) catalyzed the hydrolysis of sucrose with a K(m) of 125 mM. Binding of a MalE-ScrR fusion protein to an scrYAB promoter fragment was shown by gel mobility shifts. This complex dissociated in the presence of fructose but not after addition of sucrose. Expression of the scr regulon was studied with an scrYAB promoter-green fluorescent protein gene fusion and measured by flow cytometry and spectrofluorometry. The operon was affected by catabolite repression and induced by sucrose or fructose. The level of gene induction correlated to the sucrose concentration in plant tissue, as shown by flow cytometry. Sucrose mutants created by site-directed mutagenesis did not produce significant fire blight symptoms on apple seedlings, indicating the importance of sucrose metabolism for colonization of host plants by E. amylovora.
Collapse
Affiliation(s)
- J Bogs
- Max-Planck-Institut für Zellbiologie, Rosenhof, D-68526 Ladenburg, Germany
| | | |
Collapse
|
19
|
Dumas F, Frank S, Koebnik R, Maillet E, Lustig A, Van Gelder P. Extended sugar slide function for the periplasmic coiled coil domain of ScrY. J Mol Biol 2000; 300:687-95. [PMID: 10891263 DOI: 10.1006/jmbi.2000.3897] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several bacterial outer membrane proteins have a periplasmic extension whose structure and function remain elusive. Here, the structure/function relationship of the N-terminal periplasmic domain of the sucrose-specific outer membrane channel ScrY was investigated. Circular dichroism and analytical centrifugation demonstrated that the N-terminal domain formed a parallel, three-stranded coiled coil. When this domain was fused to the maltose-specific channel LamB, permeation of maltooligosaccharides in liposomes increased with increasing sugar chain length whereas wild-type LamB showed the opposite effect. Current fluctuation analysis demonstrated increased off-rates for sugar transport through the fusion protein. Moreover, equilibrium dialysis showed an affinity of sucrose for the isolated N-terminal peptide. Together these results demonstrate a novel function for coiled coil domains, operating as an extended sugar slide.
Collapse
Affiliation(s)
- F Dumas
- Department of Biophysical Chemistry, Biozentrum University of Basle, Klingelbergstrasse 70, Basel, CH-4056, Switzerland
| | | | | | | | | | | |
Collapse
|
20
|
Dumas F, Winterhalter M. Understanding the function of bacterial outer membrane channels by reconstitution into black lipid membranes. Biophys Chem 2000; 85:153-67. [PMID: 10961503 DOI: 10.1016/s0301-4622(99)00153-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Structural and functional information is obtained by the reconstitution of membrane channel forming proteins into black lipid membranes. Due to this outstanding sensitivity only little material is needed and single molecule detection can be easily achieved. An overview on different types of detection will be given.
Collapse
|
21
|
Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 2000; 37:239-53. [PMID: 10931321 DOI: 10.1046/j.1365-2958.2000.01983.x] [Citation(s) in RCA: 862] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The outer membrane protects Gram-negative bacteria against a harsh environment. At the same time, the embedded proteins fulfil a number of tasks that are crucial to the bacterial cell, such as solute and protein translocation, as well as signal transduction. Unlike membrane proteins from all other sources, integral outer membrane proteins do not consist of transmembrane alpha-helices, but instead fold into antiparallel beta-barrels. Over recent years, the atomic structures of several outer membrane proteins, belonging to six families, have been determined. They include the OmpA membrane domain, the OmpX protein, phospholipase A, general porins (OmpF, PhoE), substrate-specific porins (LamB, ScrY) and the TonB-dependent iron siderophore transporters FhuA and FepA. These crystallographic studies have yielded invaluable insight into and decisively advanced the understanding of the functions of these intriguing proteins. Our review is aimed at discussing their common principles and peculiarities as well as open questions associated with them.
Collapse
Affiliation(s)
- R Koebnik
- Biozentrum Basel, Abteilung Mikrobiologie, Klingelbergstr. 50, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
22
|
Ulmke C, Kreth J, Lengeler JW, Welte W, Schmid K. Site-directed mutagenesis of loop L3 of sucrose porin ScrY leads to changes in substrate selectivity. J Bacteriol 1999; 181:1920-3. [PMID: 10074088 PMCID: PMC93594 DOI: 10.1128/jb.181.6.1920-1923.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The difference in substrate selectivity of the maltodextrin (LamB) and sucrose (ScrY) porins is attributed mainly to differences in loop L3, which is supposed to constrict the lumen of the pores. We show that even a single mutation (D201Y) in loop L3 leads to a narrowing of the substrate range of ScrY to that resembling LamB. In addition, we removed the putative N-terminal coiled-coil structure of ScrY and studied the effect of this deletion on sucrose transport.
