1
|
Zhao Y, Chen J, Tian Y, Huang H, Zhao F, Deng X. Treponema denticola major surface protein (Msp): a key player in periodontal pathogenicity and immune evasion. Arch Microbiol 2025; 207:36. [PMID: 39825920 DOI: 10.1007/s00203-024-04223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/08/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
Treponema denticola, a bacterium that forms a "red complex" with Porphyromonas gingivalis and Tannerella forsythia, is associated with periodontitis, pulpitis, and other oral infections. The major surface protein (Msp) is a surface glycoprotein with a relatively well-established overall domain structure (N-terminal, central and C-terminal regions) and a controversial tertiary structure. As one of the key virulence factors of T. denticola, Msp is associated with adherence, immune response, and pore formation by the microorganism. It also mediates several pathological changes in histocytes, such as cytoskeleton disruption, neutrophil phagocytosis, and phosphoinositide balance interruption. In addition, the Msp of T. denticola is also an ortholog of the Treponema pallidum repeat (Tpr) proteins and Msp or Msp-like proteins that have been detected in other oral treponeme species. This review will discuss the structure, pathogenicity and homologs of Msp produced by T. denticola, illuminate the controversy regarding the structure and membrane topology of native Msp, explore the potential roles of Msp in the mechanism of T. denticola immune escape and provide an overview of the cytotoxicity and adherence ability of Msp. Further understanding of the structure and functions of Msp will offer new insights that will help promote further investigations of the pathogenic mechanisms of T. denticola and other treponemes, leading to more effective prophylactic or therapeutic treatments for relevant diseases.
Collapse
Affiliation(s)
- Yue Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Jiaxin Chen
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yifei Tian
- Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, People's Republic of China
| | - Hong Huang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Feijun Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Xuan Deng
- Department of Stomatology, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Pisani F, Pisani V, Arcangeli F, Harding A, Singhrao SK. Treponema denticola Has the Potential to Cause Neurodegeneration in the Midbrain via the Periodontal Route of Infection-Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6049. [PMID: 37297653 PMCID: PMC10252855 DOI: 10.3390/ijerph20116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most common example of dementia. The neuropathological features of AD are the abnormal deposition of extracellular amyloid-β (Aβ) and intraneuronal neurofibrillary tangles with hyperphosphorylated tau protein. It is recognized that AD starts in the frontal cerebral cortex, and then it progresses to the entorhinal cortex, the hippocampus, and the rest of the brain. However, some studies on animals suggest that AD could also progress in the reverse order starting from the midbrain and then spreading to the frontal cortex. Spirochetes are neurotrophic: From a peripheral route of infection, they can reach the brain via the midbrain. Their direct and indirect effect via the interaction of their virulence factors and the microglia potentially leads to the host peripheral nerve, the midbrain (especially the locus coeruleus), and cortical damage. On this basis, this review aims to discuss the hypothesis of the ability of Treponema denticola to damage the peripheral axons in the periodontal ligament, to evade the complemental pathway and microglial immune response, to determine the cytoskeletal impairment and therefore causing the axonal transport disruption, an altered mitochondrial migration and the consequent neuronal apoptosis. Further insights about the central neurodegeneration mechanism and Treponema denticola's resistance to the immune response when aggregated in biofilm and its quorum sensing are suggested as a pathogenetic model for the advanced stages of AD.
Collapse
Affiliation(s)
- Flavio Pisani
- Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Valerio Pisani
- IRCCS, “Santa Lucia” Foundation, Neurology and Neurorehabilitation Unit, Via Ardeatina, 306, 00179 Rome, Italy
| | - Francesca Arcangeli
- Azienda Sanitaria Locale ASLRM1, Nuovo Regina Margherita Hospital, Geriatric Department, Advanced Centre for Dementia and Cognitive Disorders, Via Emilio Morosini, 30, 00153 Rome, Italy
| | - Alice Harding
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Simarjit Kaur Singhrao
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
3
|
Characterization of Treponema denticola Major Surface Protein (Msp) by Deletion Analysis and Advanced Molecular Modeling. J Bacteriol 2022; 204:e0022822. [PMID: 35913147 PMCID: PMC9487533 DOI: 10.1128/jb.00228-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Treponema denticola, a keystone pathogen in periodontitis, is a model organism for studying Treponema physiology and host-microbe interactions. Its major surface protein Msp forms an oligomeric outer membrane complex that binds fibronectin, has cytotoxic pore-forming activity, and disrupts several intracellular processes in host cells. T. denticola msp is an ortholog of the Treponema pallidum tprA to -K gene family that includes tprK, whose remarkable in vivo hypervariability is proposed to contribute to T. pallidum immune evasion. We recently identified the primary Msp surface-exposed epitope and proposed a model of the Msp protein as a β-barrel protein similar to Gram-negative bacterial porins. Here, we report fine-scale Msp mutagenesis demonstrating that both the N and C termini as well as the centrally located Msp surface epitope are required for native Msp oligomer expression. Removal of as few as three C-terminal amino acids abrogated Msp detection on the T. denticola cell surface, and deletion of four residues resulted in complete loss of detectable Msp. Substitution of a FLAG tag for either residues 6 to 13 of mature Msp or an 8-residue portion of the central Msp surface epitope resulted in expression of full-length Msp but absence of the oligomer, suggesting roles for both domains in oligomer formation. Consistent with previously reported Msp N-glycosylation, proteinase K treatment of intact cells released a 25 kDa polypeptide containing the Msp surface epitope into culture supernatants. Molecular modeling of Msp using novel metagenome-derived multiple sequence alignment (MSA) algorithms supports the hypothesis that Msp is a large-diameter, trimeric outer membrane porin-like protein whose potential transport substrate remains to be identified. IMPORTANCE The Treponema denticola gene encoding its major surface protein (Msp) is an ortholog of the T. pallidum tprA to -K gene family that includes tprK, whose remarkable in vivo hypervariability is proposed to contribute to T. pallidum immune evasion. Using a combined strategy of fine-scale mutagenesis and advanced predictive molecular modeling, we characterized the Msp protein and present a high-confidence model of its structure as an oligomer embedded in the outer membrane. This work adds to knowledge of Msp-like proteins in oral treponemes and may contribute to understanding the evolutionary and potential functional relationships between T. denticola Msp and the orthologous T. pallidum Tpr proteins.
Collapse
|
4
|
Jones MM, Vanyo ST, Visser MB. The C-terminal region of the major outer sheath protein of Treponema denticola inhibits neutrophil chemotaxis. Mol Oral Microbiol 2017; 32:375-389. [PMID: 28296262 PMCID: PMC5585023 DOI: 10.1111/omi.12180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2017] [Indexed: 12/25/2022]
Abstract
Treponema denticola is an oral spirochete strongly associated with severe periodontal disease. A prominent virulence factor, the major outer sheath protein (Msp), disorients neutrophil chemotaxis by altering the cellular phosphoinositide balance, leading to impairment of downstream chemotactic events including actin rearrangement, Rac1 activation, and Akt activation in response to chemoattractant stimulation. The specific regions of Msp responsible for interactions with neutrophils remain unknown. In this study, we investigated the inhibitory effect of truncated Msp regions on neutrophil chemotaxis and associated signaling pathways. Murine neutrophils were treated with recombinant protein truncations followed by assessment of chemotaxis and associated signal pathway activation. Chemotaxis assays indicate sequences within the C-terminal region; particularly the first 130 amino acids, have the strongest inhibitory effect on neutrophil chemotaxis. Neutrophils incubated with the C-terminal region protein also demonstrated the greatest inhibition of Rac1 activation, increased phosphoinositide phosphatase activity, and decreased Akt activation; orchestrating impairment of chemotaxis. Furthermore, incubation with antibodies specific to only the C-terminal region blocked the Msp-induced inhibition of chemotaxis and denaturing the protein restored Rac1 activation. Msp from the strain OTK, with numerous amino acid substitutions throughout the polypeptide, including the C-terminal region compared with strain 35405, showed increased ability to impair neutrophil chemotaxis. Collectively, these results indicate that the C-terminal region of Msp is the most potent region to modulate neutrophil chemotactic signaling and that specific sequences and structures are likely to be required. Knowledge of how spirochetes dampen the neutrophil response is limited and Msp may represent a novel therapeutic target for periodontal disease.