Collapse
Affiliation(s)
- C Ulmke
- AG Genetik, FB Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany
| | | | | | | | | |
Collapse
|
23
|
Andersen C, Rak B, Benz R. The gene bglH present in the bgl operon of Escherichia coli, responsible for uptake and fermentation of beta-glucosides encodes for a carbohydrate-specific outer membrane porin. Mol Microbiol 1999; 31:499-510. [PMID: 10027967 DOI: 10.1046/j.1365-2958.1999.01191.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cryptic gene bglH from the Escherichia coli chromosome was cloned into a tacOP-driven expression vector. The resulting plasmid was transferred into the porin-deficient E. coli strain KS26 and the protein was expressed by addition of IPTG. The BglH protein was localized in the outer membrane. It was purified to homogeneity using standard methods. Reconstitution experiments with lipid bilayer membranes defined BglH as a channel-forming component, i.e. it is an outer membrane porin. The single-channel conductance of BglH (560 pS in 1 M KCl) was only one-third of that of the general diffusion porins of E. coli outer membrane. The presence of carbohydrates in the aqueous phase led to a dose-dependent block of ion transport through the channel, similar to that found for LamB (maltoporin) of E. coli and Salmonella typhimurium, which means that BglH is a porin specific for the uptake of carbohydrates. The binding constants of a variety of different carbohydrates were calculated from titration experiments of the BglH-induced membrane conductance. The tightest binding was observed with the aromatic beta-D-glucosides arbutin and salicin, and with gentibiose and cellobiose. Binding of maltooligosaccharides to BglH was in contrast to their binding to LamB in that it was much weaker, indicating that the binding site of BglH for carbohydrates is different from that of LamB (maltoporin). The kinetics of cellopentaose binding to BglH was investigated using the carbohydrate-induced current noise and was compared with that of cellopentaose binding to LamB (maltoporin) and ScrY (sucroseporin).
Collapse
Affiliation(s)
- C Andersen
- Lehrstuhl für Biotechnologie, Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Germany.
| | | | | |
Collapse
|
24
|
Forst D, Welte W, Wacker T, Diederichs K. Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose. NATURE STRUCTURAL BIOLOGY 1998; 5:37-46. [PMID: 9437428 DOI: 10.1038/nsb0198-37] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The X-ray structure of a sucrose-specific porin (ScrY) from Salmonella typhimurium has been determined by multiple isomorphous replacement at 2.4 A resolution both in its uncomplexed form and with bound sucrose. ScrY is a noncrystallographic trimer of identical subunits, each with 413 structurally well-defined amino acids. A monomer is built up of 18 anti-parallel beta-strands surrounding a hydrophilic pore, with a topology closely similar to that of maltoporin. Two non-overlapping sucrose-binding sites were identified in difference Fourier maps. The higher permeability for sucrose of ScrY as compared to maltoporin is mainly accounted for by differences in their pore-lining residues.
Collapse
Affiliation(s)
- D Forst
- Institut für Biophysik und Strahlenbiologie, Albert-Ludwigs-Universität, Freiburg im Breisgau, Germany
| | | | | | | |
Collapse
|
25
|
Approaches to the characterization of membrane channel proteins (porins) by UV MALDI-MS. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0168-1176(97)00226-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Wang YF, Dutzler R, Rizkallah PJ, Rosenbusch JP, Schirmer T. Channel specificity: structural basis for sugar discrimination and differential flux rates in maltoporin. J Mol Biol 1997; 272:56-63. [PMID: 9299337 DOI: 10.1006/jmbi.1997.1224] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Maltoporin (LamB) facilitates the diffusion of maltodextrins across the outer membrane of E. coli. The structural basis for the specificity of the channel is investigated by X-ray structure analysis of maltoporin in complex with the disaccharides sucrose, trehalose, and melibiose. The sucrose complex, determined to 2.4 A resolution, shows that the glucosyl moiety is partly inserted into the channel constriction, while the bulky fructosyl residue appears to be hindered to enter the constriction, thus interfering with its further translocation. One of the glucosyl moieties of trehalose is found in a similar position as the glucosyl moiety of sucrose, whereas melibiose appears disordered when bound to maltoporin. A comparison with the previously reported maltoporin-maltose complex sheds light on the basis for sugar discrimination, and explains the different permeation rates observed for the saccharides.
Collapse
Affiliation(s)
- Y F Wang
- Department of Microbiology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Ulmke C, Lengeler JW, Schmid K. Identification of a new porin, RafY, encoded by raffinose plasmid pRSD2 of Escherichia coli. J Bacteriol 1997; 179:5783-8. [PMID: 9294435 PMCID: PMC179467 DOI: 10.1128/jb.179.18.5783-5788.1997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The conjugative plasmid pRSD2 carries a raf operon that encodes a peripheral raffinose metabolic pathway in enterobacteria. In addition to the previously known raf genes, we identified another gene, rafY, which in Escherichia coli codes for an outer membrane protein (molecular mass, 53 kDa) similar in function to the known glycoporins LamB (maltoporin) and ScrY (sucrose porin). Sequence comparisons with LamB and ScrY revealed no significant similarities; however, both lamB and scrY mutants are functionally complemented by RafY. Expressed from the tac promoter, RafY significantly increases the uptake rates for maltose, sucrose, and raffinose at low substrate concentrations; in particular it shifts the apparent K(m) for raffinose transport from 2 mM to 130 microM. Moreover, RafY permits diffusion of the tetrasaccharide stachyose and of maltodextrins up to maltoheptaose through the outer membrane of E. coli. A comparison of all three glycoporins in regard to their substrate selectivity revealed that both ScrY and RafY have a broad substrate range which includes alpha-galactosides while LamB seems to be restricted to malto-oligosaccharides. It supports growth only on maltodextrins but not, like the others, on raffinose and stachyose.
Collapse
Affiliation(s)
- C Ulmke
- Arbeitsgruppe Genetik, Fachbereich Biologie/Chemie, Universität Osnabrück, Germany
| | | | | |
Collapse
|
28
|
Fang FC, Chen CY, Guiney DG, Xu Y. Identification of sigma S-regulated genes in Salmonella typhimurium: complementary regulatory interactions between sigma S and cyclic AMP receptor protein. J Bacteriol 1996; 178:5112-20. [PMID: 8752327 PMCID: PMC178306 DOI: 10.1128/jb.178.17.5112-5120.1996] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
sigma S (RpoS)-regulated lacZ transcriptional fusions in Salmonella typhimurium were identified from a MudJ transposon library by placing the rpoS gene under the control of the araBAD promoter and detecting lacZ expression in the presence or absence of arabinose supplementation. Western blot (immunoblot) analysis of bacteria carrying PBAD::rpoS demonstrated arabinose-dependent rpoS expression during all phases of growth. sigma S-dependent gene expression of individual gene fusions was confirmed by P22-mediated transduction of the MudJ insertions into wild-type or rpoS backgrounds. Analysis of six insertions revealed the known sigma S-regulated gene otsA, as well as five novel loci. Each of these genes is maximally expressed in stationary phase, and all but one show evidence of cyclic AMP receptor protein-dependent repression during logarithmic growth which is relieved in stationary phase. For these genes, as well as for the sigma S-regulated spvB plasmid virulence gene, a combination of rpoS overexpression and crp inactivation can result in high-level expression during logarithmic growth. The approach used to identify sigma S-regulated genes in this study provides a general method for the identification of genes controlled by trans-acting regulatory factors.
Collapse
Affiliation(s)
- F C Fang
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
29
|
Titgemeyer F, Jahreis K, Ebner R, Lengeler JW. Molecular analysis of the scrA and scrB genes from Klebsiella pneumoniae and plasmid pUR400, which encode the sucrose transport protein Enzyme II Scr of the phosphotransferase system and a sucrose-6-phosphate invertase. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:197-206. [PMID: 8628219 DOI: 10.1007/bf02174179] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Klebsiella pneumoniae genes scrA and scrB are indispensable for sucrose (Scr) utilisation. Gene scrA codes for an Enzyme IIScr (IIScr) transport protein of the phosphoenolpyruvate-dependent carbohydrate: phosphotransferase system (PTS), while scrB encodes a sucrose 6-phosphate specific invertase. A 3.7 kbscr AB DNA fragment has been cloned from K. pneumoniae and expressed in Escherichia coli. Its nucleotide sequence was determined and the coding regions for scrA (1371 bp) and scrB (1401 bp) were identified by genetic complementation, enzyme activity test and radiolabelling of the gene products. In addition, the nucleotide sequence of the scrB gene from conjugative plasmid pUR400 isolated from Salmonella typhimurium was also determined and errors in the previously published sequence of the scrA gene of pUR400 were corrected. Extensive similarity was found between the sequences of ScrA and other Enzymes II, as well as between the two invertases and other sucrose hydrolysing enzymes. Based on the analysis of seven IIScr proteins, a hypothetical model of the secondary structure of IIScr is proposed.
Collapse
Affiliation(s)
- F Titgemeyer
- University of Groningen, Department of Biochemistry, The Netherlands
| | | | | | | |
Collapse
|
30
|
Fennington GJ, Hughes TA. The fructokinase from Rhizobium leguminosarum biovar trifolii belongs to group I fructokinase enzymes and is encoded separately from other carbohydrate metabolism enzymes. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 2):321-330. [PMID: 8932706 DOI: 10.1099/13500872-142-2-321] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Rhizobium leguminosarum bv. trifolii BAL fructokinase (frk) gene was isolated on a 2 center dot 4 kb BamHI fragment from the cosmid pLA72 by complementation analysis of the Tn5-induced frk mutant BAL79, and confirmed by hybridization analysis. The nucleotide sequence of the frk gene was found to contain an open reading frame consisting of 978 bp encoding 326 amino acids, which was then compared to known fructokinase sequences. The fructokinase gene was not contained in an operon and is encoded separately from other enzymes of carbohydrate metabolism. Its product is therefore assigned to the group I fructokinases. A putative promoter (TTGACA-N16-GTTGAT), ribosome-binding site and termination sequence were identified. The Frk protein contained several motifs conserved in other known fructokinase sequences, including an ATP-binding and a substrate-binding motif. The hydropathy plot derived from the frk gene sequence data revealed the fructokinase as a hydrophilic protein. The fructokinase protein was purified to electrophoretic homogeneity by a three-step method using chromatofocusing, affinity chromatography and gel filtration. Its purity was confirmed by SDS-PAGE and it was visualized as a single band by silver staining. The N-terminal amino acid sequence of the purified fructokinase confirmed the proposed open reading frame of the frk gene. The purified fructokinase had a molecular mass of 36 center dot 5 kDa, pl of 4 center dot 65, pH activity range of 6 center dot 0-9 center dot 0 (maximum activity at pH 8 center dot 0) and a Mg2+ requirement. It had a Km of 0 center dot 31 mM and a Vmax of 31 mumol fructose 6-phosphate (mg protein)-1 min-1 with fructose as substrate. The R. leguminosarum bv. trifolii BAL fructokinase was biochemically and molecularly similar to other bacterial fructokinases.