Collapse
Affiliation(s)
- Megan M. Jones
- State University of New York at Buffalo, 3435 Main St, Buffalo, NY 14214, USA
| | - Stephen T. Vanyo
- State University of New York at Buffalo, 3435 Main St, Buffalo, NY 14214, USA
| | - Michelle B. Visser
- State University of New York at Buffalo, 3435 Main St, Buffalo, NY 14214, USA
| |
Collapse
|
5
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
You M, Chan Y, Lacap-Bugler DC, Huo YB, Gao W, Leung WK, Watt RM. Oral treponeme major surface protein: Sequence diversity and distributions within periodontal niches. Mol Oral Microbiol 2017; 32:455-474. [PMID: 28453906 DOI: 10.1111/omi.12185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
Treponema denticola and other species (phylotypes) of oral spirochetes are widely considered to play important etiological roles in periodontitis and other oral infections. The major surface protein (Msp) of T. denticola is directly implicated in several pathological mechanisms. Here, we have analyzed msp sequence diversity across 68 strains of oral phylogroup 1 and 2 treponemes; including reference strains of T. denticola, Treponema putidum, Treponema medium, 'Treponema vincentii', and 'Treponema sinensis'. All encoded Msp proteins contained highly conserved, taxon-specific signal peptides, and shared a predicted 'three-domain' structure. A clone-based strategy employing 'msp-specific' polymerase chain reaction primers was used to analyze msp gene sequence diversity present in subgingival plaque samples collected from a group of individuals with chronic periodontitis (n=10), vs periodontitis-free controls (n=10). We obtained 626 clinical msp gene sequences, which were assigned to 21 distinct 'clinical msp genotypes' (95% sequence identity cut-off). The most frequently detected clinical msp genotype corresponded to T. denticola ATCC 35405T , but this was not correlated to disease status. UniFrac and libshuff analysis revealed that individuals with periodontitis and periodontitis-free controls harbored significantly different communities of treponeme clinical msp genotypes (P<.001). Patients with periodontitis had higher levels of clinical msp genotype diversity than periodontitis-free controls (Mann-Whitney U-test, P<.05). The relative proportions of 'T. vincentii' clinical msp genotypes were significantly higher in the control group than in the periodontitis group (P=.018). In conclusion, our data clearly show that both healthy and diseased individuals commonly harbor a wide diversity of Treponema clinical msp genotypes within their subgingival niches.
Collapse
Affiliation(s)
- M You
- Department of Oral Radiology and State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Y Chan
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong SAR, China
| | - D C Lacap-Bugler
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Y-B Huo
- Zhujiang New Town Dental Clinic, Guanghua School and Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - W Gao
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong SAR, China
| | - W K Leung
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong SAR, China
| | - R M Watt
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong SAR, China
| |
Collapse
|
7
|
Anklam K, Kulow M, Yamazaki W, Döpfer D. Development of real-time PCR and loop-mediated isothermal amplification (LAMP) assays for the differential detection of digital dermatitis associated treponemes. PLoS One 2017; 12:e0178349. [PMID: 28542573 PMCID: PMC5444799 DOI: 10.1371/journal.pone.0178349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/11/2017] [Indexed: 12/23/2022] Open
Abstract
Bovine digital dermatitis (DD) is a severe infectious cause of lameness in cattle worldwide, with important economic and welfare consequences. There are three treponeme phylogroups (T. pedis, T. phagedenis, and T. medium) that are implicated in playing an important causative role in DD. This study was conducted to develop real-time PCR and loop-mediated isothermal amplification (LAMP) assays for the detection and differentiation of the three treponeme phylogroups associated with DD. The real-time PCR treponeme phylogroup assays targeted the 16S-23S rDNA intergenic space (ITS) for T. pedis and T. phagedenis, and the flagellin gene (flaB2) for T. medium. The 3 treponeme phylogroup LAMP assays targeted the flagellin gene (flaB2) and the 16S rRNA was targeted for the Treponeme ssp. LAMP assay. The real-time PCR and LAMP assays correctly detected the target sequence of all control strains examined, and no cross-reactions were observed, representing 100% specificity. The limit of detection for each of the three treponeme phylogroup real-time PCR and LAMP assays was ≤ 70 fg/μl. The detection limit for the Treponema spp. LAMP assay ranged from 7-690 fg/μl depending on phylogroup. Treponemes were isolated from 40 DD lesion biopsies using an immunomagnetic separation culture method. The treponeme isolation samples were then subjected to the real-time PCR and LAMP assays for analysis. The treponeme phylogroup real-time PCR and LAMP assay results had 100% agreement, matching on all isolation samples. These results indicate that the developed assays are a sensitive and specific test for the detection and differentiation of the three main treponeme phylogroups implicated in DD.
Collapse
Affiliation(s)
- Kelly Anklam
- Department of Medical Science, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Megan Kulow
- Department of Medical Science, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Wataru Yamazaki
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Dörte Döpfer
- Department of Medical Science, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
8
|
Abstract
Oral Treponema species, most notably T. denticola, are implicated in the destructive effects of human periodontal disease. Progress in the molecular analysis of interactions between T. denticola and host proteins is reviewed here, with particular emphasis on the characterization of surface-expressed and secreted proteins of T. denticola involved in interactions with host cells, extracellular matrix components, and components of the innate immune system.
Collapse
Affiliation(s)
- J. Christopher Fenno
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Composition and localization of Treponema denticola outer membrane complexes. Infect Immun 2011; 79:4868-75. [PMID: 21986628 DOI: 10.1128/iai.05701-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Treponema denticola outer membrane lipoprotein-protease complex (dentilisin) contributes to periodontal disease by degrading extracellular matrix components and disrupting intercellular host signaling pathways. We recently demonstrated that prcB, located upstream of and cotranscribed with prcA and prtP, encodes a 22-kDa lipoprotein that interacts with PrtP and is required for its activity. Here we further characterize products of the protease locus and their roles in expression, formation, and localization of outer membrane complexes. PrcB migrates in native gels as part of a >400-kDa complex that includes PrtP and PrcA, as well as the major outer sheath protein Msp. PrcB is detectable as a minor constituent of the purified active protease complex, which was previously reported to consist of only PrtP and auxiliary polypeptides PrcA1 and PrcA2. Though it lacks the canonical ribosome binding site present upstream of both prcA and prtP, PrcB is present at levels similar to those of PrtP in whole-cell extracts. Immunofluorescence microscopy demonstrated cell surface exposure of the mature forms of PrtP, PrcA1, PrcB, and Msp. The 16-kDa N-terminal acylated fragment of PrtP (predicted to be released during activation of PrtP) was present in cell extracts but was detected neither in the purified active protease complex nor on the cell surface. PrcA2, detectable on the surface of Msp-deficient cells but not that of wild-type cells, coimmunoprecipitated with Msp. Our results indicate that PrcB is a component of the outer membrane lipoprotein protease complex and that Msp and PrcA2 interaction may mediate formation of a very-high-molecular-weight outer membrane complex.
Collapse
|
10
|
|
11
|
Dashper SG, Seers CA, Tan KH, Reynolds EC. Virulence factors of the oral spirochete Treponema denticola. J Dent Res 2010; 90:691-703. [PMID: 20940357 DOI: 10.1177/0022034510385242] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is compelling evidence that treponemes are involved in the etiology of several chronic diseases, including chronic periodontitis as well as other forms of periodontal disease. There are interesting parallels with other chronic diseases caused by treponemes that may indicate similar virulence characteristics. Chronic periodontitis is a polymicrobial disease, and recent animal studies indicate that co-infection of Treponema denticola with other periodontal pathogens can enhance alveolar bone resorption. The bacterium has a suite of molecular determinants that could enable it to cause tissue damage and subvert the host immune response. In addition to this, it has several non-classic virulence determinants that enable it to interact with other pathogenic bacteria and the host in ways that are likely to promote disease progression. Recent advances, especially in molecular-based methodologies, have greatly improved our knowledge of this bacterium and its role in disease.
Collapse
Affiliation(s)
- S G Dashper
- Cooperative Research Centre for Oral Health, Melbourne Dental School and Bio21 Institute, The University of Melbourne, 720 Swanston Street, Victoria 3010, Australia
| | | | | | | |
Collapse
|
12
|
|
13
|
Rosen G, Genzler T, Sela MN. Coaggregation of Treponema denticola with Porphyromonas gingivalis and Fusobacterium nucleatum is mediated by the major outer sheath protein of Treponema denticola. FEMS Microbiol Lett 2009; 289:59-66. [PMID: 19054094 DOI: 10.1111/j.1574-6968.2008.01373.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Coagreggation of Treponema denticola with either Porphyromonas gingivalis or Fusobacterium nucleatum was characterized and the role of the major outer sheath protein (MSP) in the coaggregation process of these bacteria was evaluated. The MSP of T. denticola was found to be able to bind to P. gingivalis and F. nucleatum cells and this binding could be inhibited by MSP in a concentration-dependent manner. While sodium dodecyl sulfate polyacrylamide gel electrophoresis and Periodic acid-Schiff (PAS) staining of MSP revealed that it is a glycoprotein, monosaccharide analysis showed that MSP contains: Glc (44.4), Gal (20.4%) GlcN (1.3%), GalN (31.6%) and Fuc (9.2%). Peptide N-glycosidase F deglycosylation of MSP was found to inhibit its binding to F. nucleatum but not to P. gingivalis cells. Sugar-binding studies showed that the requirements for the binding of both T. denticola and MSP to F. nucleatum cells are similar to those of the F. nucleatum galactose-binding lectin. These data suggest that MSP acts as an adhesin during the coaggregation process of T. denticola with P. gingivalis and F. nucleatum through its protein and carbohydrate moieties, respectively.