Collapse
Affiliation(s)
- George J Fennington
- Department of Microbiology, Clemson University, Clemson, South Carolina 29634-1909, USA
| | - Thomas A Hughes
- Department of Microbiology, Clemson University, Clemson, South Carolina 29634-1909, USA
| |
Collapse
|
31
|
Chan WC, Schirmer T, Ferenci T. Combinatorial mutagenesis analysis of residues in the channel constriction loop L3 and neighbouring beta-strands in the LamB glycoporin of Escherichia coli. Mol Membr Biol 1996; 13:41-48. [PMID: 9147661 DOI: 10.3109/09687689609160573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Members of the LamB family of sugar-selective porins (glycoporins) are beta-barrel proteins in the outer membrane of Gram-negative bacteria. To study the determinants of structure and sugar selectivity, 68 non-identical single amino acid substitutions were introduced into the stretch of sequence consisting of residues 106 through 125 in Escherichia coli LamB. This region includes all bar one residue of the channel constriction loop L3 and extends into the transmembrane beta 6 strand in the LamB structure. Mutants were assayed for dextrin utilization, starch binding, A binding, monoclonal antibody binding and for qualitative changes in protein expression. The importance of the L3 amino acids was emphasized by the observation that only four residues permitted a majority of neutral substitutions. Changes to the channel constriction zone strongly affected sugar binding yet no single amino acid change of residues exposed to the channel lumen caused a complete defect in maltodextrin utilization (i.e. were still Dex+). Substitutions in the L3 loop did not affect phage lambda binding, except one change at residue 122, nor changed recognition by anti-LamB antibodies specific for surface epitopes, consistent with the lack of a role of L3 residues in surface receptor function. In marked contrast, four substitutions in transmembrane strand beta 5 resulted in a Dex- phenotype and gross changes in protein properties, indicating the significance of beta 5 in the architecture of LamB.
Collapse
Affiliation(s)
- W C Chan
- Department of Microbiology, University of Sydney, Australia
| | | | | |
Collapse
|
32
|
van der Vlag J, van't Hof R, van Dam K, Postma PW. Control of glucose metabolism by the enzymes of the glucose phosphotransferase system in Salmonella typhimurium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:170-82. [PMID: 7601098 DOI: 10.1111/j.1432-1033.1995.0170i.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The quantitative role of the phosphoenolpyruvate:glucose phosphotransferase system (glucose phosphotransferase system) in glucose uptake and metabolism, and phosphotransferase-system-mediated regulation of glycerol uptake, was studied in vivo in Salmonella typhimurium. Expression plasmids were constructed which contained the genes encoding enzyme I (ptsI), HP (ptsH), IIAGlc (crr), and IICBGlc (ptsG) of the glucose phosphotransferase system behind inducible promoters. These plasmids allowed the controlled expression of each of the glucose phosphotransferase system proteins from about 30% to about 300% of its wild-type level. When enzyme I, HPr or IIAGlc were modulated between 30% and 300% of their wild-type value, hardly any effects on the growth rate on glucose, the glucose oxidation rate, the rate of methyl alpha-D-glucopyranoside (a glucose analog) uptake or the phosphotransferase-system-mediated inhibition of glycerol uptake by methyl alpha-D-glucopyranoside were observed. Employing the method of metabolic control analysis, it was shown that the enzyme flux control coefficients of these phosphotransferase system components on the different measured processes were close to zero. The enzyme flux control coefficient of IICBGlc on growth on glucose or glucose oxidation was also close to zero. In contrast, the enzyme flux control coefficient of IICBGlc on the flux through the glucose phosphotransferase system (transport and phosphorylation) was 0.72. The experimentally determined enzyme flux control coefficients allowed us to calculate the flux control coefficients of the phosphoenolpyruvate/pyruvate and methyl alpha-D-glucopyranoside/methyl alpha-D-glucopyranoside 6-phosphate couples and the process control coefficients of the phosphotransfer reactions of the glucose phosphotransferase system. We discuss the implications of these values and the possible control points in the glucose phosphotransferase system.
Collapse
Affiliation(s)
- J van der Vlag
- E. C. Slater Instituut, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
33
|
Gotsche S, Dahl MK. Purification and characterization of the phospho-alpha(1,1)glucosidase (TreA) of Bacillus subtilis 168. J Bacteriol 1995; 177:2721-6. [PMID: 7751281 PMCID: PMC176942 DOI: 10.1128/jb.177.10.2721-2726.1995] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The intracellular phospho-alpha(1,1)glucosidase TreA from Bacillus subtilis has been overproduced in Escherichia coli and purified by ion-exchange chromatography and gel filtration. The molecular mass, estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was 64 kDa. Isoelectric focusing indicated homogeneity of the protein, and its pI was determined to be 4.3. Characterization of the enzyme showed a protein which is stable up to 44 degrees C after temperature treatment for 15 min. The temperature optimum was found to be 37 degrees C, and the pH optimum was 4.5. TreA activity is stimulated by high salt concentrations with different efficiencies depending on the kind of salt. When increasing amounts of ammonium sulfate are used, the increase of TreA activity is correlated with a conformational change of the protein or dimerization. The substrate specificity of the purified enzyme was characterized, showing additionally that trehalose is also hydrolyzed, but to a much smaller extent than trehalose-6-phosphate. In vitro, the presence of glucose reduces TreA activity, indicating product inhibition of the enzyme.
Collapse
Affiliation(s)
- S Gotsche
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Federal Republic of Germany
| | | |
Collapse
|
34
|
Helfert C, Gotsche S, Dahl MK. Cleavage of trehalose-phosphate in Bacillus subtilis is catalysed by a phospho-alpha-(1-1)-glucosidase encoded by the treA gene. Mol Microbiol 1995; 16:111-120. [PMID: 7651129 DOI: 10.1111/j.1365-2958.1995.tb02396.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A 2.5 kb DNA fragment contain a gene encoding a phospho-alpha-(1-1)-glucosidase (phosphotrehalase), designated treA, was isolated from a Bacillus subtilis chromosomal library by complementation of the tre-12 mutation. The major TreA activity was found in the cytoplasm. TreA exhibits high sequence similarity to thermostable oligo 1,6 beta-glucosidases of several species and the trehalose-6-phosphate hydrolase TreC of Escherichia coli. TreA activity is induced by trehalose and repressed by glucose, fructose or mannitol. Induction by trehalose and repression by glucose are concentration dependent. The highest activity of TreA occurs 90 min before the end of the exponential growth phase in crude cell extracts. The enzyme is able to cleave para-nitrophenyl-glucopyranoside and trehalose-6-phosphate but not trehalose. These results indicate that treA encodes a specific phospho-alpha-(1-1)-glucosidase which cleaves trehalose-6-phosphate in the cytoplasm after transport and phosphorylation of trehalose. The 5' flanking region of treA contains an open reading frame which was partially sequenced, whose product shows about 40% identity to sucrose Enzyme II of the phosphotransferase transport system from several organisms.
Collapse
Affiliation(s)
- C Helfert
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
35
|
Andersen C, Jordy M, Benz R. Evaluation of the rate constants of sugar transport through maltoporin (LamB) of Escherichia coli from the sugar-induced current noise. J Gen Physiol 1995; 105:385-401. [PMID: 7539481 PMCID: PMC2216942 DOI: 10.1085/jgp.105.3.385] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
LamB (maltoporin) of Escherichia coli outer membrane was reconstituted into artificial lipid bilayer membranes. The channel contains a binding site for sugars and is blocked for ions when the site is occupied by a sugar. The on and off reactions of sugar binding cause an increase of the noise of the current through the channel. The sugar-induced current noise of maltoporin was used for the evaluation of the sugar-binding kinetics for different sugars of the maltooligosaccharide series and for sucrose. The on rate constant for sugar binding was between 10(6) and 10(7) M-1.s-1 for the maltooligosaccharides and corresponds to the movement of the sugars from the aqueous phase to the central binding site. The off rate (corresponding to the release of the sugars from the channel) decreased with increasing number of glucose residues in the maltooligosaccharides from approximately 2,000 s-1 for maltotriose to 180 s-1 for maltoheptaose. The kinetics for sucrose movement was considerably slower. The activation energies of the stability constant and of the rate constants for sugar binding were evaluated from noise experiments at different temperatures. The role of LamB in the transport of maltooligosaccharides across the outer membrane is discussed.
Collapse
Affiliation(s)
- C Andersen
- Lehrstuhl fur Biotechnologie, Theodor-Boveri-Institut (Biozentrum), Universität Würzburg, Germany
| | | | | |
Collapse
|
36
|
Wylie JL, Worobec EA. Cloning and nucleotide sequence of the Pseudomonas aeruginosa glucose-selective OprB porin gene and distribution of OprB within the family Pseudomonadaceae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:505-12. [PMID: 8125108 DOI: 10.1111/j.1432-1033.1994.tb18649.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OprB is a glucose-selective porin known to be produced by Pseudomonas aeruginosa and Pseudomonas putida. We have cloned and sequenced the oprB gene of P. aeruginosa and obtained expression of OprB in Escherichia coli. The mature protein consists of 423 amino acid residues with a deduced molecular mass of 47597 Da. Several clusters of amino acid residues, potentially involved in the structure or function of the protein, were identified. An area of regional homology with E. coli LamB was also identified. Carbohydrate-inducible proteins, potentially homologous to OprB, were identified in several rRNA homology-group-I pseudomonads by sodium dodecyl sulfate/polyacrylamide gel electrophoresis analysis, Western immunoblotting and N-terminal amino acid sequencing. These species also contained DNA that hybridized to a P. aeruginosa oprB gene probe.