Collapse
Affiliation(s)
- Graciela Rosen
- Laboratory of Oral Microbiology and Ecology, Faculty of Dental Medicine, The Hebrew University-Hadassah, Jerusalem, Israel.
| | | | | |
Collapse
|
14
|
Pinne M, Thein M, Denker K, Benz R, Coburn J, Bergström S. Elimination of channel-forming activity by insertional inactivation of the p66 gene in Borrelia burgdorferi. FEMS Microbiol Lett 2007; 266:241-9. [PMID: 17233736 DOI: 10.1111/j.1574-6968.2006.00529.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
P66 is a chromosomally encoded 66-kDa integral outer membrane protein of the Lyme disease agent Borrelia burgdorferi exhibiting channel-forming activity. Herein, we inactivated and subsequently complemented the p66 gene in the B31-A (WT) strain. The P66 protein was also inactivated in two other channel-forming protein mutant strains, P13-18 (Deltap13) and Deltabba01, and then compared with the channel-forming activities of wild-type and various p66 mutant strains. We further investigated the ion-selectivity of native, purified P66. In conclusion, we show that the porin activity of P66 is eliminated by insertional inactivation and that this activity can be rescued by gene complementation.
Collapse
Affiliation(s)
- Marija Pinne
- Department of Molecular Biology, Umeå University, Sweden
| | | | | | | | | | | |
Collapse
|
15
|
Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000 2005; 38:72-122. [PMID: 15853938 DOI: 10.1111/j.1600-0757.2005.00113.x] [Citation(s) in RCA: 650] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Stanley C Holt
- Department of Periodontology, The Forsyth Institute, Boston, MA, USA
| | | |
Collapse
|
16
|
Affiliation(s)
- Richard P Ellen
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
17
|
Abstract
Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis.
Collapse
Affiliation(s)
- Paul A. Cullen
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Melbourne, Vic. 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Vic. 3800, Australia
| | - David A. Haake
- School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Division of Infectious Diseases, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Ben Adler
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Melbourne, Vic. 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Vic. 3800, Australia
- Corresponding author. Tel.: +61-3-9905-4815; fax: +61-3-9905-4811. E-mail address: (B. Adler)
| |
Collapse
|
18
|
O'Brien-Simpson NM, Veith PD, Dashper SG, Reynolds EC. Antigens of bacteria associated with periodontitis. Periodontol 2000 2004; 35:101-34. [PMID: 15107060 DOI: 10.1111/j.0906-6713.2004.003559.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Neil M O'Brien-Simpson
- Centre for Oral Health Science, School of Dental Science, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
19
|
Ishihara K, Kuramitsu HK, Okuda K. A 43-kDa protein ofTreponema denticolais essential for dentilisin activity. FEMS Microbiol Lett 2004; 232:181-8. [PMID: 15033237 DOI: 10.1016/s0378-1097(04)00067-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Revised: 07/29/2003] [Accepted: 01/17/2004] [Indexed: 11/26/2022] Open
Abstract
A protease of Treponema denticola, dentilisin, is thought to be part of a complex with 43- and 38-kDa proteins. A sequence encoding a 43-kDa protein was located in the 3' region of the prcA gene upstream of the dentilisin gene (prtP). The 43-kDa protein was apparently generated from digestion of PrcA. To clarify the function of the protein, we constructed a mutant of the 43-kDa protein following homologous recombination. The mutant lacked detectable dentilisin activity. Immunoblot analysis demonstrated that the dentilisin protein was degraded in the mutant. The results of real-time polymerase chain reaction suggested that prtP mRNA expression in the mutant was somewhat decreased compared with the wild-type strain. These data suggest that the 43-kDa protein is involved in the stabilization of the dentilisin protein.
Collapse
Affiliation(s)
- Kazuyuki Ishihara
- Department of Microbiology, Oral Health Science Center, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan.
| | | | | |
Collapse
|
20
|
Leung WK, Wu Q, Hannam PM, McBride BC, Uitto VJ. Treponema denticola may stimulate both epithelial proliferation and apoptosis through MAP kinase signal pathways. J Periodontal Res 2002; 37:445-55. [PMID: 12472839 DOI: 10.1034/j.1600-0765.2002.01007.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitogen-activated protein kinases (MAP kinases) play a key role in the regulation of cell survival and death. Effects of Treponema denticola ATCC 35405 on ERK, p38 and JNK MAP kinases, and cell behavior was studied using non-keratinizing periodontal ligament epithelial cells (PLE) in vitro. Compared to Chinese hamster ovary cells, human cervix adenocarcinoma cells, human osteosacroma cells and human gingival fibroblasts, PLE cells were much more resistant to T. denticola-induced reduction in cell viability, assayed by tetrazolium and crystal violet assays. A low dose of 5 x 10(7) T. denticola cells/ml increased DNA synthesis ([3H]thymidine uptake) in PLE cells but at higher concentrations DNA synthesis was decreased. TUNEL staining analysis showed that about 50% of epithelial cells in onolayers died through apoptosis when exposed to a high dose of 10(11) T. denticola/ml for 24 h. Morphological light and electron microscopic analysis supported the idea that both apoptotic and necrotic cell death took place. Rounding, membrane damage, fragmentation and detachment were observed in selective cells of both mono- and multilayered PLE cultures challenged with T. denticola. Western blot analysis using MAP kinase phosphospecific antibodies showed that T. denticola strongly but transiently activated ERK1 and ERK2, signals mediating cell proliferation, and JNK and p38, kinases mediating apoptosis. While a specific inhibitor of the ERK MAP kinase pathway prevented the T. denticola stimulation of cell proliferation, inhibitor of p38 increased the cell numbers in T. denticola-treated cultures. The results suggest that T. denticola activates epithelial cell MAP kinase signal pathways controlling cell proliferation and cell survival. In addition, T. denticola exerts cytotoxic effects that appear to predominate at higher bacterial concentrations.
Collapse
Affiliation(s)
- W Keung Leung
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
21
|
Sela MN. Role of Treponema denticola in periodontal diseases. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 12:399-413. [PMID: 12002822 DOI: 10.1177/10454411010120050301] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Among periodontal anaerobic pathogens, the oral spirochetes, and especially Treponema denticola, have been associated with periodontal diseases such as early-onset periodontitis, necrotizing ulcerative gingivitis, and acute pericoronitis. Basic research as well as clinical evidence suggest that the prevalence of T denticola, together with other proteolytic gram-negative bacteria in high numbers in periodontal pockets, may play an important role in the progression of periodontal disease. The accumulation of these bacteria and their products in the pocket may render the surface lining periodontal cells highly susceptible to lysis and damage. T. denticola has been shown to adhere to fibroblasts and epithelial cells, as well as to extracellular matrix components present in periodontal tissues, and to produce several deleterious factors that may contribute to the virulence of the bacteria. These bacterial components include outer-sheath-associated peptidases, chymotrypsin-like and trypsin-like proteinases, hemolytic and hemagglutinating activities, adhesins that bind to matrix proteins and cells, and an outer-sheath protein with pore-forming properties. The effects of T. denticola whole cells and their products on a variety of host mucosal and immunological cells has been studied extensively (Fig. 1). The clinical data regarding the presence of T. denticola in periodontal health and disease, together with the basic research results involving the role of T. denticola factors and products in relation to periodontal diseases, are reviewed and discussed in this article.
Collapse
Affiliation(s)
- M N Sela
- Deportment of Oral Biology, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
22
|
Park KK, Heuner K, Göbel UB, Yoo YJ, Kim CK, Choi BK. Cloning and characterization of a major surface protein (MspTL) of Treponema lecithinolyticum associated with rapidly progressive periodontitis. FEMS Microbiol Lett 2002; 207:185-92. [PMID: 11958938 DOI: 10.1111/j.1574-6968.2002.tb11049.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The gene encoding a major surface protein (MspTL) of Treponema lecithinolyticum, a periodontopathogen, was cloned and sequenced. The mspTL gene has a 1770-bp open reading frame (ORF) encoding a protein of 590 amino acids with a predicted molecular mass of 65 kDa which had a typical prokaryotic signal sequence (19 amino acids). MspTL showed a high level of homology with major sheath protein (MspA) of Treponema maltophilum, phylogenetically the closest relative of T. lecithinolyticum. Southern blot analysis indicated that the mspTL gene exists in a single copy and Northern blot analysis showed that the mspTL transcript is monocistronic. Another ORF located downstream of mspTL was in the same orientation and encoded a putative protein, in which the first N-terminal 291 amino acids were identified. The homologous region of this protein is also a part on the T. maltophilum mspA locus.