Collapse
Affiliation(s)
- J L Wylie
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
37
|
Benz R. Chapter 19 Uptake of solutes through bacterial outer membranes. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0167-7306(08)60422-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
38
|
Wagner E, Götz F, Brückner R. Cloning and characterization of the scrA gene encoding the sucrose-specific Enzyme II of the phosphotransferase system from Staphylococcus xylosus. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:33-41. [PMID: 8232209 DOI: 10.1007/bf00280198] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
By insertional mutagenesis with the staphylococcal transposon Tn551, mutants of Staphylococcus xylosus were isolated that were unable to utilize sucrose. One of these was found to be deficient in sucrose uptake. The genomic region containing this sucrose uptake gene of Staphylococcus xylosus (scrA) was cloned in Staphylococcus carnosus. The scrA gene was further localized to a 4.4 kb DNA fragment by complementation of the sucrose transport-deficient S. xylosus mutant. The DNA sequence analysis of the scrA region revealed three open reading frames, one of which encodes a protein of 480 amino acids (51.335 kDa) with significant similarity to sucrose-specific Enzymes II of phosphoenolpyruvate-dependent carbohydrate phosphotransferase systems (PTS). A protein with an apparent molecular weight of 50 kDa was obtained in Escherichia coli by expression of scrA with the bacteriophage T7 RNA polymerase promoter system. Transcriptional start sites of the scrA gene were localized by primer extension analysis to positions 46 and 49 nucleotides upstream of the scrA start codon. No additional sucrose utilization genes are encoded close to scrA on the S. xylosus chromosome.
Collapse
Affiliation(s)
- E Wagner
- Mikrobielle Genetik, Universität Tübingen, Germany
| | | | | |
Collapse
|
39
|
Wylie JL, Bernegger-Egli C, O'Neil JD, Worobec EA. Biophysical characterization of OprB, a glucose-inducible porin of Pseudomonas aeruginosa. J Bioenerg Biomembr 1993; 25:547-56. [PMID: 8132494 DOI: 10.1007/bf01108411] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OprB, a glucose-inducible porin of P. aeruginosa, was characterized by black lipid bilayer analysis and circular dichroism spectroscopy. Black lipid bilayer analysis of OprB revealed a single-channel conductance of 25 pS, the presence of a glucose binding site with a Ks for glucose of 380 +/- 40 mM, and the formation of channels with a strong selection for anions. Analysis of P. aeruginosa OprB circular dichroism spectra revealed a high beta sheet content (40%) which is within the range of that determined for other porins. Values obtained from black lipid bilayer analysis were compared to those previously obtained for OprB of P. putida [Saravolac et al. (1991). J. Bacteriol. 173, 4970-4976] and indicated extensive similarities in the single-channel conductance and glucose-binding properties of these two porins. Immunological and amino terminal sequence analysis revealed a high degree of homology. Of the first 14 amino terminal residues, 12 were identical. A major difference between the two porins was found in their ion selectivity. Whereas P. aeruginosa OprB is anion selective, P. putida OprB and other carbohydrate selective porins are known to be cation selective.
Collapse
Affiliation(s)
- J L Wylie
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
40
|
Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 1993; 57:543-94. [PMID: 8246840 PMCID: PMC372926 DOI: 10.1128/mr.57.3.543-594.1993] [Citation(s) in RCA: 865] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.
Collapse
Affiliation(s)
- P W Postma
- E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
41
|
Jahreis K, Lengeler JW. Molecular analysis of two ScrR repressors and of a ScrR-FruR hybrid repressor for sucrose and D-fructose specific regulons from enteric bacteria. Mol Microbiol 1993; 9:195-209. [PMID: 8412665 DOI: 10.1111/j.1365-2958.1993.tb01681.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The scr regulon of pUR400 and the chromosomally encoded scr regulon of Klebsiella pneumoniae KAY2026 are both negatively controlled by a specific repressor (ScrR). As deduced from the nucleotide sequences, both scrR genes encode polypeptides of 334 residues (85.5% identical base pairs, 91.3% identical amino acids), containing an N-terminal helix-turn-helix motif. Comparison with other regulatory proteins revealed 30.6% identical amino acids to FruR, 27.0% to Lacl and 28.1% to GalR. Six scrRs super-repressor mutations define the inducer-binding domain. The scr operator sequences were identified by in vivo titration tests of the sucrose repressor and by in vitro electrophoretic mobility shift assays. D-fructose, an intracellular product of sucrose transport and hydrolysis, and D-fructose 1-phosphate were shown to be molecular inducers of both scr regulons. An active ScrR-FruR hybrid repressor protein was constructed with the N-terminal part of the sucrose repressor of K. pneumoniae and the C-terminal part of the fructose repressor of Salmonella typhimurium LT2. Gel retardation assays showed that the hybrid protein bound to scr-specific operators, and that D-fructose 1-phosphate, the inducer for FruR, was the only inducer. In vivo, neither the operators of the fru operon nor of the pps operon, the natural targets for FruR, were recognized, but the scr operators were. These data and the data obtained from the super-repressor alleles confirm previous models on the binding of repressors of the Lacl family to their operators.
Collapse
Affiliation(s)
- K Jahreis
- Arbeitsgruppe Genetik, Universität Osnabrück, Germany
| | | |
Collapse
|
42
|
Abstract
The Staphylococcus xylosus gene scrB, encoding a sucrase, has been isolated from a genomic library of S. xylosus constructed in Escherichia coli. The gene was detected by its ability to confer utilization of the glucose and fructose residues of raffinose in an E. coli strain that is not able to metabolize galactose. It was found to reside within a 1.8-kb DNA fragment, the nucleotide sequence of which was determined. One large open reading frame, which is preceded by a ribosome binding site, is encoded on the fragment. Its deduced amino acid sequence yields a protein with a molecular mass of 57.377 kDa which shows significant homology with bacterial sucrose-6-phosphate hydrolases and sucrases. Overexpression of scrB in E. coli by the bacteriophage T7 polymerase promoter system resulted in the production of a protein with an apparent molecular mass of 58 kDa. Disruption of the scrB gene in the S. xylosus genome rendered S. xylosus unable to utilize sucrose. Thus, the ScrB sucrase is essential for sucrose metabolism in S. xylosus.
Collapse
Affiliation(s)
- R Brückner
- Mikrobielle Genetik, Universität Tübingen, Germany
| | | | | |
Collapse
|
43
|
Thompson J, Nguyen NY, Robrish SA. Sucrose fermentation by Fusobacterium mortiferum ATCC 25557: transport, catabolism, and products. J Bacteriol 1992; 174:3227-35. [PMID: 1533618 PMCID: PMC205990 DOI: 10.1128/jb.174.10.3227-3235.1992] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Studies of sucrose utilization by Fusobacterium mortiferum ATCC 25557 have provided the first definitive evidence for phosphoenolpyruvate-dependent sugar:phosphotransferase activity in the family Bacteroidaceae. The phosphoenolpyruvate-dependent sucrose:phosphotransferase system and the two enzymes required for the dissimilation of sucrose 6-phosphate are induced specifically by growth of F. mortiferum on the disaccharide. Monomeric sucrose 6-phosphate hydrolase (M(r), 52,000) and a dimeric ATP-dependent fructokinase (subunit M(r), 32,000) have been purified to electrophoretic homogeneity. The physicochemical and catalytic properties of these enzymes have been examined, and the N-terminal amino acid sequences for both proteins are reported. The characteristics of sucrose 6-phosphate hydrolase and fructokinase from F. mortiferum are compared with the same enzymes from both gram-positive and gram-negative species. Butyric, acetic, and D-lactic acids are the end products of sucrose fermentation by F. mortiferum. A pathway is proposed for the translocation, phosphorylation, and metabolism of sucrose by this anaerobic pathogen.
Collapse
Affiliation(s)
- J Thompson
- Laboratory of Microbial Ecology, National Institute of Dental Research, Bethesda, Maryland
| | | | | |
Collapse
|
44
|
Benz R, Francis G, Nakae T, Ferenci T. Investigation of the selectivity of maltoporin channels using mutant LamB proteins: mutations changing the maltodextrin binding site. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1104:299-307. [PMID: 1547266 DOI: 10.1016/0005-2736(92)90044-m] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Wild-type and seven mutant maltoporins were purified and their channel-forming activities studied after reconstitution into black lipid membranes. The proteins were assayed for alterations at the maltodextrin binding site by measuring the sugar-dependent blockage of ion flux through these channels. Some substitutions (R8H, W74R) caused reduced channel affinity for all maltodextrins without changing single channel conductivities. The channel with a GlySer insertion after residue 9 was also poorly blocked by sugars but unique to this protein, the channel showed a striking, almost exponential increase of affinity with increasing maltodextrin chain length. In mutants with AspPro insertions after residues 79 and 183, there was an increase in affinity for glucose and maltose but not longer maltodextrins. The additional negative charge in the AspPro insertion mutants increased the cation selectivity of maltoporin channels, as did the decrease in positive charge resulting from the R8H substitution. A mutant with a W120C substitution also showed an increased affinity for glucose and maltose but reduced affinity for longer maltosaccharides. In contrast, a Y118F substitution resulted in an 8-fold increase in maltotriose affinity, but lesser improvements for other sugars. These results are interpreted to reflect changes in subsites contributing to an extended binding site within the channel, which in turn determines the overall sugar affinity of maltoporin.
Collapse
Affiliation(s)
- R Benz
- Lehrstühl für Biotechnologie, Universität Würzburg, Germany
| | | | | | | |
Collapse
|
45
|
Cowan PJ, Nagesha H, Leonard L, Howard JL, Pittard AJ. Characterization of the major promoter for the plasmid-encoded sucrose genes scrY, scrA, and scrB. J Bacteriol 1991; 173:7464-70. [PMID: 1938944 PMCID: PMC212511 DOI: 10.1128/jb.173.23.7464-7470.1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sucrose genes from a Salmonella thompson plasmid were cloned in Escherichia coli K-12. A physical map and a genetic map of the genes were constructed, revealing strong homology with the scr regulon from the Salmonella typhimurium plasmid pUR400. Two promoters were examined after being subcloned into transcriptional fusion vectors. Primer extension analysis and site-directed mutagenesis were used to identify the precise location of the promoter of scrY, scrA, and scrB. Transcription from this promoter was regulated over a 1,000-fold range by the combined effects of ScrR-mediated repression and catabolite repression. A putative cyclic AMP receptor protein binding site centered 72.5 bp upstream of the start point of transcription of scrY appeared to be essential for full activity of the scrY promoter. Transcription from the putative scrK promoter was far less sensitive to repression by ScrR. In ScrR+ cells, readthrough transcription from the putative scrK promoter into scrY accounted for less than 10% of scrY expression.