Collapse
Affiliation(s)
- Kwang-Kyun Park
- Department of Oral Biology, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, 120-752, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
23
|
Xie H, Cook GS, Costerton JW, Bruce G, Rose TM, Lamont RJ. Intergeneric communication in dental plaque biofilms. J Bacteriol 2000; 182:7067-9. [PMID: 11092870 PMCID: PMC94835 DOI: 10.1128/jb.182.24.7067-7069.2000] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dental plaque is a complex biofilm that accretes in a series of discrete steps proceeding from a gram-positive streptococcus-rich biofilm to a structure rich in gram-negative anaerobes. This study investigated information flow between two unrelated plaque bacteria, Streptococcus cristatus and Porphyromonas gingivalis. A surface protein of S. cristatus caused repression of the P. gingivalis fimbrial gene (fimA), as determined by a chromosomal fimA promoter-lacZ reporter construct and by reverse transcription-PCR. Signaling activity was associated with a 59-kDa surface protein of S. cristatus and showed specificity for the fimA gene. Furthermore, P. gingivalis was unable to form biofilm microcolonies with S. cristatus. Thus, S. cristatus is capable of modulating virulence gene expression in P. gingivalis, consequently influencing the development of pathogenic plaque.
Collapse
Affiliation(s)
- H Xie
- School of Dentistry, Meharry Medical College, Nashville, Tennessee 37208, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Ishihara K, Okuda K. Molecular pathogenesis of the cell surface proteins and lipids from Treponema denticola. FEMS Microbiol Lett 1999; 181:199-204. [PMID: 10585538 DOI: 10.1111/j.1574-6968.1999.tb08844.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Treponema denticola, frequently isolated from the human oral cavity, is thought to be a major pathogen of human periodontal disease. Recent developments in molecular analysis have clarified the surface structure of this microorganism and the characteristics of its pathogenic factors. Structural analysis of the outer sheath showed T. denticola to have a new type of outer membrane lipid. Limited exposure of the major outer sheath protein is suggested by electron-microscopic analysis. A protease-deficient mutant has revealed the roles of the protease in the organization of the outer sheath material and in T. denticola pathogenicity. The surface features that contribute to the pathogenicity of T. denticola in periodontal disease are gradually being elucidated, and are reviewed.
Collapse
Affiliation(s)
- K Ishihara
- Department of Microbiology, Oral Health Science Center, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba, Japan.
| | | |
Collapse
|
25
|
Chu L, Ebersole JL, Holt SC. Hemoxidation and binding of the 46-kDa cystalysin of Treponema denticola leads to a cysteine-dependent hemolysis of human erythrocytes. ORAL MICROBIOLOGY AND IMMUNOLOGY 1999; 14:293-303. [PMID: 10551156 DOI: 10.1034/j.1399-302x.1999.140505.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cystalysin, a 46-kDa protein isolated from the cytosol of Treponema denticola, was capable of both cysteine dependent hemoxidation and hemolysis of human and sheep red blood cells. The activities were characteristic of a cysteine desulfhydrase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western immunoblotting analysis of the interaction of cystalysin with the red blood cells revealed an interaction of the protein with the red blood cell membrane. Substrates for the enzyme (including L-cysteine and beta-chloroalanine) enhanced the interaction, which occurred with both whole red blood cells as well as with isolated and purified red blood cell ghosts. SDS-PAGE and western immunoblotting employing anti-hemoglobin serum revealed that, during the hemoxidative events, the hemoglobin molecule associated with the red blood cell membrane, forming putative Heinz bodies. Spectrophotometric analysis of the hemoxidative events (cystalysin + cysteine + red blood cells) revealed a chemical modification of the native hemoglobin to sulfhemoglobin and methemoglobin. Hemoxidation also resulted in the degradation of both the red blood cell alpha- and beta-spectrin. The results presented suggest that the interaction of cystalysin with the red blood cell membrane results in the chemical oxidation of the hemoglobin molecule as well as an alteration in the red blood cell membrane itself.
Collapse
Affiliation(s)
- L Chu
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284, USA
| | | | | |
Collapse
|
26
|
Affiliation(s)
- K Ishihara
- Department of Microbiology, Oral Health Science Center, Tokyo Dental College, Chiba, Japan
| | | |
Collapse
|
27
|
Rosen G, Naor R, Sela MN. Multiple forms of the major phenylalanine specific protease in Treponema denticola. J Periodontal Res 1999; 34:269-76. [PMID: 10567950 DOI: 10.1111/j.1600-0765.1999.tb02253.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The 160, 190 and 270 kDa outer sheath proteases of Treponema denticola ATCC 35404 were found to be multiple forms of the major 91 kDa phenylalanine protease (PAP) by immunoblotting using anti-91 kDa specific antibodies. Multiple forms of the phenylalanine protease were also found in 2 other T. denticola strains studied, ATCC 33520 and the clinical isolate GM-1. Protein, proteolytic and Western blot analyses using antibodies against the PAP and the major outer sheath protein (MSP) indicated that the 190 and 270 kDa proteases were protein complexes formed by the MSP and the PAP. These complexes dissociated by storage in 0.3% or higher SDS concentrations. The purified PAP was found to completely degrade keratin, but was unable to degrade native actin either in its monomeric or polymerized form. The association of the MSP adhesin with a protease capable of degrading host native proteins may benefit the obtention of protein-based nutrients necessary to support the growth of these treponemes. These complexes may also play a role in the structural organization of T. denticola outer sheath.
Collapse
Affiliation(s)
- G Rosen
- Department of Oral Biology, Hebrew University, Hadassah, Faculty of Dental Medicine, Jerusalem, Israel.
| | | | | |
Collapse
|
28
|
Walker SG, Ebersole JL, Holt SC. Studies on the binding of Treponema pectinovorum to HEp-2 epithelial cells. ORAL MICROBIOLOGY AND IMMUNOLOGY 1999; 14:165-71. [PMID: 10495710 DOI: 10.1034/j.1399-302x.1999.140304.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We developed a radioassay to assess the adherence of the oral treponemes Treponema denticola and Treponema pectinovorum to live HEp-2 epithelial cells. T. pectinovorum bound firmly to the epithelial cell monolayer in a concentration-dependent manner. The results indicated that a subpopulation of T. pectinovorum appeared to bind and that the binding could be influenced by environmental factors. Increasing concentrations of fetal bovine serum inhibited binding, whereas T. pectinovorum membrane vesicles and co-incubation with T. denticola ATCC 35404 increased the number of cells bound to the monolayer. Treatment of T. pectinovorum with periodic acid, but not trypsin or proteinase K, decreased the binding suggesting that a cell surface carbohydrate, such as the O-antigenic component of the lipopolysaccharide, mediates attachment of the bacteria to the epithelial cells. Co-infection of the HEp-2 cells with both T. denticola and T. pectinovorum did not interfere with each other in attachment to the epithelial cell suggesting that they do not compete for the same cellular receptor on the host cell surface. This study demonstrates that T. pectinovorum is capable, in vitro, of forming a tight association with host cells and that this binding could represent an initial step in the pathogenesis of T. pectinovorum.
Collapse
Affiliation(s)
- S G Walker
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284-7758, USA
| | | | | |
Collapse
|
29
|
Heuner K, Choi BK, Schade R, Moter A, Otto A, Göbel UB. Cloning and characterization of a gene (mspA) encoding the major sheath protein of Treponema maltophilum ATCC 51939(T). J Bacteriol 1999; 181:1025-9. [PMID: 9922270 PMCID: PMC93473 DOI: 10.1128/jb.181.3.1025-1029.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major sheath protein-encoding gene (mspA) of the oral spirochete Treponema maltophilum ATCC 51939(T) was cloned by screening a genomic library with an anti-outer membrane fraction antibody. The mspA gene encodes a precursor protein of 575 amino acids with a predicted molecular mass of 62.3 kDa, including a signal peptide of 19 amino acids. The native MspA formed a heat-modifiable, detergent- and trypsin-stable complex which is associated with the outer membrane. Hybridization with an mspA-specific probe showed no cross-reactivity with the msp gene from Treponema denticola.
Collapse
Affiliation(s)
- K Heuner
- Institut für Mikrobiologie und Hygiene, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Grab DJ, Givens C, Kennedy R. Fibronectin-binding activity in Borrelia burgdorferi1. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1407:135-45. [PMID: 9685613 DOI: 10.1016/s0925-4439(98)00038-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recently, the term MSCRAMM (microbial surface components recognizing adhesive matrix molecules), has been introduced to describe microbial molecules that recognize extracellular matrix (ECM) [1]. Here we present evidence for the presence of fibronectin-binding molecules in Borrelia burgdorferi and several other Borrelia species. Immunofluorescence studies show that plasma fibronectin is bound uniformly over the cell surface of free swimming B. burgdorferi. In addition, the spirochetes are able to bind to plasma fibronectin-coated microwell plates, an interaction that is inhibited by anti-fibronectin antibody as well as exogenous plasma fibronectin. Taken together, the data suggest that fibronectin binds to the surface of the spirochete. On Western blot-like assays, B. burgdorferi and some B. afzelii strains express a major fibronectin-binding protein (Fn-BA) with an approximate molecular mass of 52 kDa. In addition, several other major Fn-BAs were found in B. hermsii (26, 31, 33, 39, 46, 54 and 58 kDa) and B. turicatae (39, 41, 45, 50, 56, 59 and 66 kDa). Preliminary evidence suggests that fibronectin (and Fn-BA) may play a role as a molecular bridge between the spirochete and other components of the extracellular matrix.
Collapse
Affiliation(s)
- D J Grab
- Department of Parasitology, Tulane Regional Primate Research Center, Covington, LA, USA.
| | | | | |
Collapse
|
31
|
Ishihara K, Kuramitsu HK, Miura T, Okuda K. Dentilisin activity affects the organization of the outer sheath of Treponema denticola. J Bacteriol 1998; 180:3837-44. [PMID: 9683480 PMCID: PMC107367 DOI: 10.1128/jb.180.15.3837-3844.1998] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Prolyl-phenylalanine-specific serine protease (dentilisin) is a major extracellular protease produced by Treponema denticola. The gene, prtP, coding for the protease was recently cloned and sequenced (K. Ishihara, T. Miura, H. K. Kuramitsu, and K. Okuda, Infect. Immun. 64:5178-5186, 1996). In order to determine the role of this protease in the physiology and virulence of T. denticola, a dentilisin-deficient mutant, K1, was constructed following electroporation with a prtP-inactivated DNA fragment. No chymotrypsin-like protease activity was detected in the dentilisin-deficient mutant. In addition, the high-molecular-mass oligomeric protein characteristic of the outer sheath of the organism decreased in the mutant. Furthermore, the hydrophobicity of the mutant was decreased, and coaggregation of the mutant with Fusobacterium nucleatum was enhanced compared to that of the wild-type organism. The results obtained with a mouse abscess model system indicated that the virulence of the mutant was attenuated relative to that of the wild-type organism. These results suggest that dentilisin activity plays a major role in the structural organization of the outer sheath of T. denticola. The loss of dentilsin activity and the structural change in the outer sheath affect the pathogenicity of T. denticola.
Collapse
Affiliation(s)
- K Ishihara
- Department of Microbiology, Oral Health Science Center, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan.
| | | | | | | |
Collapse
|
32
|
Fenno JC, Hannam PM, Leung WK, Tamura M, Uitto VJ, McBride BC. Cytopathic effects of the major surface protein and the chymotrypsinlike protease of Treponema denticola. Infect Immun 1998; 66:1869-77. [PMID: 9573063 PMCID: PMC108137 DOI: 10.1128/iai.66.5.1869-1877.1998] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prominent antigens of Treponema denticola have been suggested to be mediators of the cytopathic effects typically seen in periodontal disease. In the present study of the T. denticola major surface protein (Msp) and the surface-expressed chymotrypsinlike protease complex (CTLP), we characterized the ability of these proteins to adhere to and lyse epithelial cells. Msp and CTLP were closely associated in spirochete outer membranes. Purified Msp, both native and recombinant, and CTLP bound to glutaraldehyde-fixed periodontal ligament epithelial cells. Adherence of Msp was partially blocked by specific antibodies. Adherence of CTLP was partially blocked by serine protease inhibitors and was further inhibited by specific antibodies. Both native Msp and CTLP were cytotoxic toward periodontal ligament epithelial cells, and their cytotoxicity was inhibited by the same treatments that inhibited adherence. Msp, but not CTLP, lysed erythrocytes. Msp complex (partially purified outer membranes free of protease activity) was cytotoxic toward a variety of different cell types. Pore-forming activities of recombinant Msp in black lipid model membrane assays and in HeLa cell membranes were similar to those reported for the native protein, supporting the hypothesis that Msp cytotoxicity was due to its pore-forming activity.
Collapse
Affiliation(s)
- J C Fenno
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Fenno JC, McBride BC. Virulence Factors of Oral Treponemes. Anaerobe 1998; 4:1-17. [PMID: 16887619 DOI: 10.1006/anae.1997.0131] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/1997] [Accepted: 10/20/1997] [Indexed: 11/22/2022]
Affiliation(s)
- J C Fenno
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
34
|
Yang PF, Song M, Grove DA, Ellen RP. Filamentous actin disruption and diminished inositol phosphate response in gingival fibroblasts caused by Treponema denticola. Infect Immun 1998; 66:696-702. [PMID: 9453629 PMCID: PMC107959 DOI: 10.1128/iai.66.2.696-702.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous reports have shown that Treponema denticola causes rearrangement of filamentous actin (F-actin) in human gingival fibroblasts (HGF). The purpose of this investigation was to determine the effect of T. denticola on the generation of inositol phosphates (IPs) in relation to a time course for F-actin disruption in HGF. Cultured HGF were exposed to washed cells of T. denticola ATCC 35405 for 140 min. Changes in the fluorescence intensity of rhodamine-phalloidin-labeled F-actin in serial optical sections of single HGF were quantified by confocal microscopy image analysis. The percentage of cells with stress fiber disruption was also determined by fluorescence microscopy. Challenge with T. denticola caused a significant reduction in F-actin within the first hour, especially at the expense of F-actin in the ventral third of the cells, and a significant increase in the percentage of HGF with altered stress fiber patterns. Significant concentration-dependent disruption of stress fibers was also caused by HGF exposure to a Triton X-100 extract of T. denticola outer membrane (OM). IPs were measured by a radiotracer assay based on the incorporation of myo-[3H]inositol into IPs in HGF incubated with LiCl to inhibit endogenous phosphatases. HGF challenge with several strains of T. denticola and the OM extract of T. denticola ATCC 35405 resulted in a diminished accumulation of radiolabeled IPs relative to both 15 and 1% fetal bovine serum, which served as strongly positive and background control agonists, respectively. The significantly diminished IP response to T. denticola ATCC 35405 occurred within 60 min, concomitant with significant reduction of total F-actin and disruption of stress fibers. Pretreatment with the proteinase inhibitor phenylmethylsulfonyl fluoride, which had previously been found to block T. denticola's degradation of endogenous fibronectin and detachment of HGF from the extracellular matrix, had little effect on F-actin stress fiber disruption and the IP response. Therefore, in addition to its major surface chymotrypsin-like properties, T. denticola expresses cytopathogenic activities that diminish the generation of IPs during the time course associated with significant cytoskeletal disruption in fibroblasts.
Collapse
Affiliation(s)
- P F Yang
- Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
35
|
Walker SG, Ebersole JL, Holt SC. Identification, isolation, and characterization of the 42-kilodalton major outer membrane protein (MompA) from Treponema pectinovorum ATCC 33768. J Bacteriol 1997; 179:6441-7. [PMID: 9335294 PMCID: PMC179561 DOI: 10.1128/jb.179.20.6441-6447.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The major protein present in the isolated outer membrane of Treponema pectinovorum ATCC 33768, MompA, was identified, purified, and characterized. Immuno-gold electron microscopy, using anti-MompA serum, and cell fractionation experiments confirmed the localization of MompA to the outer membrane. MompA was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to have a molecular mass of 42 kDa when heat denatured, whereas native MompA formed a number of detergent-stable forms with molecular masses of 71, 76, and 83 kDa. A temperature of 60 degrees C was required to convert the native protein to the 42-kDa form. A number of detergents and chemical agents that are capable of breaking ionic and hydrogen bonds of proteins did not convert native MompA to the 42-kDa species. The native forms of the protein were resistant to the combined action of proteinase K, trypsin, and chymotrypsin, whereas the 42-kDa form of MompA was not. The N-terminal amino acid sequence of MompA was determined to be DVTVNINSRVRPVLYTT, and database searches did not identify any homology with known protein sequences. Amino acid compositional analysis showed the protein to be rich in proline and glycine, with these amino acids accounting for 28 and 13%, respectively, of the total amino acids. Antiserum raised against the major outer membrane protein of T. denticola GM-1 and ATCC 35405 did not cross-react with MompA, and antiserum raised against MompA did not react with any cellular components of Treponema denticola, Treponema vincentii, or Treponema socranskii. A major outer membrane protein similar in molecular mass to MompA was identified in eight clinical isolates of T. pectinovorum. The major outer membrane protein produced by four of the clinical isolates reacted strongly, by Western blotting, with anti-MompA serum, whereas proteins of the other strains did not.