Collapse
Affiliation(s)
- P J Cowan
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
46
|
Aulkemeyer P, Ebner R, Heilenmann G, Jahreis K, Schmid K, Wrieden S, Lengeler JW. Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria. Mol Microbiol 1991; 5:2913-22. [PMID: 1809835 DOI: 10.1111/j.1365-2958.1991.tb01851.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sucrose-positive derivatives of Escherichia coli K-12, containing the plasmid pUR400, and of Klebsiella pneumoniae hydrolyse intracellular sucrose 6-phosphate by means of an invertase into D-glucose 6-phosphate and free D-fructose. The latter is phosphorylated by an ATP-dependent fructokinase (gene scrK of an scr regulon) to D-fructose 6-phosphate. The lack of ScrK does not cause any visible phenotype in wild-type strains of both organisms. Using genes and enzymes normally involved in D-arabinitol metabolism from E. coli C and K. pneumoniae, derivatives of E. coli K-12 were constructed which allowed the identification of scrK mutations on conventional indicator plates. Cloning and sequencing of scrK from sucrose plasmid pUR400 and from the chromosome of K. pneumoniae revealed an open reading frame of 924 bp in both cases--the equivalent of a peptide containing 307 amino acid residues (Mr 39 and 34 kDa, respectively, on sodium dodecyl sulphate gels). The sequences showed overall identity among each other (69% identical residues) and to a kinase from Vibrio alginolyticus (57%) also involved in sucrose metabolism, lower overall identity (39%) to a D-ribose-kinase from E. coli, and local similarity to prokaryotic, and eukaryotic phosphofructokinases at the putative ATP-binding sites.
Collapse
Affiliation(s)
- P Aulkemeyer
- Fachbereich Biologie/Chemie, Universität Osnabrück, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Schülein K, Schmid K, Benzl R. The sugar-specific outer membrane channel ScrY contains functional characteristics of general diffusion pores and substrate-specific porins. Mol Microbiol 1991; 5:2233-41. [PMID: 1722560 DOI: 10.1111/j.1365-2958.1991.tb02153.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Escherichia coli K-12 strain PS1-28-37 carries the multicopy plasmid pPSO28-37 containing a DNA fragment coding for two of the proteins that enable bacteria to utilize sucrose as sole carbon source. One of the different gene products of the plasmid is the outer membrane protein, ScrY. This protein was isolated and purified by chromatography across a gel filtration column. Reconstitution experiments with lipid bilayer membrane demonstrated that ScrY formed ion-permeable channels with properties very similar to those of general diffusion pores of enteric bacteria. The presence of sugars in the aqueous phase led to a dose-dependent block of ion transport through the channel, like the situation found with LamB (maltoporin) of Escherichia coli and Salmonella typhimurium. The binding constants of a variety of different sugars were determined. The stability constant for malto-oligosaccharide binding increased with increasing numbers of glucose residues. Disaccharides generally had a larger binding constant than monosaccharides. The binding of different sugars to ScrY and LamB of E. coli is discussed with respect to the kinetics of sugar movement through the channel.
Collapse
Affiliation(s)
- K Schülein
- Lehrstuhl für Biotechnologie, Universität Würzburg, Germany
| | | | | |
Collapse
|
48
|
Schiltz E, Kreusch A, Nestel U, Schulz GE. Primary structure of porin from Rhodobacter capsulatus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 199:587-94. [PMID: 1651239 DOI: 10.1111/j.1432-1033.1991.tb16158.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The primary structure of the integral membrane protein porin from the purple bacterium Rhodobacter capsulatus was determined. The protein was cleaved with trypsin, CNBr and Asp-N protease. The peptides were isolated, sequenced and aligned to a total length of 301 residues with an Mr of 31,536. The low isoelectric point of 3.9 is confirmed by the high excess of 34 Asp and 17 Glu (16.9%) over 10 Lys, 7 Arg and 2 His (6.3%). Overall sequence similarity to other porins is not evident when using sequence alignment programs. However, a partial relationship to Neisseria porins seems to exist. The established sequence has been used as the basis for a three-dimensional structure determination by X-ray diffraction at 0.18-nm resolution. The arrangement of the sequence in the 16-stranded beta-barrel of porin is given. Some sequence-structure correlations are discussed.
Collapse
Affiliation(s)
- E Schiltz
- Institut für Organische Chemie und Biochemie der Universität Freiburg, Federal Republic of Germany
| | | | | | | |
Collapse
|