Collapse
Affiliation(s)
- S G Walker
- Department of Microbiology, University of Texas Health Science Center at San Antonio, 78284-7758, USA
| | | | | |
Collapse
|
36
|
Skare JT, Mirzabekov TA, Shang ES, Blanco DR, Erdjument-Bromage H, Bunikis J, Bergström S, Tempst P, Kagan BL, Miller JN, Lovett MA. The Oms66 (p66) protein is a Borrelia burgdorferi porin. Infect Immun 1997; 65:3654-61. [PMID: 9284133 PMCID: PMC175520 DOI: 10.1128/iai.65.9.3654-3661.1997] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study we report the purification and characterization of a 66-kDa protein, designated Oms66, for outer membrane-spanning 66-kDa protein, that functions as a porin in the outer membrane (OM) of Borrelia burgdorferi. Oms66 was purified by fast-performance liquid chromatography and exhibited an average single-channel conductance of 9.62 +/- 0.37 nS in 1 M KCl, as evidenced by 581 individual insertional events in planar lipid bilayers. Electrophysiological characterization indicated that Oms66 was virtually nonselective between cations and anions and exhibited voltage-dependent closure with multiple substates. The amino acid sequence of tryptic peptides derived from purified Oms66 was identical to the deduced amino acid sequence of p66, a previously described surface-exposed protein of B. burgdorferi. Purified Oms66 was recognized by antiserum specific for p66 and serum from rabbits immune to challenge with virulent B. burgdorferi, indicating that p66 and Oms66 were identical proteins and that Oms66/p66 is an immunogenic protein in infected rabbits. In a methodology that reduces liposomal trapping and nonspecific interactions, native Oms66 was incorporated into liposomes, confirming that Oms66 is an outer membrane-spanning protein. Proteoliposomes containing Oms66 exhibited porin activity nearly identical to that of native, purified Oms66, indicating that reconstituted Oms66 retained native conformation. The use of proteoliposomes reconstituted with Oms66 and other Oms proteins provides an experimental system for determinating the relationship between conformation, protection, and biological function of these molecules.
Collapse
Affiliation(s)
- J T Skare
- Department of Medical Microbiology and Immunology, Texas A&M University Health Science Center, College Station 77843, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chu L, Ebersole JL, Kurzban GP, Holt SC. Cystalysin, a 46-kilodalton cysteine desulfhydrase from Treponema denticola, with hemolytic and hemoxidative activities. Infect Immun 1997; 65:3231-8. [PMID: 9234780 PMCID: PMC175457 DOI: 10.1128/iai.65.8.3231-3238.1997] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A 46-kDa hemolytic protein, referred to as cystalysin, from Treponema denticola ATCC 35404 was overexpressed in Escherichia coli LC-67. Both the native and recombinant 46-kDa proteins were purified to homogeneity. Both proteins expressed identical biological and functional characteristics. In addition to its biological function of lysing erythrocytes and hemoxidizing the hemoglobin to methemoglobin, cystalysin was also capable of removing the sulfhydryl and amino groups from selected S-containing compounds (e.g., cysteine) producing H2S, NH3, and pyruvate. This cysteine desulfhydrase resulted in the following Michaelis-Menten kinetics: Km = 3.6 mM and k(cat) = 12 s(-1). Cystathionine and S-aminoethyl-L-cysteine were also substrates for the protein. Gas chromatography-mass spectrometry and high-performance liquid chromatography analysis of the end products revealed NH3, pyruvate, homocysteine (from cystathionine), and cysteamine (from S-aminoethyl-L-cysteine). The enzyme was active over a broad pH range, with highest activity at pH 7.8 to 8.0. The enzymatic activity was increased by beta-mercaptoethanol. It was not inhibited by the proteinase inhibitor TLCK (N alpha-p-tosyl-L-lysine chloromethyl ketone), pronase, or proteinase K, suggesting that the functional site was physically protected or located in a small fragment of the polypeptide. We hypothesize that cystalysin is a pyridoxal-5-phosphate-containing enzyme, with activity of an alphaC-N and betaC-S lyase (cystathionase) type. Since large amounts of H2S have been reported in deep periodontal pockets, cystalysin may also function in vivo as an important virulence molecule.
Collapse
Affiliation(s)
- L Chu
- Department of Microbiology, University of Texas Health Science Center at San Antonio, 78284, USA
| | | | | | | |
Collapse
|
38
|
Sela MN, Bolotin A, Naor R, Weinberg A, Rosen G. Lipoproteins of Treponema denticola: their effect on human polymorphonuclear neutrophils. J Periodontal Res 1997; 32:455-66. [PMID: 9266497 DOI: 10.1111/j.1600-0765.1997.tb00558.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The presence of lipoproteins and lipooligosaccharides in Treponema denticola, an oral spirochaete associated with periodontal diseases, was investigated. T. denticola ATCC 35404 and the clinical isolate GM-1 were metabolically labeled with [3H]-cis-9-octadecenoic acid and extracted with the non-ionic detergent Triton X-114. The extract was phase separated, precipitated with acetone and delipidated to remove non-covalently bound lipid (dLPP). In T. denticola ATCC 35404, sodium dodecyl sulfate polyacrylamide electrophoretic separation followed by autoradiography showed [3H]-cis-9-octadecenoic acid incorporation in bands with apparent molecular masses of 14, 20, 26, 31, 38, 72 and 85 kDa and a broad band running from 113 kDa to the top of the gel. This last band resolved into a 53 kDa [3H]-cis-9-octadecenoic acid band upon heating for 10 min, at 100 degrees C. The structural relationship of the outer sheath major oligomeric polypeptide of strain ATCC 35404 and the 53 kDa protein was demonstrated immunologically. Antibodies against the 113 kDa component of the oligomer cross-reacted with the 53 kDa protein. Proteinase K degraded the [3H]-cis-9-octadecenoic acid bands with the exception of the 14 kDa. The 14 kDa was also the major [3H]-fatty acid labeled compound found in the water phase following phenol-water extraction of whole T. denticola ATCC 35404 cells. This compound was purified from the water phase by gel filtration followed by hydrophobic chromatography. Chemical analysis showed that hexadecanoic acid was the predominant fatty acid bound to T. denticola lipoproteins. In the GM-1 strain [3H]-cis-9-octadecenoic acid incorporation was observed in the 116 kDa and 14 kDa bands. dLPP from strain ATCC 35404 caused an enhanced (0.8-8 micrograms/ml) luminol dependent chemiluminiscence (LDCL) effect in human polymorphonuclear neutrophils (PMN) which could be related to protein concentration. The addition of dLPP to PMN together with FMLP at submaximal concentration (1 microM) resulted in a synergistic activation of LDCL. At 21 micrograms/ml, dLPP also induced lysozyme release by the PMN at approximately 30% of the release induced by the chemotactic peptide at 1 microM. In addition, dLPP (21 micrograms/ml) increased additively the release of lysozyme caused by 1 microM FMLP. The release of beta-glucuronidase was not affected. The modulation of neutrophil activity was abolished by preincubation of dLPP with proteinase K. The purified 14 kDa had no effect on either LDCL or exocytosis of lysosomal enzymes of PMN. These data strongly suggest that T. denticola possesses several lipoproteins including outer sheath major oligomeric polypeptides (113-234 kDa) and a lipooligosaccharide of molecular mass of 14 kDa. In addition, an enriched lipoprotein fraction from this oral spirochaete modulates oxygen dependent and independent mechanisms for controlling microorganisms by human PMN.
Collapse
Affiliation(s)
- M N Sela
- Department of Oral Biology, Faculty of Dental Medicine, Hebrew University, Hadassah, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
39
|
Fenno JC, Wong GW, Hannam PM, Müller KH, Leung WK, McBride BC. Conservation of msp, the gene encoding the major outer membrane protein of oral Treponema spp. J Bacteriol 1997; 179:1082-9. [PMID: 9023187 PMCID: PMC178801 DOI: 10.1128/jb.179.4.1082-1089.1997] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The major surface protein (Msp) of Treponema denticola has been implicated as a mediator of the interaction between the spirochete and the gingival epithelium in periodontal diseases. Previous studies showed that the Msp of T. denticola ATCC 35405 had porin activity, depolarized epithelial cell membranes, bound to extracellular matrix components of epithelial cells, and formed a regular hexagonal surface array in the treponemal outer membrane. The gene encoding Msp in ATCC 35405 was recently cloned, sequenced, and expressed in Escherichia coli (J. C. Fenno, K.-H. Müller, and B. C. McBride, J. Bacteriol. 178:2489-2496, 1996). In the present study, we identified genes encoding Msp-like proteins in several oral spirochetes. A prominent heat-modifiable Msp-like protein having an apparent molecular mass of between 43 and 64 kDa was present in all oral spirochete strains tested. Antibodies raised against the ATCC 35405 Msp reacted strongly with the Msp proteins of T. denticola ATCC 35404 and T. vincentii, reacted very weakly with the Msp protein of T. denticola ATCC 33520, and did not react with T. denticola OTK, T. socranskii, and T. pectinovorum. The msp loci of the T. denticola strains and T. vincentii were identified in analyses using PCR with oligonucleotide primers derived from the DNA sequence flanking msp in ATCC 35405. Southern blot analysis showed at least three groups of related msp DNA sequences. Comparison of DNA sequences of the 5' and 3' ends of the msp genes showed high sequence homology in the flanking regions and signal peptide coding regions, while the homologies between regions encoding the mature peptide were as low as 50%. The entire msp DNA sequences of T. denticola ATCC 33520 and OTK were determined, and the deduced Msp amino acid sequences were compared to the sequence of the previously reported Msp of ATCC 35405. The results show that the msp locus is conserved in oral treponemes but that there are significant differences between the mature Msp peptides of different strains. Further studies of the antigenic domains, functional domains, and physical structures of Msp proteins, based on these results, will enhance understanding of the role of Msp in the cytopathology associated with oral spirochetes.
Collapse
Affiliation(s)
- J C Fenno
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Ishihara K, Miura T, Kuramitsu HK, Okuda K. Characterization of the Treponema denticola prtP gene encoding a prolyl-phenylalanine-specific protease (dentilisin). Infect Immun 1996; 64:5178-86. [PMID: 8945563 PMCID: PMC174505 DOI: 10.1128/iai.64.12.5178-5186.1996] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A chymotrypsin-like protease from Treponema denticola ATCC 35405 was purified by chromatographic techniques. The purified enzyme consisted of three polypeptides (38, 43, and 72 kDa). The protease exhibited specificity for peptide bonds containing phenylalanine and proline at the P1 and P2 positions, respectively, and was classified as a serine protease on the basis of inhibition studies. Naturally occurring protease inhibitors such as alpha1-antitrypsin and alpha1-antichymotrypsin had no effect on enzymatic activity. The enzyme degraded fibronectin, alpha1-antitrypsin, and gelatin while weakly degrading the immunoglobulin G heavy chain and type IV collagen. N-terminal amino acid sequences were determined for the 43- and 72-kDa proteins. On the basis of these sequences, the genes coding for the 43- and 72-kDa proteins were isolated and sequenced. The open reading frame which codes for the 72-kDa protein was designated prtP. This gene consists of 2,169 bp and codes for a protein with an Mr of 77,471. The protein appeared to be composed of a signal peptide region followed by a prosequence and the mature protein domain. The deduced amino acid sequence exhibited similarity with that of the Bacillus subtilis serine protease subtilisin. The deduced properties of the sequence suggest that the 72-kDa protein is a chymotrypsin-like protease. However, the nature and function of the 43-kDa protein have not yet been determined.
Collapse
Affiliation(s)
- K Ishihara
- Department of Microbiology, Tokyo Dental College, Chiba, Japan
| | | | | | | |
Collapse
|
41
|
Abstract
Adherence to a surface is a key element for colonization of the human oral cavity by the more than 500 bacterial taxa recorded from oral samples. Three surfaces are available: teeth, epithelial mucosa, and the nascent surface created as each new bacterial cell binds to existing dental plaque. Oral bacteria exhibit specificity for their respective colonization sites. Such specificity is directed by adhesin-receptor cognate pairs on genetically distinct cells. Colonization is successful when adherent cells grow and metabolically participate in the oral bacterial community. The potential roles of adherence-relevant molecules are discussed in the context of the dynamic nature of the oral econiche.
Collapse
Affiliation(s)
- C J Whittaker
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
42
|
Skare JT, Champion CI, Mirzabekov TA, Shang ES, Blanco DR, Erdjument-Bromage H, Tempst P, Kagan BL, Miller JN, Lovett MA. Porin activity of the native and recombinant outer membrane protein Oms28 of Borrelia burgdorferi. J Bacteriol 1996; 178:4909-18. [PMID: 8759855 PMCID: PMC178274 DOI: 10.1128/jb.178.16.4909-4918.1996] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The outer membrane-spanning (Oms) proteins of Borrelia burgdorferi have been visualized by freeze-fracture analysis but, until recently, not further characterized. We developed a method for the isolation of B. burgdorferi outer membrane vesicles and described porin activities with single-channel conductances of 0.6 and 12.6 nS in 1 M KCI. By using both nondenaturing isoelectric focusing gel electrophoresis and fast-performance liquid chromatography separation after detergent solubilization, we found that the 0.6-nS porin activity resided in a 28-kDa protein, designated Oms28. The oms28 gene was cloned, and its nucleotide sequence was determined. The deduced amino acid sequence of Oms28 predicted a 257-amino-acid precursor protein with a putative 24-amino-acid leader peptidase I signal sequence. Processed Oms28 yielded a mature protein with a predicted molecular mass of 25,363 Da. When overproduced in Escherichia coli, the Oms28 porin fractionated in part to the outer membrane. Sodium dodecyl sulfate-polyacrylamide gel-purified recombinant Oms28 from E. coli retained functional activity as demonstrated by an average single-channel conductance of 1.1 nS in the planar lipid bilayer assay. These findings confirmed that Oms28 is a B. burgdorferi porin, the first to be described. As such, it is potential relevance to the pathogenesis of Lyme borreliosis and to the physiology of the spirochete.
Collapse
Affiliation(s)
- J T Skare
- Department of Microbiology and Immunology, UCLA School of Medicine 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fenno JC, Müller KH, McBride BC. Sequence analysis, expression, and binding activity of recombinant major outer sheath protein (Msp) of Treponema denticola. J Bacteriol 1996; 178:2489-97. [PMID: 8626313 PMCID: PMC177970 DOI: 10.1128/jb.178.9.2489-2497.1996] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The gene encoding the major outer sheath protein (Msp) of the oral spirochete Treponema denticola ATCC 35405 was cloned, sequenced, and expressed in Escherichia coli. Preliminary sequence analysis showed that the 5' end of the msp gene was not present on the 5.5-kb cloned fragment described in a recent study (M. Haapasalo, K. H. Müller, V. J. Uitto, W. K. Leung, and B. C. McBride, Infect. Immun. 60:2058-2065,1992). The 5' end of msp was obtained by PCR amplification from a T. denticola genomic library, and an open reading frame of 1,629 bp was identified as the coding region for Msp by combining overlapping sequences. The deduced peptide consisted of 543 amino acids and had a molecular mass of 58,233 Da. The peptide had a typical prokaryotic signal sequence with a potential cleavage site for signal peptidase 1. Northern (RNA) blot analysis showing the msp transcript to be approximately 1.7 kb was consistent with the identification of a promoter consensus sequence located optimally upstream of msp and a transcription termination signal found downstream of the stop codon. The entire msp sequence was amplified from T. denticola genomic DNA and cloned in E. coli by using a tightly regulated T7 RNA polymerase vector system. Expression of Msp was toxic to E. coli when the entire msp gene was present. High levels of Msp were produced as inclusion bodies when the putative signal peptide sequence was deleted and replaced by a vector-encoded T7 peptide sequence. Recombinant Msp purified to homogeneity from a clone containing the full-length msp gene adhered to immobilized laminin and fibronectin but not to bovine serum albumin. Attachment of recombinant Msp was decreased in the presence of soluble substrate. Attachment of T. denticola to immobilized laminin and fibronectin was increased by pretreatment of the substrate with recombinant Msp. These studies lend further support to the hypothesis that Msp mediates the extracellular matrix binding activity of T. denticola.
Collapse
Affiliation(s)
- J C Fenno
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
44
|
Yao ES, Lamont RJ, Leu SP, Weinberg A. Interbacterial binding among strains of pathogenic and commensal oral bacterial species. ORAL MICROBIOLOGY AND IMMUNOLOGY 1996; 11:35-41. [PMID: 8604253 DOI: 10.1111/j.1399-302x.1996.tb00334.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Strong interspecies adherence was demonstrated among the periodontal pathogens Treponema denticola, Bacteroides forsythus and Porphyromonas gingivalis, and between these pathogens and the commensal plaque organism Streptococcus crista. Adherence showed specificity and demonstrated saturation binding kinetics. Binding between B. forsythus and P. gingivalis appeared to be a unimodal protein-protein interaction. Binding between the other organisms was at least bimodal involving interactions between combinations of proteins and carbohydrates with a variety of sugar specificities. Salivary molecules prevented adherence between T. denticola and S. crista, and serum eliminated B. forsythus binding to P. gingivalis. All other interactions occurred to some degree in the presence of serum and saliva. Such interbacterial binding interactions may be important in the establishment of periodontopathic plaque.
Collapse
Affiliation(s)
- E S Yao
- Department of Oral Biology, School of Dentistry, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
45
|
Thomas DD. Aspects of adherence of oral spirochetes. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1996; 7:4-11. [PMID: 8727103 DOI: 10.1177/10454411960070010401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Oral spirochetes are present in the oral cavity in various numbers and forms and have been strongly implicated as playing a role in the etiology of periodontal disease. Because adherence to host tissues is a critical first step in establishing a bacterial infection, reports on the attachment of oral spirochetes to host tissues and matrix components were reviewed. The great bulk of the literature concerns Treponema denticola; however, where there is information regarding other oral spirochete species, it will be noted.
Collapse
Affiliation(s)
- D D Thomas
- Department of Periodontics, University of Texas Health Science Center, San Antonio 78284, USA
| |
Collapse
|
46
|
Rosen G, Naor R, Rahamim E, Yishai R, Sela MN. Proteases of Treponema denticola outer sheath and extracellular vesicles. Infect Immun 1995; 63:3973-9. [PMID: 7558307 PMCID: PMC173558 DOI: 10.1128/iai.63.10.3973-3979.1995] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Electron microscopical observations of the oral periodontopathogen Treponema denticola show the presence of extracellular vesicles bound to the bacterial surface or free in the surrounding medium. Extracellular vesicles from T. denticola ATCC 35404, 50 to 100 nm in diameter, were isolated and further characterized. Protein and proteolytic patterns of the vesicles were found to be very similar to those of isolated T. denticola outer sheaths. They were enriched with the major outer sheath polypeptides (molecular sizes, 113 to 234 kDa) and with outer sheath proteases of 91, 153, 173, and 228 kDa. These findings indicate that treponemal outer sheath vesicles contain the necessary adhesins and proteolytic arsenal for adherence to and damage of eucaryotic cells and mammalian matrix proteins. The major outer sheath- and vesicle-associated protease of T. denticola ATCC 35404 was purified and characterized. The purified enzyme had a molecular size of 91 kDa, and it dissociated into three polypeptides of 72, 38, and 35 kDa upon heating in the presence of sodium dodecyl sulfate with or without a reducing agent. The activity of the enzyme could be inhibited by diisopropylfluorophosphate, phenylmethylsulfonyl fluoride, and phenylboronic acid. The value of the second-order rate constant of the protease inactivation by phenylmethylsulfonyl fluoride was 0.48 x 10(4) M(-1) min-1. Inhibition of the enzyme by phenylboronic acid was rapid (< 1 min) and pH dependent. These data strongly suggest that this major surface proteolytic activity belongs to a family of serine proteases.
Collapse
Affiliation(s)
- G Rosen
- Department of Oral Biology, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
47
|
Umemoto T, Namikawa I. Binding of host-associated treponeme proteins to collagens and laminin: a possible mechanism of spirochetal adherence to host tissues. Microbiol Immunol 1994; 38:655-63. [PMID: 7799839 DOI: 10.1111/j.1348-0421.1994.tb01836.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The polypeptides of seven strains of human treponemes were investigated by immunoblot analysis for their binding to the human placental collagens and laminin. Of the treponemal polypeptides, eleven polypeptides, 45-kDa, 49-kDa, and 62-kDa polypeptides from T. pallidum ATCC 27087, a 48-kDa polypeptide from T. phagedenis biotype Reiter, 51-kDa and 53-kDa polypeptides from T. vincentii ATCC 35580, 30-kDa, 53-kDa and 63-kDa polypeptides from T. socranskii subsp. buccale ATCC 35534, a 52-kDa polypeptide from T. denticola ATCC 35405, and a 53-kDa polypeptide from T. denticola ATCC 33520 possessed an ability to bind to the laminin, type I, III, IV, or V collagen. An intermediate-sized human oral isolate strain G7201 did not possess any laminin- or collagen-binding polypeptides. Immunoelectron microscopy using intact treponemal cells with a single collagen-binding polypeptide and the corresponding antisera demonstrated that the 51-kDa and 53-kDa polypeptides from T. vincentii, the 53-kDa polypeptide from T. socranskii subsp. buccale ATCC 35534 and the 52-kDa polypeptide from T. denticola ATCC 35405, were outer envelope proteins.
Collapse
Affiliation(s)
- T Umemoto
- Department of Oral Microbiology, School of Dentistry, Asahi University, Gifu, Japan
| | | |
Collapse
|
48
|
Ellen RP, Song M, McCulloch CA. Degradation of endogenous plasma membrane fibronectin concomitant with Treponema denticola 35405 adhesion to gingival fibroblasts. Infect Immun 1994; 62:3033-7. [PMID: 8005694 PMCID: PMC302918 DOI: 10.1128/iai.62.7.3033-3037.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Treponema denticola adhesion and degradation of fibronectin (Fn) on human gingival fibroblasts (HGF) were studied by immunofluorescence and enzyme-linked immunosorbent assays. The number of adherent bacteria increased and the amount of immunoreactive Fn decreased as a function of increasing T. denticola concentration. The distribution of cell-bound Fn was punctate in micrographs. Anti-human Fn impaired bacterial adhesion to HGF. Phenylmethylsulfonyl fluoride inhibited Fn degradation but not adhesion. Sonicated extracts and diluted spent growth medium degraded HGF Fn but, unlike intact T. denticola cells, they hardly stimulated F-actin rearrangements.
Collapse
Affiliation(s)
- R P Ellen
- Department of Periodontics, Faculty of Dentistry, University of Toronto, Canada
| | | | | |
Collapse
|
49
|
Rosen G, Naor R, Kutner S, Sela MN. Characterization of fibrinolytic activities of Treponema denticola. Infect Immun 1994; 62:1749-54. [PMID: 8168936 PMCID: PMC186400 DOI: 10.1128/iai.62.5.1749-1754.1994] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Several fibrinolytic activities of Treponema denticola, an oral spirochete associated with gingivitis and periodontal disease, were identified and characterized following phase partitioning with the nonionic detergent Triton X-114. The apparent molecular masses of the proteases ranged from 91 to 228 kDa when analyzed in sodium dodecyl sulfate-polyacrylamide gels containing fibrinogen as the protease substrate. A qualitative analysis of zymograms showed that the proteases were highly enriched in the detergent phase, although the 91-, 173-, and 228-kDa proteases were also found in the aqueous phase. Zymograms of crude outer sheaths prepared by repeated freezing-thawing revealed that the proteases may be associated with this subcellular compartment. The proteases displayed substrate specificity towards fibrinogen, were susceptible to sulfhydryl group reagents, and had a pH optimum between 7 and 8. The similarities in their sensitivity to inhibitors, temperature stability, pH optimum, and laddered protein profiles suggest that these hydrolytic enzymes may be part of a family of oligomeric proteases that may play an important role in the invasiveness of and tissue damage caused by the spirochete.
Collapse
Affiliation(s)
- G Rosen
- Department of Oral Biology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | | | | | | |
Collapse
|
50
|
Kokeguchi S, Miyamoto M, Kato K, Tanimoto I, Kurihara H, Murayama Y. Isolation and characterization of a 53 kDa major cell envelope protein antigen from Treponema denticola ATCC 35405. J Periodontal Res 1994; 29:70-8. [PMID: 8113954 DOI: 10.1111/j.1600-0765.1994.tb01093.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A major cell envelope protein was purified from the cell envelope fraction of Treponema denticola ATCC 35405 by ion exchange chromatography after extraction with Zwittergent 3-14. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a relative molecular mass of 53 kDa for this protein with a pI of 6.3-6.8. Amino acid analysis revealed that this protein contained high proportions of hydrophobic amino acids (40.4%), and no cysteine could be detected. The N-terminus of the protein was blocked to Edman degradation. Rabbit antiserum raised against the purified 53 kDa protein reacted with the outer envelope of the T. denticola cell surface as confirmed by immunoelectron microscopy. This rabbit antiserum reacted with 4 of the 11 strains of treponemes tested in this study. Sera from 9 to 18 periodontitis patients reacted strongly with this 53 kDa cell envelope protein of T. denticola as determined by immunoblotting analysis.
Collapse
Affiliation(s)
- S Kokeguchi
- Department of Oral Microbiology, Okayama University Dental School, Japan
| | | | | | | | | | | |
Collapse
|